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	is paper proposes a route choice analytic method that embeds cumulative prospect theory in evolutionary game theory to
analyze how the drivers adjust their route choice behaviors under the in
uence of the tra�c information. A simulated network with
two alternative routes and one variable message sign is built to illustrate the analytic method. We assume that the drivers in the
transportation system are bounded rational, and the tra�c information they receive is incomplete. An evolutionary game model is
constructed to describe the evolutionary process of the drivers’ route choice decision-making behaviors. Here we conclude that the
tra�c information plays an important role in the route choice behavior.	edriver’s route decision-making process develops towards
di�erent evolutionary stable states in accordance with di�erent transportation situations.	e analysis results also demonstrate that
employing cumulative prospect theory and evolutionary game theory to study the driver’s route choice behavior is e�ective. 	is
analyticmethod provides an academic support and suggestion for the tra�c guidance system, andmay optimize the travel e�ciency
to a certain extent.

1. Introduction

In recent years, with the rapid development of information
technology, tra�c information system has had a great e�ect
on travel decision-making behavior. Drivers may respond to
the information through adjusting the travel mode, desti-
nation, departure time, and speed, but most commonly by
altering routes [1–5]. 	e aim of this work is to propose such
an analytic method that is able to take tra�c information into
account to explore the mechanism of route choice behavior.

Researches related to route choice have been conducted
in many perspectives. Chen and Jovanis [6] and Polydoro-
poulou et al. [7] claimed that drivers’ attitudes towards com-
munication, technology, and transportation system reliability
a�ected their route decision-making process. Jan et al. [8],
Li et al. [9], and Srinivasan and Mahmassani [10] found that
the ultimate route choice decision was inherently a multiple-
objective behavior. 	ey considered many factors other than
the conventional measurement variables and demonstrated
that the factors had amajor impact on route decision-making
process. Bogers et al. [11] and Ben-Elia et al. [12] con-
structed simulation experiments to explore the in
uences of

information, learning, and habit on choices between two
routes. Chorus et al. [13] presented a discrete choice model to
research driver’s responses to VMS.	emodel indicated that
the preferences and beliefs had signi�cant impacts on driver’s
choice behavior. Ben-Elia and Shi�an [14] conducted a
laboratory controlled experiment to model the route choice
behavior when information was provided in real time. 	e
results showed that information and previous travel experi-
ences had a combined e�ect on driver’s route choice behavior.
Kusakabe et al. [15] conducted a SP survey to investigate the
e�ects of tra�c incident information provided on VMS on
driver’s route choice behavior.	e results showed that drivers
assumed the travel time of their alternative routes according
to the incident information of the road section provided by
VMS. Ben-Elia et al. [16] conducted a route choice experi-
ment to investigate the impact of the accuracy of tra�c infor-
mation on route choice. 	e results suggested that decreas-
ing accuracy shi�ed choices mainly from the risk to the
reliable route but also to the useless alternative.

	e above researchers studied the route choice behavior
in the perspective of expected utility theory (EUT) [17] or
random utility theory (RUT) [18–21]; little work has been
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done from the point of bounded rational. Drivers evaluate
the alternative routes by individual experience, cognition,
and attitudes which are not considered in the EUT and RUT
models. Hence, many alternative theories are proposed, for
example, prospect theory (PT) [22], cumulative prospect the-
ory (CPT) [23], rank-dependent expected theory [24], regret
theory [25], and behavioral portfolio theory [26]. Among
them, CPT describes the bounded rational behaviors under
risk and uncertainty preferably, so it draws themost attention.

Looking at the issue from another point, route choice is
a dynamic selection process because of the real-time tra�c
information and the updated road condition. Little work has
been done from the point of dynamic selection process to
discuss how drivers make route choice decisions considering
tra�c information. Evolutionary game theory is the theory
that discusses system’s dynamic evolution process under
bounded rational conditions.

	e purpose of this paper is to describe howdrivers adjust
their route choice behaviors under the in
uence of tra�c
information from a bounded rational and dynamic selection
process perspective. 	e remainder of the paper is organized
as follows. Section 2 describes the basic theories applied in
this paper, including cumulative prospect theory and evolu-
tionary game theory. In Section 3, a network with two alter-
native routes is constructed tomodel the drivers’ route choice
behaviors and the route choice model derived from CPT is
established. 	e analysis of the equilibrium network state is
given in the following. Limitations of the proposed modeling
method and the further research directions are discussed in
Section 4.

