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A STUDY OF INDICATORS FOR IDENTIFYING ZERO VARIABLES 
IN INTERIOR-POINT METHODS* 

A. S. EL-BAKRYt, R. A. TAPIAt, AND Y. ZHANG§ 

Abstract. In this study we are concerned with constrained optimization problems where the only 
inequality constraints are nonnegativity constraints on the variables. In these problems the ability to 
identify zero variables (binding constraints) early on in an iterative method is of considerable value 
and can be used to computational advantage. In this work we first give a formal presentation of the 
notion of indicators for identifying zero variables, and then study various indicators proposed in the 
literature for use with interior-point methods for linear programming. We present both theory and 
experimentation that speaks strongly against the use of the variables as indicators; perhaps the most 
frequently used indicator in the literature. Our study implies that an indicator proposed by Tapia 
in 1980 is particularly effective in the context of primal-dual interior-point methods. We also study 
the local rate of convergence for several indicators. 
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1. Introduction. This paper describes a study of various indicators proposed in 
the literature for the identification of zero variables in linear programming problems. 
Our particular focus will be on indicators that can be used in conjunction with primal­
dual interior-point methods. We consider the linear programming problem in the 
standard form 

(1.1) 
minimize cT x 

subject to Ax = b 
X 2 0, 

where c E Rn , b E Rm, A E Rmxn (m < n) and A has full rank m. The first-order 
optimality conditions for the linear program (1.1) are: 

(1.2) F(x, y, -1) ea ( 
Ax-b ) 

ATA + y- C 

XYe 
=O 

and 

(1.3) (x,y) 2 0 

where X = diag(x), Y = diag(y) and e is then-vector of all ones. A point (x, y, A) is 
said to be strictly feasible if it satisfies Ax = b, AT A+ y = c and ( x, y) > 0. A solution 
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pair (x, y) is said to satisfy strict complementarity if in addition to complementarity 
XYe = 0, it satisfies x + y > 0. 

It is known that the set of equations and inequalities (1.2)-(1.3) is also sufficient 
for a vector x* to solve problem (1.1). An effective method for solving a set of 
nonlinear equations is Newton's method. It is well known that Newton's method not 
only converges but also converges fast if it starts from a point that is sufficiently close 
to a solution of the system. On the other hand existing theory cannot ensure the 
convergence of Newton's method if it is started far away from a solution. Moreover 
it is not clear how to apply Newton's method to a system of nonlinear equations 
and inequalities. Primal-dual interior-point methods, that have the basic structure 
of the primal-dual method originally proposed by Kojima, Mizuno, and Yoshise [21] 
based on earlier work of Megiddo [28], can be viewed as perturbed damped Newton's 
method for solving (1.2). The right-hand side of the Newton equation is modified 
(perturbed) in such a way that the iterates generated by the algorithm do not stray 
far from the so-called central path. For a thorough study of the central path in interior­
point methods in linear programming see Gonzaga [13]. This controlled perturbation, 
which is a consequence of µ(xk, yk)e in Step 2 of Algorithm 1 below, ensures the global 
convergence of Newton's method applied to (1.2). In the damped Newton's method 
the steplength may be chosen less than one. In the present application the Newton 
step is damped (see Steps 3 and 4 of Algorithm 1 below) so that positive iterates are 
maintained. This can be accomplished provided that the initial iterate is positive. It 
is well known that the damping of the Newton step may have an adverse effect on the 
fast local convergence of Newton's method. 

The algorithmic framework for such primal-dual interior-point methods has the 
following form 

ALGORITHM 1 (PRIMAL-DUAL INTERIOR-POINT METHOD). 

Given a strictly feasible point (x 0 , y 0 , A0). Fork= 0, l, ... , do 
( ~· \T ,.k 

1. Choose uk E (0, 1) and set µ(xk, yk) = uk ~-
2. Solve the following system for (~xk, ~yk, ~Ak): 

3. Choose a step-length ak = min(l, rkil) for rk E (0, 1) and 

4. Form the new iterate 

In Step 2 e = (0, ... , 0, 1, ... , lf, with n + m zero components. 
Note that the choice of step-length ak guarantees (xk+ 1 , yk+l) > 0. Moreover, it 

can be easily verified that 

(1.5) 

