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Abstract

Emissions from burning biomass have become a problem in Indonesia. As found on the Indonesian 
island of Lombok, agricultural waste is burned for traditional industrial activities. On the other hand, 
biomass burning emissions contain many PMs (particulates) in different size distributions recognized 
to have a significant correlation to health impact. This study is conducted to predict the impact of 
the PM exposure on blood using a ANN (artificial neural network) model as well as a histological 
examination. The relationship between both methods is determined to estimate the impact of biomass 
burning emissions on the blood. This study used male mice as the experimental animals exposed to PM 
emissions (PM0.1, PM2.5, and PM10 ) produced from the burning of various biomass (rice straw, rice husks, 
corn cobs, corn stalks, and tobacco) taken from Lombok Island. The sample exposure was conducted  
in a chamber for 100 s for ten sequence days. The blood samples were observed using a microscope with 
the 400 x magnification. The cell deformation was examined histologically by calculating the normal 
and abnormal cells. The percentage of the erythrocyte deformation was assessed using a fixed back and 
forth propagation ANN. The result shows that the biomass burning PM emissions have a significant 
impact on the erythrocyte deformation depending on the type of biomass and the particulate matter 
emissions. The ANN model confirms the erythrocyte deformation data obtained by the histological 
examination method.
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Introduction

Biomass burning activity is one of the important 
sources of air pollutants. This activity includes 
residential wood combustion, mainly for agricultural 
waste burning [1], forest fire [2], and many others. 
Many previous studies suggested that air quality 
impacts of biomass burning emissions vary significantly 
with the primary sources. These practices refer to 
many conditions, such as the burning season, biomass 
types, the frequency of conducting prescribed fires 
in an area, and the combustion stage, like flaming or 
smoldering the fire [3-4]. The combustion stage will 
also influence the emission types. Biomass burning 
emits many substances, such as organic aerosols or 
organic particulate matter with certain concentrations 
[5], particulate-bound PAHs (polycyclic aromatic 
hydrocarbons) [6], particulate matters (PM), and 
elemental carbon [7].

PM is air pollution, a mixture of solid particles and 
liquid droplets suspended in ambient air. According 
to the diameter size, PMs are classified into PM0.1 
or ultrafine particles with a diameter ≤0.1 µm [8], 
fine particles (PM2.5)  with a diameter ≤2.5 µm 
[9-10], coarse particles or PM10 with a diameter ≤10 µm 
[11], and TSP (total suspended particles) with a bigger 
diameter [12]. As studied in an urban area, there is a 
correlation between deposited fine-mode aerosol and 
human respiratory tract anomaly [13]. In China, many 
lung cancer deaths were attributed to PM2.5 in 2005, 
showing PM2.5-lung cancer mortality associations [14]. 
Further investigation confirmed more impacts of PM0.1 
on human health than other bigger particulate matters 
[15-16]. Specific to PM0.1 and PM2.5, some studies 
examined the deformed erythrocytes and alveolar 
cells due to motor vehicle emissions exposure, where 
the deformation levels are dominated in alveolar cells 
[10, 17-18]. Moreover, an in vitro study using mice 
confirmed that exposure to PM2.5 exerts a discernible 
effect on promoting hepatic fibrogenesis under the 
normal chow or high-fat diet [19].

The histological method have been mainly used 
to examine the cell deformations [20-23]. In terms of 
the deformation level of blood cells was examined 
histologically by analyzing the observed images 
[22], and  examined the erythrocyte shape using 
digital imaging from a microscope [21]. The optical 
examination was also found in investigating erythrocyte 
deformability in diabetes mellitus cases [23]. These 
studies have a weakness that they need a longer time for 
analyzing the images. This method needs a special or 
trained technician for all procedures [17, 24].

Based on the limitation of the conventional analysis 
method, there is a need to develop a new method to 
study the correlation between exposures to PMs and 
health impact. In this state, ANN (artificial neural 
networks) can be used to approach the probable 
correlation or prediction numerically, with a precise 
prediction result [25]. Compared to the conventional 

method, such as statistical analysis or manual counting, 
ANN modeling can improve the data quality and gives 
satisfactory results [25]. ANN can predict a variable 
with an optimization algorithm, while the approach 
gives a reliable way to analyze further parameter with  
a faster duration [26]. 

