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Tire dynamics can be considered to consist of two different parts:
the dynamics of the tire itself and the mechanics of the interaction
between the tire and the road. The most efficient way of modeling tire
dynamics is to study and model the tire and the tire-road interaction
separately and then to combine them into an integrated model. In
this way, a wide range of combinations of tires and road conditions
can be described by just a few models.

In the ring models of tires developed earlier!, the pretension in the
ring was included incorrectly in the equations of motion of the ring.

The finite element method is a very powerful tool for solving many
static and dynamic problems of complex structures. It can also be
applied to the study of tire dynamics. With the rapid development
of computer technology, its long-standing disadvantages of requiring
large computing power and long computing hours are disappearing.

Simulation of vehicle dynamics has become very popular in the past
decade for the development of new vehicles. Many advanced simula-
tion softwares and vehicle models have been developed to achieve high
simulation accuracy. However, without proper tire modeling, accurate
simulation results of vehicle dynamics cannot be obtained.

Automation of highway traffic, as envisioned in projects such as IVHS
(Intelligent Vehicle-Highway Systems) in the United States and PRO-
METHEUS in Europe, is a revolutionary idea. However, it would
deprive drivers of the control of their own cars, which they have come
to enjoy. It is therefore not feasible.

With the internationalization of the Delft University of Technology,
housing for foreign visiting scholars and students has become an urgent
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issue. A resolution of this would require a consistent and coordinated
policy from both the University authorities and the Delft municipal
government.

One of the main obstacles that foreigners living in The Netherlands
encounter in their effort to learn the Dutch language is the amazing
ability of the Dutch people to speak English and other languages.

With the rapid economic development in China, more and more auto-
mobiles are running on its roads and streets. Given the chaotic traffic
situation in its big cities, improving traffic control would be a more
efficient way of solving the traffic congestion problems than building
wider roads and streets.

In this information age, too many people waste too much time trying
to learn the new technologies which often become obsolete before they
can be mastered.

Unless people are willing to give up the luxuries and conveniences they
now enjoy, the issue of environmental pollution cannot be completely
resolved.

Smoking, eating, using cellular phones, or other similar actions while
driving a vehicle, which would divert drivers attention, should be pro-
hibited by law.
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Preface

This thesis describes my work on the in-plane dynamics of tires during my
appointment as an AIQ (assistant in education) at the Delft University of
Technology in The Netherlands. The project was initially entitled Sym-
metrisch Dynamisch Bandgedrag (Symmetric Dynamic Tire Forces). Dur-
ing the course of my research, the emphasis of the project shifted to the
development of a tire model suitable for the study of all aspects of in-plane
dynamics of tires and to the study of the vibration transmission properties
of tires from the road to the wheel. The thesis thus evolved to the form
which you see today.

When I began to work on the project, the first task was to establish a math-
ematical model of the tire. I asked myself the following questions: What
approach I should take to model the tire? Theoretical or experimental?
Should T model the tire-road system or the tire alone? After spending a cou-
ple of months on literature review, I decided to take the theoretical approach
and model the tire alone. The idea is to establish separately individual mod-
els for the tire alone and for the tire-road interface. By synthesizing the two
models, we can obtain models which can characterize systems of various
tire-road combinations. The result of adopting this approach was a model
which is more versatile in the sense that it can be applied to tires subjected
to various boundary conditions at the wheel-axle and the tire-road contact
patch and traveling on various road surfaces, at least in theory.

Having established a tire model, the next task was to apply it to solve prac-
tical problems of the in-plane dynamics of tires. The simplest mathematical
model in our case was sixth order partial differential equations. Trying to
solve them for various boundary conditions would not be easy. Fortunately,
we had at hand the tool called modal expansion method, which simplified the
task considerably.
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Although the main subject of this thesis is the in-plane dynamics of tires,
Chapters 2 and 3 deal with the dynamics of the general ring structure. The
analyses and discussions in these two chapters are useful for engineers and
researchers interested in similar structures.

During the entire five years spent at the Vehicle Research Laboratory of the
Delft University of Technology, I was heavily indebted to my family, col-
leagues and friends. Without their support and friendship, this thesis would
have not been possible. I am especially grateful to my supervisor Prof. dr.
ir. Hans B. Pacejka and advisor Dr. ir. Arvin R. Savkoor for giving me
the opportunity to pursue my doctorate degree in The Netherlands, and for
their invaluable advice and support. Their guidance was indispensable to
the completion of this thesis. I would also like to thank Prof. dr. ir. Peter
Meijers for thoroughly reviewing my report on the mathematical modeling
of tires and the draft thesis. His critical opinions and suggestions proved to
be of great value and are reflected in this thesis.

I would like to extend my gratitude to all of my colleagues at the Vehicle
Research Laboratory and at the Department of Transport Technology of
the Faculty of Mechanical Engineering and Marine Technology, for they cre-
ated a pleasant working environment for me. Their help and friendship are
greatly appreciated. My thanks also go to Professor YU Qun and Professor
YU Guyuan at the Beijing Agricultural Engineering University in China for
their continuous support and encouragement during the past twelve years.

Finally I would like to thank my wife Caroline for her love, patience and
sacrifice. Living in a foreign country has not always been easy for her,
especially with a husband whose time was often spent with books and in
front of the computer. Hartelijk bedankt, Caroline.
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Chapter 1

Introduction

The pneumatic tire is the only component of the automobile which is in
contact with the road. It is at the tire-road contact patches that all the
forces, except for the aerodynamic ones, are generated, whether desired or
not. These forces not only support the weight of the automobile but also con-
trol its motion. Therefore the dynamic properties of tires play an important
role in the overall performance of the automobile and have received much
attention from both automotive and tire engineers since the early 1950s.

From the geometrical viewpoint, a tire has a plane of symmetry perpendic-
ular to the axis of rotation, i.e. the wheel plane. Tire in-plane dynamics
deals with the tire motion in the wheel plane. Three aspects of tire in-plane
dynamics can be identified: the rolling contact between the tire and the
road surface; the force and motion transmission from the contact patch to
the wheel axle due to excitation from road irregularities; and the treadband
vibration of the tire. The transmission of force and motion is of importance
to the overall vehicle dynamics in at least two aspects: the traction/braking
performance and the vertical and longitudinal vibrations. The treadband vi-
bration is one of the factors which contribute to the generation of tire noise,
and to a lesser extent, affects the durability of the tire. The contact pressure
distribution between the tire and the road is one of the major factors affect-
ing the wear of the tire tread and the damage to the road surface caused by
automobiles.



2 INTRODUCTION

1.1 Literature Review

1.1.1 On vibration transmission

Most of the early studies on the vibration transmission properties of tires
are mainly of an experimental nature. Among those the work of Chiesa and
his colleagues [21, 22] and the work of Barson and Gough et al. [9, 10, 11]
are the most prominent. Chiesa et al. observed that when the vibration is
transmitted from the road to the wheel, the tire vibrates in two distinct
ways. In the middle frequency range (10-20 Hz), the tire vibrates as a whole
and acts as a spring and a small damper in parallel. In the high frequency
range (50-250 Hz), the tire vibrates in a complex manner with its sidewall
and treadband subject to continuous distributed vibrations. They found
that the resonant frequency of the first kind (in the middle frequency range)
is independent of tire structure and angular speed. The resonant frequencies
of the second kind (in the high frequency range) are also independent of
speed but are structure-dependent; these of cross-ply tires are higher than
those of radial tires. Chiesa et al. also found that there are more than
one resonant frequencies of the axle vibration in the high frequency range.
By measuring the instantaneous deformation of the tire treadband, Chiesa
et al. were able to calculate the vibration transfer functions from the ground
to the axle by the summation of the vertical components of the measured
treadband displacements along the entire circumference of the tire. This
was a very important finding, albeit experimental, because for the first time
the tire treadband vibration and the vibration transmission were found to
be related. Another contribution of Chiesa and his colleagues is that they
demonstrated the importance of proper tire-suspension coupling in order to
achieve a good overall vibration performance of an automobile.

Barson and Gough et al. also studied experimentally the tire vibration trans-
mission properties. Instead of using a heavy wheel to apply a static load on
the tire, as Chiesa et al. did, they mounted the test tire on a laboratory sus-
pension system through which static load was applied to the tire. In addition
to tests using a vibrating platform, they also conducted a large number of
tests with the tire running at various speeds on a drum surface fitted with
cleats of various shapes and sizes. They found that the frequency response
of the axle varies with the wavelength of the road irregularity and with the
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rotating speed of the tire. Since the test tire was mounted on a suspension
and the input at the tire-road contact patch was not defined (with the ex-
ception of the tests with a vibrator), the measured responses do not reflect
the vibration transmission properties of the tire alone. Instead, they are the
properties of the suspension-tire-road system.

Another significant work on the vibration transmission properties of tires
is that of Mills and Dunn [67]. In their tests, the tire was pressed against
the smooth surface of a rotating drum by a so-called air mount pre-loading
system and excited by an electromagnetic vibrator at the axle. Driving point
mobility (axle velocity/excitation force) was determined to characterize the
vibration transmission properties of the tire. Because the tire was neither
mounted on a suspension system nor with a heavy wheel, the measured
mobility was free from the influences of components other than the tire with
a normal weight wheel and axle and therefore represented only the vibration
transmission properties of the tire-wheel system. However, it should be noted
here that the constraint conditions of the tire in their tests are different from
the ones of a tire on an automobile. In the former case the tire tread elements
in the contact patch are constrained from moving in the vertical direction. In
the latter case the excitation is applied to the tire by the road irregularities
at the contact patch. Therefore the tire tread elements in the contact patch
are not subjected to the constraint condition of zero displacement. Mills
and Dunn found that in addition to the one low frequency resonance (called
bounce mode) there exist several high frequency resonances related to the
vibration of the tire treadband (called flezural modes). This finding coincides
with that of Chiesa’s. Mills and Dunn also found that resonant frequencies
where peaks appear in the mobility curves decrease with the increase of the
rotating speed of the tire. This behavior contrasts with that found by Chiesa
et al., whose tests showed that the rotating speed has little influence on the
vibration transmission properties of the tire.

While the above-mentioned studies are concerned mainly with vibration
transmission properties in the range of relatively high frequencies, other
studies concentrated on vibration transmissions in the range of low frequen-
cies, such as the enveloping property and dynamic stiffness of the tire. Lipp-
mann et al. [63] studied experimentally the enveloping property of the tire
and proposed that the force response at the axle could be predicted by the
product of the road spectrum and the frequency response of the axle force
to a single road obstacle of unit size. The latter can be determined exper-
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imentally for individual tires. In principle, this method can also be used
to predict the high frequency responses of tires to excitations generated by
road irregularities, which usually appear at higher rolling speeds. However,
the frequency responses of the axle force to a unit obstacle are different from
each other when the speed is different.

Pacejka [69] employed a very simple model but successfully predicted the
force changes when a tire runs slowly over an obstacle. Davis [25] and others
developed a distributed radial spring model to calculate the tire enveloping
property. In their model, the radial springs were considered to be inde-
pendent of each other. Recently, Badalamenti and Doyle [5] improved the
distributed radial spring model by adding inter-radial springs which connect
the neighboring distributed radial springs and act also in the radial direction.
Kilner [53] developed yet another tire model for the calculation of tire en-
veloping forces. He modeled the tire as a toroidal membrane which deflects
only in the tire-road contact patch. The tire enveloping force was calculated
according to the road profile, the axle position and the consequent tire air
volume change (thus the pressure change). The width of the tire-road con-
tact area varies with tire radial deformation. Because it was assumed in
the model that the tire deformation at each section is independent of one
another, Kilner’s model is equivalent to a distributed radial spring model
with a non-linear stiffness characteristic.

Rasmussen and Cortese [78] measured the dynamic stiffness of rolling tires.
They examined the influences of tire rolling speed, preload, inflation pressure
and tire structure on the dynamic stiffness of the tire. They found that sub-
stantial differences in stiffness exist between a rolling and non-rolling tire,
with the stiffness of the non-rolling tire being higher than that of the rolling
tire. They also found that the dynamic stiffness of a rolling tire varies with
preload—lighter load results in higher stiffness. In 1974, Captain and Worm-
ley et al. [19] reviewed four tire models for the simulation of vehicles running
on uneven roads and evaluated the suitability of those models for low and
high frequency simulations. In 1980, Hooker [43] developed a purely empiri-
cal model to describe the vertical vibration transmission for low frequencies
(0-10 Hz).

More recently, the use of modal analysis and finite element methods for the
study of vibration transmission properties of tires has become popular. A
team at Goodyear Tire Company conducted both modal testing and FE
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analysis of the vibration transmission properties of tires [80, 91]. The re-
sulting tire modal parameters (called tire modal model) were applied to the
analysis of vehicle noise, vibration and harshness [52]. In their finite ele-
ment analysis, the tire was modeled as a shell structure with homogeneous
anisotropic material properties and the wheel was modeled as a rigid body
with six degrees of freedom (DOFs). The FE model was first preloaded to
take into account the influences of the inflation pressure, the vertical static
load and the constraints at the contact patch. On that basis, small vibrations
were assumed. Differences were reported among the results of various tire
vibration tests and FE analyses with different tire spindle (axle) and patch
(road) constraint conditions {81]. However no effort was made to explain
those differences.

Ushijima and Takayama [95] studied the vibration properties of tires using
the constrained modal analysis method. In their tire modal tests, the tire
was mounted on a fixed wheel (has no DOFs) and excited by a vibrating
platform on which the tire was placed. The driving point accelerance (ac-
celeration /force) and the constraint force at the axle were used to extract
the modal parameters of the tire. These modal parameters obtained from
tests of the non-rotating tire were then modified for the rotating tire. This
was accomplished by measuring resonant frequencies of the force response at
the axle to an impulse force excitation at the treadband when the tire was
rotating on a drum. Since the modal parameters were obtained from a tire
with a fixed axle, a special modal synthesis method is needed to include the
tire model in a complete vehicle model where the axle is moving.

As is evident from this literature review, the vibration transmission prop-
erties of a tire are traditionally characterized by two separate properties:
stiffness and enveloping properties. The tire stiffness describes the vibration
transmission in the low frequency range (< 20 Hz) and it is usually deter-
mined by measuring the load-deflection relation of the tire on a flat road
surface, either dynamically or statically. The enveloping property of a tire
is its ability to cushion a vehicle against road irregularities of short wave
length [69]. It is usually measured by the force responses at the axle when
a tire with fixed axle height rolls slowly over a short obstacle which extends
over the entire width of the tire. Strictly speaking, the enveloping property
is a characteristic of the tire-road system, instead of that of the tire alone.
Different force responses are expected when the tire rolls over obstacles of
different sizes and shapes. Since the enveloping property is obtained in the
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state of slow rolling of the tire and no dynamic effects are involved, it is
basically a static quantity. However, road irregularities of short wavelength
are known to cause high frequency vibrations of tires and vehicles. The force
responses of a tire rolling over an obstacle at high speed will be quite dif-
ferent from the ones at very low speed; hence it is not sufficient to describe
with the enveloping property the vibration transmission of a tire due to road
irregularities of short wavelength.

The subdivision of vibration transmission properties of tires into stiffness
and enveloping properties is rather artificial. It is probably because in the
early years of tire modeling a tire was often modeled merely as a mass-
spring system combined with a filter which filters out the high frequency
components of road irregularities. While this kind of tire model gives rather
satisfactory results for vibrations at low frequencies , which has been the
primary concern in vehicle ride comfort, it is not adequate to represent the
vibration transmission properties of tires at higher frequencies.

In addition, most of the previous studies on the vibration transmission of
tires were mainly of an experimental nature and concentrated on the vibra-
tion transmission in the vertical direction and in the relatively low frequency
range. Various constraint conditions of the axle and tire-road contact patch
of a tire were applied in these studies described in the preceding paragraphs;
thus the results from those studies are not directly comparable with one
another.

In order to gain a better understanding of the vibration transmission from
the road to the tire-wheel axle, it is desirable to treat the tire in its entirety
and study its low and high frequency vibration behaviors comprehensively.
Since the tire itself is a very complex entity and the interaction between a tire
and the road is also very complicated, it is necessary to study the vibration
transmission properties of tires without the influences of the road factors
and constraints. Only then can we gain more insight into the mechanism of
vibration transmissions of tires.



1.1 LITERATURE REVIEW 7

1.1.2 On treadband vibrations and rolling contact

Most of the early studies on tire treadband vibrations were concerned with
the well known standing wave phenomena. Excellent reviews on studies
published before 1970 were given by Ames [3] and Pacejka [69]. Several ap-
proaches to modeling the standing waves and treadband vibrations of tires
have been developed. Clark et al. modeled the tire as a rotating ring sup-
ported on radial springs and used this model to calculate the dynamic stiff-
ness of the tire [28], the free vibrations of the treadband [93] and the rolling
contact problem [23]. Fiala [35] studied the radial treadband vibrations of
radial tires using a tire ring model. Bohm [15] also developed a tire ring
model and used it to analyze the free vibrations of the treadband and the
standing wave phenomena. He also conducted experiments and compared
the test results with the theoretical ones. The tire ring model was later
improved by Pacejka [69] with the addition of tangential foundation (side-
wall) stiffness and pretension in the ring caused by inflation pressure and
centrifugal force. Padovan [71] introduced treadband and sidewall damping
into the tire ring model. He demonstrated that standing waves are indeed
resonant vibrations of the tire treadband. The internal damping tends to
shift the maximum response towards the back of the contact patch and to
attenuate the response from the back of the contact patch to the front. In
1977, Potts et al. [77] employed a tire ring model similar to the one pro-
posed by Pacejka to study the free and forced treadband vibrations of tires.
They showed that the tire ring model is a very valuable tool for the study
of tire vibration properties. Potts et al. also found that the first vibra-
tion mode plays an important role in the vibration transmission and that
maximum vibration transmission (axle acceleration/footprint displacement)
occurs at antiresonant frequencies of the corresponding free tire. Yamagishi
and Jenkins [99, 100, 50] studied the tire-road contact problem using a tire
ring model in which the tread rubber of the tire was modeled as a second
set of distributed radial springs to take into account the compliance of the
tread elements.

It should be noted here that although the physical structures of the tire ring
models mentioned above are similar, the equations of motion derived by the
researchers exhibit differences. A preliminary review of the tire ring models
can be found in References [36, 37], in which various tire ring models were
compared with each other in terms of both the governing equations and the
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resulting natural frequencies.

Another approach to modeling a pneumatic tire is to consider it as a thin
shell structure. In 1975, Soedel [86] studied the dynamic response of rolling
tires by modeling the tire as an equivalent thin shell. Using dynamic Green
functions, he showed that all tire responses during steady state (constant
speed) rolling are quasi-stationary, and that standing wave phenomena are
actually the resonant vibration of the tire treadband. Hirano and Akasaka [42]
studied the natural frequencies of a bias tire by modeling it as a composite
structure of bias-laminated toroidal membrane shell. Numerical results were
compared with experimental data and showed good agreement. In 1977,
Padovan [72] again studied the standing wave phenomena with the use of
a rotating laminated viscoelastic shell model of the tire. He argued that
because the critical speeds of treadband resonant vibrations are so closely
spaced that the resonances do not show up on an individual basis, tire stand-
ing wave is the result of the superposition of discrete damped harmonics. He
therefore concluded that the formation of standing wave is an evolving pro-
cess instead of a sudden transition. The influence of damping on standing
waves was also analyzed by the same author. Hunckler [48] developed a
doubly-curved, axisymmetric shell finite element model to study the free vi-
bration of tires. Later, Chang [20] studied the dynamic responses of tires
to sinusoidal force excitation using Hunckler’s model and the modal expan-
sion method. Kung [59] improved Hunckler’s FE model with the integration
of computer graphics into the FE program and therefore made it easier to
identify the vibration modes of tires.

1.2 Objectives and Scope

While several types of models were developed for the analysis of the tread-
band vibrations and tire-road contact problem, few analytical models are
available for the study of the vibration transmission properties of tires. In
most of the literature, the three aspects of tire in-plane dynamics were dealt
with as isolated problems without exploring their underlying relations.

The main objective of this study is to develop a tire model which is suitable
to study all three aspects of in-plane dynamics of tires in both the low and
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high frequency ranges. Emphasis is placed on the analysis of the dynamic
properties of the model and the application of the model to the study of
practical problems of tire and vehicle dynamics.

To achieve this objective, a ring model is developed in which the tire is
modeled as a flexible circular ring on an elastic foundation. The main im-
provement from ring models developed earlier is that the wheel of the tire in
this model is free to translate and rotate in the wheel plane. These degrees
of freedom of the wheel make the model suitable for the study of vibration
transmission properties of tires operating under more general boundary con-
ditions. This general formulation permits the conversion and comparison of
laboratory test data obtained under different boundary conditions and also
accommodates the more realistic boundary conditions such as those which
occur with tires mounted on a vehicle driving on uneven roads. The modal
expansion method is used so that the developed tire model can be easily
applied to the study of practical problems of tire and vehicle dynamics.

The tire-road rolling contact and vibration transmission from the ground
to the wheel axle are studied using the tire ring model. The study of the
contact problem is restricted to the case of a freely rolling tire. The vibration
transmission of the tire is studied in the context of point contact assumption.

1.3 Outline of the Thesis

In Chapter 2, a tire ring model is developed. In this model, the tire is
modeled as a circular ring supported on an elastic foundation. Three degrees
of freedom of the wheel motion in the rotational as well as vertical and
longitudinal directions are considered in the model. The model can thus
be applied to the study of all three aspects of tire in-plane dynamics. The
equations of motion of the tire model are derived in this chapter.

In Chapter 3, the vibration properties of the ring model are analyzed. The
natural frequencies and mode shapes are obtained. The influences of the

model parameters and rotation on the vibration properties are examined.

In Chapter 4, the equations of motion, which are high order partial differ-
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ential equations, are transformed into ordinary differential equations using
the modal expansion method. Two sets of the transformed equations are ob-
tained, one using the coordinates defined in the rotating coordinate system
and the other using the coordinates defined in the non-rotating coordinate
system. Damping is introduced into the model at this stage.

In Chapter 5, the ring model is applied to the study of the contact problem
of the tire rolling on a flat road. Secondary radial springs are introduced to
take into account the compliance of the tread elements in the radial direction.
The numerical results are compared with experimental ones from literature
and the general patterns of contact pressure distribution are discussed.

