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Abstract. This paper introduces drift analysis and its applications in estimating average
computation time of evolutionary algorithms. Firstly, drift conditions for estimating upper
and lower bounds of the mean first hitting times of evolutionary algorithms are presented.
Then drift analysis is applied to two specific evolutionary algorithms and problems. Finally, a
general classification of easy and hard problems for evolutionary algorithms is given based on
the analysis.
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1. Introduction

An important topic in the theory of evolutionary algorithms (EAs) is their
computation time for solving combinatorial optimisation problems, which
reveals the number of expected generations needed to reach an optimal solu-
tion (Rudolph, 1998; Eiben and Rudolph, 1999). In the last few years, some
progresses have been made towards this direction (Droste et al., 1998; Beyer
et al., 2002; Droste et al., 2002; He and Yao, 2002). However, most of the
tools used in the analysis were somewhat ad hoc. It is important to develop
mathematical models and tools for analysing EAs so that insights can be
gained into them.

This paper introduces a technique for estimating the computation time of
EAs – drift analysis. Drift analysis draws properties of a stochastic process
from its mean drift. It has been used to study properties of the general Markov
chain (Hajek, 1982; Meyn and Tweedie, 1993) and to estimate the time
complexity of simulated annealing algorithms (Sasaki and Hajek, 1988). It
has also been applied to the analysis of EAs (He and Yao, 2001, 2003).

The rest of this paper is organised as follows. Section 2 describes mathe-
matical models of EAs. Section 3 discusses drift conditions which are used
to estimate upper and lower bounds of the first hitting times. Two examples
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in Section 4 illustrate the application of drift analysis to specific EAs and
problems. One important outcome of our analysis is a new classification of
easy and hard problems for EAs, described in Section 5. Finally, Section 6
concludes the paper with a short summary.

2. Mathematical models of EAs

Given an objective function f : S → R, where S is a finite set and R is the
real line, a maximisation problem is to find an x ∈ S such that

f (x) = max{f (y), y ∈ S}.
EAs are often used to solve this kind of problems. Denote x to be a popula-

tion of individuals, E the set consisting of all populations. Let ξt be the t-th
generation population, which is a random variable and takes values from E.
Given an initial population ξ0 and let t = 0, most EAs can be described by
the following three major steps.

Recombination: Individuals in population ξt are recombined. An offspring
population ξ

(c)
t is then obtained.

Mutation: Individuals in population ξ
(c)
t are mutated. An offspring popula-

tion ξ
(m)
t is then obtained.

Selection: Each individual in the population ξ
(m)
t and original population ξt

is assigned a survival probability. Then select some individuals as the
next generation ξt+1.

There have been a few mathematical models proposed for EAs. Here we
introduce two of them, i.e., Markov chains and supermartingale, because they
seem to be most appropriate for estimating EA’s computation time.

Markov chains are widely used mathematical models in the theoretical
analysis of EAs. The sequence of random variables {ξt; t = 0, 1, 2, · · ·} can
be modelled by a Markov chain (Rudolph, 1998), because the state of the
(t +1)-th generation often depends only on the t-th generation. The transition
probability P(x, y; t) is given by, for any populations x, y ∈ E,

P(x, y; t) := P(ξt+1 = y | ξt = x).

An EA with elitist selection strategy can be modelled by an absorbing
Markov chain.

An alternative way to model EAs is by a supermartingale. This model
was first used in discussing the convergence of non-elitist selection strategies
(Rudolph, 1994). It is not as commonly used as Markov chains.
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Denote Eopt to be the set of populations which include an optimal solu-
tion. In order to describe how far a population is away from Eopt , we need
a function V (x, Eopt ) to measure the distance between a population x and
the optimal set Eopt . This distance function, without confusion, is denoted as
V (x) in short. The distance function can be defined in differents ways, e.g.,
Hamming distance, or V (x) = min{| f (x) − f (y) |; y ∈ Eopt}, or V (x) = 0
if x ∈ Eopt and V (x) = 1 if x /∈ Eopt .

