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Introduction

We report here on activities in five areas carried out during

the first six months of this grant period:

1. Adaptive array processing.

2. Dynamic prograuming applied to the design of adaptive

equalizers.

3. Adaptive maximum-likelihood receiver for digital data trans-

mission.

4. Recursive adaptive equalizers.

5. Finite memory communication systems.

The work on adaptive array processing has just been completed

and a report describing the activities in detail is in preparation.

This work was initiated during the second year of the grant, with previous

work reported in the Status Reports of July 31, 1969 and January 31, 1970.

In addition to the comprehensive report several papers are planned for

publication.

The work on adaptive equalizers using a dynamic programming

approach and on the adaptive maximum-likelihood receiver was initiated dur-

ing this reporting period alLd is an outgrowth of previous work in adaptive

equalizers, described in previous status reports. The work on recursive

equalizers is a continuation of work initiated during the second year of

the grant, reported on in the previous status report of January 31, 1970.

The work on finite memory communication systems was begun during

this reporting period. A detailed discussion of the area and its signi-

ficance to digital processing of signals was included in the Proposal

leading to this third year of grant activities.

EEO
	 -	 ^	

t :'



-2-

Papers delivered or appearing during the reporting period

Professor Schwartz was co-author of two papers delivered at

symposia, based on the work on adaptive equalizers carried out under this

grant. The first, entitled "Rapidly-Converging First Order Algorithms for

Adaptive Equalization", was delivered at the Princeton Conference on

Information and System Sciences in March 1970. The second, entitled

"Rapidly-Converging Second Order Algorithms for Adaptive Equalization"

was delivered at the 1970 International Symposium on Information Theory,

Noordwijk, Holland, June 1970. The paper had previously been selected to

be given as a "long" paper, a singular honor, since only 16 of the 190

presented at the Symposium were in this category. Copies of these papers

were transmitted with the January 31, 1970 Status Report. The two papers

have also been accepted for publication in the IEEE Transactions on In-

formation Theory, subject to some cutting and minor revisions. Professor

Schwartz is author also of the paper, "Computer Processing in Communica-

tions", keynoting the 1969 PIB International Symposium on Computer Pro-

cessing in Conanunications, and appearing in the Proceedings of that

Symposium, published in book form in June 1970. Copies of the paper are

appended to this report.

Professor Boorstyn is co-author of two papers delivered at the

1970 International Symposium on Information Theory noted above. These

papers are based on work done under this grant, as summarized in previous

status reports, and described at length in two individual reports sub-

mitted previously under the grant. 	 The titles of the papers are, res-

pectively, "Properties of Real-Zero Signals", and "Optimum Differential

Pulse Code Modulation". Professor Boorstyn is co-author as well of the
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paper, "Derivative Approximation for Recursive Signal Detection", des-

cribing work done under this grant, that also appears in the printed

Proceedings of the PIB International Symposium on Computer Processing

in Communications. Copies are also appended to this report. A second

paper on Adaptive DPCM has been accepted for presentation at the forth-

coming M. J. Kelley Symposium on Communications.

Summary of work during reporting period

1. Adaptive Array Processing! Previous work on this problem was des-

cribed in the Status Reports of July 31, 1969 and January 31, 1970. The

problem is to automatically make an array of isotropic detectors form a

beam in a desired direction in space when unknown interfering noise is

present so as to maximize the output signal-to-noise ratio (SNR). Itera-

tive gradient techniques are used to do this.

As previously described, we have demonstrated the equivalence

between the "antenna pattern" and "multichannel filter" points of view in

designing optimum detector arrays. We have also reached the conclusion

that, due to sensitivity considerations, we should not try to design our

antenna excitations or multichannel filter coefficients on the basis of

maximizing the SNR alone, but rather on the basis of maximizing the SNR

subject to a constraint on the supergain ratio.

Since the last report we have been primarily concerned with

the development of computer algorithms. Specifically we have completed

the following:

1. Developed a computationally fast algorithm which numerically

determines the optimum excitations to use in designing detector arrays

subject to supergain constraints.
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2. Simulated adaptive structures (see the Status Report of

January 31, 1)70) which minimize the mean square error (MSE) subject to

a linear constraint and demonstrated agreement between the simulated and

theoretical results.

3. Simulated adaptive structures which maximize the array out-

put SNR subject to a constraint on the (nonlinear) supergain ratio, and

demonstrated agreement between the simulated and theoretical results ob-

tained in part 1 above.

In order to give some idea of how close :he adaptive structure

can approach the optimum structure (in terms of output SNR) after "steady

state" is reached, a graph representing a typical simulation run is in-

cluded.

