A. R. S. Black, ' S. A. Baum, ${ }^{2}$ J. P. Leahy, ${ }^{3}$ R. A. Perley, ${ }^{4}$ J. M. Riley' and P. A. G.

 pue š. 0 јо suo! 0.75 arcsec and average noise levels of $\sim 30 \mu \mathrm{Jy}$) show strikingly different and
complex structures. Jets are found in six of the sources. Key words: galaxies: active - galaxies: jets - radio continuum: galaxies. throughout. Ten other sources which fulfil these criteria were
excluded from this sample since they do not have hotspots excluded from this sample since they do not have hotspots
characteristic of FRII sources: nine have broad featureless lobes (FRII Fat Doubles, Muxlow \& Garrington 1991) and
Six sources in the sample have already been mapped in great detail by others [3C33 - Rudnick (1988), Rudnick \&
Anderson (1990); 3C277.3 - van Breugel et al. (1985); 3 C 285 - van Breugel, in preparation; 3C303 - Kronberg
 $(1990)]$ and there are no plans to remap them at present. The

 (average linear resolution $D_{\text {FWHM }} \simeq 0.7 \mathrm{kpc}$) maps are given
for regions around the hotspots, together with lower resolu-

In the text, the word 'jet' is used to refer to narrow and
extended features of emission, which may or may not be con-
Detailed discussion of these sources is deferred to later papers.

[^0]In the now well-established jet model of extragalactic radio sources (Begelman, Blandford \& Rees 1984), a hotspot rep-
resents the end of a relativistic jet emanating from the nucleus of a giant elliptical galaxy. Analysis of the hotspots should allow determination of the parameters of the 'feeding' and inform us of the processe of shock formation and particle acceleration which are at work. Furthermore, the energetics of the radio lobes may be better understood since their constituents must have been processed through the hot-

Until now, few hotspots have been mapped with sufficient sensitivity and resolution to trace the path of any faint jet into the hotspot and to follow any post-shock flow. Moreover, those mapped in detail e.g. 3C405-Carill, Dreher \& Perley
(1989), Carilli (1990); 3C33 - Rudnick (1988), Rudnick \& Anderson (1990)] show remarkably dissimilar structures even those at opposite ends of the same source. This has inhibited the development even of a classification scheme for
the hotspots, let alone any more detailed understanding in terms of the available jet models and numerical simulations (e.g. Scheuer 1981; Williams \& Gull 1985; Norman 1989;
Cox, Gull \& Scheuer 1991).

We have embarked upon a project to map a large sample of FRII radio sources at high resolution using the new low(VLA). The sample, listed in Table 1, consists of 30 FRII (Fanaroff \& Riley 1974) sources from the 3CR catalogue with $z<0.15$ and $P_{178}>1.5 \times 10^{25} \mathrm{~W} \mathrm{~Hz}^{-1} \mathrm{sr}^{-1}$. A value for
Hubble's constant of $H_{0}=50 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$ and for the deceleration parameter of $q_{0}=0$ have been assumed
$\stackrel{\infty}{\infty}$

								ennsyuos
－	09	OG	－	－	9%	0ε	－	
－	0 S	OS	09	－	92	0ε	$\varepsilon 2$	dzsぁวย
－	09	92	9\％	－	0¢	92	985	\＆\＆๖D¢
OS	0 S	09	OS	01	z	9 S	现	Øてもつを
09	09	0 S	OG	6	sz	2ε	99	980ъО¢
09	09	0 O	－	8	$\varepsilon \tau$	6ε	－	dغ0币ว¢
09	09	98	－	12	96	82	－	2880¢
0 O	09	09	09	It	\＆	$8 \square$	98	4LZ\％）
09	09	92	61	0I	12.	97	08I	dLz\％os
09	09	97	96	0I	II	88	®II	1－¢z\％จย
－	09	09	09	－	9 I	62	99	I＇26L．08
	$\begin{gathered} 0 \\ \left(z_{H}\right) \end{gathered}$	$)_{\nabla}^{\mathrm{g}}$	V		$\begin{gathered} 0 \\ \text { (u!u } \end{gathered}$	$\underset{1)^{\bullet \bullet q_{\perp}}}{\mathbf{g}}$		${ }^{20}{ }^{\text {nosos }}$