Given a distance function, now we can define the one-step mean drift at
the t-th generation (assume ξt takes the value of x),

E[V (ξt) − V (ξt+1) | ξt = x] := V (x) −
∑
y∈E

P(x, y; t)V (y). (1)

The drift can be decomposed into two parts: positive and negative drifts,

E+[V (ξt) − V (ξt+1) | ξt = x] := V (x) −
∑

{y:V (y)<V (x)}
P(x, y)V (y),

E−[V (ξt) − V (ξt+1) | ξt = x] := V (x) −
∑

{y:V (y)>V (x)}
P(x, y)V (y).

The one-step mean drift is similar to the local performance of EAs (Beyer,
2001), where the positive drift is the rate of the gain of a population towards
the optimum and the negative drift is that away from the optimum.

Using the mean drift, we can analyse the convergence, convergence rate
and first hitting time of a stochastic process (Hajek, 1982; Meyn and Tweedie,
1993). If the one-step mean drift is always not less than 0, i.e.,

E[V (ξt) − V (ξt+1) | ξt ] ≥ 0,

then {V (ξt)} is a supermartingale (Chow and Teicher, 1988).

3. Drift analysis for mean first hitting times

Let {ξt; t = 0, 1, · · ·} be a Markov chain associated with an EA. Its first
hitting time to the optimal set Eopt , or the number of generations for the EA
to find an optimal solution first time, is defined by

τ := min{t ≥ 0; ξt ∈ Eopt}.
The upper bound of the first hitting time can be estimated through the

lower bound of the mean drift (He and Yao, 2001).

LEMMA 1. Given a distance function V (x), if {V (ξt); t = 0, 1, 2, · · ·}
satisfies: for any time t ≥ 0 and any population ξt with V (ξt) > 0,
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E[V (ξt) − V (ξt+1) | ξt ] ≥ clow, (2)

where clow > 0, then the mean first hitting time satisfies

E[τ | ξ0] ≤ V (ξ0)

clow

. (3)

Similarly, the lower bound of the first hitting time can be estimated by the
upper bound of the one-step mean drift (He and Yao, 2001).

LEMMA 2. Given a distance function V (x), if {V (ξt); t = 0, 1, 2, · · ·}
satisfies: for any time t ≥ 0 and any population ξt with V (ξt) > 0,

E[V (ξt) − V (ξt+1) | ξt ] ≤ cup, (4)

where cup > 0, then the mean first hitting time satisfies

E[τ | ξ0] ≥ V (ξ0)

cup

. (5)

A natural question here is whether there exists such kind of distance
function V (x), upper bound cup and lower bound clow in the previous two
lemmas. According to the following lemma (Theorem 10, Chapter II §3.1.1
in Syski (1992)), they do exist if an EA could be modelled by a homogeneous
absorbing Markov chain.

LEMMA 3. Assume {ξt} is a homogeneous absorbing Markov chain. If the
distance function V (x) = E[τ | ξ0 = x], then V (x) satisfies{

V (x) = 0, if x ∈ Eopt ,

V (x) − ∑
y∈E P(x, y)V (y) = 1, if x /∈ Eopt .

(6)

Based on this lemma, we know that Lemmas 1 and 2 hold when clow =
cup = 1.

4. Drift analysis for selected evolutionary algorithms

4.1. Analysis of a (1 + 1)-EA for linear functions

Consider the following linear function (Droste et al., 1998):

f (x) = w0 +
n∑

i=1

wisi, (7)

where x = (s1 · · · sn) is a binary string, weights w1 ≥ w2 ≥ · · · wn > 0 and
w0 ≥ 0. This function is maximal at (1 · · · 1).

A (1 + 1) EA can be used to solve this problem:
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Mutation: At generation t , for individual ξt = (s1 · · · sn), flip each of its
bits with probability 1/n. The mutated population (in (1 + 1) EA, a
population is an individual) is denoted as ξ

(m)
t .