In Chapter 6, the vibration transmission of a free tire-wheel system is studied
using the tire ring model developed in Chapter 2. The transfer functions
between any two points in the system are obtained using the modal expansion
method. The general characteristics of the vibration transmission between
the wheel axle and the tire-road contact point are discussed.

Chapter 7 deals with the vibration transmission of a tire-wheel system un-
der various boundary conditions. Three configurations typical to tires in
laboratory tests and on the vehicle are discussed. The transfer functions
in each case are obtained from those of the corresponding free tire-wheel
system using the modal synthesis method. Numerical results are presented
and discussed.

In Chapter 8, experimental results obtained from laboratory tests of a tire
are presented. The parameters of the tire model are estimated using three
measured natural frequencies of the test tire. The theoretical results pre-
dicted by the model are compared with the experimental ones of the dynamic
tire tests.

Finally, the most important conclusions of this study are given in Chap-
ter 9. Recommendations for further research and possible improvement of
the model are mentioned as well.



Chapter 2

The Modeling of
Tire-Wheel Systems

2.1 Model Description

The ring model of a tire-wheel system is shown in Figure 2.1. In this model,
a pneumatic tire-wheel system is considered to be the assembly of three com-
ponents: the tire treadband, the sidewall, and the wheel. The tire treadband
is idealized as a circular, thin ring with homogeneous material properties.
The wheel is modeled as a rigid, axially symmetric body with mass and
moment of inertia. The two components, namely the treadband and the
wheel, are connected with each other by the third component—sidewall and
pressurized air. This third component is modeled as an elastic foundation
which consists of radial and tangential springs distributed along the entire
circumference of the ring. It is assumed that the springs are connected to the
middle surface of the ring. The entire system rotates at an average angular
speed 2 around the wheel axis.

In the wheel plane of the tire, the wheel has three degrees of freedom
(DOFs)—two translational DOFs and one rotational DOF. The two transla-
tional DOF's allow the wheel to move in the vertical and longitudinal direc-
tions and the rotational DOF allows the wheel angular speed to vary around

11
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Figure 2.1: The ring model of a tire-wheel system: the tire is modeled as a
circular ring supported on an elastic foundation

its mean value. Small variations in the wheel angular speed are assumed so
that the equations of motion of the model can be linearized. These three
DOFs of the wheel enable the model to be applied to the study of vibration
transmission properties of tires in the vertical and longitudinal directions as
well as in the rotational direction.

It is understood that the pressurized air in a pneumatic tire is very important
to the functioning of the tire. In this model the effects of the pressurized
air are introduced in two ways: a) the stiffness of the tangential and radial
springs are considered to vary with the inflation pressure of the tire; and
b) the circular ring is prestressed by the inflation pressure and centrifugal
forces due to rotation.

It is assumed that the in-plane deformation of the tire treadband in planes
parallel to the wheel plane is uniform over the tire width. Therefore in-plane
dynamics of the tire-wheel system is treated as a two-dimensional problem.
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2.2 Coordinate Systems, Displacements and Strains

2.2.1 Coordinate systems

Throughout this thesis, two kinds of coordinate systems are used: one is
the space-fixed (non-rotating) coordinate system, the other is the rotating
coordinate system. The origins of the two coordinate systems coincide with
each other. The translational displacement of the center of the wheel is
described in terms of Cartesian coordinates (z, z) in the non-rotating coor-
dinate system, or (z*,z*) in the rotating coordinate system. The location
of an infinitesimal element of the ring is described in terms of cylindrical
coordinates (r,¢) in the non-rotating coordinate system, or (r,8) in the ro-
tating coordinate system, as shown in Figure 2.2. The reason for using two
coordinate systems is that the tire-wheel is a rotating system; in order to
study the vibrational behavior of the tire treadband it is convenient to have
a coordinate system which is rotating with the tire, while for the study of
the vibration transmission properties of the system it is more convenient to
have a coordinate system which is not rotating. The transformation between
the two coordinate systems is as follows (see Figure 2.2):

z = z* cos(Qt) — 2" sin(§2t) (2.1a)
z = " sin(U) + 2" cos(Qt) (2.1b)
o=0+0 (2.1c)

2.2.2 The displacements of ring elements

Figure 2.2 also shows the positions of a point (A) on the middle surface of
the ring at different stages of the system motion. The absolute displacement
of point A consists of three parts: one is due to the rotation of the system;
another is the rigid body displacement of the system due to the translational
motion of the wheel; the third is that due to the deformation of the ring. If
we describe the motion of point A in the rotating coordinate system, the first
part of the displacement can be disregarded. The rigid body displacement
is represented by z* and 2* in the rotating coordinate system (or z and 2
in the non-rotating coordinate system), which is identical for all points in
the system. The displacement components in the rotating coordinate system
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*
z after ring deformation (A’’)

after wheel displacement (A")

before wheel displacement (A)

x*

Figure 2.2: The coordinate systems and location of ring elements

due to ring deformation are described by w, in the radial direction and v, in
the tangential direction, and hereafter will be called relative displacements.
The relations between w, v (the total displacement of point A with respect
to the rotating coordinate system) and w;, v, are as follows

w=w,+2*cosf + 2*sin b (2.2a)
v=v, —2"sinf + z* cosd (2.2b)

The location of point A on the ring after deformation (with respect to the
non-rotating coordinate system) is described by vector ¥, see Figure 2.2.

(R + w)it, + vitg (2.3)

:y*
where ii,, fig are unit vectors in the radial and tangential directions in the

undeformed state, respectively; R is the radius of the middle surface of the
ring.

After deformation of the ring, the normal and tangent to the ring surface
at point A no longer coincide with the unit vectors 7i,,7y. Denoting 7 as
the unit vector normal to and 7 tangent to the deformed ring surface, the
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following approximate relations between %@, 7 and 7, @ig exist [18]:

n= [1-{—— (gz +w>] ﬁr—i (%—v) fig (2.4a)
CR PRI

2.2.3 Strain-displacement relations

=\
]

The general strain-displacement relations of a ring are as follows

oW,

€ = ar (25&)
v, 1 [OW, 2
€ (W + 59 ) +— ( 0 ~VT> (2.5b)
aV, oW,
“ =7 T3 ( 70 ) (2:5¢)

here €., €5 are the normal strains in radial and tangential directions, respec-
tively; €,¢ is the in-plane shear strain; W,,V, are the relative displacements
of the point (r,0) on the ring in the radial and tangential directions, re-
spectively. The derivation of the strain-displacement relations is given in
Appendix A. The second order non-linear term in €g is retained in order to
properly take into account the pretension effect of the ring.

The rigid body displacement does not produce strains in the ring body.
Therefore W,,V, in Equation (2.5) can be replaced by W,V respectively.
Substituting Equation (2.2) in to Equation (2.5), we will see that the terms
containing rigid body displacement z*,z* cancel each other out and new
strain-displacement relations identical to Equation (2.5) result, but now in
terms of total displacements W and V.

ow

or
ov 1 [OW 2

€9 <W+ 80>+ﬁ(ﬁ—v> (26b)

8V ow

€rg = —5; + ; (W - V) (26C)

(2.6a)

€ =
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In our tire model, the ring is considered to be thin. According to the
Bernoulli-Euler assumption, the plane cross-sections of the ring remain plane
and normal to the middle surface after deformation, and the in-plane shear
strain is very small and can be neglected. The only significant strain is there-
fore the one in the tangential direction. The normal strain in the tangential
direction is thus (see Appendix A):

1 Jv y (Ov 0%w 1 dw\?
egzl—z(w-i-% +ﬁ 20~ 382 +*2“E§ Ly (2.7)

in which y is the distance from the middle surface. The first and third terms
represent the extensional deformation of the middle surface of the ring while
the second term is the result of bending of the ring.

2.3 Equations of Motion

Hamilton’s principle is used for the derivation of the governing equations of
the rotating ring on an elastic foundation. Therefore we need first to obtain
the expressions of various energy components.

2.3.1 Energy expressions

Strain Energy

In the initial state, it is assumed that the ring is in equilibrium under the
action of the inflation pressure and the centrifugal force which induce the
prestress of in the ring. The difference in strain energy between the final
state and the initial prestressed state is

2 rhf2 11
S = b/ / [—0’969 + 0260] Rdyd8 (2.8)
0o J-np2l2

in which oy and of are the incremental and initial normal stress in the
tangential direction, respectively; b is the width of the ring. The prestress
0 is considered to be a constant which varies only with the inflation pressure
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and the rotating speed of the ring. The relation between ¢J and the rotating
speed €2 and the inflation pressure pg of the tire is determined by the following
equation (see Appendix B):

034 = (pobR + pAR?Q?) (2.9)
where p is the density of the ring; A = bh is the area of the ring cross-section.

Assuming Hooke’s law applies to the incremental stress and strain of the
ring, the following strain energy expression is obtained, after substituting
Equation (2.7) into Equation (2.8) and conducting integration with respect
to the ring thickness:

(1 0 v\ ofA ow\?
5= 5{2”0A(w+%)+7(”‘56>
a2 I [ov 9w\’
A<w+%) +ﬁ (%—%2—) jl}dO (2.10)

in which E is Young’s modulus of the ring material; I = bh3/12 is the inertia
moment of the ring cross-section. The first two terms of the strain energy are
due to the prestress in the ring; the third term is due to the circumferential
extension of the ring; the last term in the above expression is due to the
change in curvature of the ring (bending deformation).

L F
R

Kinetic Energy

The kinetic energy of the ring is

b 2r  phf2 1 ;'zd d

where 7“ is the speed vector of the point (r,8) of the ring. Since the ring
is thin, the speed vector of this point can be approximated by that of the
middle point A of the same cross-section. Differentiating Equation (2.3)
with respect to time, we have

3 = (b — vQ)7, + [o + (R + w)Q) 7ig
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Substituting "y' into the expression of the kinetic energy of the ring body
yields
2r ]

T =
1 o 2

PAR [(i — vQ)* + (s + (R + w)Q)’*| df (2.12)

The kinetic energy stored in the wheel mass reads
1 9 2 N2
T2_§[m(x +z)+1,(9+07)] (2.13)

where m is the wheel mass; I, is the moment of inertia of the wheel; and
8, is the angular speed variation around the mean value (). Substituting
Equation (2.1) into the above equation, we have

T, = [m ("= Qe + (2 + Q")) + I, (2+ 0‘,)2] (2.14)

M| —

Elastic Energy of the Foundation

The potential energy stored in the elastic foundation (radial and tangential
springs) is

2
Sy = / l[lcv (v+ «"sinf — 2" cos — Rlﬁ?r)2
o 2
+ky (w— 2" cosf — 2" sin 0)2] Rd6 (2.15)

in which @, is the angular displacement of the wheel caused by the angular
speed variation 6,.

Virtual Work of External Forces

Generally, a tire in working condition is subjected to forces acting at the
axle and at the road contact patch. In this tire ring model, these forces
are represented by the longitudinal and vertical axle forces f,, f, (fr» and
f.+ if converted to the rotating coordinate system); the torque T acting on
the wheel; and the external forces ¢,, ¢, distributed along the ring circum-
ference in the tangential and radial directions, respectively. All of these
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external forces as well as the tire inflation pressure will contribute to the tire
deformation. The virtual work done by these external forces over virtual
displacements fw, v and éz*, §2*, 60, is

27
SE, = / (g 8w + o 60] R + fur 62 + foe 62 + T 66, (2.16)
0

The inflation pressure always acts on the ring in the direction normal to the
deformed ring surface. According to Equation (2.4), the virtual work done
by the inflation pressure over the virtual displacement dw,§v is as follows:

2 1 /0v 1 [ow
§F,; = /0 Pob [(1 + 7 (% + w)) dw — 7 (% - v) év] Rd6 (2.17)

The total virtual work is thus

§E = 6E1 + 6 E; (2.18)

The Lagrange function of the tire ring model is

L=Ti+T;~ 8§ — 5 (2.19)

2.3.2 Equations of motion

According to Hamilton’s principle, the time integral over any interval of
the sum of virtual kinetic energy change and virtual work vanishes when the
virtual displacements are made from configurations of the actual motion and
when the final configurations are given [82]. It reads:

t1
/ (6T + W) dt = 0 (2.20)
to

where the virtual work éW consists of two parts—one due to conservative
forces and the other due to non-conservative forces. For our tire ring model,
Hamilton’s principle can be expressed as:

t1
/ (6L + 6E)dt =0 (2.21)
to
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in which 6L is the variation of the Lagrange function. From the above
equation the following Euler-Lagrange equations are derived for our ring
model:

0L 0 0L 9* 0L OL

290 960w 9070w v @ (2.222)
%%_5 N %% _ 65 — 0, (2.22b)
%g{% _ gg; — Qs (2.22¢)
%% _ gzli - 0 (2.22¢)

Here the raised dot (-) indicates differentiations with respect to time, the
prime () denotes differentiations with respect to 8. Q; (¢ = 1,...,5) are the
generalized forces:

27 !/
@ = R(qw+(1+” ;w)iﬂob)dg

27 r
QQ:/D R(qv—“’R”pob)de

Q=T
Q4 = fz‘
QS = fz‘

Substituting the Lagrange function (Equation (2.19)) into Equations (2.22),
the equations of motion of the tire ring model are obtained:

r (Ve P0)  EA(, 00yt (00 e
R*\ 00¢ 083 R? d8) R \99 06°
tky (w—z*cosf — z"sinf) + pA (w —2Q0 — Q2w>

pob Bv )_
(80 +w) =gy (2.23a)
B (70 o) B (0u o) o, on)
R\ 06° 982 50 * 062 re \"" o8

+ky(v+2*sin8 — 2" cosf — RE,) + pA (v + 2Qw — QQU)
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J}%” (%% _ v) = ¢ (2.23b)
Lé, + 2mko R0, — B2 [ kyvdd =T (2.23¢)
m(&* — 2Q3* — Qz*) +O7rR(kw e

R 02” (kw cos 6 — kyosin 8) df = foe (2.23d)

m(3* + 203" — Q%2*) + 7R (kw + ky) 2*
27
—R/ (kwwsin @ + kyvcos§)df = fo» (2.23e)
0

2.3.3 The in-extensibility assumption

The governing equations of the tire ring model can be simplified with the
introduction of the so-called in-eztensibility assumption, which means that
the circumferential length of the middle surface of the ring is constant dur-
ing the deformation. This assumption is usually valid for rings with high
extensional stiffness, which is the case with the most widely used radial tires.

At the middle surface, the tangential normal strain is

_l( .a_”)
“=F\"* %

With this we get under the in-extensibility assumption:

_ov
96

L w =

(2.24)

Substituting Equation (2.24) into Equations (2.23), then differentiating Equa-
tion (2.23a) with respect to 8 and adding it to Equation (2.23b) we obtain
the equations of motion of the tire ring model under the in-extensibility
assumption:

BI(0 0% 00\ b (0% 0%\ b (0%
“R\ae e T ) TR \" T Teer) T R \"T o2
v

ke
06?

+ ky(v— RO+ (ky + k) (z"sin @ — 2" cos §)
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+pA [v —~ g—zg - 49% + Q2 (% — v)] =g+ %%” (2.25a)
Lé, + 27k B2, — B? [ kyvdd =T (2.25b)
m(&* — 2Q3* - Q%*) +07rR(k + k) z*

-R /h ( cos 6 — k,vsin 0) dé = fp (2.25¢)
m(Z* + 2Qa* — 922*) + TR (ky + k) 2*

R / 7 ( O sin 0+ kv cos 9) d8 = f.r (2.254)

Up to this point, we have already derived the equations of motion of the tire
ring model with the inclusion of the coriolis effect and the two translational
and one rotational DOFs of the wheel (Equation (2.23)). And we have
further simplified the equations of motion by introducing the in-extensibility
assumption (Equation (2.25)). The inclusion of the two translational and
one rotational DOF's of the wheel in the current model makes it possible to
study the vibration transmission properties of tires under various constraint
conditions and therefore can simulate the operation conditions of tires on an
automobile on actual road surfaces.



Chapter 3

Natural Frequencies and Modes

3.1 The Natural Frequencies

The displacements of the ring w in the radial direction and v in the tangential
direction are periodic functions of the angular coordinate # or ¢. Therefore
we may expand w, v into complex Fourier series:

+00 .
w(6,t) = Z wp(t)e!™? (3.1a)
+0o )
v(6,t) = Z v, ()€™ (3.1b)
where n = —o0,...,—1,0,+1,...4+ 00; 7 = v/—1 is the imaginary unit. Note

that the following relations exist:

cos = % (¢ +e7) = % :V‘io (" 8un)

n=-—oo
+
siné = 51; (eja - e_jo) = —% nioo (j"ejnoélnll)

2
/ e cosBdf = o1
0

23
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27
[ e singdp = jumdiap
0

here 4, is the Kronecker delta function whose value equals 1 when p = q or
0 when p # q.

Inserting Equation (3.1) into Equations (2.23), we obtain,

. . EI 4 EA agA 2 pob 2
| ET EA %A Ppob 1 N
+ [ﬁns + =" + ——R%n - %n] Vp — §kw (2% —jnz")ép =0
(3.2a)
. ) | EI 4 EA oh A pod
pAD, + 20 A0, — J [1_22” + -R—2n + ?n - f" Wy,
EI EA\ , o09A peb 2
+[(F+ﬁ>" A T Al
—%jnku (:l'* - jnz*) 6!n|1 - kngr(S!n‘o =0 (32b)
I8, + 27k, R0, — 27 R?*k,v0 = 0 (3.2¢)
m (i‘* - 203" — 92.7:*) + 7R (ky + k) 2™
—TR [ky (w1 + w_1) — Jky(v1 —v_1)] =0 (3.2d)
m (fé* + 2Qz* — sz*) + TR (ky + ko) 2"
—WR[jkw (w1 - w_l) + kv (’01 + ’l)_l)] =0 (326)

The external forces were set to zero in the above equations.

Before going further with the analysis of natural frequencies, we may first
manipulate Equations (3.2d, 3.2e) so that w_y,v_y can be decoupled from
wy, v;. Adding Equation (3.2e) multiplied by j to Equation (3.2d), we have

m[(# + 75%) + 20 (&% + %)) + [wR(kw +ky) — mm] (z* + jz%)
—21 R (kyw_1 + jkyv_1) =0
Subtracting Equation (3.2e) multiplied by j from Equation (3.2d) yields
m (& - j5%) - j20 (3" = j2)] + [ R (ky + k) - mQ?] (2% — j27)
——27rR(kww1 - jkvvl) =0
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We may now introduce a new variable u, = 2*—jsign(n) z*. The above two
equations then can be expressed as follows:

mi, — j2nQdmin, + [wR(kzw +k,)— mQZ] Un — 27 R (kywy, — jnkyv,) =0
(3.2f)

Note that n = —1 or 1 in the above equation.

For |n| # 0,1, Equations (3.2) can be rewritten as
¥ gl e )18 i)
U0 I B 7 N B W N P B
(3.3)

m{}) = mf) = pA

gy = —gi) = —2pAQ
ny _ EI 4 EA G'gA 5 Pob 9
T A T
ny _(EI  EA\ , ogA  pob 2
M) = (G + )t T - T e pa0
) ) _ EL 3 EA oA pob
S T A T
For |n| = 1, Equations (3.2) now become
mP 0 0 ] (o 0 o3 0 | (w,
o w7 o B0+ |l 00 B
0 0o m| i 0 0 g Lin
HY gk k] (e
+ jk(«f,’{)) kg(’;)) jk(gg; vy p =0 (3.4)
n . T
k3 dkyy ks Un
where
() __™m
M3 T 4rR
g:(s3) = —n20-"—
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K = K = 3k,

n n 1
k£3) = —kgz) = —§kvn

n 1 m
k() = 7 (ku k) - MQZ

For n =0, Eqﬁations (3.2) become
(0)

0 m® o [{a 4]0 o o]
KY GRS 0 ] (w.
+ |69 KD kD[ { v, t =0 (3.5)
o i B e
where
0 Ir
mg;,) =

2rR
Ky = k) = —k,R
kQ = k,R?

Equations (3.3, 3.4 and 3.5) can be written in a unified form:
M, n + Grin + Knxn = 0 (3.6)

in which x,, = {wn,vn}T for |n| #0,1; x, = {wn,vn,un}T for |n| = 1; and
Xn = {wp, vy, 0} for n =0.

for |n| # 0,1
[ m(") 0
M, = 81 () } (3.7a)
My,
G - 0 ggg) } ( b)
n = 3.7
a0
o[ 1 ) -
Jkar kg
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for |n| =1
B U
M.=| 0 m{p o (3.8a)
o o
0 43 o
Gn=|g% 0 0 (3.8b)
00 gy
TS
K,=| jk» & kD (3.8¢)
kY kS R
forn=20
w9 0 o0
M.=| 0 m o (3.92)
L0 0 m
[0 ¢ o
Go=1g% 0 0 (3.9b)
L0 0 0
KD D o
K. =| ik &) &) (3.9¢)

By assuming that
X, = X, el¥nt (3.10)
{4,,B,}T,  for|n|#0,1
Xy =1 {An, Bp,Co}T for|n| =1
{An,Bn,0,}T forn=0

the characteristic equations which determine the natural frequencies of the
tire-wheel system can be obtained. Substituting Equation (3.10) into Equa-
tion (3.6) yields

0 0
o WY
|
|
|

{M,, (~w2) + jGutwn + Kn} Xn = 0 (3.11)



28 NATURAL FREQUENCIES AND MODES

In order to get a non-trivial solution, the determinant of the coefficient ma-
trix of Equation (3.11) must be zero. With this condition, the characteristic
equation of the ring model which determines the natural frequencies of the
tire-wheel system is obtained.

M., (—w2) + jGawn + Kn| = 0 (3.12)

For |n| # 0,1 the tire treadband displacements are decoupled from the wheel
displacements. The characteristic equation of the system thus obtained is:

aywh + agwy + agw} + awy + a9 = 0 (3.13)
where

as = (pA)?

asz = 0

ar = = [pA (K7 + £5)) + (2049)]
ay = 4p AQEY

n n n 2
o = k§1)kg2) - k‘gz)

The solutions of Equation (3.13) are the natural frequencies of the nth (ex-
cept for the zeroth and first) mode vibration of the ring body. In general,
there exist four natural frequencies corresponding to each n number.