As a novelty, ANN development can be applied for 
predicting the correlation between PM exposure and the 
impact in the case of the erythrocyte deformation. For 
this purposes, this research is conducted to develop an 
ANN approach for predicting a deformation level. The 
gold reference for the ANN engine is obtained from 
the manual counting of the histological examination.  
The ANN engine is developed using A Levenberg-
Marquardt (LM) as the main function due to its ability, 
hidden neurons, and hidden layers that can be developed 
as a good ANN engine [27]. The  Levenberg-Marquardt 
training function has a good performance when being 
used as a feed-forward backpropagation network type 
[28], with a flexible and optimum layer and neuron 
number developed for the trained data, whether linear 
or non-linear approaches [29]. 

Materials and Methods 

Measurement System

This study used one hundred and eighty (180) 
laboratory standard male mice as the experimental 
animals (purchased from Malang, East Java, Indonesia, 
bodyweight = 22-23 grams, 20-22 weeks old). These 
mice were acclimatized for seven consecutive days 
inside mice cages (relative humidity = 68%, indoor 
temperature = 25.5ºC) [17, 24]. After that, they were 
randomly divided into four main groups: control 
(CTRL), PM0.1, PM2.5, and PM10. Each main group has 
five subgroups: RS, TB, RH, CR, and CC (Table 1). 
All animal treatments were under Brawijaya University 
guidelines for ethical animal use (Ethical clearance 
code: 541-KEP-UB).

PM Measurements and Exposures

This study used five different biomass samples 
obtained from the local area surrounding Lombok 
Island, Indonesia. They were divided into five codes: 
RS (rice straw), TB (tobacco), RH (rice husk), CR (corn 
rod), and CC (corncob). Each biomass sample was 
weighed (5 grams) and stored in dry packaging with  
a moisture content ≤10% (natural air-dried). After that, 
each sample was burned inside a one-way biomass 
furnace and flowed with air at 4 m/s speed of spray.  
This speed was chosen according to our preliminary 
study, in which a faster speed would make the fire 
burn too big. A lower speed would not make stable 
combustion. The burning emission was then channeled 
into a diluter chamber consisting of three filters (Grade 
5 (≤2.5 µm) and Grade 2 (≤8 µm) WhatmanTM filter 
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papers and PM1.0 filters) and a suction pump with 
a speed of 2 m/s [24]. This chamber was used to 
measure and expose the mice to the different PM 
emissions: PM0.1, PM2.5, and PM10. The mice from the 
PM0.1 group were exposed to the PM0.1 for 100 seconds 
emitted by a specific biomass burning as seen in  
Table 1. These treatments were also applied to other  
PM groups. Besides, the exposed PMs were measured 
using a TSI P-Trak Ultrafine Particle Counter (PM0.1) 
and a Hinaway Handheld Air Tester (PM2.5 and PM10) 
(Fig. 1) [30]. The exposures were conducted once a day 
for ten consecutive days.

Histological Examination

The mice were sacrificed using the cervical disk 
location method on the 11th day. The blood samples 
were taken and placed onto object glasses (1.0 mm of 
thickness). These samples were fixed with methanol 
solution (70%) and naturally air-dried for five minutes 
[17, 24]. After that, these samples were colored using 
Giemsa and buffer pro-Giemsa solution (1:3) and rinsed 
with aqua dest [24]. These blood samples were observed 
under a microscope and camera with a magnification of 
400x. The number of normal and abnormal (deformed) 
erythrocytes were counted manually from 25 random 

fields of view of each mouse (Fig. 2). The deformed 
cell percentage (DL) was calculated using the equation 
below [20, 24]:

DL = ∑Abnormal Cells / ∑Cells) x 100%   (1)

Artificial Neural Networks

ANN with a Levenberg-Marquardt training function 
was chosen in this study due to the good performance 
when being used as a feed-forward backpropagation 
network type [28]. This function also has a flexible and 
optimum layer and neuron number developed for the 
trained data, whether linear or non-linear approaches 
[29] (Eq. (2), Fig. 3). The LM training function was 
shown by MATLAB2014 software, calculated from R2 
value. R2 value shows the data inclination per layer in 
the ANN engine and determines the best value that can 
be used as the ANN approach value (deformation level 
from the ANN engine) [29].