Selection: If f (ξ
(m)
t ) > f (ξt ), then ξt+1 = ξ

(m)
t , otherwise, ξt+1 = ξt .

We use two different distance functions to study this problem. The first
one is that: given a binary string x = (s1 · · · sn),

V (x) = 4(n − 1)2

(
n∑

i=1

| si − 1 |
)

. (8)

Using this distance, we can get an O(n3) upper-bound on the mean first
hitting time. Its proof is given in the appendix.

THEOREM 1. Let τ be the mean number of generations for the (1+1) EA to
find an optimal solution, then

E[τ | ξ0] = O(n3). (9)

Consider another distance function (without losing generality assume n is
an even number):

V (x) = n ln


1 +

n/2∑
i=1

c | si − 1 | +
n∑

i=n/2+1

| si − 1 |

 , (10)

where c(1 < c ≤ 2) is a constant. The case of c = 2 is used in Droste et al.
(2002). The case considered in this paper is more general.

Using this distance function, we can get a tighter upper bound, as given in
the following theorem. The proof is in the appendix.

THEOREM 2. Let τ be the mean number of generations for the (1 + 1) EA
to find an optimal solution for the first time, then

E[τ | ξ0] = O(n ln n). (11)

4.2. Analysis of an (n + n)-EA for the ONE-MAX problem

It is well known that a (1 + 1)-EA can solve the ONE-MAX problem in time
�(n ln n) (Droste et al., 1998). Here we discuss a population-based (n + n)

EA, where n is the length of the string:

Mutation: For each individual x = (s1 · · · sn) in the population ξt at gener-
ation t , each bit si will be flipped with probability 1/n. The mutated
population is denoted as ξ

(m)
t .
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Selection: Sort 2n individuals in ξt and ξ
(m)
t according to their fitness from

high to low. Then select n best individuals as the next generation ξt+1.

Two different distance functions will be used in this study. The first one is
that: for an individual x, define the distance function to be

V (x) = 3(n − 1) ln

(
1 +

n∑
i=1

| si − 1 |
)

. (12)

For a population x, define the distance function to be

V (x) = min{V (x); x ∈ x}. (13)

Similar to Theorem 2, we have

THEOREM 3. Let τ be the mean number of generations for the (n + n) EA
to find an optimal solution for the first time, then

E[τ | ξ0] = O(n ln n). (14)

The second one is a little complex. Denote the Hamming distance between
an individual and the optimal solution (1 · · · 1) as

H(x, 1) =
n∑

i=1

| si − 1 |,

for simplicity, write it as H(x) in short. For a population x, define

H(x) = min{H(x); x ∈ x}.
We decompose the population set E into n + 1 subsets as follows:

El = {x;H(x) = l}, l = 0, 1, · · · , n.

For each subset El (l ∈ {1, · · · , n − 1}), we can decompose El further into n

subsets: for k = 1, · · · , n,

El,k = {x ∈ El; x includes k individuals x with H(x) = l }
Then we can define the distance function to be

V (x) = dl,k, if x ∈ El,k, (15)

where dl,k is defined by

d0 := 0,

d1,n := 4,

d1,k := 4 + 4
∑n−1

i=k 1/i, k = n − 1, · · · , 1,
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and for l = 2, · · · , n − 1,

dl,k := dl−1,1 + 4, k = n, · · · , �n/l�,
dl,k := dl−1,1 + 4 + 4

∑�(n−1)/ l�
i=k 1/i, k = �(n − 1)/ l� + 1, · · · , 1,

where �(n − 1)/ l� represents the minimum integer not less than n/l, and
finally

dn : = dn−1,1 + 4.

Notice that dn = O(n).
Using the above distance we can get the following results. The proof is in

the appendix.

THEOREM 4. Let τ be the mean number of generations for the (n + n) EA
to find an optimal solution for the first time, then

E[τ | ξ0] = O(n). (16)

5. Drift analysis for EAs in general: A problem classification

Given an EA, we can divide optimisation problems into two classes based on
the mean number of generations needed to solve the problems.