For |n| = 1, the tire treadband deformation and wheel displacement are
coupled with each other. The characteristic equation of the entire system is
then

bewS + bsw? + bawh + baw3 + bow? + byw, + by =0 (3.14)
where
be = —m;(;g)al;
bs = —g§,§)04

(n)

b4 = kgg)a4 — M3z A2

(n)

by = —9:(53)@2 — M3z aq

2 2
br = 3z — gen — miBlao + VK 4 mizely
b = K — g0 — 20K

n n),.(n)? n) . (n)? n).(n).(n
bo = ka0 — KPR — kAT — k(D k{3 AL
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The solutions of Equation (3.14) are the natural frequencies corresponding
to the [n| = 1 vibration modes of the tire ring model.

For n = 0, the characteristic equation of the entire system is

w? (c6w,‘i + cq? + cz) =0 (3.15)
where
ce = —mg%)m
cy = —mg%)ag + kg3)a4
s =~ 4 10z + mHY

The solutions of Equation (3.15) are the natural frequencies corresponding
to the zeroth order vibration modes of the tire ring model. The w? = 0
solution of Equation (3.15) corresponds to the rigid body rotational mode
of the system.

3.2 The Natural Modes

From Equation (3.11), the relationship between A,, B, and C, or O, can
be determined. For [n| # 0,1,

D,; = jﬁ _ _ mﬁ)wz + k(n) _ gg)wm + k(”) (3.16)
T N R R

in which w,;(7 = 1,2,3,4) are the solutions of the characteristic equation
(Equation (3.13)).

For |n| =1,

B (e + D) (ot - s + ) KD

Dni =17 = n n n n n
s = (s ) (s = o + ) — K
(3.17a)
o k(") + k(n)D
Epi=—"=- 22 (3.17b)

Ani _m.'(ig)wnt - ggg)w”“ + kl(ig)
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in which 2 = 1,2,...,6 since there are in general six natural frequencies for
|n| = 1 according to Equation (3.14).

For n =0,
D - ij. _ mlrll)w2 + k(") _ g(2)wm + k( )
Ani gig)wm + kg;) —m(2)w2 + k( o (n)Fm
(3.18a)
0, k)
F,=—-"=_ 32 (3.18b)
T B w4k

where ¢ = 1,2, 3.

Equations (3.16), (3.17), and (3.18) together with Equation (3.1) determine
the mode shapes of the tire ring model.

Examining the expressions of the coeflicients of the characteristic equations,
we find that upon replacing n by —n, coefficients a; and by, b3,bs change
sign but their magnitudes remain unchanged while coefficients a4, a3, ap and
be, b4, b2, bp remain unchanged. Therefore we have

Wni = —W_p; n=12,..00 (3.19)
Examining Equations (3.16) and (3.17), we find
D,i=-D_y; E,i=FE_, (3.20)

With this nature of the eigenvalues of the system, we may combine the
complex eigenfunctions for n and —n into real eigenfunctions. The complex
eigenfunctions are (Equations (3.1), (3.10)):

Wy; = Apsed0tenit) = _oo L 0,..., +00 (3.21a)
Vi = Bpe?(P0Henit) n=-00,..0,..,400 (3.21b)
Upi = Cpied@nit n=-1,1 (3.21c)
8, = O, el n=0 (3.21d)

Note that for the complex eigenfunctions wy;, v,;, 7 is from minus infinity to
plus infinity. Assuming A,; = A_,;, then we have B,; = —B_,;,Cp; = C_;.
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The complex eigenfunctions wy;, W_n; and vy, v_n; can be combined to form
new real eigenfunctions:

Wni = 244 cos (nd + wp;t) (3.22a)
Uni = 245 Dp; sin (n8 + wy,;t) (3.22b)

Now n =0,1,2,...,00. Combining uy; and u_;; (remember u; = z* - jz*,
u_1=z*+j2z*) yields

z; = ApiEp; cos (wnit), 2] = —Api Epi sin (wpit) (3.22¢)
in which n = 1.

In the above equations, D,;, E,; are defined by Equation (3.16) for n # 0,1
and Equation (3.17) for n = 1.

n = 0 is a special case. There are no eigenfunctions of the same order but
opposite sign to combine with and the corresponding eigenfunctions remain
unchanged. However, for n = 0, the motion of the ring is independent of the
space coordinate #. The complex eigenfunctions thus can be substituted by
the same real eigenfunctions as Equations (3.22a, 3.22b).

Equations (3.22) and (3.16, 3.17, 3.18) define the complete natural modes of
the tire ring model. However, it should be noted that the term "mode” here
has a meaning different from its conventional definition in modal analysis in
which the modes are time-independent. Instead, the modes here are time-
dependent and are neither stationary nor rotating with the same speed (2 as
the ring. As pointed out by Huang et al. [44], the effect of rotation makes it
difficult to separate the space and time coordinates in the usual manner.

3.3 Alternative Definition of Natural Frequencies and
Modes

In this section, we would like to clarify one issue concerning the definitions
of natural frequencies and modes. As we have seen in the previous section,
the analyses of the natural frequencies and modes are all conducted in the
rotating coordinate system. In other words, the natural frequencies and
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modes are defined in the rotating coordinate system. This is proper and also
convenient when we study the flexural vibrations of the ring, i. e., the tire
treadband vibrations. However, for the study of the vibration transmission
properties of the tire, the wheel motion and the forces acting on the wheel
and treadband are usually described in the non-rotating coordinate system.
Therefore the natural frequencies and modes are better defined in the non-
rotating coordinate system instead of in the rotating coordinate system.

With Equation (2.1) being substituted into Equation (3.22), we obtain

Wni = 24, cos (nd + w;,;1) n=0,1,..,+00 (3.23a)
Vi = 2A,; Dy sin (nd + wi;t) n=0,1,..,+00 (3.23b)
z; = AniEni cos (w,;t) n=1 (3.23¢)
2 = —Ap; Eqisin (W);1) n=1 (3.23d)
where
Wi = Wni — nfd n=0,1,...,400 (3.24)

Equations (3.23) and (3.24) define the natural frequencies and modes of the
ring model in the non-rotating coordinate system. It will be seen that this
alternative definition of natural frequencies and modes is very useful for the
study of the vibration transmission properties of tires. The zeroth order
modes (n = 0) and natural frequencies remain unchanged by this change of
definition.

3.4 The Influence of Extensional Stiffness of the Ring

In Chapter 2, simplified equations of motion of the ring model were also
derived using the in-extensibility assumption of the ring. It is important to
determine under what circumstances and to what extent this assumption is
valid to permit the simplification of the tire model. In order to do so, we
shall first analyze the influences of the extensional stiffness on the vibration
properties of the system.

To analyze the vibration properties of the tire ring model, we will focus our
attention on the system characteristic equations (Equations (3.13), (3.14)
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and (3.15)) and the corresponding coefficient expressions. Because the char-
acteristic equations are high order (fourth order for n # 0,1 and sixth order
for n = 0,1 respectively) polynomials, it is difficult, even impossible, to
obtain closed form solutions for the natural frequencies of the system. How-
ever, by comparing the relative values of the polynomial coefficients, it is
still possible to qualitatively analyze the influences of system parameters on
the vibrational properties of the tire ring model.

The characteristic equations and the corresponding coefficient expressions
presented in the previous sections can be rewritten in forms easy to analyze.

Substituting kﬁ’;),kﬁ’;) and kg’;) into the coefficient expressions, we have for
n#0,1

as = (pA)* (3.25a)
a =0 (3.25b)
_ - AN Q(& 2 2
a; = —pA [I\e (1 +n ) 7 (1 n ) + ky +ky +2pA0 ] (3.25¢)
a1 = 4pAnQK, (3.25d)
o i , b

ao = K. K; + (kw — Ky - pAQ2> (k + Ky — % (1 - n2) - pAQz)

(3.25¢)
in which

EI , EA oJA pob

"t TR TR
K- (-f;_f+ _ngé) (1= ) =22 (1 02)
thyn? + k, — pA (1+n2) Q2

K, = (Enz + Ug—A) (1 — n2)

K, =

R4 R?
For n = 1, the characteristic equation can be rewritten as

(0n—0)? [da (wn — Q) + d3 (wn = Q)" + da (wn =V + 1 (W~ Q) + do| = 0
(3.26)
in which
m

dy = = (pAY" 47 R
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ds = 4Qdy
oA m
d2—PA[4 (kw+kv)+47rR(2Ke+kw+kv)
m
dy = pA (pA+ oo ) (hu  K)9

1 m
do= -1 (,,A + ﬁ) (K. (ku + ko) + kuky]

in which EI  EA
+ — — pAQ?

Ke=pat

3.4.1 Qualitative analysis

Looking into the coefficient expressions (3.25), we can see that the only term
which is related to the extensional stiffness is K. Since the ring is assumed
to be thin, K is predominated by the extensional stiffness of the ring and the
pretension in the ring due to inflation pressure and centrifugal force. Only
when n is very large, then the bending stiffness term in the K. expression
becomes comparable with the other two terms. If we divide Equation (3.13)
by K. (note this operation does not affect the solutions of the equation), then
it can be seen that the coefficient of the fourth order term of the polynomial
is very small compared with the other coefficients. This means that of the
four solutions of the characteristic equation, two will be very large in value
while the other two are much smaller. If FA > %nz, then the lower two of
the four natural frequencies can be approximated by the following equation:

ayw? + djw, +ay =0 (3.27)
in which
) = —pA [(1+n2) +T;1’_ <%";( 2-1) +kw+kv+2pAQ2>}
a; = 4pAnQ e
ah = K; + Kie (kw ~ Ky - pAm) (k,, + Ky ~ ;%b (1 . n2) - pAQz>

It is obvious from Equation (3.27) that the two lower natural frequencies (the
low set) do vary with the extensional stiffness of the ring. However, if K. is
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much larger than k,, and k,, and the rotating speed is limited and does not
reach the level comparable with K, then the terms involving K, (I%e) in the
coefficients a}, ag all have very small values and can be neglected. Only then
can the two lower natural frequencies of the ring model for each n number
be considered to be independent of the extensional stiffness of the ring, and
be accurately approximated by the natural frequencies of the corresponding
in-extensible ring model. Let FA — +o00, then Equation (3.27) becomes

o)kt (G4 ) (1

_1’%’ (1= ) +hun? 4k, —pA (1402) Q2 =0 (3.28)

in which n #0, 1.

For n = 1, the characteristic equation (Equation (3.14)) simply becomes
(wn = Q) [204m (0 — ) — 27 RpA +m) (ky + ku)] =0 (3.28b)

For n = 0, the characteristic equation becomes

w? [mggpAw;i - (m33 + pAR2) ku] =0 (3.28¢)

Equations (3.28) are the same as the characteristic equations derived directly
from the in-extensible ring model (see Reference [38]).

To summarize the above qualitative analysis, we may conclude that of the
four natural frequencies of the ring model for each n (n # 0,1) number,
two are much higher than the other two and are strongly influenced by the
extensional stiffness of the ring. The natural modes associated with these
two high frequencies (the high set) will be called eztensional modes hereafter.
The lower two (the low set) natural frequencies of each » number are also
influenced by the extensional stiffness in general. But the degree of influence
of the extensional stiffness on the low set natural frequencies depends on the
relative magnitude of K, and k,, k,. If the extensional stiffness of the ring
is sufficiently large so that K. is much larger than k, or k,, then the two
lower frequencies can be accurately represented by the natural frequencies
of the corresponding in-extensible ring model and thus can be considered to
be independent of the extensional stiffness of the ring.
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Table 3.1: Model parameters for the numerical examples

ring mean radius R: 0.273 m

ring width b: 0.075 m

ring density pA: 1.59 kg/m
wheel mass m: 10 kg

wheel moment of inertia I,: | 0.25 kgm?
bending stiffness ET: 0.706 Nm?
extensional stiffness F A: 6 x 10° N
radial stiffness k,,: 7.63 x 10°N/m”
tangential stiffness k,: 1.30 x 10°N/m”
inflation pressure po: 1.25 x 10°N/m*

The above discussion concerning the influence of extensional stiffness on the
natural frequencies for n # 0,1 are equally applicable for n =0, 1.

3.4.2 Numerical examples and discussion

Numerical examples are shown in Figure 3.1 to Figure 3.3. Table 3.1 lists
the basic parameter values used for the numerical examples, which are taken
from Reference [15], except for the mass and moment of inertia of the wheel.

Figure 3.1 is the numerical result showing the influences of the extensional
stiffness on both the high set and the low set natural frequencies of the ring
model. It can be seen that with the increase of extensional stiffness, the high
set natural frequencies increase proportionally without limit, while the low
set natural frequencies initially increase but soon approach the maximum
values, which are the natural frequencies of the corresponding in-extensible
ring model. It can also be seen that with increasing n, the influence of
extensional stiffness on the low set natural frequencies decreases while the
influence on the high set natural frequencies increases. Note that the nega-
tive natural frequencies shown in the figures do not have the same values as
the positive ones due to the coriolis effect of rotation.
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Figure 3.1: The influence of extensional stiffness on the natural frequencies

wni (Q = 50 rad/s) (cont.)
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Figure 3.2 is an example which shows the influence of foundation stiffness
of the model on the relations between the natural frequencies and the ex-
tensional stiffness (n = 2). As is expected, with the increase of foundation
stiffness, the influence range of the extensional stiffness on the low set natu-
ral frequencies increases too. Figure 3.3 is a three-dimensional picture which
more clearly shows the interactive effect of the foundation and extensional
stiffnesses on the low set natural frequencies of the model. Note that the
right side of Figure 3.3 shows the natural frequencies with negative values.

The high set natural frequencies are usually one order higher than the cor-
responding low set natural frequencies. If the lowest frequency of the high
set is well beyond the frequency range in which we are interested, then we
are confident that the in-extensibility assumption is valid. In the numerical
examples presented here, the lowest frequency of the high set is about 3500
rad/s (560 Hz), which is well above the frequency range in most problems
concerning the vibration transmission to the vehicle through tires.
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3.5 The Influences of Other Parameters

3.5.1 The influence of the bending stiffness

The effect of the bending stiffness of the ring on the vibrational properties
of the system can also be analyzed by looking at the coefficient expressions
of the characteristic equations of the system. It is quite obvious from Equa-
tion (3.25) that the effect of the bending stiffness depends on the relative
values of the bending stiffness, the extensional stiffness and the foundation
stiffnesses, and on the mode order n. When n is small, the bending stiffness
of the ring is usually very low compared with the extensional stiffness and
foundation stiffnesses of the ring model, %—fns is thus much smaller than
k,n? + k,. Therefore we do not expect that the bending stiffness will have
much influence on both the low and high set natural frequencies of the ring
model. But for large n numbers, the term involving EI becomes large in
the K; expression (see Equation (3.25)). Therefore it is expected that the
low set natural frequencies of the ring model will change with the bending
stiffness.

Figure 3.4 is the numerical result showing the relations between the natural
frequencies and the bending stiffness of the ring model. As can be seen from
the figures, the bending stiffness has little influence on natural frequencies of
the low order (small n) vibrational modes of the model. However, for high
order modes we can see that the low set natural frequencies change with the
increase of the bending stiffness.

3.5.2 The influence of the foundation stiffnesses

As was pointed out in the preceding section, the foundation stiffnesses influ-
ence the relations between the low set natural frequencies and the extensional
and bending stiffnesses. In addition, Figure 3.5 shows the changes of the low
set natural frequencies of the ring model with the increase of radial and
tangential foundation stiffnesses. The natural frequencies increase with the
increase of foundation stiffnesses. It is evident that the radial stiffness has
more influence on the vibrational properties of the model than the tangential
stiffness has. Again, the right side of the figure shows the negative branch
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of the natural frequencies.

3.6 The Effect of Tire Rotation and Rotating Speed

The effect of wheel rotation on the vibrational properties is the so-called
bifurcation of natural frequencies. When the system is in the non-rotating
state, i.e. = 0, the coefficients a3, a; in Equation (3.13) and bs, b3,b; in
Equation (3.14) are equal to zero, the characteristic equations are therefore
reduced to second and third order polynomials in terms of w2, respectively.
As a consequence, there are only three and two natural frequencies for the
first order and the other order vibration modes, respectively. When the sys-
tem is in the rotating state, the coefficients a; and bs, b3, by of the character-
istic equations are not equal to zero; therefore six or four natural frequencies
exist for the n # 0 vibration modes of the ring model in the rotating state.
That is to say, the number of the natural frequencies of each order of modes
doubles when the system rotates. The doubling of the natural frequencies
due to rotation is sometimes called frequency bifurcation in literature [44].
However, it should be noted that the term bifurcation used here does not
have exactly the same meaning as it has when used in Non-linear Dynam-
ics. It is noted that the coefficients a; and bs, b3, by are linearly proportional
to the rotating speed Q2 of the system, which is recognized as the coriolis
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acceleration of the rotating system. Therefore the doubling of the numbers
(or bifurcation) of natural frequencies of the system from the non-rotating
to rotating state is the result of the coriolis effect.

For the zeroth order vibration modes, it can be seen from Equation (3.15)
that the characteristic equation is not changed due to rotation. Therefore
the frequency bifurcation due to rotation does not apply to the zeroth order
modes. However, the tire rotation does affect the coefficients of the charac-
teristic equation, thus affecting the values of the natural frequencies of the
zeroth order modes.

In order to investigate the natural frequency changes of the system with the
rotating speed, we may look at the characteristic equations of the system
under the in-extensibility assumption. Equations (3.28) can be solved and
explicit expressions of the natural frequencies can be obtained.

Forn #0,1

_ 2nQ2 EI  pAQ? 2 pob
wnl,z——~1+n2i{[[(ﬁ+l+n2)(l—n) 7

n? (1 - n2) + ky + kan] (3.29)

AT

and for n = 1, the natural frequencies corresponding to flexible modes are

(2rRpA+ m) (ky + ky)
2pAm

wni2 = Q& (3.30)

For n = 0, the non-zero solution of the characteristic equation is

I, +2rpAR3
WY s il il 31
w. T oA (3.31)

which is independent of the rotating speed Q. Note in the above equations,
0§ A has been substituted by Equation (2.9).

It can be proved that for n # 0,1, one of the natural frequencies of each
order increases monotonously with the rotating speed, while the other one
first decreases and then increases after reaching a minimum with the increase
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of rotating speed. The rotating speed at which one of the natural frequencies
reaches a minimum can be derived from Equation (3.29). We find

2 _ 4 (1 +n?
"~ pA(1 - n?)?n?(nt - 202 — 3)

[(%I. (1-n?) - p%f’) n? (1-n?) +k, + kwn2] (3.32)

For n = 1, the situation is different. The two natural frequencies are merely
equal to the rotating speed Q minus/plus a constant, which is recognized
as the first order natural frequency of the ring model without rotation, w.
Therefore, of the two first order natural frequencies, one increases and the
other decreases linearly with the rotating speed. When the rotating speed
is equal to w?, one of the first order natural frequencies of the rotating ring
model becomes zero. It should be reminded here that the natural frequencies
we are discussing are defined in the rotating coordinate system. If we use the
alternative definition which is discussed in Section 3.3, we will find that the
first order natural frequency under the alternative definition is independent
of the rotating speed; and there is only one, instead of two, first order natural
frequency.

Figure 3.6 shows the bifurcation of the natural frequencies of the in-extensible
ring model due to rotation. It should be noted that dashed lines in Figure 3.6
correspond to the negative branch of the natural frequencies. We present
them here as positive ones to better illustrate the doubling nature of the
natural frequencies due to rotation. The natural frequencies represented by
the dashed lines correspond to the natural modes which travel backwards,
as will be explained in Section 3.8.

3.7 The Influence of the DOFs of the Wheel

The influence of the translational and rotational degrees of freedom of the
wheel is obvious from the characteristic equations of the model. The vibra-
tion modes other than those of the zeroth and first order are not affected by
the release of the DOFs of the wheel; the corresponding natural frequencies
are not influenced by the mass and moment inertia of the wheel. For the
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zeroth and first order vibration modes of the system, the wheel motion and
the ring deformation are coupled with each other. Therefore releasing the
wheel DOF's affects the natural frequencies of the system for those modes.
In addition to the rigid body modes, there are two natural frequencies for
the zeroth order vibration modes and four for the first order modes in which
the rotating ring and wheel are vibrating together as a system (two for the
non-rotating system).

Table 3.2 shows the low set natural frequencies calculated from this tire ring
model. The model parameters used for the calculation are the same as those
listed in Table 3.1. The natural frequencies of this model are compared
with those of the corresponding ring model with a fixed wheel in order to
illustrate the influence of the wheel DOF's on the system dynamic behavior.
As has been observed, the natural frequencies other than the zeroth and
first order ones are not affected by the DOFs of the wheel. The zeroth and
first order natural frequencies, however, are influenced by the wheel DOF's.
For n = 0,1, the wheel motion and ring deformation are coupled with each
other. As a result, the natural frequencies of the system are no longer equal
to the natural frequencies of the ring with a fixed wheel. The zeroth and
first order natural frequencies shown in Table 3.2 are the ones corresponding
1o the vibration modes with the ring body and the wheel moving in opposite
directions, i.e., the flexible mode. The natural frequencies corresponding to
the rigid body modes, which are equal to 0 for n = 0 and equal to the system
rotating speed in value for n = 1, are not included in the table.