4

 were collected．The B－maps were examined to determine if the hotspots showed any unresolved detail with sufficient
surface brightness to merit A－observations：eight fields of view were found to be suitable．For most sources，D－data

 ng become important．Such observations are denoted by P
preceding）and F （following）．Despite this precaution，in A and sometimes B－configurations it was still necessary to

figuration (ABCD-) data. However, vTEss is notoriously bad (as are all MEM algorithms) at deconvolving sidelobes about
 the following hybrid technique: a shallow CLEAN was made of the brightest, most compact features and these components
were subtracted in the $u-v$ plane from the full database. The were subtracted in the $u-v$ plane from the full database. The
vtess procedure was then applied to this database. The CLEAN components were then convolved with the chosen restoring beam and added back to the vTess map. Alterna-
tively, following a shallow CLEAN, vTESS was applied to the tively, following a shallow CLEAN, vTess was applied to the
residual map after which the convolved cLEAN components were added back. Both methods are denoted by CM in
Table 6 .

An image created by vtess is the maximum entropy model convolved with the specified Gaussian restoring beam and
added back to the 'residual' map. This smoothing should overcome any scepticism of signel-to-noise dependent resolution which some have for MEM images. (The 'residual' been subtracted from the visibility data in the $u-v$ plane, been subtracted from the visibility data in the $u-v$ plane,
analogous to the residual map remaining when the best
 technique was not needed, since the cores do not have sig-

 residual map.

When the size of the source and its $u-v$ database allowed,
the entire source was imaged in a single field, but for some of

188 A. R. S. Black et al.

DATAREDUCTION
 Method

For the eight sources presented here, all data reduction was carried out using the NRAO Astronomical Image Processing
 density calibration was based on 3 C 48 and 286 using the
scale of Baars et al. (1977), adjusted as reported in the 1991 March VLA status report. Polarization angle calibration used the same calibrators. For each configuration, visibility data at he two frequencies were concatenated before any reduction and then treated as a single data set of effective frequency
8.350 GHz - with the enhanced $u-v$ coverage achieved by the wide separation (230 MHz) of the two observation fre-
 of our eight sources are known to be such that differential Faraday rotation and depolarization (both between the two
 Fomalont 1989) was as follows. The first data available, the
 through two phase self-calibrations, and used in the self-cali-
bration of the D-data. B-data were phase self-calibrated

 ation data). A-data were then phase self-calibrated once with an ABCD-CIEAN map; here convergence was often poor due oo the low flux densities detected in A-configuration and the the concatenated ABCD-database was phase self-calibrated with an ABCD-data CLEAN model. A similar self-calibration
procedure was adopted for sources with only BCD- or BCdata.

Once their individual self-calibrations were complete but
before concatenating them ime-averaged for ease of computation. The averaging time $\tau_{\text {ave }}$ was chosen to be less than the critical smearing times, $\tau_{\text {smear }}$ (See Table 4: $\delta_{\max }$ is the angular displacement from the
phase centre at which the smearing time $\tau_{\text {smear }}$ will produce a loss of 5 per cent in the vector-averaged amplitude of the recorded fringes.) A practical lower limit is set by the instrumental integration time, $\tau_{\text {int }}$, and an upper limit was arbi-
trarily chosen as 120 s . In subsequent self-calibrations, visibility points in the concatenated databases have the (AIPS-) assigned weight of $\tau_{\text {ave }} /(10 \mathrm{~s})$.

Typical values of the critical self-calibration parameters
used for A-, B-, C- and D-configuration data respectively

 flux density and correspondingly high signal-to-noise ratio allows a self-calibration solution to be calculated from and
applied to each visibility point individually (i.e. $\tau_{\text {sol }}=\tau_{\mathrm{int}}$).