The two algorithmic parameter sequences { uk} and { rk} play an essential role in 
the global and local theory as well as in the implementation of interior-point meth­
ods. Originally, several choices for { uk} were proposed to ensure global (polynomial) 
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convergence. For example in Monteiro and Adler's path-following primal-dual algo­
rithms [35], 

k K, 

(]' = 1- vn' 
where ,-., E (0, ,vn) is chosen to satisfy a certain restriction. In Todd and Ye's primal­
dual potential reduction algorithm [42] 

(J'k = vn 
vn+v' 

where II is a positive constant. In Mizuno, Todd and Ye's algorithm [34] <J'k is chosen 
to be O and 1 alternatively. However their algorithm does not fit in the framework of 
the generic algorithm given above, so we do not discuss their algorithm in this work. 
All of these choices were proposed to guarantee a polynomial bound on the complexity 
of these algorithms. In spite of their good theoretical properties, these choices of the 
parameters exhibit poor numerical performance, see, for example, El-Bakry, Tapia 
and Zhang [9]. 

Impressive numerical results were reported by Choi, Monma and Shanno [6], 
McShane, Monma and Shanno [27] and Lustig, Marsten and Shanno [24] for primal­
dual interior-point methods that use very small values for <J'k and take long steps (i.e. 
large values for rk). The best results reported so far come from an implementation 
by Lustig, Marsten and Shanno [25] of a primal-dual predictor-corrector algorithm. 
In this implementation Lustig, Marsten and Shanno [25] choose 

Tk = 0.99995 

and 

(1.6) 
1 

n'1' 

n./n' 

if n ~ 5000 
if n > 5000 ' 

when the duality gap is relatively small. Motivated by these impressive numerical 
results Zhang, Tapia and Dennis [52] studied the rate of convergence of primal­
dual interior-point methods. They were able to establish superlinear and quadratic 
convergence to zero of the duality gap sequence { xk T yk} for iterates generated by 
Algorithm 1 for appropriate choices of the sequences { <J'k} and { Tk}. Their work 
sparked a new research direction in interior-point. met.hods, namely local convergence 
rate analysis of interior-point methods. The essential conditions in the fast local 
convergence theory of interior-point methods are that the perturbation to the first 
order necessary conditions be phased out fast (o-k --> 0) and that the iterates approach 
the boundary of the positive orthant ( Tk --> 1). The question of whether primal-dual 
interior-point methods with fast local convergence can also have a polynomial bound 
on the number of iterations was answered in the affirmative by Zhang and Tapia [51]. 

One of the main tasks in many methods for solving inequality constrained op­
timization problems is the identification of constraints that are active ( or binding) 
at a solution of the problem. Such identification removes the combinatorial aspect 
of the problem brought on by the presence of inequality constraints and reduces the 
problem to an equality constrained problem. For linear programming problems in 
the standard form (1.1) the inequality constraints are the nonnegativity constraints 
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on the variables. So binding constraints correspond to variables that are zero at a 
solution of problem (1.1). We use the notation 

Z(x) = {i: x; = 0, 1::; i::; n} 

to denote the set of indices of zero variables at a feasible point x of problem (1.1). 
Notice that Z(x*) may be different for different solutions x* of the same linear pro­
gramming problem. However, from Theorem 2.2 of Section 2 we know that Z(x*) 
is invariant with respect to solutions x* in the relative interior of the solution set of 
(1.1). Hence in this case we may denote the set of indices of zero variables at any 
solution x* in the relative interior of the solution set by Z* and no confusion will 
anse. 

This paper is organized as follows. The structure of the solution set of the linear 
programming problem is studied in Section 2. In Section 3, we define the indicator 
function and list some properties that a good indicator should possess. In Section 4 we 
study one of the earliest indicators proposed, and probably the most frequently used 
indicator, for identifying Z(x*), namely the variables used as indicator. We demon­
strate both theoretically and numerically that this indicator has serious disadvantages. 
The primal-dual indicator which has been used recently by several researchers is inves­
tigated in the context of primal-dual interior-point methods in Section 5. In Section 
6 we study the Tapia indicators for the linear programming problem and discuss 
their behavior in several interior-point methods. Section 7 is devoted to establish­
ing the rate of convergence of several indicators. Numerical experiments are given 
in Section 8. These numerical experiments include the study of the usefulness of the 
variables as indicators, as well as the usefulness of the primal-dual indicator in primal­
dual interior-point methods. They also include comparisons between the variables as 
indicators, the primal-dual indicator, and the Tapia indicator. Concluding remarks 
are given in Section 9. Finally we list, in Appendix A, several indicators that have 
been proposed for interior-point methods. 