The work in this area has now been concluded. A detailed report

has been written and will be issued shortly.

2. Dynamic Programming Applied to Adaptive Equalizer Design: In previous

reports on this grant we outlined a new method for the adaptive equaliza-

tion of digital signals transmitted through dispersive channels. The

equalizer investigated was a non-recursive digital filter with coefficients

adjusted iteratively. The new method used a variable step size gradient

search procedure, and the step sizes were chosen to provide the smallest

possible distortion at the end of a fixed number of iterations.

We have now applied dynamic programming techniques to the adaptive

equalization problem to see whether we can further speed up the convergence

of the equalizer, as well as developing other equalization schemes that may

be compared to these other methods for simplicity of implementation.

Specifically, let the input data samples be labeled xh , h an

integer; the output (equalized) samples be labeled y h . For an N-tap
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equalizer,

N

yh ` 
j_rl 

c j xh-j+1	 (1)

To find the desired set of tap coefficients c  we use a variable step

size gradient search with the N-dimensional vector C on the (i+l)th

iteration given by

_	 ai 	 2

Ci+1 C i - 2 ^ E i	 (2)

The mean-squared error E 2 is given by

E2	
(yj - m j ) 2 	(3)

with m  the known sequence of data transmitted.

With the dynamic programming technique we desire the appropri-

ate sequence of step sizes 
C1 , 

i = 1,1,...M, so that at the end of M

iterations the error E M2 is minimum, subject to the additional constraint

M-1
E ail < E	 (4)

i=0

with E a specified constraint. (This additional constraint is necessary

to use dynamic programming techniques, and may be interpreted to be a con-

straint on the average expected excess mean - s quared error).

The results are that the appropriate step sizes to be used are

given very nearly by

01	 E 
rTArEr	

(5)

M	 —

with AM a constant, E r the vector of the errors on the L th iteration:

(y l r)rE r ^	 (6)
(YL ml. ) r

The matrix A  is given by

A  = M r 
M 

r T
	 (7)

with Mr in turn an input signal plus noise matrix defined as follows:
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al 0	 . . . 0

a2 al	. . . 0

Mr

aL aL-'1	 al; n+1

0	
a 

r

Here

ai = xi + ni ,	 (8)

the input signal plus noise sample on the ith iteration.

The step sizes Of  thus depend on the (measured) statistics of input

signal, noise, and output error.

Limited simulation has shown that this algorithm is faster than

the fixed step size algorithm and that the tap gain error variance is lower

than in the fixed step-size case.

We are presently deriving the convergence rate and variance equa-

tions and hope to show this analytically.

As a simplification of the dynamic programming equalizer, we are

investigating a quantized step-size equalizer. The quantizer step sizes

will be derived from the dynamic programming predicted step sizes. It is

hoped that this equalizer performs better than the fixed step size equalizer

and not much worse than the dynamic programming equalizer. It would, however,

provide significant computational advantages.
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3. An Adaptive Maximum-Likelihood Receiver for Digital Data Transmission

over Channels with Intersymbol Interference: The work is concerned with

the specification and design of receivers for digital data communication

over channels where the rate of transmission is limited not only by the

noise but also by the intersymbol interference (I.S.I.). One approach

to the problem has involved a linear filter consisting of a tapped delay

line with an automatically adjustable gain at each tap. Such an adaptive

eqiializer is capable of high speed digital signaling over slowly varying

band limited channels whose impulse responses are unknown at the receiver.

Different performance indices have been used to adjust the tap gains by an

iterative procedure using either the steepest-descent technique or various

modified versions of it, to obtain rapid convergence.

As another approach to minimize the effect of both the intersym-

bol interference and noise %Te have considered a maximum likelihood receiver.

Such a receiver is known to be optimum in the sense of minimum probability

of error. This receiver processes the received digital data in a sequential

manner and makes decisions on a block of aata of length L, where L is the

number of Lime periods over which the intersymbol interference extends.

The receiver uses a decision directed scheme to estimate the channel para-

meters and is therefore capable of being adaptive.