3.8 Numerical Examples of The Natural Modes

Figure 3.7 illustrates the mode shapes corresponding to the low set natu-
ral frequencies calculated according to Equations (3.22). Up to the fourth
order natural modes are shown in the figure. It should be noted that the
mode shapes are rotating, according to the definition in Section 3.2. For the
same order n, there are two similar in-extensional mode shapes. One travels
forward, which corresponds to the higher one of the two natural frequencies
of the low set. The other travels backward, which corresponds to the lower
one (i.e., the solutions of the characteristic equations with negative values,
as noted in Section 3.6). If the mode shapes are viewed from a stationary
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Table 3.2: Natural frequencies wy; of the ring model with and without wheel
DOFs (low set)

Natural Frequencies Natural Frequencies
Q (rad/s) | n | without Wheel DOFs (rad/s) | with Wheel DOFs (rad/s)
0| 285.94 285.94 | 385.02 385.02
1| 529.92 520.92 | 597.83 597.83
0 2| 663.10 663.10 | 663.10 663.10
3| 763.47 763.47 | 763.47 763.47
4| 871.34 871.34 | 871.34 871.34
0] 28594 285.94 | 385.02 385.02
1| 579.92 479.92 | 647.83 547.83
50 2| 705.81 625.81 | 705.81 625.81
3| 802.85 742.85 | 802.85 742.85
41 912.56 865.50 | 912.56 865.50
0] 285.94 285.94 | 385.02 385.02
1{ 629.92 429.92 | 697.83 497.83
100 2| 753.87 593.87 | 753.87 593.87
3| 860.31 740.31 | 860.31 740.31
4| 987.17 893.05 | 987.17 893.05
0| 285.94 285.94 | 385.02 385.02
1] 679.92 379.92 | 747.83 447.83
150 2| 807.10 567.10 [ 807.10 567.10
3] 934.09 754.09 | 934.09 754.09
4| 1090.15 948.98 | 1090.15 948.98
0] 28594 285.94 | 385.02 385.02
1| 729.92 329.92 | 797.83 397.83
200 2| 865.20 545.20 | 865.20 545.20
3 | 1021.83 781.83 | 1021.83 781.83
4 | 1215.50 1027.27 | 1215.50 1027.27




3.9 ABouT THE OTH VIBRATION MODES OF THE RING MODEL 49

n=1 (rigid body mode) n=1 (flexible mode)

Figure 3.7: Mode shapes of the ring model

observer, the forward traveling ones rotate with speeds higher than © while
the backward traveling ones rotate with speeds lower than €2, or even rotate
opposite to the rotating direction of the ring. It should be noted that for
n = 1, in addition to the flexible mode, there is a rigid body mode whose
natural frequency equals to §2 if defined in the rotating coordinate system
or 0 if defined in the non-rotating coordinate system.

3.9 About the Oth Vibration Modes of the Ring Model

Until now, little attention has been paid to the discussion of the natural
frequencies and modes of the zeroth order. But they do exist. Examining
Equation (3.15), we will see that the coefficients ¢5 and c3 of the polynomial
are equal to zero. If we disregard the solution w, = 0, which corresponds to
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the rigid body rotational mode of the system, it is found that the character-
istic equation is a quadratic equation in terms of w2. Therefore there exist
only two natural frequencies for n = 0, instead of four in the general case.

Let us look at the special case when the model is not rotating( @ = 0). In
this case the natural frequencies of the zeroth order mode are

1 /EA pob
wop = \/p—A (—}2—2 — 7 + kw) (3.333.)
I, +27pAR3
sz = \/——#—ku (3.33b)

The corresponding mode shapes are according to Equation (3.18)

at weq, D,=10
at &2, I/Dn:0

Since the extensional stiffness of the ring is usually much larger than the
foundation stiffnesses k,, and k,,, wo; is much larger than wgz.

It can be seen that the radial and tangential vibrations of the model are
completely decoupled from each other for n = 0. This means that at wp; the
ring motion occurs only in the radial direction, while at wpy the ring motion
occurs only in the tangential direction. In other words, the higher one of
the two natural frequencies corresponds to the vibration mode in which the
ring expands and contracts while keeping the circular shape. Needless to
say it is the extensional vibration of the ring. The other corresponds to
the vibration mode in which the ring vibrates relative to the wheel in the
tangential direction while keeping its original shape and size, i.e., the ring
rotates as a rigid body relative to the wheel (the tangential springs). The
vibration mode at wg; is called in literature the breathing mode [89]. The
vibration mode at wgq will be called rotational mode in this thesis.

For the rotating ring model, the above statement also applies. However,
due to the coriolis effect, the radial and tangential vibration are no longer
decoupled from each other (see Equation (3.15)). Figure 3.8 shows the zeroth
modes of the ring model.

The rotational mode of the ring model is important to vehicle dynamics in
that this vibration mode of the tire will transmit the excitations at the tire-
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&

(a) breathing mode (b) rotational mode

Figure 3.8: The zeroth mode shapes of the ring model

road contact patch due to road unevenness to the vehicle powertrain and
causes the rotational vibrations of the power transmission parts of vehicles.
The rotational mode is also important to the design of the modern anti-lock
braking and traction control systems.

3.10 Conclusions

o In this chapter, the characteristic equations of the tire ring model are
obtained, which determine the natural frequencies of the model;

e Because of the difficulties encountered in separating the space and
time coordinates for the rotating ring model, the time-dependent mode
concept is adopted, which was first suggested by Huang and Soedel [44];

¢ It has been shown that the extensional stiffness of the ring contributes
mainly to the high frequency vibrations of the model. But it has also
been found that the extensional stiffness does influence the low set
natural frequencies at which the bending deformation of the ring dom-
inates. The dependence of the low set natural frequencies on the exten-
sional stiffness is related to the relative magnitude of the extensional
stiffness, bending stiffness and foundation stiffnesses of the model;

¢ The influence of the bending stiffness on the natural frequencies de-

pends on the relative values of %ns and k,n? + k,. Under normal

circumstances it has little influence on the low order vibration modes
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of the model. However, it does affect the vibration properties of the
high order vibration modes;

With the increase of the radial and tangential foundation stiffnesses,
the natural frequencies of the ring model also increase. Therefore the
foundation stiffnesses are very important parameters which influence
the vibrational properties of the ring model;

The effect of rotation of the ring model is to double the natural fre-
quencies of the model, which is caused by the coriolis acceleration.
However, this bifurcation of natural frequencies due to rotation does
not apply for the zeroth order vibration modes.

Releasing the rotational and translational DOF's of the wheel of the
model affects only the zeroth and first order vibration modes, namely
the change of the natural frequencies of the zeroth and first order vibra-
tion modes of the ring model. This finding is important since it shows
that the vibration transmission properties of a tire/wheel assembly
are governed only by the zeroth and first order vibration modes of the
system,;

Of the two zeroth order vibration modes, one has a very large natural
frequency and corresponds to the extensional deformation of the ring.
The other corresponds to the state in which the ring moves as a rigid
body relative to the wheel in the rotational direction. The latter (the
rotational mode) is important to the vibrations of the powertrains of
vehicles and to the design of modern anti-lock braking and traction
control systems.



Chapter 4

Equations of Motion in
Mixed Modal and Physical
Coordinates

It has been shown in the previous chapter that the extensional vibration
modes of the ring model have very high natural frequencies, which nor-
mally contribute very little to the overall vibrations of the tire and vehicle.
Therefore in the following chapters, we will be using the in-extensibility as-
sumption of the ring model. That is, the analysis in the rest of this study
will be based on Equation (2.25).

The Modal Ezpansion Method is used to simplify the analysis. The basic idea
behind the modal expansion method is that the response of a linear system
to any external excitation force can be expressed as a weighted summation
of the natural mode shapes of the system. The mode shapes of a system are
usually time independent while the weight factors are space independent.
Since the mode shapes of the tire model have been obtained, we are able
to simplify the equations of motion of the tire model, which are sixth or-
der partial differential equations, into ordinary differential equations which
involve only first and second order differentiations with respect to time.

53
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4.1 Equations in the Rotating Coordinate System

According to the modal expansion method, the tangential displacement of
the ring can be expressed as follows:

+oo
v(6,t) = Z (n(t) cos(nf + wpt) (4.1)

n=0

where (,(t) are the modal participation factors. The above expression can
be rearranged as

+oo
v(6,t) = Z [@n(t) cos(nB) + b,(t)sin(nd)] (4.2)
n=0
Substituting Equation (4.2) into (2.25) yields:
M,i, + Gyu, + Kpu, =1, (4.3)

in which n = 0,1,2,...,40c. Three different cases exist for Equations (4.3)
depending on the mode number n. When n = 0,

m, 0 0
M, = 6 m, 0
| 0 0 m,
[ 0 gn O
G,=| -g. 0 0
0 0 0
[ kn 0 kO'r
K, = 0 k., O
L kOr 0 kr

u, = {anv bna gr}T
f, = {gna Mny T/(QWR)}T
When n =1,

OOO:S
OO:SO
S OO

0

0
Mg

0

mg
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0
_ —Gn
Gu=|
| 0
Sk
0
K, = 0
| — k12

u, = {ana bna Il?*, Z*}T

£, = {€ny Ty for/(TR), for /(xR)}T

and when n # 0,1,

K, =

r

0 m,

-mn Ojl

[0 g
—Ggn O

kno]

0 k.

u, = {ana bn}T
fﬂ = {Ena Un}T

The elements in the above matrices are as follows:

1 2m aw
e [ (s 2
27 Jo

mn, = pA(1 + n2)

m, = L
"7 orR
m
My = ——
TR
gn = —4pAnS)
2msl
go =

TR

00

_ 1 2r aqw
gn—;A (%}‘*‘W

_1/2”< A
m= ) (et

> cos nfdé

) sin nfdo
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b= (0o + B2) (1) - 22 (1 )

+hy + kun? — pA (14 n2) Q2

k, = k,R?
kg.,- = —kvR

mN?
ko =ky+ Kk, — =

kg = ka3 = ky + Ky

Two things should be noted here. First, in Equation (4.2) of the modal
expansion of the tangential displacement of the ring, the mode shapes are
defined in the rotating coordinate system which is attached to the ring. As
was pointed out in Section 3.3 of Chapter 3, it is possible to define the
natural frequencies and mode shapes of the tire ring model in a non-rotating
coordinate system. According to the problem the model is intended to be
applied to, one of the two definitions of natural frequencies and mode shapes
is preferred. In the case of vibration transmission from the ground to the
vehicle, it is more desirable to have the mode shapes defined in the non-
rotating coordinate system.

Secondly, the transformed equations of motion are based on mixed modal
and physical coordinates. The motion of the ring is expressed in terms of
modal coordinates while the motion of the wheel-axle assembly is described
with physical coordinates. Though it is possible to transform the equations of
motion of the system into equations in terms of complete modal coordinates,
it does not simplify the analysis. It is the author’s opinion that retaining the
physical coordinates of the wheel-axle assembly is more straight forward.

4.2 Equations in the Non-Rotating Coordinate System

As was mentioned in the previous section, for the study of the vibration
transmission properties of tires, it is more desirable to write the transformed
equations of motion in the non-rotating coordinate system.
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The tangential displacement of the ring when expanded in the non-rotating
coordinate system is as follows:

+o00
v(éyt) = Y [al(t) cos(ng) + bl (1) sin(ne)] (4.4)

n=0

The following relations exist between the rotating and non-rotating coordi-
nate systems (see Chapter 2):

z* = z cos(Qt) + zsin(t) (4.5a)
2* = —zsin(Qt) + z cos(0t) (4.5b)
6=¢—Qt (4.5¢)

Substituting Equation (4.5¢) into Equation (4.2) and comparing it with
Equation (4.4), we have

a, = a), cos(nt) + b/, sin(nQt) (4.5d)
b, = —a/, sin(nQt) + b}, cos(ndt) (4.5e)

Substituting Equation (4.5c) into the expressions of &,, 7, yields:

£, = & cos(nt) + n;, sin(nQt) (4.5f)
N = —&. sin(nQt) + 7, cos(nQt) (4.5g)

where £/, 7}, are the generalized forces defined in the non-rotating coordinate
system.

o = 2% /0% (qv + %) dé (4.6a)
& = ;1;/0% ( ?% ) cosng dg (4.6b)
. % /Ozﬂ ( 38 : ) sin ng dp (4.6¢)

Equation (4.5) can be rewritten in matrix form:

u, = Rnuln (47&)
£, = R.f. (4.7b)
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in which,
([1 0 0
010 forn=20
| 0 01
cosQt sin 0 0
R, = j —sin 2t cos Qi 0 0 for m — 1
0 0 cosQt  sin n=
| 0 0 —sin 2 cos
cosnQt  sinn
| | —sinnfdt cosnd forn #0,1
( {a’:u biw OT}T fOI‘ n= 0
uil = {a:w b;n z, Z}T fOI‘ n=1
{an, )T forn #£0,1
{&,, n,, T/(27R)}T forn=0
f, =< {&, nh, fo/(xR), f/(xR)}T forn=1
L{€, m}T for n #0,1

Substituting Equation (4.7) into Equation (4.3), we obtain the new trans-
formed equations of motion, in which the generalized coordinates are defined
in the non-rotating coordinate system.

M., + GLu, + K, ul, =f, (4.8)

The coefficient matrices have the same form as the ones in Equation (4.3),
only the elements are different.

m. =m Ir
" " 92TR
m

my = me = op

g, = 2npAQ(n? - 1)
9. =0
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ky, = (%n%i—f) (1——n2)2—p—;;(1—n2)

+ky + kyn® — pAQ2 (1 — n2)2

k! = k,R?
kp, = —k, R
K, =ky+k,

k;2 = k'l23 = ky + ky

4.3 Damping Effect

In deriving the mathematical model described in the previous sections, the
tire-wheel system is considered as an undamped vibration system, but in
reality, damping exists both in the treadband and in the sidewall of tires.
And it is well known that damping in tires is important to explain some
aspects of tire behavior such as standing waves.

We may introduce damping effects into our analysis by adding a damping
factor to the matrix G,, or G/, depending on the problem at hand. For the
problem of vibration transmission, we may add the damping factor to the
matrix GJ,. After introducing damping the matrix becomes

-

¢ 9, 0
G, =] -¢, ¢ 0 for n =0 (4.9a)
| 0 0 ¢
[ ¢ ¢, 0 0
, —q! c7 0 ©
— n n —
G/ = 0 0 ¢ g for n=1 (4.9b)
| 0 0 g(l1 Cl
[ g
G/ = _;‘, c,” for n # 0,1 (4.9¢)

in which ¢, = 2x/ml k!, ¢, = 2X\\/mlkl, ¢, = 2XA\/mlkl. X is the di-

mensionless damping coefficient. The damping coefficient A has in general
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different values for different modes but is assumed to be the same for all
modes here.

In the following analysis, the prime sign (') will be left out of the equations
for the sake of simplicity.



Chapter 5

Rolling Contact between
a Tire and a Flat Road

5.1 Introduction

Tire-flat road contact is an important problem in tire mechanics and has
been the subject of many theoretical and experimental studies. However, no
analytical solutions can be obtained because the tire is structurally complex
and composite materials are involved. It is not a solid body so its contact
with the road surface is non-Hertzian. The tire-road contact pressure dis-
tribution directly affects the development of the shear forces in the contact
area and consequently influences the vehicle handling and braking/traction
performance. The contact pressure distribution is also one of the main fac-
tors which determine the wear of the tire tread and the damage to the road
surface caused by automobiles.

Much experimental work has been done to measure the tire-road contact

areas and contact pressure distributions. The main findings of these experi-
ments can be summarized as follows:

1. The contact length between a tire and a flat road is basically deter-
mined by the tire deflection. For constant tire deflection, the contact

61
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length remains effectively constant when the load and inflation pres-
sure change simultaneously;

2. The increase of rotating speed generally tends to increase the contact
length slightly for a given normal load and inflation pressure;

3. Increasing the speed causes a corresponding increase in contact pres-
sure in the front part of the contact area and a decrease in the rear
portion of the contact area;

4. For small normal loads, the distribution of contact pressure along the
contact length is a convex curve with the maximum pressure at the
center of the contact area. At high normal loads, the pressure distri-
bution has a dip at the center of the contact area.

Clark, using a tire ring model, studied the contact problem of a rolling tire
under load [23]. In his study, the equation of motion of the tire model was
first reduced to static state. Then by assuming that the part of the tire
treadband which is in contact with the road is deformed to a flat plate,
the radial displacement of the ring was determined and substituted into the
governing equation. The tire-road contact pressure was thus obtained. The
contact length was determined by finding the angular coordinates of the
two points at which the contact pressure solution changes sign. Boundary
conditions at the tire entry and exit points were not imposed. Clark was
able to describe the effects of the change of the tire rotating speed on the
contact pressure distribution. Clark later pointed out [24] that in order to
get more realistic dynamic pressure distributions, the shear deformation of
the treadband must be included in the model so that the shear and bending
moment continuity at the edges of the contact region can be assured.

Yamagishi and Jenkins adopted a different approach to the tire-road contact
problem. In their study [99, 100, 50], the tire treadband was also modeled
as an elastic circular ring and the sidewalls were modeled as radial springs.
In addition, the tread rubber was modeled as secondary radial springs at-
tached to the outside of the ring. Under a certain tire deflection value, the
relation between the deformation of the secondary radial springs (thus the
contact pressure) and the radial displacement of the treadband was derived
according to the geometric relations. The governing equation was solved
separately for the contact part and for the free part of the treadband. The
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two solutions were matched by the continuity conditions at the edges of the
contact region, which state that at the contact edge, the displacements of
the free and contact part and their derivatives up to the fourth order must
be equal to each other. But because the bending stiffness of a tire treadband
is very small compared with the pre-tension in the treadband and the spring
stiffnesses, numerical difficulties are encountered when attempting to obtain
exact solutions [99]. Therefore the perturbation method was used to obtain
approximate solutions [100, 50]. The contact area was further divided into
three regions: a boundary layer closest to the edge; an intermediate layer,
which is a little further from the edge; and the outer region, which is fur-
thest from the edge and closest to the center of contact. The procedure is
rather complicated and involves the matching of many constants and equa-
tions. Only static tire-road contact was dealt with in their study. When
the model parameters were given properly, the numerical results were able
to reproduce the typical contact pressure distribution curves observed from
experiments [50].

In a recent paper, Akasaka studied the two-dimensional contact problem
of a radial tire [1]. The tire was also modeled as a circular ring on an
elastic foundation. However, different mathematical models were developed
separately for the contact-free region and the contact region of the tire. In
the contact-free region, the governing equation was derived for the ring in
which the lateral deformation was neglected. In the contact region, the
tire treadband was considered as a flat plate subjected to three-dimensional
deformation. The tire deformation in these two regions was solved separately
and boundary conditions were applied to the solutions in the contact-free
region. Those boundary conditions are stated as: at the contact edge the
belt should have a horizontal tangential line and the bending moment should
be equal to the initial value to flatten the contact part of the belt. The
continuity conditions at the contact edges are not completely satisfied by
this kind of treatment; in particular, the continuity conditions in the lateral
direction were not imposed at all.

In summary, with the conventional method of dealing with the tire-road con-
tact problem, a tire is divided into contact-free and contact regions. These
two regions are analyzed separately. In the contact-free region, the prob-
lem is defined as pre-described loads and unknown tire deformation. The
equations of motion are solved to obtain the unknown tire deformation. In
the contact region, the problem is defined as pre-described tire deformation



64 RoOLLING CONTACT BETWEEN A TIRE AND A FLAT ROAD

and unknown loads (the contact pressure). The equations are solved for the
contact pressure. The solutions of these two separate problems are finally
matched by the continuity conditions at the contact edges, which involves the
determination of many constants. As was shown by Yamagishi and Jenkins,
numerical difficulties will be encountered in the matching process.

In this chapter, a new method is developed to solve the tire-road rolling
contact problem. The basic idea is that the tire deformation is continuous
along its circumference; the tire can and should be treated as one entity
instead of dividing it into two separate parts. Therefore a unified solution
can be found for both the contact region and the contact-free region. The
periodic property of the tire treadband displacement in terms of angular
coordinate @ is utilized. The tire model developed in Chapter 2 is used.

The uniqueness of the tire-road rolling contact problem is analyzed first.
A small modification to the ring model is then introduced especially for
the contact problem in order to take into consideration the stiffness of the
tire tread rubber. The rolling contact problem is thus formulated. Later,
the tire response to a stationary concentrated load is studied with the ring
model. Tire response to distributed forces in a finite contact area are then
considered. A method is thus developed for solving the tire-road contact
problem. The convergence of this method is also examined. The constraint
conditions are discussed and an algorithm is developed to determine the
boundaries at which the tire tread elements enter and leave the contact area.
Finally, numerical examples are presented and the results are analyzed.

5.2 Formulation of the Rolling Contact Problem

We now examine the tire-road contact problem. Usually, a tire is far more
flexible than both the road and the metal wheel and the axle supporting it
so that when a tire comes into contact with the road surface the deformation
is almost entirely contributed by the tire deformation. For a tire which is in
contact with a rigid road surface at constant axle height, the external forces
are the forces acting on the part of the tire tread in the tire-road contact
area, which deform the tire, and the constraint forces at the axle, which is
required to balance the contact forces in order to maintain certain tire-wheel
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position or motion. The relations between the tire deformation (radial and
tangential displacements of the treadband) and the contact forces (radial
and tangential pressures) are governed by the equations of motion. If we
know the contact forces, then the tire treadband displacements can be ob-
tained by solving the governing equations of motion. Alternatively, if the
treadband displacements are known, then the contact pressure distribution
can be obtained by solving the governing equations. Clark [23] dealt with
the tire-road contact problem by assuming that the part of the treadband
in contact with the road is flat (thus known radial displacement). In reality,
because of the existence of the tire tread rubber, the part of the treadband
in contact with the road is not flat. Therefore, both the treadband displace-
ments and the contact force distributions are unknown. In a typical tire-road
rolling contact problem, the tire deflection (which is defined as the differ-
ence between the radius of a free tire and the axle height of a loaded tire),
or alternatively, the total vertical force acting on the tire-wheel axle, is pre-
scribed. The contact pressure distributions and the contact length (thus the
treadband displacements) are the ones that need to be determined. There-
fore, an additional set of relations between the tire treadband displacements
and the contact forces is needed to solve the tire-road contact problem.

To serve this purpose, a small modification to the physical model of the tire
is made to take into account the flexibility of the tire tread rubber, i.e., a
fourth component—radial springs distributed along the outer edge of the
ring circamference—is added to the original ring model to represent the tire
tread rubber. This type of treatment was first proposed by Akasaka and
employed by Yamagishi and Jenkins [99] to solve the tire-road static contact
problem. The modified ring model is shown in Figure 5.1.

When the tire is rolling steadily on a flat road, the tire-road contact area
should be constant. Suppose the tire-road contact angles ¢¢ (front) and ¢,
(rear) are already known, then the geometric relation between the radial
displacement w of the treadband and the deformation x of the tread springs
is approximately (see Figure 5.2):

K(#) = w(¢)+do- R(1-cosd) ¢y <b< 4, (5.1)

where R = R+ 7. 7 is the thickness of tire tread rubber; w is the radial
displacement of the tire treadband; and dp is the overall tire deflection. The
contact angle is assumed to be small. Note x is equal to zero outside the
contact area. It should be mentioned that the tangential displacement of
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Figure 5.1: The modified tire ring model
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Figure 5.2: The tread geometry
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the treadband will cause a change of locations of the secondary springs with
respect to their original locations. This change of central angle is rather
small, and therefore is neglected in the above equation.