2. Theory Preliminaries

2.1. Cumulative Prospect
eory. Cumulative prospect theory
(CPT) is a method for descripting decisions under risk and
crisis which was introduced by Tversky and Kahneman in
1992. CPT distinguishes the choice process into two phases:
framing and valuation. In the phase of framing, the decision
maker constructs a representation of the acts, contingencies,
and outcomes that are relevant to the decision. In the phase of
valuation, the decision maker assesses the representation
value of each prospect and chooses the largest one accord-
ingly [23].

	e main opinion of CPT is that people tend to think of
possible outcomes relative to a certain reference point rather
than to the �nal status, a phenomenonwhich is called framing
e�ect. Moreover, they have di�erent risk attitudes towards
gains (i.e., outcomes above the reference point) and losses
(i.e., outcomes below the reference point) and care generally
more about the potential losses than the potential gains.
Finally, people usually overweigh the extreme, but unlikely,
events, however, underweigh the “average” events.

CPT incorporates these opinions in a modi�cation of the
expected utility theory by replacing the �nal wealth with the
payo�s relative to the reference point, replacing the utility
function with the value function that depends on the relative
payo�s, and replacing the cumulative probabilities with the
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weighting cumulative probabilities. 	e subjective utility of a
risky outcome is described by a probability measure �:

� (�) = ∫0
−∞

V (�) �
�� (	 (
 (�))) ��

+ ∫+∞
0

V (�) �
�� (−	 (1 − 
 (�))) ��,

(1)

where V(�) is the value function (typical form shown in
Figure 1) and 	(�) is the weighting function (Figure 2) and


(�) = ∫�−∞ ��.
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2.1.1. Value Function. 	e value function proposed by Tver-
sky and Kahneman [23] is employed in our work. It is
expressed as follows:

V (�) = {{{
��, if � ≥ 0,
−� (−�)� , if � < 0, (2)

where � is the outcome relative to a certain reference point.� and � are the estimation coe�cients which determine the
convexity or concavity of the value function shape. � is the
loss aversion coe�cient. Both � and � fall between 0 and 1;
particularly, � = � = 1 represents the pure loss aversion. �
should be larger than 1 to describe the degree of loss aversion
and to resemble the S-shape in Figure 1.

It is apparent from Figure 1 that the value function is
convex above the reference point (V��(�) ≤ 0, � ≥ 0) and
concave below the reference point (V��(�) ≥ 0, � ≤ 0). It is
steeper for losses than for gains (V�(�) < V

�(−�) for � ≥ 0).
2.1.2. Weighting Function. Based on the research of Tversky
and Kahneman [23], the weighting function is de�ned by two
inversely S-shaped formulations:

	+ (�) = ��
(�� + (1 − �)�)1/� ,

	− (�) = ��
(�� + (1 − �)�)1/�

,
(3)

where 	+ and 	− represent the weighting function for gains
and losses, respectively. � and � indicate the level of distortion
in probability judgment and they should fall between 0 and 1.
Decreasing � and � causes the shape of theweighting function
to become more curved and to cross the 45-degree line
farther to the right. Figure 2 presents the shape of weighting
function.	+ and 	− are strictly increasing functions from the unit
interval into itself satisfying 	+(0) = 	−(0) = 0 and 	+(1) =	−(1) = 1 [27].
2.1.3. Cumulative Prospect Value. Based on CPT, the repre-
sentation value of a prospect � is represented as follows:

� (�) = � (�+) + � (�−) , (4)

where�(�+) is the cumulative value of the prospect gains and�(�−) is the cumulative value of the prospect losses. �(�) is
the function of decision weights �	 and value function V(�	)
and it is de�ned as follows:

� (�+) = 
∑
	=0
�+	 V (�	) , � (�−) = 0∑

	=−�
�−	 V (�	) . (5)

�+(�+) = (�+0 , . . . , �+
 ) is the decision weight of the gains and�−(�−) = (�−−�, . . . , �−0 ) is the decision weight of the losses.
	e decision weights are further de�ned by