2. Structure of the Solution Set. The structure of the solution set of the 
linear programming problem will play an important role in explaining the behavior 
of certain indicators. For this reason we begin this study with an investigation of 
the structure of the solution set and in particular the distribution of strict comple­
mentary solutions within the solution set. We establish our main result for a larger 
class of problems, namely for monotone complementarity problems, since the proof is 
essentially the same as that for linear programming. 

First, we need some preliminary concepts. Following McLinden [26] and Giiler 
and Ye [15], by the support a-(v) for v E Rn we mean the set of indices of positive 
components of v, i.e. 

a-(v) = {i: v; > O}. 

In particular, the support of a vector with no positive components is the empty set. 
Consider the partial order :::s on Rn defined by 

V :::S U if a-( V) ~ a-( U). 

Two vectors u and v are said to be equivalent, denoted by u ~ v, if u :::s v and v :::s u. 
An element v EU~ Rn is said to be a :::s-maximal element of U if 

u EU and v :::s u ===> u ~ v. 
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It is obvious that any subset U of Rn has at least one ~-maximal element. Giiler 
and Ye [15] made the following straightforward but key observation in revealing the 
structure of the solution set T. 

OBSERVATION 2.1. If U ~ Rn is convex, then all maximal elements of U are 
equivalent. 

In particular, the above observation implies that if U is a convex subset of the 
positive orthant of Rn, then the zero structure of the maximal elements of U is 
invariant. 

A multivalued mapping T: Rn -+ 2R" is said to be a monotone operator if 

yET(x) and i}ET(x)~(y-yf(x-x)?_O. 

A monotone operator T is said to be maximally monotone if the graph G(T) 
{( x, y) E Rn x Rn : y E T( x)} is not properly contained in the graph of any other 
monotone operator. The complementarity problem associated with a maximally mono­
tone operator T is 

(2.1) Find (x, y) E G(T) such that xT y = 0 and (x, y)?. 0. 

The set of solutions of problem (2.1) will be denoted by T. Consider the set 

M = {(xm,ym) ET: (xm,ym) is maximal}. 

The following proposition is a consequence of Lemma 2.3 in Giiler [14] 
PROPOSITION 2 .1 (GULER). The solution set T for the monotone complemen­

tarity problem (2.1) is convex. 
The convexity ofT implies, by Observation 2.1, that the zero structure of maximal 

solutions (or solutions that satisfy strict complementarity if they exist) is invariant. 
The invariance of the zero structure of solutions that satisfy strict complementarity 
(which are maximal in complementarity problems) was proved for a special class of 
linear programming problems by Charnes, Cooper, and Thrall [4]. 

We denote the relative interior of a set U by ri U. See Rockafellar [37] for a 
definition of relative interior. Now we state our main result concerning the structure 
of the solution set T of problem (2.1). 

THEOREM 2.2. Assume that the solution set T of the monotone complementar­
ity problem (2.1) is nonempty. Then the relative interior of T is exactly the set of 
maximal elements of T. 

Proof. By Theorem 6.2 of Rockafellar [37], ri (T) is nonempty and convex. Let 
cl (T) and Or T = (cl (T))\(ri (T)) denote the closure and the relative boundary of 
T, respectively. There exists at least one maximal element (xm,ym) ofT that lies in 
ri (T). Choose an arbitrary point (xb, yb) E Or T. Consider the convex combination 

It follows directly from Theorem 6.1 of Rockafellar [37) that (:r:4>, yef>) E ri (T). We 
have 

which shows that 

</; E [O, 1). 
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Now consider any point (xi, yi) E ri (T). Convexity of T implies that (xi, yi) lies on 
some line segment connecting (xm, ym) and some point (xb, yh) E Or T. But we have 
seen that all these line segments lie in M. Thus (xi, yi) E M. This proves that 

(2.2) ri T ~ M. 

Now we will show that any point in the relative boundary of T cannot lie in M. 
Consider (xb,yb) E OrT. Suppose (xb,yh) EM. Let (xi,yi) E ri (T). From (2.2), 
(xi, yi) EM and hence (xi, yi),...., (xb, yb). Without loss of generality, assume that 

. b 
O'( x') = { 1, ... , r} = O'( x ) 

and 

i b O"(Y) = {s, ... ,2n} = O'(y ), 

where r < s. Now any point on the relative boundary of T is the intersection of the 
graph G(T) with at least one of the hyperplanes 

Xj = 0 i=l, ... ,r 

or 

Yi= 0 i=s, ... ,2n. 