The contact pressure in the radial direction is thus

9(¢) = ks - K(¢) = k2 [w(¢) + do — R(1 — cos ¢)] (5:2)

in which k; is the stiffness of the secondary radial springs (tread rubber).
Equation (5.2) defines another relation between the radial displacement of
the treadband and the contact pressure, which is derived from the geomet-
rical relation between the radial displacement of the treadband and the de-
formation of the tread rubber.

In the following sections, the tire responses to concentrated forces acting on
the treadband are analyzed first. Later, the tire responses to concentrated
forces are integrated along the contact length for an arbitrary distribution
of the contact forces so that the total responses of the tire to the distributed
forces are obtained. Further, by utilizing the additional relation between
the contact pressure and the treadband displacement, the tire-road rolling
contact problem is solved for known contact length. Finally, algorithms are
developed for real tire-road contact problems in which the known variable is
either the tire deflection or the vertical axle force.

5.3 Tire Responses to Concentrated Line Forces

To study the tire-road rolling contact problem, the translational DOFs of the
wheel are constrained and the wheel is only allowed to rotate at a constant
speed Q, i.e., z = z = 6, = 0. The transformed equations of motion in the
rotating coordinate system (see Chapter 4) are thus simplified as

m, 0 dn Cn n an k., 0 an &n
o (e s (R
(5.3)

Suppose that the tire is in contact with the road in a very small area, then
we can describe the concentrated line forces acting on the tire as follows:

quw(0,1) = —Qub6 (8 — (do — 1)) (5.4a)



68 RoLLING CONTACT BETWEEN A TIRE AND A FLAT RoAD

9u(8,1) = Qv (6 — (¢o — 1)) (5.4b)

here ¢ is the stationary angular coordinate of the tire-road contact area; Q,,
and @, are the magnitudes of radial and tangential external forces acting
at the small contact area, respectively; and §(6 — (¢o — Qt)) is Dirac delta
function. Note Q,, and @, have the same unit as ¢,, and ¢, (N/m). When
tire is rolling steadily on a perfectly flat road, Q,, and @, can be considered
to be constant. Substituting ¢, ¢, into the expressions of &, and 7, (see
Chapter 4, page 55), we have

60 = 2_17;Qv (55&.)
= % [@ucosn (po — Q) — nQ, sin n (do — Q)] (5.5b)
Mo = % [Qusinn (¢o — Q) + nQy cosn (¢ — Q)] (5.5¢)

Usually, the tangential force @, is in some way related to the normal force
(radial contact force Q,,) and to the relative displacements between the tread
elements and the road in the contact patch. For the sake of simplicity, we
assume here that the following simple relation exists between @, and Q,,:

Qv=pQu
in which g is a non-dimensional variable which describes the tangential force

acting on the tire.

With the introduction of the above relation, we may now rewrite Equation
(5.5) as follows:

60 — _li . Qw (5.68,)
& = ——l\/'u,2+1225in7L(¢0—'Qt‘}"‘/Jn)'Qw (5.6b)

M :%\/u +n2cosn(¢0—Qt+1/Jn)'Qw (5.6¢)
Y-

in which ny, =tan™ (—p/n), n =1,2,3,....

Equation (5.3) can now readily be solved for a,, and b,. The tangential dis-
placement of the tire treadband under concentrated contact forces is finally
obtained:

v(¢) = i Apsinn(¢o — ¢+ ¥ + 7n) (5.7)

n=0
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in which

e Q.
Vo = ma (0077 — g0 ()] + fen ()2

_ _ cn (n2)
nn = tan”™ (kn " (0% — gn (m))

The corresponding radial displacement of the model tire is

o0

w(¢) =Y nApcosn(do — ¢+ Pn + Vn) (5.8)

n=0

Figure 5.3 shows the relation between the displacement amplitude A, (may
be considered as the Fourier coefficients of the displacement response) and
the order number n of the Fourier series. It can be seen that A, decreases
very quickly as n increases. The model parameters for this calculation are
taken from [15].

5.4 Finite Contact Between the Tire and the Flat
Road Surface

For a freely rolling tire, we may assume that the forces act on the tire in the
contact patch only in the radial direction. The tire response to a constant
concentrated load @, at ¢ = ¢ can be rewritten as

w(@) =Y [Ar cosn (¢ — ¢+ Vn) - Qu] (5.9)
n=0
in which
n? 1

e = ma (12 = 0 ()] + len (r )

We now consider the case in which the tire is in finite contact with the
road. The contact area extends from angular coordinate ¢ at the front
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Figure 5.4: The tire-road contact
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edge of the contact patch to ¢, at the rear edge (see Figure 5.4). Suppose
that the contact force acting on the tire is a distributed radial force g(¢o)
(¢5 < ¢o < ¢,), the total displacement of the tire treadband in radial
direction due to ¢(¢) is thus

w(@)= [ " S [ cosn (60 — & + 1) - (o) dd]

f n=0
= i Al [an cosn (¢ — n) + Brsinn (d — v,)] (5.10)
n=0
in which

or
a, = / q(P) - cos(ng)do (5.11a)

bg

ér
Bu= [ 4(¢)-sin(ng)do (5.11b)

b5

Equation (5.10) describes the relation between the radial displacement of
the tire and the contact force g(¢), which is derived from the governing
equations of the tire ring model. Note that up until now the distribution of
the contact force ¢(¢) is arbitrary and no conditions concerning the tire-road
contact have yet been imposed.

For a rolling tire which is in contact with a flat road, the contact force
and the radial displacement of the treadband has to satisfy yet another
equation, i.e., Equation (5.2). With Equations (5.2), (5.10) and (5.11), and
assuming that only the first N modes make significant contributions to the
tire deformation (which is true, as we saw from Figure 5.3), the following
linear algebra equations are obtained:

[ég}{g}:{ﬁ} (5.12)

here o = {1, .oy @iy ey an} Ty B = {B1y ey Biy oy BN} . A, B,C, D are N X
N matrices, E, F are N x 1 column vectors whose elements are solely the
functions of tire-road contact angles ¢y, ¢, and tire geometry.

) sin i¢p, — sin 1¢y
1

iy = 45|~ cos (6 =
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L8 ((E = )¢, + 575) = sin((i - )¢y + 573)

2(i - j)
sin ((i 4 j)ér — jv;) — sin ((i + 5)b5 = §75) L,
+ 217 ] forz # j
a;j = A; [_ cos j (¢, — 7;) SLLr T Lt con 3 o
sin ((i + j)¢r — Jv;) —sin (G + )dy — j7;)] 1 .
bij = Al [— sin j (¢r — ;) oin 0r : S 16y
4.Co8 (2= 1) + 775) — cos((i = §)és + 375)
2(: - j)
cos ((i + j)¢r — Jv;) — cos ((i + J)és — 577)] .
} T J fori#
bij = A [— sin j (¢, — ;) 2219 — I sin gy, > i
_cos((i+j)¢r — j%’)'— cos ((F+5)és — 39)] for i = j
2(i + ) |
cij = A;« [COSj (6r — ;) 0516 ; 05 9y
_cos (i — §)¢r + 57;) = cos (i = 5)d; + ;)
2(i—J)
_cos((t+7)¢r — J7;) — cos ((i + J)¢s — 375) .
20i+7) ] fori #J
e = AL [cosj (6, — ) cos i@, — cos 15 + Sinj7j¢T ; Py
_cos((i+ )¢ — jv;) —cos ((i + 5)ds — 47;) .
2+ 7) } fori=j
dij = Aj [Sinj(qﬁr - 75) 08 10r = €05 10y
4. Sin (2= 7)¢r + Jv;) = sin ((i = J)br + 37;)
2(i - 4)
_sin((i 4 )¢ — Jv;) —sin ((i + )¢y = 575) .
27 + 7 . ] fori # 3
dij = Aj [Si“j (&r —7;5) ki ; el + cos j7; & ; o



5.4 FINITE CONTACT BETWEEN THE TIRE AND THE FLAT R0OAD 73

_osin (i + )b — Jvy) —sin (i + 7)és — v

)]_k% fori=7j

2(i+7)
ei=—R [ cos o8 Sin {9, : Sin 19 + sin(i — l)g’(ri__sir)‘(i - )¢y
sin(é + 1)@ —sin(i 4+ 1)¢s .
+ 2(i + 1) ] fori# 1
e = —R [ COS¢Tsini¢r ; sin igy N b, ; Y
sini + 1), — sin(i + 1)¢f] N
i 2(i+ 1) fori=1
£ =R [_ cos b, oS i, : cos iy N cos(t — 1);¢(ri—_cl())s(i — 1)y
cos(i + 1)¢, — cos(i+ 1)y ] ‘
2(i+ 1) fori#1
fi=R [—— cos ¢, cos igr : cos gy
cos(i + 1), — cos(i+ 1)¢;] for:=1
2014+ 1) =

Equation (5.12) can easily be solved for a and 8. Therefore the tire tread-
band displacements and tire-road contact force can be determined for a given

¢7‘)¢f-

At the two ends of the contact area, the secondary radial spring should have
zero deformation. Therefore, the following relation between the overall tire
deflection dp and ¢, are obtained:

do = R(1 - cos¢,) — w(¢,) (5.13)

This relation was used in deriving Equation (5.12). In the case that the
known quantity is the tire deflection dy instead of the contact angles, an
iteration procedure is necessary, which will be explained in Section 5.5.

In deriving Equation (5.12), we assumed that the force in the tire-road con-
tact area acts only in the radial direction. This assumption implies that the
tire-road interface must supply horizontal force in addition to the vertical
contact pressure so that the resulting force is always directed toward the
center of the wheel. This is not exactly true, of course. However, for a freely
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rolling tire, the friction force in the tire-road interface has a more or less
sinusoidal distribution along the contact length and is directed toward the
center of the contact patch, as was shown by Akasaka [1]. Therefore, this
assumption should be quite close to the real situation of a freely rolling tire.

5.5 Constraint Conditions and Special Considerations

In the previous section when we derived the equations which formulated
the tire-flat road contact problem, Equation (5.1), which represents the ge-
ometric relation between the treadband displacement and the tread rubber
deformation in the contact area, was used as it is. However, for the true con-
tact problem, the tread rubber cannot be stretched nor can it be compressed
into zero or negative thickness. That is to say the tread rubber deformation
must be positive and smaller than the rubber thickness. This statement can
be expressed in formulae:

0<k=w+do— R(1—-cosp)<T for 5 < ¢ < o, (5.14)

The condition represented by Equation (5.14) is typical to contact mechan-
ics. It is very difficult, if not impossible, to implement this condition. But
numerical examples show that this condition is rarely violated.

When deriving Equation (5.12), we also assumed that the rubber deforma-
tion vanishes at the front and rear edges of the contact area. This implies
the condition described by the following equation:

w(é,) + Rcos ¢, = w(¢s) + Rcosdy (5.15)

However, if the front and rear contact angles are both given at the same time,
this condition may be violated. For non-rotating tires, the tire-road contact
is symmetric with respect to the vertical axis passing the wheel center. If
the central angle ¢ of the contact point on the vertical axis is designated
to be zero and we choose ¢y = —¢,, Equation (5.15) will be automatically
satisfied. However, for the rolling contact between the tire and the road, since
the damping within the treadband and sidewall tends to shift the location of
the maximum radial deformation of the treadband backwards, the treadband
displacement is not symmetric any more with respect to the vertical axis.
The front contact angle ¢; will become larger while the rear contact angle
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¢, becomes smaller. Therefore an iterative procedure is necessary so that
once one of the contact angles is known, the contact problem can be solved
while Equation (5.15) is satisfied. The iterative procedure for this purpose
is described later in this section.

Another factor which needs to be taken into account is that, usually, for the
tire-road contact, the known quantity is the static tire load in the vertical
direction or the overall tire deflection do, instead of the contact angles. The
total forces in the contact area are

F,=R :r q(@) cospdp = Roy (5.16a)
.

F, = —R/ g(P)sindpde = —Rp4 (5.16b)
¢5

If the known quantity is the overall tire deflection dy, the contact angle ¢,
has to satisfy Equation (5.13).

An iterative procedure is therefore needed in order to solve the tire-road con-
tact problem whose known quantity is the vertical load or the tire deflection,
which is discussed later in this section.

A computer program has been developed to solve the tire-flat road rolling
contact problem using the method developed in the above sections. The con-
dition described in Equation (5.14) is not incorporated into the program, but
the condition check is performed. If condition (5.14) is violated, a warning
sign is given. However our numerical calculation shows that this condition
is rarely violated.

In case the known variable is the tire deflection or the tire vertical load
instead of the rear contact angle, another iterative procedure based on the
secant method is incorporated into the program. The initial value of the
rear contact angle ¢, is estimated as follows:

If the tire deflection dg is known, then

¢, = arctan (—————-—'QR—dO)dO) (5.17)

R - dg
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If the tire vertical load F, is known, then

F,
r = arcsi = 5.18
¢, = arcsin (pobR> (5.18)
The iterative procedure finds the correct value ¢, which satisfies either Equa-
tion (5.16) or (5.13).

To ensure Equation (5.15) is satisfied, we adopted the following procedure:
first the rear contact angle is given (if the known quantity is the vertical load
or tire deflection, then the rear contact angle itself is determined by another
iterative procedure, as was described earlier), and then an initial value of
the front contact angle is estimated as follows

¢r=— (¢ +m) (5.19)

in which ~; is the phase shift of the first order component of the treadband
displacement in space, see Section (5.3). A simple iterative procedure based
on the false position method is used to find the right ¢; value satisfying
condition (5.15).

5.6 Convergence of the Method

The convergence of the method developed in the above section is exam-
ined in two aspects: the convergence of the treadband displacements and
the convergence of the contact pressure. Figure 5.5 demonstrates the ra-
dial displacements of a tire treadband calculated using different numbers of
modes (V) for two different tire deflection values. It shows clearly that the
tire treadband displacement converges very quickly with the increase of the
number of included modes N. For the different numbers of modes included
in the calculation, the numerical results are almost identical. Actually, the
rapid convergence of tire treadband displacement is expected, considering
the rapid decrease of the amplitude A, with mode number n (Figure 5.3).

Figure 5.6 shows the calculated contact pressure distributions of two different
tire deflection values with the inclusion of different numbers of modes. It is
seen that the convergence of the contact pressure distribution is somewhat
slower than that of the treadband displacement. In order to get reliable
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results for the contact pressure distribution, thirty or more modes should be
included, as Figure 5.6 shows.

The difference of convergence speeds between the displacement and contact
pressure is due to the large value of the spring stiffness of the tread rubber
used in the calculation. Examining Equation (5.2) we can see that the
contact pressure actually converges at the same speed as the displacement in
relative terms. But due to the large value of the rubber spring stiffness &,, the
absolute cutoff error in the displacement is enlarged in the contact pressure.
It should be noted that including too many modes in the calculation will not
necessarily improve the accuracy of the contact pressure and displacement
results. If the magnitude A} of mode k is smaller than the precision the
computer and its software can provide, there is no sense in including the kth
and higher order modes.

5.7 Numerical Results and Discussions

In this section, the numerical results of the tire-flat road rolling contact are
presented, analyzed and compared with the experimental results whenever
available. In Section 5.7.1 and 5.7.2, numerical examples for a particular
case of tire-road rolling contact—static contact (2 = 0)—are presented and
the general pattern of the tire-road contact pressure distributions are dis-
cussed. One of the numerical results is compared with the experimental
results documented in literature. In Section 5.7.1 and 5.7.2, the model pa-
rameters used for the calculation are quoted from papers by Yamagishi and
Jenkins [99, 50]. The numerical examples given from Section 5.7.3 to Section
5.7.5 are calculated with model parameters quoted from Reference [15] by
Bohm.

5.7.1 Comparison of a numerical result with a test result from
literature

Figure 5.7 shows a numerical example for the static contact between a tire
and a flat road. The line marked with Modal Expansion Method is the
calculated contact pressure using the method developed in the previous sec-
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Figure 5.7: The contact pressure as measured and calculated by Yamagishi
[99] and with the modal expansion method

tions. The lines marked with Outer Rib, Middle Rib and Central Rib are
test results measured by Yamagishi [99]. The line marked with Yamagishi is
the calculated result from Yamagishi’s paper. The model parameters used
here for the calculation are the same as the ones given in [99]. From this
numerical example, it can be seen that the method developed in this chapter
gives a better prediction for the contact force than Yamagishi’s method does.

5.7.2 General patterns of the contact pressure distribution

As was mentioned in the introduction, experimental results often show that
the contact pressure distribution along the contact length has a concave
shape at large vertical load. But the example in the previous section does
not show such a contact pressure distribution pattern. So the question one
asks is whether it is due to the inability of the model and the method or
due to the model parameters used. In order to check this, another set of
parameters is used, which are quoted from Reference [50]. Figure 5.8(a)
shows the numerical results for three different inflation pressures (thus three
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different radial stiffnesses) with tire deflection dy = 0.04 m. The curves
clearly have a concave shape and, the smaller the inflation pressure of the tire
(thus smaller radial spring stiffness), the deeper the concavity of the pressure
distribution curve. Figure 5.8(b) is another calculation result for the same
set of model parameters but with a smaller tire deflection dy = 0.02 m (thus
a smaller vertical load). It shows that at small vertical load, the contact
pressure distribution does not have a concave shape any more. These two
numerical examples show that the shape of the contact pressure distribution
depends not only on the vertical load of the tire but also on the tire structure,
especially the stiffness of the tire sidewall. The numerical results correspond
well with the contact pressure distributions observed in tests for both small
and large tire deflections.

5.7.3 Influence of tire rotating speed on the tire-road contact

The rotating speed of a tire influences the tire-flat road contact in that the
distribution of contact pressure and the contact length of the tire-road inter-
face change in a certain way with the rotating speed. With the tire model
and the algorithm developed in the previous sections, we are able to inves-
tigate those influences numerically. Figure 5.9 shows the contact pressure
distributions at various tire rotating speeds and with different damping co-
efficient A (see Section 4.3). When the tire is standing still, i.e. Q = 0,
the contact pressure distribution is symmetric with respect to the vertical
axis passing the tire-wheel center. When the tire is rotating, it is seen that
at the front part of the tire-road interface (where tire tread elements come
into contact with the road) the contact pressure increases, and at the rear
part of the interface (where the tire tread elements leave the road surface)
the contact pressure decreases. The contact pressure distribution becomes
asymmetric. With the increase of the tire rotating speed, the asymmetric
nature of contact pressure becomes more obvious. Figure 5.9 also shows
that the larger the tire internal damping, the more influence the tire rotating
speed has on the contact pressure distribution. If the damping coefficient
equals to zero, then the contact pressure distribution is always symmetric
with respect to the vertical axis at any speed. When the damping coefficient
increases, the contact pressure distribution becomes more asymmetric when
the tire rotates. Therefore high speed combined with large internal damping
will give rise to more severe asymmetric distribution of the tire-road contact
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Figure 5.10: The influence of tire rotating speed on the contact angles (dp =
0.02 m)

pressure. Figure 5.10 shows the changes of the tire-road contact area with
the rotating speed 2. Four different values of damping coefficient are used.
It is observed that the rotating speed. has little influence on the tire-road
contact length. But when the rotating speed increases, the whole contact
area between the tire and the road shifts slightly to the front. That is to say,
if we divide the contact area into two parts at the point directly beneath
the wheel-center, the front part of the contact area increases with the rotat-
ing speed while the rear part decreases by approximately the same amount.
Again, the forward shifting of the contact area due to rotating speed is re-
lated to the tire internal damping. The larger the tire internal damping, the
more obvious the forward shifting of the contact area.

5.7.4 Relation between the vertical force and the tire deflection

Figure 5.11 shows an example of the relation between the axle force in the
vertical direction and the tire deflection. It can be seen clearly that the verti-
cal force—tire deflection is non-linear. However, it should be noted that this
non-linear force—deflection relation is obtained from the linear tire model.
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Figure 5.11: The relation between vertical axle force and tire deflection
(A =0.10)

This is important because it proves that a non-linear vertical force—deflection
relation does not necessarily mean the tire itself is a non-linear system.

5.7.5 Relation between the contact length and the tire deflection

Figure 5.12 is one of the numerical results showing that the front and rear
contact angles change with the tire deflection. The relation between the
contact angles and the deflection is almost linear. That is to say the tire-
road contact length increases almost linearly with the tire deflection.

5.8 Conclusions

In this chapter, a new method to study the tire-flat road contact problem was
developed. This new method differs from conventional ones in that the tire
is treated as one entity instead of being divided into different regions. The
convergence of the algorithm associated with this new method was examined.
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The numerical result for a static tire was compared with one experimental
result available in literature, which showed that the new method gives quite
an accurate prediction of the tire-road contact pressure distribution. It was
also shown that the new method developed here is able to reproduce different
types of contact pressure distributions. The influences of different variables
on the tire-road contact were studied numerically using this new method.
It showed that the non-linear relation between tire vertical load and tire
deflection can be obtained using this linear tire model. The numerical study
also showed that the tire model and the new method are able to predict
the changes in contact pressure distribution, contact length, as well as the
tire-wheel axle forces with the tire rotating speed, tire deflection and other

variables.
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Chapter 6

Frequency Response Functions
of a Free Tire-Wheel System

In this chapter, we will derive the frequency response functions of the free
tire-wheel system. Tire contact with the road is not introduced at this stage,
so the compliances of the tread elements are not considered here. The tire
treadband is assumed to be in-extensible, thus the in-extensible ring model
is used. With regard to the problem of vibration transmission, the frequency
response functions between the wheel-axle and a point on the tire treadband
are of most interest.

6.1 External Forces and Displacements

6.1.1 External forces

We assume there are five external forces acting on the tire-wheel system:
force f;(t) acting at the wheel center in the longitudinal direction; force f,(¢)
acting at the wheel center in the vertical direction; torque 7'(¢) acting on the
wheel; and forces p,(t) and p,(t) acting at a point on the tire treadband in
the radial and tangential directions, respectively. The forces ¢, and ¢, then
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can be expressed as:

(1) = 2205 (5 - (20 + ) (6.12)
¢, (¢,t) = vagt)é (¢ — (2i7 + o)) (6.1b)

where 1 = 0,1,2,3,...; ¢g defines the location of the force acting point. It
should be noted here that p,(t), p,(t) are now point forces with the unit
of Newton. And it is also worth mentioning that although p,(t), p.(t) are
point forces, which by themselves cannot be expanded into Fourier series,
Gw, Gy are periodic functions in terms of variable ¢, where ¢ is defined in the
domain of infinity. Therefore g, ¢, can indeed be expanded into Fourier
series.