Initially we have considered the case L a 1. That is, the I. S. I.

extends only into the next neighboring time period. The transmission is

a binary bipolar data sequence {ak) with white gaussian noise over the

channel. It is assumed that the a  can take the two values with equal

probability. If Jgk)a re the received data in time sequence, the M.L.

receiver computes the ratio a = f( .... gk-l'gklak - 1)p	 k	 f(....gk-l'gk yak = -1)	
(9)

where
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f(....gk-l ,gv lak 
= 1) is the conditional aposteriori probability density

function. It decides that a  - 1 was transmitted if X  >1; otherwise

a  = -1 was transmitted. It is shown that in the absence of noise the

gk 's form a Markov chain and the following recursive relationship can be

obtained for computing X k :

Wk- l+a	 b

k	 eXk- l+a+b+ 1 Q2 k 0

where	
a = 225kx1

b =

02 -

0- 1	 a

x0 and x 1 are the impulse response of the charnel at time tk, 
tk+l, 

and 0.2

is the noise power.

It is abown that the structure of such a receiver contains a

tapped delay line with non-linear amplifiers at the output of each tap.

The receiver can be made adaptive by a decision directed scheme in which

the estimated ak 's can be used to obtain a linear estimate of the chi-:niiel

parameters x0 and xi,

For the receiver of this type probability of error was computed

under the assumption that the noise is stationary and therefore the prob-

ability density function will take on a stationary value as the new data

is received. It is shown that

Sinh gk(x
O xl )	 -2x0x1

Pe = Prob

	

	 (x^x ) < -e a7	 (11)
Sinh gk 

0 1

Next the study was extended to take into account the case L - 2.

Here the transmitted information is considered in a block of two symbols
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la 
k-19 

a 
k1 

and is denoted by a sequence fykl' The M.L. Receiver now
computes the ratio

f ( .... gk-1' gk lyk - i

X  
3 

In	 _	
i.j = 1,2,3,4	 (12)

f( .... gk 1 gk IYk = j}

and decides that the sequence Yk - i was transmitted if Xk > 1 for all

i # J.

A recursive vector equation is obtained to compute X k . We

define

f( .... gk-l'gklyk - 1)

1( .... gk-1' gk l 
yk - 2)

P 
g I Y(k ^

f( .... gk-L' gk lyk = 3)
f( .... gk_l ,gklyk - 4)

Then
A(k) - 

L ij(k^' 
aij = P(gk (yk - i, Yk-1 - j ) P (Yk - i lyk-1=j)	 (13)

The first term in a ij (k) involves the received information,

while the seccnd term is the transitional probability for yk 's which form

a Markov Chain.

Knowing the noise distribution and therefore the distribution

for gk and the transition probabilities in the Markov Chain the elements

in the A (k) matrix are known. We have

P 
g ly (k) - A(k) P g IY (k-1)	 (14)

In the present case L - 2 the matrix A(k) is a 4 x 4 matrix with only

half the elements non zero, the reason being that yk 's form a Markov Chain

and with the help of a state diagram we find that certain transitional

probabilities are zero.

This receiver is again capable of being made adaptive by the

decision directed scheme suggested previously and can easily be extended



-1Q-

to the general case for extended I.S.I.

The scheme was simulated on a digital computer for the case of

a known channel and works successfully in decoding the received information.

It is planned in the future to carry out the following tasks:

1) To compute the probability of error in the general case or obtain cer-

tain bounds on it to measure the performance of this system.

2) To simulate the scheme on a computer when the channel parameters are

unknown and study the effect of different decision directed schemes on the

overall performance.

3) In the general case the size of the matrix A(k) will be 2 L x 2L which

will involve a large number of computations. Hence it may be worthwhile

to look for a suboptimum scheme with considerable saving in computation

time with little loss in the performance.

4) It appears that such a minimum probability of error receiver is simi-

lar to the Viterbi decoding algorithm for convolutional codes. Therefore

it would be nice to bridge these two fields and show that the techniques

used to analyze the optimum decoding of convolutional codes are similar to

the analysis of the optimum receiver in our case.

4. Recursive Adaptive Filters for Equalization: The recursive filter

structure for minimizing the intersymbol distortion of a communication

channel is analyzed in this work. Because of the inherent non-linear

property of the recursive structure, an open-loop scheme is utilized to

linearize the non-linear system. 	 -

The performance of the recursive equalizer (using the open-loop

scheme) is compared with that of the non-recursive (transversal) equali-

zer for some known channels. Some of the problems associated with the

open-loop scheme of the recursive equalizer are discussed.
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A) Introduction: Non-recursive filters (transversal filters) have been

satisfactorily used to equalize the intersymbol distortion of communica-

tion channels. Lucky (1) has pointed out that the performance of the

transversal filter is especially good fcr channels which exhibit time

dispersion over only a small number of symbols duration. Kaiser 
(2) 

has

shown that if the amplitude-frequency characteristic of the network (in

our case, an equalizer) has a sharp slope such as the sharp transition

between the passband and stopband of an; oandpass type network, a recursive

structure representation of the network requires far less number of taps

than the non-recursive structure representation. Therefore, to equalize

those channels which exhibit extremely long time dispersion and require an

extremely large number of taps in the non-recursive structure, one would

try to use a recursive structure if one can successfully find it. In this

work the recursive structure is analyzed as an equalizer.