�+
 = 	+ (�
) , �−−� = 	− (�−�) , (6)

�+	 = 	+ (�	 + ⋅ ⋅ ⋅ + �
) − 	+ (�	+1 + ⋅ ⋅ ⋅ + �
) ,
0 ≤ � ≤  − 1, (7)

�−	 = 	− (�−� + ⋅ ⋅ ⋅ + �	) − 	− (�−� + ⋅ ⋅ ⋅ + �	−1) ,
1 − ! ≤ � ≤ 0. (8)

2.2. Evolutionary Game 
eory. Evolutionary game theory
(EGT) is a theory that combines game theory with dynamic
evolution process analysis. EGT is useful in this context by
de�ning a framework of contests, strategies, and analytics
into which Darwinian competition can be modelled. EGT
originated in 1973 with Smith and Price’s formulization of the
way in which such contests can be analyzed as “strategies”
and the mathematical criteria that can be used to predict the
resulting prevalence of such competing strategies [28]. EGT
di�ers from the classical game theory by focusingmore on the
dynamics of strategy change which is in
uenced not solely by
the quality of the various competing strategies, but also by the
e�ect of the frequency with which those various competing
strategies are found in the population.

2.2.1. Evolutionary Stable Strategy. Evolutionary stable strat-
egy (ESS) was de�ned and introduced by Smith and Price in a
1973 Nature paper [28]. An ESS is a strategy which, if adopted
by a population in a given environment, cannot be invaded by
any alternative strategy that is initially rare.	e “evolutionar-
ily” stable is a Nash equilibrium solution; once it is �xed in a
population, natural selection alone is su�cient to prevent
alternative strategies from invading successfully.

ESS presumes that individuals have no control over their
strategies and need not be aware of the game. To be an
ESS, a strategy must be resistant to alternatives. Every ESS
corresponds to a Nash equilibrium solution, but not all Nash
equilibrium solutions are ESSes.

	e mathematical de�nition of ESS can be expressed as
follows. For a very small positive ", every # ̸= #∗ meets the
following condition:

% (#∗, (1 − ") #∗ + "#) > % (#, (1 − ") #∗ + "#) . (9)

	at is to say, for a small proportion " of mutation behavior# in population, taking strategy #∗ will get higher utility, and
the stable state as a result of strategy#∗ cannot be invaded by a
small mutation. 	en the strategy #∗ is the ESS. It is note-
worthy that the mutational strategy is the strategy which is
di�erent from the strategy sets.

	ere are two properties for a strategy #∗ to be an ESS.
For all # ̸= #∗,

% (#∗, #∗) > % (#, #∗)
or % (#∗, #∗) = % (#, #∗) , % (#∗, #) > % (#, #) . (10)
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	e �rst property is called a strict Nash equilibrium solution.
	e second propertymeans that although strategy# is neutral
with respect to the payo� against strategy #∗, the population
of players who continue to play strategy #∗ has an advantage
when playing against #.

	e limitation of ESS is that it is a static equilibrium
without considering the dynamic evolutionary process. 	e
stability equilibrium of evolution should be associated with
the speci�c evolutionary process.

2.2.2. Replicator Equations. 	e common methodology to
study the evolutionary process is through the selection
dynamics. It shows the growth rate of the proportion of
people using a certain strategy. 	e basic expression of the
selection dynamics is presented as

̇'	 (*) = '	 (*) ⋅ -	 (') , (11)

where '	(*) is the proportion of the people who choose strat-
egy � at time *, -	(') represents the speci�c selection process,
and di�erent learning mechanisms correspond to di�erent
function forms. 	e primary characteristic of the selection
dynamics is that the pure strategy taken by no one in the ini-
tial state will never be used. Participants can only imitate the
existing strategies; that is, the strategies did not re
ect the
mutation. 	is feature can be expressed in mathematics as
follows:

'	 (*) /→ 0 3⇒ ̇'	 (*) /→ 0. (12)

Among all kinds of game dynamic schemes, replicator
dynamics (RD) by Taylor and Jonker [29] is most widely
researched and a lot of relative conclusions have been
obtained. 	e replicator dynamics is presented as

̇'	 (*) = '	 (*) ⋅ [%
 (6	) − %
] , % = 
∑
	=1
'	 (*) %
 (6	) . (13)