Substituting Equation (6.1) into Equation (4.6) (with the primes omitted),
we have

1

bo = TR (6.2a)
1 .

& = R (py cos Ny + Py 1 sin neyg) (6.2b)
1 .

= —p (py sin ngg — py,m cos ney) (6.2c)

Therefore the relations between the generalized forces and physical forces
are established, which can be written in matrix form as follows

f, = Tuf (6.3)

1 10000
Tfp=—=(00 0 0 0|, forn =0 (6.4a)
27R 10 0 1 0 0
[ cosngy nsinngg 0 0 0]
_ 1 | sinngg —ncosngg 0 0 O _
Ts, = > 0 0 01 0l forn=1 (6.4b)
0 0 0 0 1|
[ cos ngg mwmsinngg 0 0 0
Ton = 7R | sinngg —ncosngg 0 0 O |’ for » # 0,1 (6.4c)
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6.1.2 Displacements

Utilizing Equation (4.4), we can easily write the relations between the phys-
ical displacements and the generalized displacements of the system:

+o0
u= Z Ty, (6.5)

n=0

in which u = {v,w,8,,z,2}T and

[ cosng sinng 0
nsinng —ncosng 0
Tan = 0 0 1, forn=20 (6.6a)
0 0 0
0 0 0
[ cosng sinmg 0 O
nsinng -—-ncosng 0 0
Tan = 0 0 0 0, forn=1 (6.6b)
0 0 10
|0 0 0 1
[ cosng sin nd
nsinng —mncosngo
Ty, = 0 0 , forn #0,1 (6.6¢)
0 0
| 0 0

6.2 Transfer Functions between Generalized Displace-
ments and Forces

Applying Laplace transform to the transformed equations of motion (Equa-
tion (4.8)), we have

U,(3) = TmnFa(s) (6.7)
in which

Tonn = [Mus® + Gos + Ky - (6.8)
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Tyn is 2 3 X 3 matrix when n = 0; 4 x4 when n = 1 and 2X 2 when n # 0, 1.

When n = 0, the elements of matrix T,,,, are

a1 m,s2 + ¢,8 + ki,

M0 (mos? + cos + ko) (m,s2 + ¢85 + k) — k2,
42 21

mO mO

t130: "kOr

™ (mos? + cos + ko) (mrs? + ¢, s+ k) — K2,
22 1

M0 mos? + cos + ko
123 = 32 = 0

13
tmO

433 m032 + cos + ko
™07 (mos? + cos + ko) (mys2 + ¢85+ k) — k2,

When n = 1, the elements of matrix T,,, are

a1 m,s% 4 ¢as + ko
1T (mys? 4 e15 + k) (Mmas? + o5 + ko) —
tml"tml:tll "’tml _'tml —t41 "tml"tml =0
14 _ kq
™ (mys? + 15+ kp) (mes? + cus + kg ) — k2
1
£33 _ m1s? + s + ky
m1 m132 415+ k) (mes? + cus+ ky) — k2
1
t?,fl_ el
ml_ t
41— 414

123 _tml =t

When n # 0,1, the elements of matrix T,,, are

A1 _ Mps% + ens + ky

T (Mns? 4 s + krn)2 + (gns)2
12 _ —Gn$

mnT

(Mn8? + s + kn)? + (gns)?
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21 12
tm =t n

6.3 Transfer Functions of the Free Tire-Wheel System

With the equations derived in the previous sections, we are now ready to
obtain the transfer functions of the free tire-wheel system between any two
points in the system. Substituting Equations (6.3), (6.7) into Equation (6.5),
we have

U(s) = T F(s) (6.9)

where T is a 5 x 5 transfer function matrix. U(s) and F(s) are the Laplace
transform of the physical displacement u and force f respectively.

+o0
T =) [TanTmaTnl (6.10)

n=0

The individual elements of the matrix T represent the transfer functions
between any two points on the tire treadband in either tangential or radial
directions and between a point on the tire treadband and the wheel. Sub-
stituting Tgqn, Tmn and Ty, into Equation (6.10), these transfer functions
can be obtained.

The tangential displacement response on treadband at ¢ to tangential force
excitation on the treadband at ¢g:

Ty = R {0 5t1 + Z [tn cosn (¢ — do) — tpl, sinn (¢ — ¢0)]} (6.11a)

The tangential displacement response on the treadband at ¢ to radial force
excitation on the treadband at ¢q:

Tu:—;% [n (2, sinn (6 = do) + 112, cosn (d— ¢0))]  (6.11b)

The tangential displacement response on treadband at ¢ to torque excitation

on the wheel:
1 43
T13 = ——2 Rtmo (611(1)
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The tangential displacement response on the treadband at ¢ to longitudinal
force excitation at the wheel center:

1 .
T4 = —mt},fl sin ¢ (6.11d)

The tangential displacement response on the treadband at ¢ to vertical force

excitation at the wheel center:

1
Tis = ”—Et:,fl cos ¢ (6.11e)

The radial displacement response on the treadband at ¢ to tangential force
excitation on the treadband at ¢q:

+o0
Ty = % Z [n (t},}n sinn (¢ — ¢o) + 112 cosn (¢ — d)o))] (6.111)
n=1

The radial displacement response on the treadband at ¢ to radial force ex-
citation on the treadband at ¢q:

1 X 2 {11 12
Tye = o ,;1 [n (tmn cosn(d— ¢o)— t,,sinn(p— ¢0))] (6.11g)
The radial displacement response on the treadband at ¢ to torque excitation
on the wheel:

Toz=0 (6.11h)
The radial displacement response on the treadband at ¢ to longitudinal force
excitation at the wheel center:

1 .
Toy = —ﬁt,},ﬁ cos ¢ (6.11i)

The radial displacement response on the treadband at ¢ to vertical force
excitation at the wheel center:

T = 14 sing (6.11j)

1 t
TR m1
The dynamic angular displacement response of the wheel to tangential force

excitation on the treadband at ¢qg:

1
T3 = —t13 .
31=5-5tmo (6.11k)
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The dynamic angular displacement response of the wheel to radial force
excitation on the treadband at ¢q:

Ty =0 (6.111)

The dynamic angular displacement response of the wheel to torque excitation

on the wheel:
1 a3

—1
2rR ™
The dynamic angular displacement response of the wheel to longitudinal
force excitation at the wheel center:

T33 = (611m)

Tss = 0 (6.11n)

The dynamic angular displacement response of the wheel to vertical force
excitation at the wheel center:

T35 =0 (6.110)

The longitudinal displacement response at the wheel center to tangential
force excitation on the treadband at ¢q:

1 .
Ta = ——Etl,?l sin ¢ (6.11p)

The longitudinal displacement response at the wheel center to radial force
excitation on the treadband at ¢q:

1
Taz = ;th}rﬁl cos ¢ (6.11q)

The longitudinal displacement response at the wheel center to torque exci-
tation at the wheel:
T43 =0 (6111‘)

The longitudinal displacement response at the wheel center to longitudinal
force excitation at the wheel center:

1
T44 = W—-Rt?r?l (6118)

The longitudinal displacement response at the wheel center to vertical force
excitation at the wheel center:

Tys = 0 (6.11t)
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The vertical displacement response at the wheel center to tangential force
excitation on the treadband at ¢g:

1
T51 = ;T—Et}:l COs ¢0 (61 111)
The vertical displacement response at the wheel center to radial force exci-
tation on the treadband at ¢q:

1 .
Tso = ﬁ-txl sin ¢g (6.11v)
The vertical displacement response at the wheel center to torque excitation

on the wheel:
T53 =0 (611W)

The vertical displacement response at the wheel center to longitudinal force
excitation at the wheel center:

T54 =0 (611){)

The vertical displacement response at the wheel center to vertical force ex-
citation at the wheel center:

Tss = ;;%t?r?l (6.11y)
With matrix T, the transfer function between any two points in the tire-
wheel system is defined. However, it should be noted here that T is not
a transfer function matrix in the conventional sense since Equation (6.9)
does not represent a discrete system. Instead, it represents a continuous
system and has infinite numbers of DOFs (the continuous variable ¢ plus
the three DOFs of the wheel). The first two rows of the matrix T can
be considered as the Laplace transforms of the dynamic influence functions
of the ring structure. Of course we can consider ¢ not as an independent
variable but as a parameter defining a point on the tire treadband and have
a transfer function matrix concerning three locations on the system: points
on the treadband at ¢ and ¢, and the wheel center. Such a transfer function
matrix can easily be obtained from matrix T when necessary.

It can be seen from the above equations that the torque excitation on the
wheel will not cause any radial displacement of the treadband and any dis-
placement of the wheel center (T23 = T4z = T53 = 0). This is understandable
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since the torque will only excite the rotational motion of the tire-wheel sys-
tem; and the displacement of the treadband and the displacement of the
wheel center are decoupled from the rotational motion. Inversely, excita-
tions at the wheel center in the vertical and longitudinal directions and at
the treadband in the radial direction will not cause rotational vibration of
the tire-wheel system (T3, = T34 = T35 = 0).

6.4 Transfer Functions between the Contact Patch
and the Wheel

As we mentioned earlier, one of the main objectives of this study is to inves-
tigate the vibrational transmission properties of the tire from the ground to
the axle. Therefore, among all the transfer functions of the tire-wheel sys-
tem, our primary interest lies in those transfer functions between the wheel
and the tire-road contact patch. As the first step, we assume the tire-road
contact patch is small so that point contact between the tire and road can
be assumed. Figure 6.1 illustrates a tire-wheel system with forces acting at
the tire-road contact point G and at the wheel center (point O). The forces
and displacements shown in the figure are positive.

With respect to the coordinate system shown in Figure 6.1, let ¢ = ¢ =
—90° in matrix T, then we obtain the transfer function matrix between the
wheel (point O) and the ground contact point (point G).

Vv Hy Hy, Hiz Hyy O P,
w Hy Hyy 0 0 Hys Py,
O, b=|Hy 0 Hy 0 0 T (6.12)
X Hyy 0 0 H44 0 F:c
Z 0 Hs, 0 0 Hss F,
in which
1 n o, R4
Hi{1 = —10.5t t }
11 . [ 5 mo T nz=:l mn] (6 13&)
1 &1
Hip=-—% 3 [n12,] (6.13b)
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Figure 6.1: Forces and displacements on the wheel and at the tire-road
contact point (¢ = ¢ = —90°)

Hys =
H3i =
Hyz =
Hy =

Hyy =

(6.13¢)

(6.13d)
(6.13€)

(6.13f)

(6.13g)

(6.13h)
(6.131)
(6.13;)
(6.13K)

(6.131)
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1
H55 = ;I_zt:;sl (613111)

6.5 General Characteristics of the Vibration Transmis-
sion between the Contact Patch and the Wheel

The above transfer functions apply to the rotating tire-wheel system. The
transfer function matrix is in general asymmetric, as we have already seen.
The tangential displacement response to radial force excitation is not equal
to the radial displacement response to the same force excitation in the tan-
gential direction. In other words, the reciprocity law does not apply to the
rotating tire-wheel system in general. However, if the rotating speed is equal
to zero, i.e., the tire-wheel system is in the non-rotating state, Hio and Hoy
become zero and the transfer function matrix H is symmetric. Therefore,
the reciprocity law applies to the non-rotating tire-wheel system.

Examining the expressions of Hys and Hoy, it is found that the radial dis-
placement response of the treadband to tangential force excitation at the
same point (or the tangential displacement response to radial force excita-
tion) are purely due to the coriolis effect of the rotating system, and its
magnitude is linearly proportional to the rotating speed of the system. The
two transfer function Hq,3 and H,; have the same magnitude but opposite
signs.

The wheel motion in the vertical direction is decoupled from that in the
longitudinal direction. This is to say that the force excitation acting on
the wheel center in the vertical direction will not cause any response in the
longitudinal direction and vice versa (Hys = Hsq4 = 0). It is also observed
that the transfer function between the vertical displacement of the wheel and
the vertical force at the wheel is equal to the transfer function between the
longitudinal displacement of the wheel and the longitudinal force excitation
(H44 = Hss). This is understandable, because the free tire-wheel system is
isotropic with respect to the center of the wheel, i.e., the vibrational behavior
of a point on the system at any central angle is the same as that of another
point at another central angle, due to the periodic property of the system.

Another characteristic of the vibration transmission between the wheel and



100 FREQUENCY RESPONSE FUNCTIONS OF THE FREE SYSTEM

the ground contact point is that the cross point transfer function between the
wheel and the ground contact point in the vertical direction equals that in the
longitudinal direction in magnitude but has opposite signs (Hs, = —Hyy).
The underlying reason for this may not be obvious at first glance. However,
if we recall the analysis on the vibration modes and natural frequencies of
the system in Chapter 3, we know that the translational DOFs of the wheel
affect only the first order natural frequencies and modes of the entire system,
and that for the first order modes, the tire treadband (the ring) is moving
as a rigid body on the tire sidewall (the radial and tangential springs). As a
result, the cross point transfer functions contain only the first order natural
modes of the system, which is the same whether it is in the vertical direction
or in the longitudinal direction. The difference in sign of the two transfer
functions is due to the definitions of positive directions of the forces and
displacements (see Figure 6.1).

Considering the skew symmetric elements Hy2 = —H3; and the symmetry of
the other off-diagonal elements as well as the axisymmetry of the tire-wheel
structure, only seven transfer functions are needed to specify the vibration
transmission between the two points (O and G in Figure 6.1).

6.6 Numerical Examples and Analysis

Figure 6.2 shows the transfer functions of the free tire-wheel system in the
non-rotating state. The transfer functions are shown here in terms of their
magnitudes in logarithmic scale. The driving point transfer function Hyy is
not shown in Figure 6.2 because for the non-rotating tire-wheel system, Hi2
is equal to zero across the frequency spectrum.

As expected, the driving point transfer functions on the treadband, i.e., the
tire-road contact point, have multiple peaks due to the high order vibration
modes of the treadband. The cross point transfer functions between the
wheel and the road contact point and the driving point transfer functions at
the wheel have only one resonant peak respectively. The reason for this is
again due to the periodic properties of the tire treadband motion in terms
of the central angle. We know from Chapter 3 that the mode shapes of
the tire treadband vibration are sinusoidal. The high frequency components
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Figure 6.2: The transfer functions of a free, non-rotating tire-wheel system
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of the excitation forces acting on the tire treadband will excite the high
frequency modes (n > 2) of the tire-wheel system. However, the n > 2
vibration modes of the treadband will not be transmitted to the wheel due
to their axisymmetric property. Only the first order mode component of the
treadband vibration will cause the translational motion of the wheel and the
zeroth order mode component will cause the rotational motion of the wheel.

Figure 6.3 shows the transfer functions for a free, rotating tire-wheel system.
Comparing it with Figure 6.2, we can see that there are many more reso-
nant frequencies for the rotating tire-wheel system than for the non-rotating
system, especially in the high frequency range. This is caused by the effect
of the coriolis acceleration of the tire treadband. Another point to be noted
is the longitudinal response of tire tread band to vertical force excitation at
point G (H,2). For the non-rotating tire-wheel system, Hy, is zero. But for
the rotating system, Hy, is not zero, caused also by the coriolis effect.
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Figure 6.3: The transfer functions of a free, rotating tire-wheel system



104 FREQUENCY RESPONSE FUNCTIONS OF THE FREE SYSTEM




Chapter 7

Vibration Transmission
of Tires under Various
Boundary Conditions

7.1 Introduction

The vibration transmission properties of tires have an important influence
on the ride and comfort characteristics of vehicles. Testing and evaluation
of the vibration characteristics of tires are generally performed on different
types of indoor test facilities where test conditions can be controlled and
monitored. However, different types of laboratory tests usually lead to dif-
ferent results which cannot be directly compared with one another. It is
well known that the boundary conditions and constraints imposed at the
axle and the tire-road contact patch can differ greatly in laboratory tests.
It is of practical interest to examine the influences of boundary conditions
on tire vibration properties, and, more importantly, to establish the rela-
tions between the vibration transmission properties of tires under different
boundary conditions.

Richards et al. [81] found by both experiments and FEM analysis that tire
resonant frequencies are highly dependent on the boundary conditions at

105
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the axle and the contact patch. However, to the author’s knowledge, few
studies have so far explored the underlying relations between the vibration
properties of tires under different boundary conditions. Soedel [88] devel-
oped a method to calculate vibration modes of tires with ground contact
from the eigenvalues of non-contacting tires. Huang and Su [47] extended
Soedel’s work by including tire rotation in the analysis. However, their study
dealt only with conditions where the axles as well as the tire-road contact
patches are fixed. It is not directly applicable to the study of the vibration
transmission of tires.

In this chapter, an analysis is made to investigate the influences of boundary
conditions on the vibration transmission properties of tires based on a basic
set of transfer functions of an unconstrained tire-wheel system. First the dif-
ferent configurations of tires on roads and in laboratory tests are described.
The boundary conditions and constraints of tires under those configurations
are then formulated. By making use of the transfer functions of the free
tire-wheel system, the transfer functions of tires under different boundary
conditions are obtained. Numerical results of the most important transfer
functions are presented and analyzed.

7.2 The Differences between Rotating and Rolling of
a Tire-Wheel System

A tire-wheel system rolling on the road surface differs from a rotating tire-

wheel system in two aspects: 1) the tire is preloaded by a vertical static

load. Therefore the tire is in contact with the road in a finite area instead

of at one single point; and the dynamic behavior of the tire changes to a

certain extent; and 2) due to the friction existing at the tire-road interface,
extra constraints are imposed on the tire-wheel system.

Consider a tire-wheel system loaded against the road surface by a constant
vertical load. The application of the static load has two effects: a) the
preload to the tire-wheel system changes the system properties to some ex-

-

7.2.1 The influence of the static vertical load
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tent; and b) the contact patch extends over a finite region. The first effect
can be taken into account by modifying the model parameters and the vibra-
tion transfer functions defined in the previous chapters. Richards et al. [81]
have shown that it is possible to establish a free tire-wheel model including
the effect of the static vertical load.

The second effect of the static load is more difficult to deal with. Because of
the finite contact the force or motion inputs to the system are at an infinite
number of points in the contact patch, instead of at a single point. In
addition, the inputs (or constraints) act at the contact patch of the tire not
only in the vertical but also in the longitudinal direction. The analysis here
is restricted to the case of point contact between the tire and the road. The
input (or constraint) complexity due to the finite contact is not considered.

\

7.2.2 The effect of the friction between the tire and the road

For a free, rotating tire-wheel system, the forces acting on the wheel and
acting at a point on the treadband are independent of each other. However,
this is not the case for a tire-wheel system rolling on the road. Due to the
friction between the tire and the road, the force acting on the wheel axle
in the longitudinal direction or torque acting on the wheel will generate a
longitudinal force in the tire-road contact patch. Therefore extra constraint
is imposed on the tire in the contact patch. If the friction coefficient is suffi-
ciently large, the tread elements in the contact patch will have no motion in
the longitudinal direction. Neglecting the compliance of the tread elements,
this boundary condition in the contact patch can be described as follows:

V=0 (7.1)

7.3 Typical Boundary Conditions of Tire-Wheel Systems

In addition to the aspects mentioned in the previous section, the tire-wheel
systems on vehicles or in laboratory tests are frequently subjected to specific
constraints. In this section, the constraints of several tire-wheel system
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configurations, which are often seen in laboratory tests as well as on vehicles
on the road, are formulated in terms of mathematical boundary conditions.

The boundary conditions of tire-wheel systems in various laboratory tests
and on moving vehicles can be classified into two categories: constraints at
the tire-road contact patch and constraints at the tire-wheel axle. When
the excitation is applied to the system at the tire-road contact patch, it is
usually defined as displacement input. Three cases of different boundary
conditions and input variables are discussed in this section.

7.3.1 Case l

For a vehicle on the road, the excitation caused by the irregularities of the
road surface may be viewed as displacement inputs at the tire-road con-
tact patch. The most important transfer function to describe the vibration
transmission of the tire-wheel system on a moving vehicle is:

zZ
Hal = W (72)
where Z and W are the Laplace transforms of the vertical displacement
response of the wheel and the vertical displacement excitation on the tire

treadband due to the road profile.

Another transfer function which is of interest is

X
Hag = VV_ (73)

The only constraint on the tire-wheel system in this case is the constraint
described by Equation (7.1).

Vibration transmission tests of tires are often performed with a vibrating
platform. The tire is usually mounted on a laboratory suspension system
or on a vehicle. External dynamic force or displacement is applied by the
vibrator in the vertical direction to the tire through the contact patch. The
axle motion in the vertical direction (sometimes also in the longitudinal di-
rection) is measured. The ratio of the axle motion to the dynamic displace-
ment (force) at the contact patch is used to define the vibration transmission
properties of tires. Such tests are reported by Potts et al. [77], among others.
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The tire-wheel system in this type of laboratory test can be considered as
a special case of the tire-wheel system we just described with the angular
speed of the system equal to zero (2 = 0).

7.3.2 Case ll

Cleat tests are widely used to determine the vibration transmission proper-
ties of tires. During a cleat test, a tire is pressed against a moving surface
(a rotating drum) with the help of a test rig and the wheel. The axle of the
system are usually fixed in space. The response variables are the longitu-
dinal and vertical forces at the axle and the angular speed changes of the
wheel during the passage of the tire over the cleat. The input (excitation)
to the system is the vertical displacement in the contact patch generated by
the cleat.

If the wheel is fixed, the boundary conditions for the longitudinal and vertical
displacements of the wheel axle are

X=0, 2=0 (7.4)

The transfer function which is of most importance for the vibration trans-
mission of the tire-wheel system in this case is:

F,
Hin = 3 (7.5)
Other transfer functions of interest are
F;
Hp2 = 37 (7.6)
0,
Hps = — 7.
3= T (7.7)

7.3.3 Case lll

For the tire configurations described in the previous two subsections, the
excitations are all applied to the tire-wheel system in the contact patch.
There is another type of laboratory test in which the external excitation
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to the tire-wheel system is applied at the wheel axle. The Goodyear Tire
Modal Test Rig [80] and the tire mobility measurements described by Mills
and Dunn [67] are two examples. In this type of test, the tire-wheel system
is preloaded against a moving surface (usually a rotating drum) by some
loading mechanism. The axle is free to move at least in the vertical direction
(sometimes axle motion in the longitudinal direction too is allowed, such as
in the Goodyear tire modal tests). External forces are applied at the axle
of the tire in the vertical (and/or longitudinal) direction by electromagnetic
vibrators. The driving point receptances or mobilities are usually obtained
from this type of test.