R2 = [∑yip – yie] / [∑yip – ye]
2           (2)

The error between the calculated data and approach 
data (ANN) is shown by an MSE (mean square error) 
value [29]. MSE can be calculated using equation:

Main Group Subgroup Total Mice

CTRL CTRL1; CTRL2; CTRL2 n = 10 mice/  subgroup N = 30 mice

PM0.1 RS; TB; RH; CR; CC n = 10 mice/  subgroup N = 50 mice

PM2.5 RS; TB; RH; CR; CC n = 10 mice/  subgroup N = 50 mice

PM10 RS; TB; RH; CR; CC n = 10 mice/  subgroup N = 50 mice

Table 1. Experimental animals grouping.

Fig. 1. PM measurement and exposure setup.



Al Hadi K., et al.5040

MSE = [Ʃ (yie - yip)
2 / n ]1/2              (3)

According to Eq (2-3), the number of experimental 
data is shown by n, while yip is the prediction value. 
The experimental data are symbolized by yie.

Statistical Analysis

Data were presented as the mean value and standard 
error of the means (SEM). Differences between groups 
were evaluated using Student’s t-test. The value of 
p<0.05 was considered to show statistical significance. 
Linearity constant (r2) was used to test the ANN 
performance, by comparing the results from ANN 
approach and manual counting, in which r2>0.70 shows 
a good linearity [31].

Results and Discussion

PM Concentrations

The PM measured concentrations are presented 
in Table 2. RS dominates the PM concentrations 

for all. Besides, CR has the smallest PM0.1 and PM10 
concentrations. In PM2.5 groups, TB has the smallest 
PM2.5 concentration compared to other biomass 
samples. According to these measurement results, the 
highest contributors are rice straw, emitting the most 
PM concentrations. 

Table 2. PM concentrations measured from biomass burning.

Fig. 2. Histological examination under the random fields of view. 

Fig. 3. ANN algorithm schematic.

Biomass 
Samples

PM Concentrations (mean)

PM0.1 
(pts/cm3)

PM2.5 
(ug/m3)

PM10 
(ug/m3)

RH 125,163 2,706 5,344

RS 164,733 4,445 8,040

TB 93,310 2,853 6,469

CC 76,850 3,185 5,505

CR 64,287 2,830 5,405
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Erythrocytes Deformation (Manual Counting)

Figs 4-5 shows the deformed cells observed under a 
digital microscope (400x magnification). More deformed 
cells are found in the exposed groups compared to 
the control group. According to the calculation under 
random fields of view, there are 158 normal erythrocytes 
found in the control group. Besides, the control group 
only has 12 deformed cells dominated by helmet-shaped 
and sickle-shaped cells. Eliptocyte and teardrop-shaped 
cells are found in a small number.

In order to investigate the most probable factor 
causing the erythrocyte deformation, we performed 
the exposures of the PM with different diameters. 
As shown in Fig. 6, the exposure of PM0.1 causes the 
highest deformation level compared to the exposure 
of among the bigger PM. This can be seen by the 
deformation percentage. In this study, we investigate 
the type of biomass burning related to the erythrocyte 
deformation. As expected, the highest deformation level 
is obtained from the rice straw (RS) and rice husk (RH) 
emissions. PM10 groups have 19%, 11%, 19%, 12%, and 
19% of deformation levels for RS, TB, RH, CR, and 
CC. The impact of the PM10 emission on the erythrocyte 
deformation, is dominated by RS and RH. A similar 
result that we have for PM2.5 groups, the deformation 
level is obtained to 20%, 14%, 16%, 9%, and 19% for 
RS, TB, RH, CR, and CC, respectively. It can be seen 
from both the deformation level of erythrocyte caused 
by the PM10 and PM2.5 exposure shows no significant 
difference.