In RD, each participant is on behalf of one kind of group with
a uniform population distribution and the participants insist
on taking a pure strategy 6	. 	e growth rate �'	/�* of the
proportion '	 taking the pure strategy is the strictly increasing
function of the di�erence between the payo� %(6	) and the
average payo� %(*).
3. Route Choice Model Formulation and

Dynamic Evolutionary Analysis

3.1. 
e Relationship between CPT and EGT. Cumulative
prospect theory and evolutionary game theory deal with
bounded rationality from two di�erent perspectives: the
former tries to handle individual irrationality from the per-
spective of psychological perception, while the latter focuses
on the limited rationality in selection and decision [30]. 	e
research results of CPT reveal the fact that people tended to
magnify small probabilities and to minify large probabilities
and they are more sensitive to losses than to gains of the same
quantity. Evolutionary game theory interprets themechanism
that players are programmed to follow a certain choice

O D O D

VMS Route A

Route B

Route A

Route B

Figure 3: An example of two-route network.

scheme to behave or react according to the current system
state. 	e process of looking for participants’ strategies is the
main point of evolutionary game theory as a kind of theory
that researches the laws of decision.

3.2. Route Choice Model Formulation. In this section, we will
take a two-route network, for example, to illustrate the route
choice modeling process. 	e network consisted of route 9
and route :. Route 9 is the shortest route and route : is
the recommended route provided by VMS when there are
congestions in route 9. 	e length of route : is longer than
route9, and there is detouring distance when switching from
route9 to route :.	e VMS is installed near the “O” point to
display the real-time tra�c information (see Figure 3). We
assume that there are two types of drivers’ distributions in
this network. 	e �rst type prefers the shortest route as their
route choice decisions. We call these drivers rigid demand
drivers. 	e other type is prone to switching to the recom-
mended route, and we call these drivers 
exible demand
drivers. Under the in
uence of tra�c information, all drivers
condition their route choice decisions on their perceptive
travel time (payo�) of each possible route. 	e 
ow chart of
the route choice modeling process is exhibited as Figure 4.

Step 1 (determine the cumulative prospect value of each alter-
native route). For a speci�c road network, drivers determine
the perceptive time of each alternative route based on their
previous travel experiences. 	e travel time distribution of
each alternative route is assumed to be identical and indepen-
dent of each other. According to the central-limit theorem,
the distribution of the perceived travel time of the alternative
route approximately obeys the normal distribution. 	e
distribution of the perceptive travel time is written as follows:

;� ∼ @(*�, (#�)2) , *� = 1
 

∑
	=1
*	,

#2� = 1
 − 1

−1∑
	=1

(*	 − *�)2 ,
(14)

where ;� is the perceived travel time of route A; *� is the
average travel time of route A; *	 is the travel time route A; #2� is
the travel time variance of route A;  is the number of travels.

Because the free 
ow time can re
ect the physical proper-
ties of the route in a certain extent, the reference point in this
research is de�ned as the average value of the free 
ow time
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Figure 4: Flow chart of route choice modeling process.

of all alternative routes. 	e reference point is represented as
follows:

;0 = 1
B
�∑
�=1

;free
� , (15)

where ;0 is the reference point; ;free
� is the free 
ow time

of route A; B is the number of the alternative route. In this
network,B = 2.

Based on CPT, we assign each route A a value �(A). 	e�(A) is the cumulative prospect value. 	e value function of
two alternative routes can be obtained based on (2). It is worth
noting that � in (2) is expressed as ;0 − ;� in our research.
Based on the probability of each�, theweighting function can
be obtained by (3). 	us, the cumulative prospect values of
the two routes �(9) and �(:) are calculated by (4) to (8),
respectively.

Step 2 (determine the payo� under di�erent decision con-
ditions). During a travel activity, the variable message signs
are used to provide travel related information in real time.
Each type of drivers has two route choice strategies: D1: choose
the route of the shortest route (route 9); D2: choose the
recommended route (route :).

According to the di�erence of individual preference, we
assume that participant ;1 consisted of the rigid demand
drivers and participant;2 is composed of the 
exible demand
drivers.;1 and;2 play game in this transportation system; the
object of them is the individual utility maximization for each
other. During the game, the choice result is not determined
in advance but changes as the study process and the driver’s

Table 1: Payo� matrix under di�erent decision conditions.