This contradicts the maximality of (xb, yh) and completes the proof. D 
It is known that the primal-dual formulation of the linear programming problem 

can be stated as a monotone complementarity problem with graph 

(2.3) GLP(T) = {(x, y): Ax= b, AT A+ y = c for some A E Rm}. 

For more details see Guler and Ye [15]. Consider the set S consisting of the solutions 
of the linear programming problem that satisfy strict complementarity. Clearly any 
element of Sis maximal in T. As an immediate consequence of Theorem 2.2, we can 
determine the distribution of S within T for linear programming problems. 

COROLLARY 2.3. Assume that there exists at least one point (x 0
, y0

) E G LP(T) 
such that (x 0

, y0
) > 0. Then the relative interior of T is exactly the set of solutions 

of the linear programming problem that satisfy strict complementarity. 
Proof The well-known Goldman-Tucker theorem states that S # 0 for linear 

programming problems. The proof now follows directly from Theorem 2.2. ITfhis 
result concerning the structure of the solution set of the linear programming problem 
can also be derived from a study of the structure of the solution set of the linear 
complementarity problem carried out by Jansen and Tijs (18]. In Sections 3 and 4, we 
discuss the effect that the structure of the solution set has on the behavior of certain 
indicators. 

A straightforward implication of Corollary 2.3 and Lemma 2 of Guler and Ye [15] 
is that if an interior-point method generates iterates ( xk, yk) that satisfy 

min(XkYke) 
(xk)Tyk 2'. 1, 

where I is positive number, then {(xk, yk)} cannot have limit points that lie on 
the relative boundary of the solution set. In particular this means that interior-point 
methods that satisfy such a bound cannot generate iterates which converge to a vertex 
solution of the linear programming problem, unless of course the problem has a unique 
solution. 
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3. The Indicator Function : Definition and History. Following Tapia [38], 
we use the term indicator to denote a function that identifies constraints that are 
active at a solution of a constrained optimization problem. Although indicators have 
been used extensively since at least 1984 in the context of linear programming, a 
unified framework that includes a definition, desired properties, and general guidelines 
for their use has not been provided. It is a main objective of this work to provide 
such a framework. 

Throughout this paper we will consider iterative procedures of the generic form 

The majority of our discussion centers around primal-dual interior-point methods and 
in this case our iterates have the form 

k ( k k \ k) z = X ,Y ,A . 

In a primal method, e.g., the Karmarkar algorithm, we have zk = xk. It is natural 
to define the indicator as a function of zk and ~zk and perhaps an auxiliary variable 
which may represent the step-length ak or other quantities. However, in the interest 
of conciseness we will consider the auxiliary variable implicitly in the definition and 
not formally state its dependence. 

Let (zk, ~zk) be generated by an iterative procedure of the generic form discussed 
above. By an indicator function I we mean any function which assigns to (zk, ~zk) 
an n-vector of extended reals I(zk, ~zk) and satisfies the property that if zk -+ z*, 
then for i = 1, ... , n 

(3.1) 
if i E Z(x*) 
if i ff_ Z(x*) 

for some 0; and <p; satisfying min; 0; > max; <p;. 
Throughout this paper we use the terms indicator and indicator function inter­

changeably. Whenever it is appropriate and no confusion will arise, we write I(xk), 
I(yk), or I(xk, yk) instead of I(zk, ~zk). We also use the term indicator to denote 
then-vector I(zk, ~zk) or any of its components. 

It is desirable that an indicator function I possess the following ideal properties: 
l. the sharp separation property 

min 0; >> max <p;; 
i~Z(x•) iEZ(x•) 

2. the uniform separation property 

0; = 0; i <:}. Z(x*) and <p; = <p ; i E Z(x*) 

for some constants 0 and <p. In this case, it is also desirable that 0 and¢ be independent 
of both the solution and the problem; 

3. the indicator is inexpensive to compute; 
4. the indicator sequence {I( zk, ~zk)} converges to its limit faster than { zk} 

converges to z*; 
5. the indicator gives reliable information early on in the iterative process; 
6. the indicator is scale independent, i.e. it does not change if the variables are 

scaled by any positive diagonal matrix. 
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Clearly, an indicator may be effective and not possess all these ideal properties. How­
ever, it is our considered opinion that both the sharp and the uniform separation 
properties are extremely important. Several numerical experiments demonstrating 
the importance of these two properties are given in Section 8. 