The modified error (or linearized error) first introduced by

Mantey (3) will be used in the optimization of the recursive filter para-

meters as an equalizer.

B) Formulation: 1) Mean Square Error

-1
D(z )	 X ( Z ' 1	 A(z-1)	 v(z_ 1)

40	 Channel

B(z-1)

b
Recursive Equalizer

The mean square error is defined:

m

E = 2n J { Y (z-1 ) - D (z-l ) (2 z ldz = E (yn - dn)` (15)
n=0

where do is the desired signal and, e.g.,

m

D (i 1 ) = E d.%- i
J=0 

Because of the inherent non-linearity in E, multiple minima can
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occur even when A (z-1 )/13 ( z-1 )	 D (z-1 )/X ( z-1 ) which makes the mean

square error vanish (3) . Therefore, a gradient procedure could fail to

terminate at the solution that makes the error vanish even when such a

possible solution exists. This deficiency is a severe one.

2) Modified Error - Open-loop Scheme: The recursive filter

is basically characterized by the following difference equation:

N	 M
E a  x(nt - kt) = y(nt) + E b  y(nt - kt)	 (16)
k=0	 k=1

For convenience the abo •e equation can be written as:

N	 M
E a k xn-k ^ y  + E b  yn-k
	

(17)

For normal equalization, the objective is to choose the parameters a  and

b  such that y  is as close as possible to the desired signal dn . For this

purpose one may let yn = do in the equation (17) and choose the parameters

that minimize the difference between the two sides of equation (17). In

other words, one can define a convenient error function. (Mantey called

this the modified error. This could be called an open-loop scheme.)

N	 M	
11en	 E 

ak xn- k - do + Zr b  dn- kl
	(18)

k=0	 k=1

3) Minimization of the mean square error of the modified error.

The mean square error of the modified error is defined

40

E = E e `
m n=0 n

For convenience of the analysis, let us define (N + 1 + M) vectors C and

gn as follows:

C^= [a0 ,a l ,a29 ..., aN , -b 1 ,-bi ,	 -bM^	 (20)

gn	 Ix 'x xn-1' xn- 2' ... , n- N ' n-1 ' dn-21'   ... 9 dn- M,	
(21)

(19)
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5. Finite Memory Communication Systems:

In converting communications systems to digital processing a re-

current problem is the resultant discrete nature of the operations. Both

data. and parameters (e.g. coefficients) are quantized. The subsequent

round-off and truncation errors and their propagation are often studied.

However, a completely different approach is to view the entire system as

a finite state machine. We are concerned with the novel features of this

viewpoint.

In particular we have been investigating finite-memory systems

for the two hypothesis testing problem based on an :nproach suggested by

Cover and Hell.man (4) . Let xl,x2,...,xn be a sequence of independent

identically distributed gaussian random variables with unit variance and

mean -1 under hypothesis HO , and +1 under hypothesis H l . Hellman and

Cover have shown. that the optimum m state memory for detecting which hy-

pothesis is true under the constraint that the data sequence be infinite

is as follows:	 labeling the state of the memory 1,2,...,m, the machine

will move from any state j, j=l,...,m, to state j + 1 or j - 1 if the
current data sample is such that it maximizes or minimizes the likelihood

ratio of the two hypotheses. If the current data sample does not maxi-

mize or minimize the likelihood ratio, the memory remains in its present

state. No other transitions are necessary. For our gaussian example, the

long term occupation probability of the states of the memory is zero for

states 2,...,m-1, and finite for states 1 and m. Therefore if we are in

state 1, we assume 110 is true and if we are in state m we assinne H 1 is

true. To build this machine we would set two thresholds, one at -D and

the other at +D where D - cc. Every time the input sample was greater than

D or less than -D we would move to the next higher or lower state from our

previous state.
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The machine described above is fine for the infinite data con-

straint. However, if we limit the data samples to say n, where n is

finite, the optimum infinite data machine is not even a close approximation

to the optimum finite data machine, the reason being that in the infinite

data case the machine can wait for and use only that information that

maximizes or minimizes the likelihood ratio. 	 However, for the finite

data case there is no guarantee that this data will occui. Therefore, for

the finite data case, the machine must make use of more of the information.