;1 ;2
Route 9 Route :

Route 9 �1(�) − E,�2(�) − E �1(�) + E1, �2(�) − F1
Route : �1(�) − F2, �2(�) + E2 �1(�) − F3, �2(�) − F4

strategy adjustment due to their experiences and the real-
time tra�c information [31].

	e payo� of each participant under di�erent decision
conditions is represented as follows:

(i) ;1 chooses route 9 while ;2 chooses route 9: the
payo� of;1 is�1(�)−E, and the payo� of;2 is�2(�)−E;

(ii) ;1 chooses route 9 while ;2 chooses route :: the
payo� of ;1 is �1(�) + E1, and the payo� of ;2 is�2(�) − F1;

(iii) ;1 chooses route : while ;2 chooses route 9: the
payo� of ;1 is �1(�) − F2, and the payo� of ;2 is�2(�) + E2;

(iv) ;1 chooses route : while ;2 chooses route :: the
payo� of ;1 is�1(�) − F3, and the payo� of ;2 is�2(�) − F4.

Table 1 is the payo� matrix.
When the two participants choose di�erent routes, the

participant who chooses route 9 will bene�t from the good
tra�c condition while the participant choosing route :
will get losses because of the increased detouring distance.
Considering the rigid demand of ;1, we can conclude thatE1 > E2 and F2 > F1. If all the participants choose route:, because of the individual preference di�erence, the utility
reduced degree of ;1 is bigger than the utility reduced degree
caused by the case that ;1 chooses route : and ;2 chooses
route 9; that is,F3 > F2. Similarly, the conclusion thatF4 >F1 is drawn. Moreover, the utility reduced degree of ;1 from
route 9 to route : is bigger than that of ;2, that is F2 > F4.
According to the above analysis, it can be summarized thatF3 > F2 > F4 > F1 and E1 > E2.
Step 3 (construct the route choice model). Assume that the
probabilities of choosing route : of ;1 and ;2 are � andG (�, G ∈ [0, 1]), respectively. Accordingly, the probabilities
of choosing route 9 are 1 − � and 1 − G, respectively.

In conclusion, the route choice game model which
embeds CPT can be expressed as follows:

Player: ;1, ;2
Strategy set: {D1, D2}

Payo� matrix: see Table 1.
(16)

Step 4 (dynamic evolutionary analysis). Section 3.3 will dis-
cuss the dynamic evolutionary process in detail.

3.3. Dynamic Evolutionary Analysis. 	e utility of strategy D2
of ;1 (�1�) consisted of two parts. 	e �rst part is ;1’s utility
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that ;1 chooses route :while ;2 chooses route9. 	e second
part is ;1’s utility that ;1 chooses route : while ;2 chooses
route:.	e utility of strategy D1 of ;1 is obtained by the same
principle. �1� and �1� are represented as follows:

�1� = G ⋅ (�1(�) − F3) + (1 − G) ⋅ (�1(�) − F2)
= (F2 − F3) G + (�1(�) − F2) ,

�1� = G ⋅ (�1(�) + E1) + (1 − G) ⋅ (�1(�) − E)
= (E1 + E) G + (�1(�) − E) .

(17)

	e average utility of strategies D1 and D2 of ;1 is the aver-
age utility of D1 and D2. 	e former utility equals the selected
proportion of D1 multiplies the utility of D1. 	e latter is the
selected proportion of D2multiplies the corresponding utility.
For the sake of convenience in the process of discussion,�	� = �	� (� = 1, 2) is assumed. 	en, the average utility of
strategies D1 and D2 of ;1 is expressed as follows:

�1 = � ⋅ �1� + (1 − �) ⋅ �1�
= (F2 − E − E1 − F3) �G + (E − F2) �

+ (E1 + E) G + (�1(�) − E) .
(18)

In evolutionary game theory, the dynamic change rate of
strategy proportion is the core of the bounded rational game
analysis. 	e change rate depends on the player’s learning
ability and learning rate. 	is process can be represented by
the replicator dynamics. 	e replicator dynamics of strategyD2 to participant ;1 is

��
�* = � ⋅ (�1� − �1)

= � (1 − �)
× [(F2 − E − E1 − F3) G + (E − F2)] .