If some members of Z(x*), for some solution x*, are identified early on in an 
iterative procedure, then this information can be used to 

1. reduce the dimension of the problem by dropping the columns of the matrix 
A corresponding to the zero variables. This reduction may result in significant savings 
in computational work. 

2. help recover an optimal basis for the linear program using techniques along 
the lines of Megiddo (29]. 

3. help obtain very accurate solutions using projection methods as proposed by 
Ye (49]. It can also be used to help obtain a vertex solution using random perturbation 
methods as proposed by Mehrotra (31]. 

4. help in "column generation" methods where the algorithm st.arts with a small 
set of constraints and adds new potentially active constraints at each iteration. Several 
methods are proposed in the literature for that purpose, see, for example Mitchell (32], 
Mitchell and Todd [33], Goffin and Vial [12], Dantzig and Ye [7], Vaidya (45], Atkinson 
and Vaidya [2], and den Hertog, Roos, and Terlaky (17]. For a theoretical analysis 
of a column generation and deletion long-step logarithmic barrier algorithm, see den 
Hertog, Roos, and Terlaky (16]. 

The task of predicting Z(x*) has been considered in recent years by many re­
searchers and various indicators have been proposed for this purpose. Gill et al [11], 
Karmarkar and Ramakrishnan [19], McShane, Monma and Shanno [27], Tone (44], 
Lustig, Marsten, and Shanno (24], Dantzig and Ye [7], and Boggs, Domich, Donaldson 
and Witzgall [3], among others, proposed the use of variables, either primal or dual, 
to predict members of Z(x*). Tapia (38] introduced two indicators in the context 
of identifying active constraints in nonlinear constrained optimization problems. Ko­
jima [20] proposed an indicator for use in Karmarkar-type algorithms. Ye [47] and 
Todd [41] introduced two indicators for Karmarkar-type and primal-dual algorithms. 
Choi and Goldfarb [5] proposed two indicators similar to the Todd-Ye indicators with 
the advantage that their indicators can be used in algorithms that are not necessarily 
interior-point methods. Tapia and Zhang (39] proposed an indicator that can be used 
in primal, dual, or primal-dual interior-point methods. Kovacevic-Vujcic [22] intro­
duced an indicator that is superlinearly faster than the variables in Karmarkar-type 
methods. The ratio of primal variables and dual slacks was used as an indicator by 
several researchers including Gay [10], Ye (49], and Lustig [23]. Mehrotra (30] used 
an indicator based on the relative change in the dual slack variables. Resende and 
Veiga [36] used the reciprocal of the dual slack variables as indicators. Many of these 
indicators have been cataloged in Appendix A along with some critical comments. 

4. The Variables as Indicators. In both linear and nonlinear programming 
the use of the variables as indicators is a part of the optimization folklore. In linear 
programming, Gill et al. [11] set primal variables with very small absolute values 
to zero. Karmarkar and Ramakrishnan (19] suggested using the dual-slack variables 
as indicators. McShane, Monma and Shanno [27] suggested setting those variables 
with small absolute value and large dual slack to zero. Boggs, Domich, Donaldson 
and Witzgall [3] used the primal slacks with large values to remove constraints from 
the problem using an algorithm based on the method of centers. While this indica­
tor is readily accessible, it has serious disadvantages. It does not satisfy either the 
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sharp separation or the uniform separation property and is scale dependent. Another 
disadvantage is that in general it does not give information soon enough to save com­
putational work or improve the performance of the algorithm. Some researchers were 
aware of the deficiencies of this indicator and therefore tried to use it in a conser­
vative manner. Unfortunately, the undesirable aspects of this indicator, namely the 
lack of both the sharp and uniform separation properties, are inherent in the conver­
gence particulars of interior-point methods and in the structure of the solution set of 
the problem. In the following, we demonstrate the detrimental effect that these two 
factors can have on the behavior of the variables when used as indicators. 

1. The effect of convergence particulars of interior-point methods: 
A main difficulty in using an indicator function arises when a threshold sequence 
{ 8!erol is to be used in the identification test, 

( 4.1) 

Since for this indicator I;(xk) = xf, the sequence {8!ero} must satisfy 

max Xi < 8;ero < min x; 
iEZ(x•) ig'Z(x•) 

where 8;ero = limk-+oo 8!ero (assuming that the limit exists) and xis the approximate 
solution given by the algorithm. In order to identify zero variables early on, the 
threshold sequence should satisfy 

(4.2) max x~ < 8k < min xk, 
iEZ(x•) ' zero ig'Z(x•) 1 

for k > I<, where I< is a relatively small positive integer. Since maX;EZ(x•) Xi and 
min;!lZ(x•) x; are not known a priori, it is very difficult to construct a sequence { 8!ero} 
that satisfies these conditions. In our numerical studies we often found that there was 
a large gap between components of the final approximate solution generated by the 
interior-point method and the components of x*. In fact, we observed numerically the 
annoying phenomenon that for a final approximate solution generated by an interior­
point method, we may have 

max x; > min x;. 
iEZ(x•) it,!'Z(x•) 

This shows that, in practice, a threshold sequence { 8!ero} that satisfies ( 4.2) may not 
exist. 