Since the tire-wheel system in this case is rolling on a smooth surface, no
motion of the tire treadband in the contact patch is allowed in the vertical
direction. Therefore, the boundary condition for this type of test can be

described by:

W =0 (7.8)

In addition, the tire-wheel system in this case is also subjected to the con-
straint described in Equation (7.1).

The most important transfer function is

(7.9)

The boundary conditions for the tire-wheel system configurations discussed
in this section are listed in Table 7.1 together with the input and output
variables usually used to describe the vibration transmissions of the systems.
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Table 7.1: The boundary conditions of tires in laboratory tests & on moving
vehicles

Tire config. I Constraints l Inputs [Outputs
Case I v=>0 w z,2
Case 11 v=0,z=0,z=0] w Szs f2,0r
Case 111 v=0,w=0 fer fz | %2

7.4 Transfer Functions of Tire-Wheel Systems under
Various Boundary Conditions

7.4.1 The method

The modal synthesis method (sometimes called receptance method) is used to
obtain the transfer functions of the tire-wheel system under various bound-
ary conditions. Soedel [88] applied this method to obtain the natural fre-
quencies and modes of tires with ground contact from the eigenvalues of
non-contacting tires.

According to the modal synthesis theory, the DOFs of a substructure (com-
ponent) can be divided into two categories: boundary DOFs and remainder
DOFs. The boundary DOFs of a component are those connected with ad-
jacent components. Therefore a system represented by the transfer function
matrix equation can be partitioned according to boundary and remainder

DOFs:
X, [H]., [Hls |} F
= r T 7.10
{Xb} [[H]br (H ]y, I (7.10)
in which X,, X and F;, F}, are the Laplace transforms of the displacements
and forces at the remainder and boundary DOF's, respectively.

At the boundary DOFs, the forces and displacements must satisfy the com-
patibility conditions between the concerned components. By enforcing the
compatibility conditions, the transfer function matrix of the complete system
can be obtained.
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Take as an example the tire-wheel system with a fixed axle. In this case,
the boundary DOFs of the tire-wheel substructure are the longtudinal and
vertical motion of the wheel. The displacements z,z of the wheel have
to satisfy the compatibility conditions ¢ = z = 0 since the axle is fixed.
Imposing this condition on Equation (6.12), we have

-1
Fo\ _ | Hia Hss Hy Hyp Hyg
F, Hsq Hss Hsy Hsy Hss

Substituting Equation (7.11) back into Equation (6.12), a 3 x 3 transfer
function matrix is obtained which describes the vibration properties of the
tire-wheel system with a fixed axle:

(7.11)

N Y T

2
V Hyp — %’ﬁ Hyg Hys P,
2
Wis| Hy  Hp- 0 |{Pe (7.12)
0, Hj, 0 Ha; r

The natural frequencies and modes determined by the above equation are in
general different from those of the free tire-wheel system. Equation (7.11)
describes the force transmission between the tire-road contact patch and the
fixed axle of the tire-wheel system.

The same technique is used to obtain transfer functions with displacements
as input variables.

7.4.2 The vibration transmission under various boundary condi-
tions

Using the method described above, the transfer functions of a tire-wheel
system with various boundary conditions in each of the three cases discussed
in the previous section are derived from those of a free tire-wheel system
based on the point contact assumption.
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Case |

In this case, the boundary condition is the zeroth longitudinal displacement
at the tire-road contact point (V = 0). The most important input vari-
able to be considered is the vertical displacement W prescribed by the road
profile. Therefore W and V are the boundary DOFs in this case. From
Equation (6.12), the following equation is obtained:

P, |4
P, [H1' —[Hy' (), w
0, )= T (7.13)
)Zf [H],, [H]yy  [H],,—[H]),, [H] [H],, 1;

in which V = 0 and W is an input variable determined by the road profile
or the excitator in a laboratory test.

_ [ Hy, Hig
[H]bb - | H21 HZ?. }

_ [ Hiz Hie 0
[H]br - 0 0 H25 }
[ Hs, 0

Hly=| Ha 0
| 0 Hs
[ Hss 0 0
[H],,=| 0 Hu 0
0 0 Hs

Equation (7.13 can be rewritten as follows:

P, Q11 Q12 - Q15 \%
P, w
O, )= T (7.14)
X F,
Z 051 Q53 -+ Q55 F;

Actually the first column of the transfer function matrix in the above equa-
tion is irrelevant here since V' = 0 in this case.
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The transfer functions of interest are thus obtained:

VA HsoHyy
Hoy=—==as= 7.15
YTW T T HyHypy — HipHn (7.15)
X HyHyy
Hoys= — =ay = — 7.16
T w 42 Hy1Hyy — HygHyy (7.16)

Case Il

In this case, in addition to the boundary condition V = 0, the tire-wheel
system is also subjected to extra constraints at the wheel axle, i.e. X =
Z = 0. By applying this condition directly to Equation (7.14), the most
important transfer functions describing the vibration transmission of tires
in cleat tests are obtained:

Q54042 — 044052

F
Hp = =2 = 7.17
L7 W ™ aaatss — ausoss (7.17)
F,  agsas; — assoy
Hg == = 7.18
p2 W aggoss — agsasy ( )
Q)
Hps = Wr = a3z + a3qHpy + azs Hpy (7.19)

Case I

In this case, the boundary conditions (V = W = 0) can be applied directly to
Equation (6.12). The vibration transmission functions of tire-wheel systems
thus obtained are:

HsoHy Hos

VA
H,=— = Hgs — 7.20
"TF " HuHy - HipHy (7.20)
X HyHyoHos
H,=—= 7.21
T F, T HuHy - HiaHy (7.21)
X HyyHypHyy
Hoa = — = Haq — 7.22
PR T M HiHy — HpHy (7.22)




7.5 NUMERICAL EXAMPLES AND DISCUSSIONS 115

7.5 Numerical Examples and Discussions

Figure 7.1 shows the transfer functions of a non-rotating tire-wheel system
under different boundary conditions. For the system in the non-rotating
state, the transfer functions Hg,o, Hgs, Hgs, H, are all equal to zero, which
means excitations in the vertical direction will not generate any responses in
the longitudinal direction and vice versa. Since the transfer function Hy; =0
for the non-rotating system, the constraint V = 0 at the contact patch has
no effect on the transfer functions concerning the vertical vibration of the
system.

Comparing Figure 7.1 with Figure 6.2 we can see that all the resonant vi-
bration peaks (except for the first one in Hgy and the second one in H.;) of
the transfer functions in the vertical direction of the constrained tire-wheel
system correspond to the antiresonant frequencies of the transfer function
Hy; of the corresponding free tire-wheel system. This is in agreement with
the experimental findings reported by Potts [77]. The second resonant peak
in H.,; is the combined result of the resonance of the transfer function Hss
and the antiresonance of the transfer function H, of the free system. These
two frequencies are very close to each other (see Figure 6.2); therefore only
one peak, instead of two separate ones, is visible in H,;.

The resonant peaks of the transfer function H.3 correspond to the antires-
onances of the transfer function Hq; of the free system, which are different
from the antiresonances of Hos.

We originally expected that the transfer functions under different boundary
conditions would exhibit different resonant frequencies. However, the numer-
ical results show that except for the two lowest ones, the transfer functions
reach resonant peaks at the same frequencies. This is due to the fact that
among the three transfer functions shown here, the first two (Hu1, Hgy) are
defined as axle responses versus vertical displacement input W at the con-
tact point . The corresponding homogeneous system with W defined as
the input variable is that of W = 0, which is exactly the boundary con-
dition of the tire-wheel system in Case III (H,;). This also explains why
good agreement was found between Soedel’s analytical results [88] and the
test results of Potts [77], even though the boundary conditions considered
were different. However, because the axle was fixed in his analysis, Soedel
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Figure 7.1: The transfer functions of the non-rotating tire-wheel system
under various boundary conditions (Q = 0) (cont.)
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Figure 7.1 (cont.): The transfer functions of the non-rotating tire-wheel
system under various boundary conditions (£2 = 0)
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did not find the lowest resonant frequency found by Potts. In addition, a
discrepancy in the second resonant frequency remains between his analytical
and Potts’ experimental results.

Comparing Hp, with the other three transfer functions in Figure 7.1, we
can see that the lowest resonant peak which appears in the other transfer
functions is missing from Hpg;; and the second resonant peak (the first for
Hpy) is located at a different frequency for Hpg, than that for the others.
This is because for Hg; the wheel axis is fixed and the influence of the
wheel mass is thus eliminated from the transfer function. Therefore, in
order to get a complete picture of the vibration transmission of tires, it
is important to include the DOFs of the wheel mass into the theoretical
analysis or laboratory tests on tire vibrations.

The first resonant frequency (typically of the order of 15-20 Hz) corresponds
to the mode where the wheel vibrates on the sidewall springs while the tread-
band is constrained at the contact point. This resonant frequency is of
importance to vehicle dynamics simulations, where the tire is often modeled
as a simple spring.

Figure 7.2 shows the transfer functions of the rotating tire-wheel system
under constraints. It differs from the non-rotating case in that the resonant
peaks of transfer functions in Figure 7.2 do not correspond to the anti-
resonances of the free system in general. Instead the resonances correspond
to the frequencies at which Hi1Hqq — HiaHo1 = 0 in Figure 7.2(a), 7.2(c)
and ag40s5 — aysas4 = 0 in Figure 7.2(b).

7.6  Conclusions and Recommendations

¢ The vibration transmission properties of a tire-wheel system can be
described completely by a set of transfer functions of the free system,
from which the vibration properties of tire-wheel systems under various
boundary conditions can be derived.

¢ It is important to include the wheel DOF's into the analyses or tests of
tires in order to obtain a complete picture of the vibration transmission
properties of tires.
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Figure 7.2: The transfer functions of the rotating tire-wheel system under
various boundary conditions (Q = 100 rad/s) (cont.)
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‘ Figure 7.2 (cont.): The transfer functions of the rotating tire-wheel system
under various boundary conditions (€2 = 100 rad/s)
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o The constraints at the contact point and the axle will affect the vi-
bration properties of a tire-wheel system. However, when the vibra-
tion transmission properties of tires are presented in transfer functions
under different conditions, they may have the same resonant peaks.
Therefore, care should be taken in interpreting and utilizing the re-
sults from various vibration tests of tires under different boundary
conditions.

e The factor of finite contact should be taken into consideration when
dealing with constraints in the longitudinal direction in the contact
patch.

e For more realistic f; to w responses, an extensible ring model (the
effective rolling radius r.s; not constant) may be needed; and the lon-
gitudinal slips and compliance of the tread should be taken into ac-
count. In addition, a finite contact length will improve the results at
short wavelengths of road profiles.
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Chapter 8

Parameter Estimation
and Model Validation

The ring model developed in this thesis is an approximation of the real tire.
The parameters involved in the ring model are not the exact parameters of a
tire. Therefore an accurate estimation of these parameters must be carried
out in order for the ring model to best represent a tire. Also, since the
model is an approximation of the real tire, it needs to be validated against
experimental results.

8.1 Parameter Estimation Methods

The model parameters can be divided into three categories: geometric pa-
rameters, stiffness parameters and inertial parameters. The geometric pa-
rameters include: the radius R, the width b, the thickness h of the ring,
and the thickness 7 of the secondary spring. The stiffness parameters in-
clude: the stiffness of radial and tangential springs k., k,; the stiffness of
the secondary radial spring k;; and the bending stiffness of the ring EI. The
inertial parameters are the density of the ring p, the mass of the wheel m
and the moment of inertia of the wheel I.

123
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Figure 8.1: Cross section of a tire

The geometric parameters of a tire ring model, the density, and the wheel
mass are usually measured or obtained directly according to the tire geome-
try and materials. Most of the efforts concerning the parameter estimation
are concentrated on the stiffness parameters.

Bohm [15] estimated the parameters in his tire ring model largely by means
of theoretical analysis. The stiffness of the radial spring was estimated by
the following equation by Rotta:

_ cos¢p + Posin do (8.1a)
~ sin ¢g — g cos ¢y '
The stiffness of the tangential spring was estimated by
Gt
k, = ] + pg cot ¢g (8.1b)

in which pg is the tire inflation pressure; ¢g is half of the angle which the tire
sidewall arc covers; [, is the length of the tire sidewall arc; ¢ is the thickness
of the tire sidewall; and G, is the shear modulus of rubber material which
surrounds the high modulus cords.

The bending stiffness was calculated by the following equation:

_ 3d°EA + E,.bt®

Er
12

(8.1c)
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in which F, is the elastic modulus of the rubber base; d is the thickness of
each individual layer of the tire tread belt (the tire consisted of three layers);
F A is the membrane stiffness of the ring, which in turn was estimated by

EA=FE,

3db [ 2v, 1 ]

"~ tan?p ' tan?p (8.14)

2
1—v?

where v, is Poisson’s ratio of rubber material; 4 is the crown angle of tire
tread-belt plies. The second term in Equation (8.1c) accounts for the bending
stiffness of the rubber layer under the tread-belt plies.

Potts et al. estimated the parameters of their tire model by experimental
means [77]. By measuring the natural frequencies of a non-rotating tire and
utilizing the characteristic equation of their tire model, they were able to
obtain the stiffness parameters.

In a recently published paper, Huang et al. used the following formula to esti-
mate the stiffnesses of radial and tangential springs of a tire ring model [47]:

(8.2a)

kv = 2p0 (82b)

¢)0hv [1 - hv/(4R)]

in which R is the radius of the tire treadband.

The bending stiffness of the ring was determined by measuring the natural
frequency of the second order mode of the tire belt. By substituting the
second order natural frequency and the geometric parameters of the tire
belt into the natural frequency equation of a simple ring (a ring without an
elastic foundation), the bending stiffness was obtained.

In this chapter, we will estimate the stiffness parameters of the model from
the results of tire dynamic tests.
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8.2 Tire Tests and Parameter Estimation

8.2.1 Theoretical background

In Chapter 3, the natural frequencies of a tire were obtained from the ring
model. Under the in-extensibility assumption, the natural frequencies of a
non-rotating tire are:

(8.3)
in which n = 0,1, ..., 400 for the tire with a fixed wheel (z = 2 = 4, = 0).

The geometric parameters and mass density of the model can be estimated
directly from the tire structure. The only parameters which need to be
determined from measurements are the bending stiffness EJ and the radial
and tangential spring stiffness k,,, k,. If three natural frequencies of the tire
are known, then the stiffness parameters can be obtained from the above
equation.

8.2.2 Tire tests

Dynamic tests are performed on a Pirelli P4 175/70R 13 tire, for the purposes
of both parameter estimation and model validation. The tire tests are carried
out in two different configurations: one with the tire mounted on a fixed
wheel, the other with the entire tire-wheel system suspended in the air so
that the wheel can move freely in either rotational or translational direction.
In the latter case, two different wheels are used: one is a heavy steel wheel;
the other is a light alloy wheel. Both wheels do not have any resonant
frequency under 250 Hz in the radial and tangential directions. The tire is
inflated to 2 x 10°N/m? (two bars) for the tests.

The tire is excited by an impulse force generated by a hammer hitting the
tire tread surface. The acceleration responses in both radial and tangential
directions at different locations along the tire circumference are measured. In
this way the mode shapes and natural frequencies are obtained. For details
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Table 8.1: Natural frequencies w, of a Pirelli P4 175/70R13 tire with and
without wheel DOFs (£ = 0)

n | without Wheel DOFs (Hz) | with Wheel DOFs (Hz)
heavy wheel | light wheel
0 69 97 143
1 89 97 124
2 112 112 112
3 134 134 134
4 159 159 159
5 186 186 186
6 216 216 216

of the tire modal tests, please refer to Reference [84].

From the tire tests, natural frequencies and mode shapes up to the sixth
order are obtained. The measured natural frequencies are listed in Table 8.1.

8.2.3 Parameter estimation

The geometric parameters and inertial parameters are estimated directly
according to the tire structure. They are listed in Table 8.2. The zeroth,
fifth and sixth order natural frequencies measured under the fixed wheel
configuration are used for the estimation of the three stiffness parameters.
By utilizing Equation (8.3), the stiffness parameters are obtained, as listed
in Table 8.3.

8.3 Validation of the Model

The tire model developed in this thesis is validated from the following three
aspects:
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Table 8.2: Geometric and inertial parameters for a Pirelli P4 175/70R13 tire

Parameter Unit Value
radius R m 0.280
width b m 0.130
density pA kg/m | 2.500
total mass of the tire m; kg 6.900
mass of the heavy steel wheel m kg 24.900
moment of inertia of the steel wheel I, | kg-m? | 0.319
mass of the light alloy wheel m kg 3.550
moment of inertia of the alloy wheel I, | kg-m? | 0.045

Table 8.3: Stiffness parameters for a Pirelli P4 175/70R13 tire (po = 2 X
105N /m?)

Parameter Unit | Value
bending stiffness ET N-m? | 1.571
radial spring stiffness k,, N/m? | 1.156 x 10°
tangential spring stiffness k, | N/m? | 4.699 x 10°
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Table 8.4: Natural frequencies of the Pirelli tire with a fixed wheel as mea-
sured in tests and calculated from the model

n | measured (Hz) | calculated (Hz) | error %
0 69 — —
1 89 90.8 2.02
2 112 112.3 0.27
3 134 134.0 0.00
4 159 158.6 0.25
5 186 - —
6 216 — —

o The natural frequencies of the tire with a fixed wheel;
o The frequencies of the free tire-wheel system;

e The mode shapes of the tire.

Table 8.4 lists the measured and calculated natural frequencies of the Pirelli
tire with a fixed wheel. The error percentage of the natural frequencies cal-
culated from the tire model is also shown in the table. Since the natural
frequencies of the zeroth, fifth and sixth order modes were used to obtain
the model parameters, there are no theoretical natural frequencies available
for these modes. It can be seen that the tire model gives a very good predic-
tion of the natural frequencies of the tire. Figure 8.2 shows graphically the
measured and calculated natural frequencies of the tire with a fixed wheel.

Comparing the experimental results of the tire with a fixed wheel and a
free wheel in Table 8.1, we find that only the zeroth and first order natural
frequencies are different for these two different configurations, while the other
natural frequencies remain the same in these two cases. Also, in the free
wheel case, different natural frequencies of the zeroth and first order are
obtained when different wheels are used. These experimental findings prove
the analytical conclusions in Chapter 3.

The zeroth and first order natural frequencies of the free tire-wheel system
are also calculated from the tire model using the parameters obtained in
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Figure 8.2: The comparison of theoretical and experimental natural frequen-
cies of the Pirelli tire with a fixed wheel

the previous section. The theoretical results are listed together with the
experimental ones in Table 8.5 for both the heavy and light wheels.

It is observed that for the tire with a heavy steel wheel, the calculated
natural frequencies are quite close to the measured ones. However, in the
case of the light wheel, a large discrepancy exists between the theoretical
and experimental results.

Table 8.5: The zeroth and first order natural frequencies of the free tire-wheel
system as measured in tests and calculated from the model

measured (Hz)

calculated (Hz) | error %

n
heavy wheel | 0 97 99.6 2.68
1 97 98.4 1.44
light wheel | 0 143 202.2 40.40
1 124 135.8 9.52
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Table 8.6: The zeroth and first order natural frequencies of the free tire-wheel
system calculated using the modified wheel parameters

n | frequency (Hz) | error %
heavy wheel | 0 95.1 1.96

1 97.8 0.82
light wheel | 0 140.6 1.68

1 119.3 3.79

This disagreement between the theoretical and experimental results is due
to the fact that in calculating the natural frequencies, only the mass and mo-
ment of inertia of the wheel itself are used. However, for the free tire-wheel
system, part of the tire sidewall (especially the beads) will move together
with the wheel; thus its mass and moment of inertia should be taken into
account in the model. The mass m and moment of inertia /. of the model
therefore should be modified to accommodate the sidewall effect. The fol-
lowing simple relations can be used for this purpose.

Il = I, + (my — 2r RpA)R? (8.4)
m' =m+ (m; — 2rRpA) (8.5)

in which m; is the total mass of the tire; R, is the radius of the wheel.

The natural frequencies calculated from the tire model using the modified
wheel parameters are listed in Table 8.6. It can be seen that the theoretical
results now agree very well with the experimental ones for both the heavy
and light wheels. In the case of the heavy wheel, this modification in wheel
parameters did not change the results very much, since the sidewall effect
is very small compared with the heavy wheel itself. However, in the case of
the light wheel, the mass of part of the sidewall moving together with the
wheel is quite substantial considering the light wheel mass; thus modifying
m and I, in the model leads to a dramatic improvement of the theoretical
results.

The mode shapes obtained from the dynamic tests of the tire with a fixed
wheel are shown in Figure 8.3. It is obvious that the results agree very well
with the theoretical ones in Chapter 3.
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Figure 8.3: The measured mode shapes of the Pirelli tire with a fixed wheel
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8.4 Conclusions

In this chapter, the model parameters of a Pirelli tire have been obtained.
The stiffness parameters were estimated from three natural frequencies mea-
sured from tire modal tests with a fixed wheel. The natural frequencies cal-
culated from the tire model using the estimated parameters were compared
with the experimental results, which showed good agreement between the
model and test results. Also, the theoretical analysis on the influences of the
wheel DOFs in Chapter 3 has been verified by the dynamic tests of the tire
with both a fixed wheel and a free wheel. Tt has been shown that for a free
tire-wheel system, modification on the mass and moment of inertia of the
wheel in the model is necessary when the wheel is light in order to take into
account the contribution of the sidewall mass. Finally, the measured mode
shapes of the tire were presented. Again, the measured mode shapes agreed
very well with the theoretical mode shapes.
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Chapter 9

Conclusions and
Recommendations

9.1 Contributions of This Thesis

In this thesis, a tire ring model has been developed which is suitable for
the study of the in-plane dynamics of tires. The equations of motion of the
tire model have been derived. It has been demonstrated that the model is
capable of dealing with all three aspects of the in-plane dynamics of tires,
namely, the treadband vibration, the rolling contact with the road, and the
vibration transmission from the road surface to the wheel axle. It has also
been shown in this thesis that with the use of the modal expansion method,
the application of the model can be greatly simplified. With the wheel axle
free to move in the vertical, longitudinal as well as rotational directions in
the wheel plane, the model can be readily applied to study the vibration
transmission from the road to the vehicle.