(19)

To participant ;2, the utility of strategy D2 (�1�) and
strategy D1 (�1�) is expressed as below, respectively:

�2� = � ⋅ (�2(�) − F4) + (1 − �) ⋅ (�2(�) − F1)
= (F1 − F4) � + (�2(�) − F1) ,

�2� = � ⋅ (�2(�) + E2) + (1 − �) ⋅ (�2(�) − E)
= (E2 + E) � + (�2(�) − E) .

(20)

	e average utility of strategies D1 and D2 of ;2 is as
follows:

�2 = G ⋅ �2� + (1 − G) ⋅ �2�
= (F1 − E − E2 − F4) �G + (E2 + E) �

+ (E − F1) G + (�2(�) − E) .
(21)

	e replicator dynamics of strategy D2 of ;2 is
�G
�* = G ⋅ (�2� − �2)

= G (1 − G) [(F1 − E − E2 − F4) � + (E − F1)] .
(22)

A �xed point of the replicator dynamics is a population
that satis�es �̇	 = 0, ∀�. Fixed point describes the situation
that there is no longer evolution. 	e �xed points of this
route choice system are (0, 0), (0, 1), (1, 0), (1, 1), and ((F1 −E)/(F1−E−E2−E4), (F2−E)/(F2−E−E1−F3)). We utilize
Jacobin matrix to discuss the ESS under di�erent evolution
paths.

	e Jacobin matrix is

J = [(1 − 2�) [(F2 − E − E1 − F3) G + (E − F2)] , � (1 − �) (F2 − E − E1 − F3)G (1 − G) (F1 − E − E2 − F4) , (1 − 2G) [(F1 − E − E2 − F4) � + (E − F1)]] . (23)

	e determinant of the Jacobin matrix is

det J = (1 − 2�) [(F2 − E − E1 − F3) G + (E − F2)]
× (1 − 2G) [(F1 − E − E2 − F4) � + (E − F1)]
− � (1 − �) (F2 − E − E1 − F3) G (1 − G)
× (F1 − E − E2 − F4) .

(24)

	e trace of the Jacobin matrix is

tra J = (1 − 2�) [(F2 − E − E1 − F3) G + (E − F2)]
+ (1 − 2G) [(F1 − E − E2 − F4) � + (E − F1)] .

(25)

(1) E = 0. 	e practical meaning of E = 0 is that there is
no installation of VMS in the transportation system. 	ere
are 4 equilibrium points under this scenario, and they are(0, 0) (0, 1) (1, 0) (1, 1). 	e evolutionary equilibrium analy-
sis result is illustrated in Table 2.

From Table 2 it can be seen that there is a strictly domi-
nant pure strategy (0, 0), so it is the ESS. 	e ESS means that,
in the long run, the systemwill tend to the evolutionary stable
state that the proportion of strategy D2 of ;1 and ;2 is � = 0,G = 0, and the stable state will not be disturbed by a small
portion of mutation. In other words, all the drivers will
choose the shortest route (route 9) when they cannot get
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Table 2: Local stability analysis.

Equilibrium point det J Sign of det J tra J Sign of tra J Local stability

(0, 0) F1F2 + − (F1 + F2) − ESS

(0, 1) −F1 (F3 + E1) − F1 − F3 − E1 − Instability

(1, 0) −F2 (F4 + E2) − F2 − F4 − E2 − Instability

(1, 1) (E1 + F3) (E2 + F4) + E1 + F3 + E2 + F4 + Instability

Table 3: Local stability analysis.

Equilibrium point det J Sign of det J tra J Sign of tra J Local stability

(0, 0) (E − F2) (E − F1) + (E − F2) + (E − F1) − ESS

(0, 1) (E1 + F3) (E − F1) − (F1 − F3) − (E + E1) − Instability

(1, 0) (E − F2) (E2 + F4) − F2 − F4 − E − E2 Instability

(1, 1) (E1 + F3) (E2 + F4) + E1 + F3 + E2 + F4 + Instability

Table 4: Local stability analysis.