Easy Class: For the given EA, starting from any initial population x ∈ E,
the mean number of generations needed by the EA to solve the problem,
i.e., E[τ | ξ0 = x], is polynomial in the problem size.

Hard Class: For the given EA, starting from some initial population x ∈ E,
the mean number of generations needed by the EA to solve the problem,
i.e., E[τ | ξ0 = x], is exponential in the problem size.

5.1. Characteristics of easy problems

A sufficient and necessary condition for the easy problem is given below.

THEOREM 5. Given an EA which can be modelled by a homogeneous
absorbing Markov chain, a problem belongs to the Easy Class if and only
if there exists a distance function V (x) such that
1. V (x) ≤ g1(n), where g1(n) is polynomial in the problem size n, and
2. the one-step mean drift satisfies: for any population ξt at generation t

with V (ξt) > 0,

E[V (ξt) − V (ξt+1) | ξt ] ≥ clow,

where clow > 0 is a constant.
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From the above theorem, we see that for a given EA, a problem belongs
to the Easy Class if there exists a distance function, and (1) Condition 1 in
the theorem shows that under the distance measure, no population is very far
away from the optimal set (polynomial in the problem size); (2) Condition
2 shows that the one-step mean drift towards the optimal set is sufficiently
large, always greater than a positive constant.

Since every population is only a short-distance away from the optimal set,
and the one-step mean drift is always greater than a positive constant, the
optimal set is easy to reach.

5.2. Characteristics of hard problems

Similar to the above analysis, a sufficient and necessary condition for a hard
problem is given below.

THEOREM 6. Given an EA that can be modelled by a homogeneous
absorbing Markov chain, a problem belongs to the Hard Class if and only
if there exists a distance function V (x) such that
1. V (x) satisfies: for some population x ∈ E : V (x) ≥ g2(n), where g2(n)

is exponential in the problem size n, and
2. the one-step mean drift satisfies: for any population ξt with V (ξt) > 0,

E[V (ξt) − V (ξt+1) | ξt ] ≤ cup,

where cup is a positive constant.

From this theorem we can see that: given an EA, a problem belongs to
the Hard Class if there is a distance function, and (1) Condition 1 shows
that under this distance, some populations are far away (exponential in the
problem size) from the optimal set; (2) Condition 2 shows that the one-step
mean drift towards the optimal set is limited and always less than a positive
constant.

Since some population are at a far-distance from the optimal set and the
one-step mean drift is limited by a certain positive constant, the number of
generations needed to arrive at the optimal set will be very large (exponential)
if starting from these populations.

5. Conclusions and discussions

This paper has shown that drift analysis is a useful tool in estimating the
computation time of EAs. The analysis in this paper has shown that a number
of results, both specific and general, can be derived using the drift analysis.
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Drift analysis reduces the behaviour of EAs in a higher dimensional
population space E into a supermartingale on the one-dimensional space.
This reduction is implemented by the introduction of a distance function for
the population space. The analysis of the one dimension random walk is much
easier than analysing the original Markov chain. Two key points in applying
drift analysis are: (i) to define a good distance function; and (ii) to estimate
the mean drift.

The application of drift analysis in the study of EAs is still at its early days.
More research is needed to generalise it in order to analyse more complex
EAs on more complex problems in the future.

Appendix

Proof of Theorem 1.
Denote

dl = 4(n − 1)2l, l = 0, · · · , n.

Assume at generation t , the population ξt satisfies: V (ξt ) = dl where l ∈
{1, · · · , n}.

Firstly, we consider the positive drift. The following event will lead to a positive
drift: k bits (k = 1, · · · , l) among zero-valued bits of ξt flip and other bits keep
unchanged. The positive drift satisfies:

E+[V (ξt ) − V (ξt+1) | ξt ] =
l∑

k=1

(dl − dl−k)P(V (ξt+1) = dl−k | ξt )

≥
l∑

k=1

4(n − 1)2k

(
l

k

) (
1

n

)k (
1 − 1

n

)n−k

.