3.2 Mapping

[^1]A study of FRII radio galaxies with $\mathrm{Z}<0.15189$
fields were deconvolved), but multiple self-calibration and
 approached for most of the sources. For our observations,
the new and most sensitive VLA receiver system at 8 GHz gave a limiting thermal noise in total intensity of
$\sigma_{I}^{\text {thermal }} \simeq 1075\left[\left(\tau_{\text {obs }} / \mathrm{min}\right)(\Delta v / \mathrm{MHz})\right]^{-1 / 2} \mu \mathrm{Jy}$ beam $^{-1}$

Typically, the noise level actually achieved is $\sigma_{\mathrm{I}} \simeq 40 \mu \mathrm{Jy}$
beam ${ }^{-1}$. The Stokes Q and U maps are nearly always beam ${ }^{-1}$. The Stokes Q and U maps are nearly always
thermal-noise limited with typical noise levels in the polarized flux of $\sigma_{\mathrm{P}}=\sigma_{\mathrm{Q}}=\sigma_{\mathrm{U}} \simeq 28 \mu \mathrm{Jy}$ beam ${ }^{-1}$.
Tables 5 and 6 summarize the properties of the final images. The image resolution (FWHM) is given in arcsec and in kpc. The noise levels are given for total intensity $\left(\sigma_{I}\right)$ and
polarized intensity $\left(\sigma_{\mathrm{P}}\right)$ maps. The dynamic range (DR) is the We present total intensity and fractional polarization maps of our eight sources (Figs 1-26): in each case high-resolution images of the hotspot regions are supplemented by an image
of the entire source, at a lower resolution for most. The polarization vectors are of length proportional to the degree of polarization $m=P / I$ where the polarized intensity
$\left.P=\left(Q^{2}+U^{2}\right)^{1 / 2}\right]$ and orientation equal to that of the
Table 5. Information for sources presented in this paper.

For three of the eight sources presented, the pointing
centre was located at each end of the source and two independent databases collected (denoted P and F as described in Section 2 and shown in Table 3). When mapping the entire
source at lower resolution $(2.5 \operatorname{arcsec})$ the data were mapped source at lower resolution (2.5 arcsec) the data were mapped and deconvolved for each end separately, the primary beam
corrections applied and the maps finally combined using the mosaicing' capability of the AIPS task vies (Cornwell 1989). The imaging method adopted for each source is summer-
ized in Table 6 . For several sources, the theoretical noise level could not be achieved because of residual calibration errors (which
become apparent with very high surface brightness componbecome apparel 3 C 382 with and residual sidelobes (for sources where only selected sub-

3C197.1
3 C 223.1
3 C 227
3C382
som

3 C 452
3 C 452 Column 3 lists the linear extent of the source, along its main axis. Column 4 lists the rotation
measures of Simard-Normandin, Kronbergy \& Button (1981). Column 5 lists the lobe in which a jet is detected, where N denotes north, S south, p preceding and f following. Column 6 lists the
features labelled in Figs $1-26$ which have been interpreted as components of jets, and column 7 lists the total radio flux at 8 GHz from these features (no correction has been made here for
background lobe emission).
190 A. R.S. Black et al.