In the PM0.1 group, the smallest deformation level is 
12%, with 12 deformed cells and 91 normal cells (CR). 
There are 84 and 27 normal and deformed erythrocytes 
observed at RS, followed by 113 normal cells and  
30 deformed cells at RH. There is a little increasing 

percentage obtained at CR compared to other PM 
groups (12%).

Computational Analysis

Table 3 shows the approach results of ANN using 
training data (n = 10) and testing data (n = 5). According 
to this table, the most MSE in the PM0.1 group is RS, 
resulting in 0.0877. The modeled deformation level 
of RS has 32%, 2% lower than manual counting 
(deformation level = 34%). The best approach can be 
seen in CR, showing a deformation level of 15% (MSE 
= 0.0081), similar to the manual counting (15%). In the 
PM2.5 group, the best result is obtained from RS, with 
the smallest MSE value compared to other samples. 
The modeled deformation level is similar to the manual 
counting. Meanwhile, CR has the best result, resulting 
in an MSE value of 0.0413. It can be seen that a smaller 
MSE shows more precise modeling. Moreover, all 
results have MSE values below 0.30, indicating the good 
performance of ANN as the modeling tool in predicting 
the deformation level using manual analysis data.

According to Table 3, the LM model tests the 
trained data for all biomass samples and PMs. Then, 
each datum’s error is obtained from the LM model by 
investigating the resulting graph’s best fitting trendline. 
The best linearity trendline is tested using five data 
to get the smallest error value per target point. These 
comparisons are used to examine the linearity contant, 
r2, as the comparison between manual counting and 
ANN approach results. A linear function shows that 
all PMs have fair linearity in r2>0.75. The best result 
is PM0.1 (Fig. 7a), showing significant linearity with 
r2 = 0.99. It indicates that ANN works well in predicting 
and modeling the deformation level of erythrocytes 
due to biomass PM exposures. PM10 also shows good 

Fig. 4.  The mice erythrocyte images of the control groups: RS, TB, RH, CR, and CC for all particulate matter variations (scale bar:  
200 µm). Red circles = normal erythrocytes; Black circle = deformed erythrocytes.
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linearity, resulting in r2 = 0.91 (Fig. 7c). A fair result 
can be seen in PM2.5, with r2 = 0.80 (Fig. 7b). These 
values indicate that LM can be used as the ANN 
modeling with better performance than the manual 
calculation.

This study investigates the impact of the PM 
exposure to erythrocyte cells, and makes a modeling 
with ANN (artificial neural network). For these 
purposes, the deformation level data are calculated from 
a conventional histological examination, and then the 
data are used as the ANN data.

In this study, we focus to analyze the relationship 
between the PM exposure from biomass burning and 

Fig. 5. The mice erythrocyte images of the exposed groups: RS, TB, RH, CR, and CC for all particulate matter variations (scale bar:  
200 µm).

Fig. 6.  Erythrocyte’s deformation level from all exposed groups.
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the erythrocyte deformation of mice. The deformation 
was observed using a digital microscope to identify the 
abnormality of the cell shape. The results are compared 
to the control mice. Many deformed cell types are 
observed under random sampling, as confirmed by the 
previous studies [22, 32-34]. Other previous studies 
also confirmed deformed cells, such as saddle-shaped 
cells, helmet-shaped cells, sickle-shaped cells, teardrop-
shaped cells, and ovalocyte [33-34]. These deformed 
cells have a different shape compared to the normal 
ones. The normal erythrocytes have a typical concave 
shape [22, 32-34]. 