Secondly, we consider the negative drift. Only the following event can produce
the negative drift: k bits (k = 1, · · · , min{l, n − l − 1}) in zero-valued bits of ξt flip,
k +m bits (m = 1, · · · , n− l − k) of one-valued bits of ξt flip, and all other bits keep
unchanged. The negative drift will be no more than

E−[V (ξt ) − V (ξt+1) | ξt ]

=
l∑

k=1

n−l−k∑
m=1

(dl − dl+m)P(V (ξt+1) = dl+m | ξt )

≥ −
l∑

k=1

n−l−k∑
m=1

4(n − 1)2m

(
l

k

)(
n − l

k + m

)(
1

n

)2k+m (
1 − 1

n

)n−2k−m

.

Hence, the total drift will be

E[V (ξt ) − V (ξt+1) | ξt ]
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≥
l∑

k=1

4(n − 1)2k

(
l

k

) (
1

n

)k (
1 − 1

n

)n−k

−
l∑

k=1

n−l−k∑
m=1

4(n − 1)2m

(
l

k

)(
n − l

k + m

)(
1

n

)2k+m (
1 − 1

n

)n−2k−m

= 4(n − 1)2
l∑

k=1

(
l

k

) (
1

n

)k (
1 − 1

n

)n−k

(
k −

n−l−k∑
m=1

m

(
n − l

k + m

) (
1

n − 1

)k+m
)

≥ 4(n − 1)2
(

1

n

) (
1 − 1

n

)n−1
(

1 −
+∞∑
m=1

m

(
n − l

m + 1

) (
1

n − 1

)1+m
)

> (n − 1)

(
1 + 1

2(n − 1)
−

+∞∑
m=2

m

(m + 1)!

)

> clow := 1

2
.

According to Lemma 2, we get

E[τ | ξ0] ≤ dn

clow

= 8n(n − 1)2.

Proof of Theorem 2.
Denote

du = n ln(1 + u).

We call a bit si the left bit if i ≤ n/2 or the right bit if i ≥ n/2 + 1.
Assume at generation t , population ξt consists of l1 (l1 ≥ 0) one-valued left bits

and l2 (l2 ≥ 0) one-valued right bits. Then V (ξt ) = dcl1+l2 .
Firstly, we consider the positive drift. A positive drift will happen if the following

event happens: m1(≥ 0) zero-valued left bits in ξt flip, m2(≥ 0) zero-valued right
bits flip, and other bits keep unchanged, and −cm1 −m2 < 0. The probability of this
event satisfies

P(V (ξt+1) = dcl1+l2−cm1−m2 | ξt )

≥
∑

cm1+m2>0

(
l1

m1

)(
l2

m2

)(
1

n

)m1+m2
(

1 − 1

n

)n−(m1+m2)

.

Next we consider the negative drift. A negative drift will happen only if the
following event happens: m1(≥ 0) zero-valued left bits in ξt flip and m2(≥ 0) zero-
valued right bits flip; k1(≥ 0) one-valued left bits in ξt flip and k2 one-valued right
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bits flip; other bits in ξt keep unchanged; and −cm1 − m2 + ck1 + k2 > 0. The
probability satisfies

P(V (ξt+1) = dcl1+l2−cm1−m2+ck1+k2 | ξt )

≤
∑

−cm1−m2+ck1+k2>0

(
l1

m1

)(
l2

m2

)(
n/2 − l1

k2

)(
n/2 − l2

k2

)
(

1

n

)m1+m2+k1+k2
(

1 − 1

n

)n−(m1+m2+k1+k2)

.