source	Fig No.	region	method	FW HM		$\begin{gathered} \sigma_{I} \\ (\mu \mathrm{Jy}) \end{gathered}$	$\begin{gathered} \sigma_{P} \\ (\mu \mathrm{~J} \mathbf{y}) \end{gathered}$	$\begin{gathered} D R \\ \left(I_{p k} / \sigma_{I}\right) \end{gathered}$
				(')	(kpc)			
3C197.1	1a/b	whole	CM/M	0.25	0.8	19	17	290
	$2 \mathrm{a} / \mathrm{b}$	HS(Nf)	"	"	"	"	"	"
	$3 \mathrm{a} / \mathrm{b}$	$\mathrm{HS}(\mathrm{Sp})$	"	"	"	"	"	"
3C223.1	$4 \mathrm{a} / \mathrm{b}$	whole	CM/M	2.50	6.7	55	36	800
	$5 \mathrm{a} / \mathrm{b}$	HS(Nf)	CM/C	0.25	0.7	18	23	330
	$6 \mathrm{a} / \mathrm{b}$	HS(Sp)	"	"	"	"	"	"
3 C 227	$7 \mathrm{a} / \mathrm{b}$	whole	M/M	2.50	5.5	130	49	500
	$8 \mathrm{a} / \mathrm{b}$	$\mathrm{HS}(\mathrm{Sp})$	M/C	0.25	0.6	29	33	10700
	9a/b	HS(Sf)	"	"	"	"	"	"
3 C 382	10a/b	whole	CM/M	0.75	1.2	40	28	7500
	$11 \mathrm{a} / \mathrm{b}$	HS(Nf)	"	"	"	"	"	"
	12a/b	HS(Sp)	"	"	"	"	"	"
3C403	13a/b	whole	CM/CM	2.50	3.9	50	40	1200
	14a/b	$\mathrm{HS}\left(\mathrm{N}_{\mathrm{p}}\right)$	M/M	0.75	1.2	38	25	710
	15a/b	HS(Sf)	CM/CM	0.25	0.4	38	19	340
3C424	16a/b	whole	CM/M	0.75	2.3	28	28	780
	17a/b	$\mathrm{HS}\left(\mathrm{N}_{\mathrm{p}}\right)$	CM/C	0.25	0.8	19	25	410
	18a/b	$\mathrm{HS}(\mathrm{Sf})$	"	"	"	"	"	"
3 C 433	19a	whole	M/M	0.25	0.6	16	15	100
	20b	N jet	"	"	"	"	"	"
	21b	S lobe	"	"	"	"	"	"
	22b	S lobe	"	"	"	"	"	"
	23b	core	"	"	"	"	"	"
3 C 452	24a/b	whole	CM/CM	2.50	5.3	75	50	3100
	25a/b	HS(Sp)	"	0.25	0.5	28	17	90
	26a/b	HS(Nf)	"	0.75	1.6	53	28	60
In column 2, the suffix a denotes images of total intensity and b of fractional polarization. Column 3 lists the region covered by the map - a map of the entire source is denoted by 'whole' and detailed subimages around each hotspot alone by HS (in the lobe qualified in parentheses). Column 4 lists the deconvolution algorithm relevant to the a and b maps listed in column $2 ; \mathrm{C}$ denotes clean, M a maximum entropy algorithm (vtess) and CM the hybrid clean-vtess (outlined in Section 3.2). Column 5 gives the FWHM of the restoring beam and column 6 its linear size. Columns 7 and 8 list the noise levels on the total intensity and polarized intensity maps, respectively. Column 9 gives the dynamic range.								

observed E-vector $(\tan \phi=Q / U)$: these are plotted only the literature, are given for each map and should be added in
 attempt has been made to correct for Faraday rotation; the
 3.6 cm) using the integrated rotation measures, taken from р2ч

194 A. R. S. Black et al.

A study of FRII radio galaxies with $\mathrm{z}<0.15199$

200 A. R. S. Black et al.

Figure 16. 3C424 at 0.75 -arcsec resolution. (a) Grey-scales are shown for $0 \mathrm{mJy} \mathrm{beam}^{-1}$ (white) to $5 \mathrm{mJy} \mathrm{beam}^{-1}$ (black). (b) Contours are
shown at $(-5,5,10,1,20,25,30,40,50,70,100,200,300,500,700) \times 25 \mu \mathrm{Jy} \mathrm{beam}^{-1}$ and $\Delta \phi_{\mathrm{s}} \simeq-4^{\circ}$.
$3 C 223.1$ (Figs 4-6) - at lower resolution, this has a classic
X-shape; extended wings are detected (with type 2 distortion, X-shape; extended wings are detected (with type 2 distortion,
Leahy \& Williams 1984) stretching 230 kpc north-west and 160 kpc south-east with fractional polarization reaching \sim 30 per cent. Furthermore, a weak jet N4 $\left(\sim 825 \mu \mathrm{Jy} \mathrm{beam}^{-1}\right)$ the hotspot in the Nf lobe: at higher resolution this feature is the hotspot in the Ne lobed out and is undetected.

The hotspot in the Nf lobe shows a very sharply defined
boundary N 1 which is highly polarized $(-40$ per cent $)$: a region N 2 of low, polarized intensity and fractional polarization sits in the most northern part of this hotspot. The $S p$
lobe shows a compact hotspot S 1 of high fractional polarization $(\sim 50$ per cent $)$ in a bright, flat cap of emission (including features $S 1, S 2$ and $S 3)$: north of this is a peculiar ring
structure, $S 4$, of low surface brightness $\left(\sim 250 \mu \mathrm{Jy} \mathrm{beam}^{-1}\right)$. $3 C 227$ (Figs 7-9) - no obvious jet is detected in either
lobe, though the following lobe has intermittent aligned lobe, though the following lobe has intermittent aligned
structures reminiscent of a weak jet, through F5 and on to F4. The source axis is bent about the core, by $\sim 14^{\circ}$ to the

 a specified fractional polarization) is in the bottom right-
hand corner, unless shown otherwise. The coordinates are J2000.