Equilibrium point det J Sign of det J tra J Sign of tra J Local stability

(0, 0) (E − F2) (E − F1) − (E − F2) + (E − F1) Instability

(0, 1) (E1 + F3) (E − F1) + (F1 − F3) − (E + E1) − ESS

(1, 0) (E − F2) (E2 + F4) − F2 − F4 − E − E2 Instability

(1, 1) (E1 + F3) (E2 + F4) + E1 + F3 + E2 + F4 + Instability

Table 5: Local stability analysis.

Equilibrium point det J Sign of det J tra J Sign of tra J Local stability

(0, 0) (E − F2) (E − F1) + (E − F2) + (E − F1) + Instability

(0, 1) (E1 + F3) (E − F1) + (F1 − F3) − (E + E1) − ESS

(1, 0) (E − F2) (E2 + F4) + F2 − F4 − E − E2 − ESS

(1, 1) (E1 + F3) (E2 + F4) + E1 + F3 + E2 + F4 + Instability

more information about the alternative routes in the trans-
portation system.

(2) 0 < E < F1. 	e practical meaning of 0 < E < F1 is that
the travel e�ciency loss caused by the congestion that all of
the drivers choose route 9 is small enough. 	e equilibrium
points are (0, 0) (0, 1) (1, 0) (1, 1).

From the evolutionary equilibrium analysis (Table 3),(0, 0) is the strictly dominant pure strategy. It suggests that
when the travel e�ciency losses are small, all the drivers will
choose route 9, and the transportation system will progress
toward the evolutionary stable state that the proportion of ;1
and ;2 selecting route : is � = 0 and G = 0.
(3) F1 < E < F2. 	e practical meaning of F1 < E < F2 is
that the travel e�ciency loss shown on VMS is between F1
and F2. In this scenario, (0, 0) (0, 1) (1, 0) (1, 1) are the
equilibrium points. 	e evolutionary equilibrium result is
shown in Table 4.

Table 4 shows that the system with equilibrium point(0, 1) is local stable, and this strategy is ESS of this dynamic

route choice system. Under the in
uence of information, the
system will develop towards the evolutionary stable state that;1 chooses route 9 while ;2 chooses route :.
(4) E > F2.	e practical meaning of E > F2 is that the travel
e�ciency loss caused by the congestion of route 9 is great.
	ere are four equilibrium points under this scenario, and
they are (0, 0) (0, 1) (1, 0) (1, 1). 	e evolutionary equilib-
rium analysis result is illustrated in Table 5.

From Table 5, the following conclusion can be drawn that
the dynamic system has two pure strategies, and they are(0, 1) and (1, 0). 	e two equilibrium points are both ESS. It
means that when the drivers in the system get the information
relevant to the great losses, the system state will progress
towards the evolutionary stable state that � = 0 and G = 1 or� = 1,G = 0.	at is to say, under the in
uence of tra�c infor-
mation, one of the participants will switch to route :, while
the other driver will persist in the choice of route 9. 	e
dynamic systemwill progress to stable statewhich is related to
the initial value of the payo� matrix.
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	e above uncertainty can be solved by the stability theo-
rem.	e stability theorem of di�erential equations to distin-
guish the di�erent stable states can be expressed in mathe-
matics: ∀� > �∗, considering that 
(�) = ��/�* < 0, that is,
�(�∗) < 0, thus the system is stable on the point �∗.

To participant ;1, there are two equilibrium points in the
replicator dynamics, �∗ = 0, �∗ = 1. Let 
(�) = ��/�* =
� ⋅ (�1� − �1) = �(1 − �)[(F2 − E − E1 − F3)G + (E − F2)];
then 
�(�) = (1 − 2�)[(F2 − E − E1 − F3)G + (E − F2)].

Take �∗ = 0 and �∗ = 1 into 
�(�) and judge the stability
of the system at the equilibrium point according to the result
of 
�(�∗). 	e proportion of ;1 choosing route 9 will even-
tually progress to di�erent stable states depending on the
di�erent initial values of route selection proportion of ;2.

WhenG = (F2−E)/(F2−E−E1−F3),
�(�) ≡ 0. It reveals
that nomatter what the initial proportion of;1 choosing rout: is, the system is stable.

When 0 < G < (F2 − E)/(F2 − E − E1 − F3), 
�(0) > 0,
�(1) < 0, and the stable point of the system is �∗ = 1. It
means that the proportion of choosing route : of ;1 will be
stable at 100% as time changes.