Denote u = cl1 + l2, v = cm1 + m2 and w = −cm1 − m2 + ck1 + k2. w =
ck1 + k2 − v. Then the mean drift satisfies

E[V (ξt ) − V (ξt+1) | ξt ]
=

∑
v>0

(du − du−v)P(V (ξt+1) = du−v | ξt )

+
∑
w>0

(du − du+w)P(V (ξt+1) = du+w | ξt )

≥
∑
v>0

(
l1

m1

)(
l2

m2

) (
1

n

)m1+m2
(

1 − 1

n

)n−(m1+m2)

(
du − du−v +

∑
w>0

du − du+w

(n − 1)k1+k2

(
n/2 − l1

k1

)(
n/2 − l2

k2

))

≥
∑
v>0

(
l1

m1

)(
l2

m2

) (
1

n

)m1+m2
(

1 − 1

n

)n−(m1+m2)

(
du − du−v +

∑
w>0

(du − du+w)
1

(2k1)!!(2k2)!!

)
. (17)

Since

du − du−v +
∑
w>0

(du − du+w)
1

(2k1)!!(2k2)!!
≥ n ln(1 + u) − n ln(1 + u − v)

+
∑
w>0

(n ln(1 + u) − n ln(1 + u + w))
1

(2k1)!!(2k2)!!

≥ n

1 + u

(
v −

∑
w>0

w

(2k1)!!(2k2)!!

)
, (18)

we have the following results.
Case 1: m1 ≥ 1 or m1 = 0 and m2 ≥ 2.
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Then v ≥ c , w = ck1 + k2 − cm1 −m2 ≤ ck1 + k2 − c, and (18) is not less than:

n

1 + u


c −

∑
ck1+k2−c>0

ck1 + k2 − c

(2k1)!!(2k2)!!




≥ n

1 + u


c −

∑
k1+k2−1>0

ck1 + ck2 − c

(2k1)!!(2k2)!! +
∑

k1+k2−1>0

(c − 1)k2

(2k1)!!(2k2)!!




≥ n

1 + u
(c − 1)


 ∑

k1+k2−1>0

k2

(2k1)!!(2k2)!!




= n

1 + u
c1 > 0, (let c1 be the constant term in above). (19)

Case 2: m1 = 0 and m2 = 1.
In this case, k1 must be 0. Because in this case only 1 zero-valued right bit flips,

so if k1 ≥ 1, i.e., one or more one-valued left bits flip, then the fitness does not
increase, and the new individual won’t be accepted. Thus (18) is not less than

n

1 + u


1 −

∑
k2−1>0

k2 − 1

(2k2)!!




≥ n

1 + u
c2 > 0, (let c2 be the constant term in above). (20)

Since u = cl1 + l2, either l1 ≥ u/(1 + c) or l2 ≥ u/(1 + c). Without losing
generality, assume l2 ≥ u/(1 + c). Then from (17), (19) and (20), we know that
(denote (c1 ∧ c2) = min{c1, c2})

E[V (ξt ) − V (ξt+1) | ξt ]
≥

(
l1

0

)(
l2

1

) (
1

n

) (
1 − 1

n

)n−1
n

1 + u
(c1 ∧ c2)

≥ u

1 + c

(
1 − 1

n

)n−1 1

1 + u
(c1 ∧ c2)

≥ clow := c1 ∧ c2

8(1 + c)
( using u ≥ 1).

According to Lemma 2, we know that

E[τ | ξ0] ≤ V (ξ0)

clow

≤ dn

clow

= O(n ln n).

Proof of Theorem 4.
We decompose individual set S into n + 1 subsets as follows:

Sl = {x; H(x) = l}, l = 0, 1, · · · , n.
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At generation t , if ξt ∈ En, i.e., all individuals in the population take the value of
(0 · · · 0), then we have

E[V (ξt ) − V (ξt+1) | ξt ] ≥ 4
n−1∑
l=0

P(ξt+1 ∈ El | ξt ).

The event of ξt+1 belonging to ∪n−1
l=0 El will happen if at least one individual in

population ξt enters Sn−1. The probability satisfies

n−1∑
l=0

P(ξt+1 ∈ El | ξt ) ≥
(

n

1

) (
1

n

)(
1 − 1

n

)n−1

.