According to the conventional calculation, each PM 
has a different deformation level in the erythrocyte. 
In previous studies, PM became a key point that 
may induce erythrocyte deformation with a different 
characteristic: a smaller PM is easier to deposit deeper 
than a bigger one [17, 35]. PM becomes a free radical 
that triggers ROS (reactive oxygen species) when being 
deposited in the body system. Then, reactive oxygen 
species may cause the initiation of oxidative stress 
[36]. ROS can cause oxidizing cellular proteins, lipids, 
and nucleic acids [37]. Another study supports the role 
of malondialdehyde (MDA) as a lipid peroxidation 
biomarker [38]. ROS-induced detrimental effects on 
the observed cells related to the decreased cytoskeletal 
protein content and formation of high-molecular-weight 
proteins. Like a chain reaction, this phenomenon leads 
to abnormalities and disturbances in the erythrocyte. 
Especially in erythrocytes, iron content and oxygen 
tension are related to oxidative stress, causing cell 
deformation [21]. As studied before, oxidative stress 

Table 3. Deformation level comparison between ANN and 
manual counting results.

PM0.1

Samples %DL ANN MSE %DL Manual

TB 17 0.0451 18

RS 32 0.0876 34

CR 15 0.0081 15

CC 17 0.0251 17

RH 26 0.0569 27

PM2.5

Samples %DL ANN MSE %DL Manual

TB 14 0.2744 16

RS 12 0.0315 12

CR 10 0.1575 11

CC 14 0.0872 13

RH 9 0.1439 10

PM10

Samples %DL ANN MSE %DL Manual

TB 12 0.0188 12

RS 33 0.0678 35

CR 9 0.0413 10

CC 27 0.2268 21

RH 12 0.0797 14

Fig. 7. Comparison between manual and ANN methods.

a)                                                                                   b)

c)  
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influences hemoglobin degradation, oxyhemoglobin 
oxidation, and the level of deformation [39]. The 
existence of strange elements such as deposited PM 
from biomass burning inside the cell may modulate 
oxidative stress via inhibiting NADPH (Nicotinamide 
Adenine Dinucleotide Phosphate) oxidase and other 
reactions production by stimulated human neutrophils 
[40].

As supported by the resulted data, more PM 
concentration has more deformation levels. It has 
been shown that the most PM concentration exposed  
to the mice causes the most deformation level.  
The smallest PM diameter shows the most deformation 
level. This study suggests new information about the 
impact of biomass burning exposure in the current local 
area may affect adverse human health. The analysis 
of the graphs demonstrates the probable relationship 
between the particulate matter diameter and the 
deformation level.

The focus on this research is to develop an ANN 
approach for predicting a deformation level. The 
resulting data are used as the ANN gold reference for 
this approach. This study shows that the developed 
engine generates a small number of MSE, indicating 
a highly accurate compared to the conventional data. 
As previously studied, a Levenberg-Marquardt is an 
ANN algorithm with the ability to have appropriate 
architecture, hidden neurons, and hidden layers that 
can be developed as a good ANN engine [27]. As 
a comparison in this study, there is a significant 
correlation between the developed engine (ANN) and 
the gold reference data (conventional data). This trend 
is shown by a linearity test with a regression coefficient 
(R2)>0.75. These results suggest that the Levenberg-
Marquardt training function has a good performance 
when being used as a feed-forward backpropagation 
network type. A small error value (MSE) shows a 
high similarity between the trained data and the gold 
reference ones [27]. This small error is highly related to 
the optimum layer and neuron number developed for the 
trained data, whether linear or non-linear approaches 
[27]. As supported by a previous study, iteration in the 
algorithm becomes a smoothing function that helps the 
engine to obtain the fixed-point equation and small MSE 
value [28]. In another word, the Levenberg-Marquardt 
training function has a good approach performance and 
can be further developed as an ANN modeling engine 
[29].

Conclusion

From the study of the exposure of biomass burning 
particulate matter emission on the erythrocyte 
deformation, it is concluded that the biomass 
burning PM emissions have a significant impact on 
the erythrocyte deformation depending on the type 
of biomass and the particulate matter emissions.  
The developed ANN engine can model the erythrocyte 

deformation data obtained by the histological 
examination method with the linearity constant >0.75. 
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