5 COMMENTS ON INDIVIDUAL SOURCES

 3C197.1 (Figs 1-3) - the relatively small linear size of this source ($D \sim 56 \mathrm{kpc}$) suggests that it lies largely within theassociated galaxy.

The Sp and Nf lobes show hotspots of similar surface brightness, size and shape. No jets are detected, although an
unusual S-shaped bridge (N3) twists northwards to terminate in a remarkably compact, sub-kpc double hotspot. The fracin a remarkably compact, sub-kpc double hotspot. The trac-
tional polarization is high through feature $\mathrm{N} 2(\sim 35$ per cent $)$ per cent): the E-field swings through 90° between N2 (where it is perpendicular to the axis N2-N1) and N1 (where it is boundary with high fractional polarization (~ 30 per cent): the sharp boundary of $S 1$ is recessed from the edge of the

204 A. R. S. Black et al.
Further east, the twisted features F4 and 5 appear to form another jet (but with no visible connection to F6) and termi-
nate in the compact hotspot structures F1 and F2.
3C424 (Figs 16-18) - this small and extraordinary source (of projected linear diameter 100 kpc) shows none of the
Through the northern lobe twists a filamentary bridge N3 - reminiscent of a jet but unusually diffuse and apparently
converging away from the core through N 2 , towards the very converging away from the core through N2, towards the very
compact, sub-kpc hotspot, N1. The northern lobe is rela-

 minates 10 kpc from the core and has unresolved width of less than 1 kpc: E-vectors are highly ordered, running per-
pendicular to the axis but swinging sharply through 90° at the pendicular to the axis but swinging sharply through 90° at the
end. The south-eastern boundary of $S 1$ shows an interesting feature, S 2 , of high fractional polarization $(\sim 40$ per cent $)$.
The southern lobe of 3 C 424 is also quite uniform in total

3 C433 (Figs 19-23) - this source has an unusually high luminosity for one with its distorted structure and small pro-
jected size $(\sim 150 \mathrm{kpc})$: it is unlike any classic FRII. These properties have prompted analysis of its gaseous environment which indicates the presence of considerable cold,
turbulent gas, possibly associated with the merging of its central galaxy and a nearby (~ 10 arcsec north-east) companion (e.g., van Breugel et al. 1983 ; Yates \& Longair 1989).

 the accuracy with which the position of the optical galaxy is known has not allowed identification of the 'true' core, if
indeed there is only one. $2-\mathrm{cm}$ observations with the VLA
 N1, where fractional polarization reaches ~ 30 per cent and
 highly ordered E-vectors and high fractional polarization (~ 40 per cent). N5 too shows large fractional polarization (\sim

 grey-scale plot: the detail in total intensity, polarized intensity
and fractional polarization is a complex tangle of fine, sinewy and fractional polarization is a complex tangle of fine, sinewy
structures. No jet is detected. A brighter ridge runs down the

 mJy beam ${ }^{-1}$, stretching westwards from a distance of 20 kpc
from the core; it becomes lost in the lobe but when extrapo-

[^2] and consideration of trends and correlations is deferred until
the whole sample is available. Nevertheless, some striking

(i) No standard hotspot structure is prevalent. Even the two ends of the same source are often very different, though generally similar (with obvious exceptions). This suggests that hotspots are not steady patterns but transient features, changing over time-scales short compared with that of the
age of the source. [For example, the three-dimensional simulations by Cox et al. (1990) reveal unsteady hotspot struc-
 of the source age - for a steadily precessing (short and broad)
jet in a uniform ambient medium. For a real (long and荡 would expect variations in hotspot structure on time-scales
(ii) When examined at high resolution, many sources do not show the canonical pattern of a compact ('primary') end. Indeed, some sources (e.g. $3 \mathrm{C} 227,403$) have three or more hotspots at one end.
(iii) Long narrow features, like those generally called jets,
appear in five of the eight sources, and perhaps also in appear in five of the eight sources, and perhaps also in
3 C 223.1 (Nf side); only in 3 C 197.1 and 227 are they not detected. It is well known that large-scale jets are common in quasars, but until now very few have been detected in FRII require high sensitivity for detection against the lobe; if these properties are typical of those of jets in radio galaxies, it would explain why so few have been reported.
 ing $1000: 1$ in some cases ($3 \mathrm{C} 227,452$).

pact hotspot P1. A counter-jet F5 and 4 is also detected at in a classic FRII source.