So for population ξt ∈ En, the drift satisfies

E[V (ξt ) − V (ξt+1) | ξt ] ≥ 1. (21)

At generation t , if population ξt ∈ El,k, where l = 1, · · · , n−1 and k = 1, · · · , n,
because the selection is (n + n) elitist strategy, we have

E[V (ξt ) − V (ξt+1) | ξt ]

=
l−1∑
i=0

(V (ξt ) − V (ξt+1))P(ξt+1 ∈ Ei | ξt )

+
n∑

j=k+1

(V (ξt ) − V (ξt+1))P(ξt+1 ∈ El,j | ξt )

≥ 4
l−1∑
i=0

P(ξt+1 ∈ Ei | ξt ) + 4
1

k

n∑
j=k+1

P(ξt+1 ∈ El,j | ξt ).

Case 1: �(n − 1)/ l� ≤ k ≤ n.
The event of ξt+1 beloning to ∪l−1

i=0Ei will happen if an individual in population
ξt is mutated to Sl−1. The event of an individual in ξt being mutated to Sl−1 will
happen if for one of k best individuals in ξt , at least one of its l zero-valued bits is
flipped into 1 and n − l one-value bits are remained unchanged. Then

l−1∑
i=0

P(ξt+1 ∈ Ei | ξt ) ≥
(

k

1

)(
l

1

) (
1 − 1

n

)n−1 1

n

≥ �(n − 1)/ l� l

n − 1

(
1 − 1

n

)n

≥
(

1 − 1

n

)n

.

So for population ξt ∈ El,k with �(n − 1)/ l� ≤ k ≤ n, the drift satisfies:

E[V (ξt ) − V (ξt+1) | ξt ] ≥ 4
l−1∑
i=0

P(ξt+1 ∈ Ei | ξt ) ≥ 1. (22)
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Case 2: 1 ≤ k < �(n − 1)/ l�.
The event of ξt+1 belonging to ∪n

j=k+1El,j will happen if population ξt+1

includes k + 1 individuals such that V (x) = l and the event of ξt+1 ∈ ∪l−1
i=0Ei

does not happen. This will happen if an individual among k best individuals in ξt

is kept unchanged during the mutation and none of the individuals is mutated into
∪l−1

i=0Ei . The probability of this event happening satisfies:

n∑
j=k+1

P(ξt+1 ∈ El,j | ξt )

≥
(

k

1

) (
1 − 1

n

)n
(

1 −
l−1∑
i=0

P(ξt+1 ∈ Ei | ξt )

)

≥ k

4

(
1 −

l−1∑
i=0

P(ξt+1 ∈ Ei | ξt )

)
.

So if population ξt ∈ El,k with 1 ≤ k ≤ �(n − 1)/ l�, then the drift satisfies:

E[V (ξt ) − V (ξt+1) | ξt ∈ El,k]

≥ 4
l−1∑
i=0

P(ξt+1 ∈ Ei | ξt ) +
(

1 −
l−1∑
i=0

P(ξt+1 ∈ Ei | ξt )

)
≥ 1.

From Lemma 2, (21), (22) and (23), we know that

E[τ | ξ0] ≤ dn

1
= O(n).

Proof of Theorem 5.
(1) Sufficient condition. From Theorem 1, we get

E[τ | ξ0] ≤ V (ξ0)

clow

≤ g1(n)

clow

.

Since g1(n) is polynomial in n, then E[τ | ξ0] is polynomial in n too.
(2) Necessary condition. Choose the distance function to be V (x) = E[τ | ξ0].

Let g1(n) = max{V (x); x ∈ E}, which is polynomial in the problem size.
From Lemma 3, we know that, if at generation t , ξt = x /∈ Eopt , then we have

E[V (ξt ) − V (ξt+1) | ξt ] = V (x) −
∑
y∈E

P(x, y)V (y) = 1.
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