In an attempt to gain insight into the memory structure for the

finite data case machines with only a few states are being investigated.

Below we describe these machines and develop expressions for their per-

formance. Subsequent work will include calculations of performance.

Two State Memory:

Again consider the gaussian example. Under hypothesis H0 the

data has mean -1 and unity variance. Under hypothesis H 1 the data has

mean +1 and unity variance. The machine consists of two hates, 0 and 1,

and the data is compared to two thresholds tD. If the memory is in state

0 and the input is greater than D we move to state 1. If the memory is

in state 1 we move to state 0 if the input is less than -D. For all

other inputs we stay in the previous state. If it is assumed both hypo-

theses are equally probable, then the probability of error can be calcu-

lated assuming HI is true and calculating the probability of being in

state 0. For this case

(&3 -a )	 (1-a n)'
 [

Pe (2) (n) = 2 - - a a 1 (1 - Cy 	 _ 1) fi - ( a3-al)	 1-a2	} (26)
1 3	 2

where
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al = prob (x < -D}	 f (x)

a2 =prob (-D<x<D)

_	 >a3	 prob (x	 D}	 f
-D0 +D	 x

-a1̂  I	 a2 -. i- 013~

If IDI	 which is the case for infinite data, then a2 = 1 and Pe ( 2 ) (0) = 11

showing that the infinite data machine is far from optimum in the finite

data case.

Taking 
6Pe(2)(n) 

and setting it equal to zero, we get

[2a (1_ ,2n) - 
n(a 2-a 2 )a n- 12 3 

C11" =  [2a (1-a n ) -n(a 2- 0'3 
2) a n-1i a ' (27)3	 ^	 3	 1	 2 	 1	 2	 1 	 2	 3

This is the equation that the thresholds must satisfy for the optimum set-

ting. Since a2 < 1, if n W we get

J.
cr3 Ci1 = of

which is satisfied if IDI = W.

Three State Memory:

Again considering the gaussian example and assuming H1 is true and that

HO is detected we have the fcllowing cases:

(1) Single Threshold

(28)

a2

C(3
	 a

1-a3

The resulting probability of error is

Pe(3) ("') = 2 { 1 - (°'3-C'l) r (1-X 2n) + (1-x3n)	
J2	 l 1-k 2	 1- X3

(29)

V.°
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a4

eat+ ... .^

1- a5

-1.8-

where 2 = a2 + alai
A3ffi

a2 - ai a3

(2) Double Threshold

C'2

fl(x)

_ 
04

a x^— al - D
-a2	

1 a3 
D --S ^►

the resulting probability of error is
(a - a )	 1-x r`	 1-k n

Pe (3) (n) = 2 {1 -	 32 
l 

^ '-'22	 + 1-x3 3

(CI l+a3)	 (1- X2n	 1- X3n
+	 2(a2-x3)	 l-,2	 1-X3

2
where X2 = a2

+ (x+2y) +	 ala3 + \

X3 =a2 ±Y+` 2 1-	 al ai +f	 2
2

x = a3 - a5

y = al - a4

(30)

(3) Triple Threshold

a7

a2

a - a	 a3

1-015

t^
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The resulting probability of error is

(3)	
1	 a3-al	 1-A2	 1-n	 ^3n

,Pe	 (n)	 2 ^1 -	 2	 ^ 1-X	 + ^ l-X

	

2	 3

	

((Yl+(y3 ) ^ x2 y) 0'3% - 
°.ia7	

1-^2n

+	 2(X2-X3)	 2

where
.	 2

a 2 = a2 + ^x2y) +	 ala3'1 ` -cxla^ -a6a^-a3a6

2
X	 IM-Y)-
 

= a2 * zy) - alai+ ( x2 -alai+a6a7 -a3a6

x - a3 a5

y - al 4

(31)

1- a3n

1-X3

Case ( 1) is just a simple extension of the two state machine.

Case (2) tries to take advantage of the fact that when the machine is in

an end state it favors either H 0 or H1 . Therefore it will not leave this

state unless the next input is greater than some second threshold. Case

(3) says if the machine is in an end state and if the input is suffici-

ently large, favoring one hypothesis much more than the other, that the

memory should completely switch in the machine to the other end state

unless it is already there.

Cases (1), (2), and (3) seem to fairly completely cover the

three state machine. Computer analysis is being done to find the opti-

mum thresholds for each case. With these thresholds the probabilities

of errors can be compared to determine if any advantage is gained by the

added comple: : ity in each case.

Work is continuing to try and extend these results to a general

m state machine.

- '	 '.
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