When (F2 − E)/(F2 − E − E1 − F3) < G < 1, 
�(0) <0, 
�(1) > 0, and the system stable point is�∗ = 0. It indicates
that participant ;1 will switch to route 9 as time goes on.

	e group replicated dynamic phase of ;1 is exhibited in
Figure 5.

To participant ;2, there are two equilibrium points in the
replicator dynamics, G∗ = 0 and G∗ = 1. Let 
(G) = �G/�* =
G⋅ (�1�−�1) = G(1−G)[(F1−E−E2−F4)G+(E−F1)]; then
�(G) = (1 − 2G)[(F1 − E − E2 − F4)G + (E − F1)].

Take G∗ = 0 and G∗ = 1 into 
�(G); the changing process
of G is analyzed in Figure 6.

When � = (F1 − E)/(F1 − E − E2 − F4), 
�(G) ≡ 0. It
indicates that whatever the initial proportion of ;2 choosing
route : is, the dynamic transportation system is stable.

When 0 < � < (F1 − E)/(F1 − E − E2 − F4), 
�(0) > 0,
�(1) < 0, and the system stable point is G∗ = 1. It reveals the
proportion that participant ;2 choosing route : will increase
to 100% as time goes by.

When (F1 − E)/(F1 − E − E2 − F4) < � < 1, 
�(0) <0, 
�(1) > 0, and the stable point of the system is G∗ = 0.
It means that participant ;2 will switch to route 9 as time
changes.

	e stability of groups ;1 and ;2 is illustrated in Figure 7.
When the initial state of� andG is in regionA, ESS is�∗ =0, G∗ = 1, and the dynamic transportation system will evolve

towards the stable state that ;1 chooses route 9 while ;2
chooses route :. When the initial state is in region C, ESS is�∗ = 1,G∗ = 0, and the systemwill stabilize at the state that;1
chooses route : while ;2 chooses route 9 �nally. When the
initial state is in regions B and D, the direction of evolution is
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Figure 7: Group replicated dynamic phase of ;1 and ;2.

uncertain. It may evolve to region A and converge to (0, 1) or
evolve to region C and converge to (1, 0).
4. Discussion and Conclusion

	is paper has embedded cumulative prospect theory into
evolutionary game theory in order to integrate the individual
perception and decision schemes with the group learning
and evolutions.	is paper discussed the drivers’ route choice
behaviors and the corresponding stable state of the dynamic
tra�c system according to the di�erent information shown
on VMS.

When there is no VMS in the transportation system
(E = 0), all the drivers choose the shortest route (route 9).
When the travel e�ciency losses displayed on VMS are small
enough (0 < E < F1), the impact of VMS on route choice is
indistinctive. 	e result of the evolution analysis turns out to
be that all the drivers still choose the shortest route. When
the travel e�ciency losses shown on VMS are appropriate
(F1 < E < F2), the transportation system progresses to the
evolutionary stable state, in which the drivers with rigid
demand choose route 9 while the drivers with 
exible
demand choose route :. When the travel e�ciency losses
value is big enough (E > F2), the analytic result suggests that
the drivers are sensitive to the e�ciency losses, and the trans-
portation system progresses towards the evolutionary stable
state that one type of the drivers chooses route9 and the other
type chooses route :. Our �ndings indicate that the stable
state of the dynamic route choice system is sensitive both to
the tra�c information and to the initial state of the trans-
portation system.

However, there are some limitations in this research.
First, the modeling method presented here is e�ective but
needs to be validated in the empirical work. Another issue is
that our �ndings are valid only for the assumption that the
distribution of driver’s characteristic is identical in the same
participant.

We suggest that the survey data should be collected in
order to calibrate the parameters of the proposed model and
to investigate the capability of the model to explain the �eld
observations. In the future, an investigation on the e�ect of
the drivers with di�erent characteristic distributions should
be carried out.

	e results of this studymay be useful to learn the driver’s
route choice behavior and to alleviate the urban tra�c con-
gestion. 	e potential applications of the proposed method
involve the modeling and describing the group choice evo-
lution process from the perspective of the individual risk
attitude as well as the decision-making schemes. It is suitable
for capturing the adaptation course of the group choice.
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