In the preceding lobe, the hotspot P1 shows unresolved,
ub-kpc structure with fractional polarization exceeding \sim 40 per cent. Feature P 2 is notably uniform in surface brightness with a ridge of enhanced fractional (~ 50 per cent)
polarization around its western boundary and characteristically radial E-vectors. The following lobe shows similar hotspot structure,
though F1 is less compact than P1. F2 shows similar polarization structure to P 2 .

REVIEW

As indicated in the introduction, we attempt no detailed astrophysical interpretation of the maps in the present paper,
206 A. R. S. Black et al.

$4555 \quad 50 \quad 45 \quad 40$
Figure 24. 3C452 at 2.5 -arcsec resolution. (a) Grey-scales are shown for $0.2 \mathrm{mJy} \mathrm{beam}^{-1}$ (white) to $5 \mathrm{mJy} \mathrm{beam}^{-1}$ (black). (b) Contours are
shown at $(-4,4,8,12,20,40,70,100,150,200,300,500,800) \times 75 \mu \mathrm{Jybeam}{ }^{-1}$ and $\Delta \phi_{8} \simeq-20^{\circ}$.

Rudnick, L., 1988. Astrophys. J., 325, 189.
Rudnick, L. \& Anderson, M., 1990. Astrophys. J., 355, 427.
Scheuer, P. A. G., 1981. Extragalactic Radio Sources: IAU Symp.
No. 97, p. 163, eds Heeschen, D. S. \& Wade, C. M., Reidel, Dor-
drecht.
Simard-Normandin, M., Kronberg, P. P. \& Button, S., 1981. Astro-
phys. J. Suppl., 45, 97.
Spinrad, H., Djorgovski, S., Marr, J. \& Anguilar, L., 1985. Publs
astr. Soc. Pacif,. 97, 932.
van Breugel, W., Balick, B., Heckman, T., Miley, G. \& Helfand, D.,
1983. Astrophys. J., 88, 40.
van Breugel, W., Miley, G., Heckman, T., Butcher, H. \& Bridle, A.,
1985. Astrophys. J., 290, 496.
Williams, A. G. \& Gull, S. F., 1985. Nature, 313, 34.
Yates, M. G. \& Longair, M. S., 1984. Mon. Not. R. astr. Soc., 241,
29.
A. R. S. Black et al.
Perley, R. A., Schwab, F. R. \& Bridle, A. H., Astronomical
Society of the Pacific, San Francisco.
Cox, C. L., Gull, S. F. \& Scheuer, P. A. G., 1991. Mon. Not. R. astr.
Soc., 252, 558.
Fanaroff, B. L. \& Riley, J. M., 1974. Mon. Not. R. astr. Soc., 167, 31.
Kronberg, P. P., 1986. Can. J. Phys., 64, 449.
Laing, R. A.. Riley, J. M. \& Longair, M. S., 1983. Mon. Not. R. astr.
Soc., 204, 151.
Leahy, J. P. \& Williams, A. G., 1984. Mon. Not. R. astr. Soc., 210,
929.
Muxlow, T. W. B. \& Garrington, S. T., 1991. In: Beams and Jets in
Astrophysics, p. 69, ed. Hughes, P. A., Cambridge University
Press, Cambridge.
Norman, M. L., 1989. In: Hotspots in Extragalactic Radio Sources, p.
193, eds Meisenheimer, K. \& Röser, H.J., Springer-Verlag,
Berlin.

[^0]: All observations were made at frequencies of 8235 and 8465 MHz . The bandwidth (Δv) was usually 50 MHz , except for the larger sources observed in the A - and B-configurations
 where narrower bandwidths of 25 and 12.5 MHz were where narrower bandwidths of 25 and 12.5 MHz were
 necessary.

[^1]: The AIPS Maximum Entropy (MEM) deconvolution program
 TESS (Cornwell 1989) was used to produce all the final total intensity maps - this was preferred to the more conventional CLEAN algorithm for reasons to do with mapping multicon-

[^2]: Captions as for Fig. 20(b)