The vibrational properties of the tire model have been studied in detail in
Chapter 3. It has been found that the extensional stiffness of the ring,
i.e., the tire treadband, mainly influences the vibration modes at very high
frequencies. For many practical problems of tire in-plane dynamics, the ring
can be assumed to be in-extensible. It has also been found that the sidewall
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stiffness (thus the inflation pressure) has a profound influence on the natural
frequencies of tires.

Because of rotation, the vibration modes of a tire are complex. The space
and time coordinates thus cannot be decoupled from each other in the con-
ventional way in the real domain. Therefore the concept of time dependent
modes [44] can be adopted for such rotating systems. Another effect of the
tire rotation is the so-called bifurcation (doubling) of natural frequencies of
modes of the same order.

The DOFs of the wheel axle influence only the zeroth and first order vibration
modes of the tire-wheel system. In other words, the difference in natural
frequencies of a tire with a fixed and free wheel is limited only to the zeroth
and first order modes. The natural frequencies of higher order modes are
identical in these two cases. This theoretical finding has been confirmed by
laboratory tests of tires.

In Chapter 5 the ring model has been applied to the study of the rolling
contact problem between the tire and the flat road. Secondary radial springs
representing the tire tread elements were added to the tire model in order
to take into account the compliance of the tread elements in the contact
patch. Based on the modified ring model and the modal expansion method,
a new approach has been developed for the study of the contact problem.
This approach differs from conventional ones in that the tire is treated as
one entity instead of being divided into different regions, thus eliminating
the need to solve the equations of motion for different regions and to apply
continuity conditions at the boundaries of these regions. The numerical
results have shown that the new method can be used successfully to predict
the contact pressure distribution in the tire-road contact patch. Using this
tire model and the new method, different characteristic shapes of contact
pressure distribution have been predicted for tires under different inflation
pressure and vertical static loads. The results showed qualitative agreement
with measurements reported in the literature.

The ring model has also been used to study the vibration transmission prop-
erties of tires. The transfer functions between any two points of a free
tire-wheel system have been derived. It has been found that due to the cori-
olis forces, the transfer function matrix between the wheel and the contact
point on the treadband is in general asymmetric for a free, rotating tire-
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wheel system. Due to the periodic nature of the mode shapes of the tire,
resonance occurs only at the frequency of either the zeroth or the first order
natural mode in each of the transfer functions related to the wheel motion.
This finding provides theoretical ground for further simplification of the tire
model aimed at the study of vibration transmissions in the low and medium
frequency range.

In Chapter 7, different configurations of tire-wheel systems on vehicles and
in laboratory tests have been discussed and the corresponding mathematical
expressions of the boundary conditions were formulated. The appropriate
boundary conditions are then applied to the free tire-wheel system. The
transfer functions of the tire-wheel system under various boundary condi-
tions were thus obtained from the transfer functions of the corresponding
free system. Hence the vibration transmission properties of a tire-wheel sys-
tem can be described completely by a basic set of transfer functions of the
free system. It is therefore important to include the wheel DOFs into the
analyses or tests of tires in order to obtain a complete picture of the vibration
transmission properties of tires.

The tire ring model has been validated by experimental modal analysis car-
ried out on a test tire. Good agreement has been found between the ana-
lytical and experimental results of the natural frequencies and mode shapes.
The experimental results of the tire with a fixed wheel and with free wheels of
different weights confirm the predictions of the theoretical analysis in Chap-
ter 3 concerning the influences of the wheel DOF's on the natural frequencies
of the tire-wheel system.

9.2 Recommendations for Further Research

There are many issues deserving further investigation on the subject of this
thesis. Having said that, we would like to point out only a few of them which
deserve special attention.

The tire model developed in this thesis considers the sidewall as radial and
tangential springs with linear stiffness characteristics. In reality, the stiffness
of the tire sidewall is non-linear [69]. This non-linearity of tire sidewall
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stiffnesses does not normally pose a major problem for the study of small
vibration where the amplitudes of the tire deformation are usually small
and can be linearized. However, differentiation should be made between
a tire with a static preload and one without preload. Due to the non-
linearity, the static preload on the tire will change the values of the sidewall
stiffnesses, although the linear model will still be valid. Therefore, efforts
should be made to determine the influences of preloads on the tire dynamic
characteristics.

In dealing with the tire-road contact problem, only the freely rolling tire is
studied in this thesis. The method developed in Chapter 5 can be extended
so that it can also be used for the contact problems of a braking or driving
tire. Two issues have to be addressed in order to achieve that. First a
tire-road interface model has to be developed to determine the relationship
between the longitudinal force and the displacement of the tread element
in the contact area. For this purpose the brush-type model may be used.
Secondly the compatibility conditions between the tire and the road should
also include that for the tangential displacement of the tire tread element,
unlike the present case which considers the radial displacement only. Also,
the non-linear characteristics of the sidewall stiffnesses may be needed for
large tire deformation.

The study of the vibration transmission between the contact patch and the
wheel axle could be extended to consider finite contact between the tire and
the road. As a first step, the case of a single continuous region of contact
may be considered. The tire can be considered to be in contact with the
road at several points where the road irregularity generates displacement
inputs to the tire. The transfer functions obtained in Section 6.3 are valid
and can be used for this extension. More complicated situations such as
multiple contact patches between the tire and the road can be considered
at a later stage. By considering the finite contact between the tire and the
road, more realistic boundary conditions at the contact patch can also be
applied, especially in the longitudinal direction.

Ideally, a universal tire-road interface model should be established. This
interface model should be common to tires of all types and sizes and can
have arbitrary road profile as input. Two steps must be taken in order
to establish such an interface model. First the geometric relations have
to be established between the road profile, the tire-wheel motion and the
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treadband displacements in the contact area. Secondly, relations between
the force at the interface and the relative displacements have to be obtained.
The tire-road interface model can then be combined or integrated with the
tire ring model to calculate the complete dynamic properties of a wheel-
tire-road system. The compliance of tire tread elements can be taken into
account in the interface model.

9.3 Concluding Remarks

The studies reported in this thesis attempt to gain a better understand-
ing of the in-plane dynamics of tires. The approach taken here is to study
separately the basic properties of tire-wheel systems and the interaction be-
tween the tire and the road. The compelling reasons for taking this approach
are: 1). A tire operates under different road conditions; and 2). Different
tires may be operating on the same road. By separating the tire and the
tire-road interface, a tire model can be used with several different interface
models and a tire-road interface model can be used for different tires. In this
way, the modeling of the vehicle-tire-road system can be greatly simplified.
This thesis is the first effort in this direction. Much remains to be done.
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Appendix A

Strain-Displacement Relations

Figure A.1 shows the locations of two neighboring points on the ring before
deformation (A and B) and after deformation (A’ and B’) in a polar co-
ordinate system. The location of point A before deformation is defined by
a set of polar coordinates (8, r); the location of point B is thus defined by
(6 +db, r + dr).

The infinitesimal distance between points A and B is

(ds)* = (d8)* + (dr)* + 0(3) (A1)

After the ring deformation, point A moves a distance of W and V in the
radial and tangential directions respectively to A’, and point B moves to
B’. The location of A’ is defined by (6 + (s, 7 + (;). That is

AB, 1) XX A0+ Gt G
B(6+df, v+ dr) — B'(8 + (g + df + dCo, 7 + (r + dr + dC,)

It can be seen from Figure A.1 that

Co = sin Co + O(3) = %‘W‘ +0(3) (A.22)

G=A(r+W)P2+V2—r=W+0(2) (A.2b)
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dr

Figure A.1: The locations of two neighboring points before and after ring

deformation

The infinitesimal distance between the two points after the ring deformation

1S

(ds')? = (r + ¢ )2 (d8 + dCo)* + (dr + d(,)* + O(3)

in which
_ 0G d(o
Ao = g0+ Gy r
e ¢,
d¢, = 80d0+ ar dr

Substituting Equation (A.4) into Equation (A.3) yields
(ds')? = Ggg (d6)* + 2Grg b dr + G, (dr)?

in which

ou- s (1449 ()
ourc (14595055 45

)

(A.3)

(A.4a)

(A.4b)

(A.5)

(A.6a)

(A.6b)
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ds’

A(¥9,T)

Figure A.2: An element of the ring before and after deformation

G = G (52) 4 (1+ %y (A.6c)

Now we consider an infinitesimal element of the ring shown in Figure A.2.
The points A and B constitute one diagonal of the element. Before defor-
mation, the point A is located at (#, r) and B at (6 +d#f, r + dr). Note that
a local Cartesian coordinate system is used in Figure A.2 with its origin
at point A (f,r). After deformation, points A and B move to A’ and B’
respectively. Utilizing Equation (A.5) we can write the distance between A
and B after deformation as

(ds')? = Gy (d9)% + 2G,g d8 dr + G, (dr)? (A7)
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The normal strains can be readily written as

_ dshy —rdd
€g = T (AS&)
ds,, —dr
, = 2orr — 0T 8b
€ - (A.8Db)

The shear strain is defined as the angular change of the infinitesimal element

€ro = g - X (A.8¢)

According to the cosine law, the following equation can be written:

(ds')? = (dspg)” + 2 cos x dspy s/, + (ds/.)? (A.9)

It is easy to show that

(dshe)” = G (d8)?
(ds})* = Gor (dr)?

Comparing Equation (A.9) with Equation (A.7), we have

=Y E %1 (A.10a)
& =VG,—1 (A.10D)
. Gr9
€. R SIN(€,6) = COS Y = —me— A.10c
g (€re) X = (A.10c)
According to Equation (A.2)
0 1 0V |4 ow
0 T wW n Wag ————(T n W)ZW + 0(3) (A.lla)
06 1 0V Vv ow
E‘MWE‘(MW)?( o >+0(3) (A-11b)
o, oW
20 = 90 + 0(2) (A.11c)
% _ oW +0(2) (A.11d)

or  or
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Substituting the above equations into Equation (A.6) results in

2 2
Gee:r2+2r(W+ﬂ)+(W+a—V) +(V ?—VK) +0(3)

BT 08 Y
(A.12a)
Grr=1+ 268—?/ +0(2) (A.12b)
oV ow
G7’9 = TW -V + W + 0(2) (A12C)

Substituting Equations (A.12) into Equation (A.10), under the condition
that the ring deformation is small, we get

1 oV 1 oW\ 2
€ = - (W + Eo“) + 972 (V - Fo—) + 0(3) (A.13a)
¢ = aa_v;/ +0(2) (A.13b)
ov 1 (oW

If the ring is thin, then the Bernoulli-Euler assumption can be used. Ac-
cording to this assumption, the plane cross-sections of the ring remain plane
and normal to the middle surface after deformation, and the in-plane shear
strain is very small and can be negelected. The only significant strain is
therefore the one in the tangential direction.

The radial displacement W can be approximated by that of the middle sur-
face and the tangential displacement varies linearly across the ring thickness.
The radial and tangential displacements W,V can thus be expressed as

W= w (A.14a)
V(b,y,t) = v(6,t)+ y-5(6,1) (A.14b)

in which 3 is the rotation angle of the ring cross-section and y is the distance
from the middle surface (see Figure A.1); w, v are the displacements of the
middle surface in the radial and tangential directions, respectively.

The strain-displacement relations can thus be rewritten as

1 ov 0p 1 ow 2
o= a5 (v * 55+ vag) * arway (ap 0 9) (15w
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1 ((‘)w

€rg = R—-{-y- ?9—6 —-v+ Rﬁ) (A15b)

Since the ring is thin, which means that the mean radius of the ring is much
larger than the ring thickness (R >> h), R + y in the strain-displacement
relations can be replaced by R. With shear strain €4 being set to zero we

have ) 9
w
o=z (- %)

Replacing 3 in Equation (A.15) with the above relation and neglecting the
second order terms related to 8 and y, we get

1 ov y [(Ov O%w 1 /ow )2
e"‘R("’Jr%)J’Yz—Z(%_602)+2R2(?§6"” (8.16)




Appendix B

Prestress in the Ring Due to
Rotation and Inflation Pressure

When the tire is rotating at high speed and inflated by internal pressure, the
tire treadband is subjected to prestress, which exists in the treadband before
the tire deformation caused by external excitations such as road contact.
Figure B.1 shows an element of the rotating ring under equilibrium. The
ring element is subjected to four forces: inflation pressure pobRd#8, centrifugal
force pAR?Q?d#, initial spring force k,woRdf, and the pretension force Sg
(So = 0fA). It is assumed that the thickness/radius ratio of the ring is
sufficiently small so that the radial prestress is negligible.

The equilibrium equation of the ring element in the radial direction can be
written as follows:

2S0sin (d0/2) = pobRd8 + pAR*Q*df — k,woRd6 (B.1)

in which wg is the initial displacement of the ring element in the radial
direction; sin(df/2) can be approximated by d6/2. Due to wg, the ring
element is expanded in the the circumferential direction by a length of wod#.
The following equation can be obtained according to Hooke’s law:

o) = E% (B.2)
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kwwoRd ¥

pAR®Q%d Y

So

Figure B.1: The equilibrium of a ring element

Combining Equations (B.1) and (B.2) to eliminate wo, the following equation
is obtained

pobR + pAR?Q?
1+ k,R?/(EA)
Usually, the extensional stiffness of the tire treadband is very high. Therefore

the pretension force in the treadband can be approximated by the following
equation:

ohA = (B.3)

09A = pobR + pAR?Q? (B.4)



Summary

The in-plane dynamics of tires deals with the forces and motion in the plane
of rotation of the wheel. Three aspects of tire in-plane dynamics can be
identified: the rolling contact between the tire and the road surface; the
transmission of forces and motion from the contact patch to the wheel axle;
and the vibration of the tire treadband. The main objective of the investi-
gation reported in this thesis is to develop a tire model which is suitable to
study all three aspects of the in-plane dynamics of tires in both low and high
frequency ranges. Emphasis is placed on the analyses of the dynamic prop-
erties of the model and its application to the three aforementioned problems.

The work can be divided into three parts: theoretical modeling and analysis;
applications; and parameter estimation and experimental validation. The
tire model developed in this thesis consists of a circular ring supported on
an elastic foundation. In this model, the wheel has the freedom to move in
the translational as well as rotational directions in the wheel plane. This
makes the model suitable for the study of all three aspects of tire in-plane
dynamics. The equations of motion are derived using Hamilton’s principle.
A simplified set of the equations is obtained by assuming the ring to be in-
extensible. The simplified equations are used for the study of the vibration
transmission and the rolling contact problem of the tire and the road.

The natural frequencies and modes are obtained for the ring model without
the in-eztensibility assumption. The influences of model parameters on the
dynamic properties of the tire model are analyzed in detail. The validity
of the in-extensibility assumption is thus examined. Furthermore, with the
use of the modal ezpansion method, the equations of motion are transformed
into ordinary differential equations based on mixed modal and physical co-
ordinates. Two sets of the transformed equations are derived, one in the
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rotating coordinate system, the other in the non-rotating coordinate sys-
tem. Depending on the problem at hand, one of the two sets is preferred.

The model is used to study two dynamic problems of tires: the rolling contact
between a tire and a flat road; and the vibration transmission from the
ground to the wheel axle via the tire. For the rolling contact problem,
the model is modified to take into account the compliance of the tire tread
elements in the radial direction. A new approach based on the modified
tire model and modal expansion method is developed to solve the problem.
With this new approach, the tire deformation and contact pressure can be
solved simultaneously for an assumed length of contact. This simplifies the
iteration needed to ultimately obtain the contact length for a prescribed
overall tire deformation or static load. The new method is implemented into
a computer program. Numerical results are compared with experimental
ones from literature. Using this new method, different patterns of contact
pressure distribution are predicted for tires with different inflation pressures
and vertical loads.

The vibration transmission problem is studied in the context of point con-
tact assumption. The transfer functions of a free tire-wheel system are first
derived from the tire model. These transfer functions determine the dy-
namic displacement responses of the system to force excitations. Later the
boundary conditions typical to tires in service and in laboratory tests are
discussed and formulated. The mathematical expressions of these boundary
conditions are determined. By applying these conditions to the free tire-
wheel system, the vibration transmission properties of a tire-wheel system
under various boundary conditions are obtained. Transfer functions under
these conditions are derived using the modal synthesis method. Numerical
results are presented and discussed.

The tire model is finally validated by experimental modal analysis of a test
tire. Laboratory tests are conducted to establish the modal shapes and
natural frequencies of the test tire. The tests are carried out for two different
configurations of the tire: one with the wheel rim fixed in space and one with
the tire-wheel system suspended freely in the air. Three of the measured
natural frequencies of the tire with a fixed wheel are used to estimate the
stiffness parameters of the model. The other measured natural frequencies
and mode shapes are compared with the calculated ones from the model.
Good agreement is found between the experimental and theoretical results.



Samenvatting

De dynamica van de autoband in het wielvlak heeft betrekking op de krachten
en bewegingen in het rotatievlak van het wiel. Drie aspecten met betrekking
tot de dynamica in dit wielvlak kunnen worden onderscheiden: het contact
tussen rollend wiel en wegdek; de overdracht van krachten en bewegingen
vanuit het contactvlak van de band naar de wielas; en de trillingen van de
gordel van de band. Het hoofddoel van het onderzoek, zoals beschreven in
deze dissertatie, heeft betrekking op het ontwikkelen van een bandmodel dat
geschikt is om alle drie aspecten van de banddynamica in zowel het lage als
het hoge frequentiebereik te bestuderen. De nadruk ligt op de analyse van
de dynamische eigenschappen van het bandmodel en de toepassing van het
model op de drie eerder vermelde aspecten.

De studie kan in drie delen worden opgesplitst: theoretische modellering en
analyse; toepassingen; en parameter schatting en experimentele validatie.
Het bandmodel dat in dit proefschrift ontwikkeld en beschreven is, bestaat
uit een cirkelvormige ring die ten opzichte van de velg afgesteund is op
een elastische bedding. Het wiel heeft drie vrijheidsgraden van beweging in
translatie- en rotatierichtingen in het wielvlak. Deze vrijheidsgraden zijn
voldoende om alle drie aspecten van de dynamica in het wielvlak te beschrij-
ven. De bewegingsvergelijkingen zijn afgeleid met behulp van het principe
van Hamilton. De bewegingsvergelijkingen kunnen vereenvoudigd worden
als aangenomen wordt dat de cirkelvormige ring in omtreksrichting onver-
vormbaar is. De vereenvoudigde bewegingsvergelijkingen zijn gebruikt voor
het onderzoek naar de trillingsoverdracht en de studie met betrekking tot
het contact van een rollende band op een wegdek.

De eigenfrequenties en trilvormen zijn uitgerekend voor een bandmodel geba-

161



162 SAMENVATTING

seerd op een samendrukbare ring. De invloed van de modelparameters op
de dynamische eigenschappen van het bandmodel zijn gedetailleerd onder-
zocht. De geldigheid van de veronderstelling dat de ring in omtreksrichting
onsamendrukbaar is, is nagegaan. Bovendien zijn de bewegingsvergelijkingen
met behulp van een modale decompositiemethode getransformeerd naar een
verzameling van gewone differentiaalvergelijkingen welke gebaseerd zijn op
een combinatie van modale en fysische coordinaten. Twee verzamelingen van
getransformeerde vergelijkingen zijn afgeleid: in het roterende coordinaten-
systeem, en in het vast coordinatensysteem. Er wordt een keuze gemaakt
tussen beide mogelijkheden afhankelijk van het probleem dat onderzocht
wordt.

Het bandmodel wordt gebruikt om twee aspecten van de banddynamica
te bestuderen: het contact tussen rollende band en vlak wegdek; en de
trillingsoverdracht vanuit het wegdek via de band naar de wielas. In het
geval van de studie met betrekking tot het contact van een rollende band
met wegdek is het bandmodel aangepast door rekening te houden met de
stijfheid van het loopvlak in de radiale richting. Een nieuwe benadering
gebaseerd op het aangepaste bandmodel met modale decompositie is ont-
wikkeld om het contactprobleem van de rollende band op te lossen. Met be-
hulp van deze nieuwe benadering kunnen de bandvervorming en contactdruk
simultaan opgelost worden voor een bepaalde aangenomen contactlengte.
Dit vereenvoudigt de iteratie welke noodzakelijk is om de uiteindelijke con-
tactlengte te vinden voor een voorgeschreven radiale deformatie van de band
of een gegeven statische belasting. De nieuwe methode is geimplementeerd
in een computersimulatieprogramma. Numerieke uitkomsten zijn vergeleken
met experimentele resultaten welke bekend zijn uit de literatuur. Met be-
hulp van deze methode kunnen verschillende vormen van drukverdelingen in
het contactvlak van de rollende band voorspeld worden als functie van de
bandenspanning en de verticale belasting.

Het probleem van de trillingsoverdracht is bestudeerd aan de hand van een
puntcontact veronderstelling. Eerst zijn de overdrachtsfuncties van een vrij
band-wiel systeem afgeleid met behulp van het bandmodel. Deze over-
drachtsfuncties bepalen de dynamische verplaatsingsresponsie van het sys-
teem op een krachtsexcitatie. Vervolgens worden de randvoorwaarden van
het systeem die kunnen voorkomen bij testen op de weg en in het labo-
ratorium, besproken en geformuleerd. De mathematische formuleringen welke
betrekking hebben op deze randvoorwaarden worden vastgesteld. Door toe-
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passing van deze voorwaarden op een vrij band-wiel systeem kunnen de
trillingseigenschappen van een band-wiel systeem onder verschillende rand-
voorwaarden verkregen worden. De overdrachtsfuncties zijn afgeleid met
behulp van de modale synthesemethode. Numerieke resultaten worden ge-
presenteerd en besproken.

Het bandmodel is tenslotte gevalideerd met behulp van experimentele modale
analyse, toegepast op een testband. De modale trilvormen en eigenfrequen-
ties zijn bepaald in het laboratorium. De experimenten zijn uitgevoerd voor
twee verschillende bandconfiguraties: een systeem met een ten opzichte van
de buitenwereld ingeklemde wielvelg en een systeem met een vrijhangend
wiel. Er zijn drie gemeten eigenfrequenties gebruikt van het ingeklemde
wielsysteem om de stijfheden van het model af te schatten. De andere eigen-
frequenties en trilvormen zijn vergeleken met de berekende waarden van het
bandmodel. De resultaten stemmen goed overeen met de gemeten responsies.
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