2. The effect of the structure of the solution set: 
An implication of Corollary 2.3 is that if (xb, yh) is a point on the relative boundary of 
the solution set T, then there exits at least one component, say :r:j, such that xj = 0, 
while xJ > 0 for all x• E ri(T). The convexity of T implies that xJ is arbitrarily small 
for solutions x• arbitrarily close to the boundary while the corresponding dual slacks 
are zero. So the use of variables as indicators may be misleading even in the presence 
of both primal and dual information. Finally, the geometry of the problem may be 
such that T is so thin that some positive component x;- has a very small value for all 
solutions in the relative interior of T. 

Numerical experiments with the variables as indicator are presented in Section 8. 
These experiments speak strongly against the use of variables as indicators. 
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5. The Primal-Dual Indicator. Consider the indicator function 

(5.1) 

where zk+1 = zk + ak tl.zk, Y = diag(y) and X = diag(x). We will call this indicator 
the primal-dual indicator since it uses both primal and dual information. This indica­
tor was used recently by several researchers, e.g. Gay [10], Ye [49] and Lustig [23]. If 
strict complementarity holds, then the primal-dual indicator satisfies both the sharp 
and the uniform separation properties, namely 

}~.~ I(xk' yk' ak) = { ~ if i E Z(x*) 
if i .J: Z(x*) 

The primal-dual indicator does not require nondegeneracy or feasible iterates. Unfor­
tunately, it is scale dependent. Another disadvantage is that the identification test 
l;(zk, tl.zk, ak) :'.S 8zero ==> x; = 0 is sensitive to the choice of 8zero· Our numeri­
cal experiments show that the primal-dual indicator gives reliable information only if 
the iterates are very close to a solution. In fact in many cases this indicator could 
not identify all zero variables even at the final approximate solution generated by 
the interior-point algorithm. These observations motivated us to study in detail the 
structure of the primal-dual indicator in primal-dual interior-point methods. 

5.1. The Primal-Dual Indicator in Interior-Point Methods. In the frame­
work of primal-dual interior-point methods, the behavior of the primal-dual indicator 
can be explained using the following proposition. 

PROPOSITION 5.1. Assume that the sequence of iterates {(xk, yk, Ak)} has been 
generated by Algorithm 1. Then for i = 1, ... , n 

x:+1 k xf xf k ak (xkf l 
(5.2) k+l = (2 - a ) k+l - k + a - k k+1 · 

Y; Y; Y; n Y; Y; 

Proof The perturbation of the linearized complementary slackness equation gives 

X(y + atl.y) + Y(x + atl.:1:) = (2 - a)XYe + aµ(:r, y)e. 

Thus 

xkyk+le + yk xk+le = (2 - r.i)xkyke + ak1le. 

Multiplying both sides by (Yk)- 1 (Yk+ 1 )- 1 completes the proof. D 
Examining equation (5.2), we believe that the undesirable behavior of the primal­

dual indicator is due to one of the following situations: 
(i) If xf --+ x1 > 0 for some i, then Yi = 0. In this case 

x~ x~ 
-

1
- - _!_ --+ 00 - 00 

y:+1 yf ' 

which is essentially an undefined quantity; and it is not clear that the primal-dual 
indicator will approach infinity fast enough to be of effective use. 

(ii) If xf --+ x; = 0 for some i, then Yi > 0. In this case each of the three 
terms on the right-hand side of (5.12) tends to zero. However, if Yi > 0, but has a 
small value (e.g. 10-4

) then the denominator of the third term will be much smaller 
and could cause the primal-dual indicator to have large values. This problem can be 
partially corrected if we let ak --+ 0 fast. Unfortunately, if Yi > 0 but has a very small 
value, which may occur as argued in Section 2, then all three terms in (5.2) become 
small only when the iterates are extremely close to a solution. 
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6. The Tapia Indicator. In order to identify active and inactive constraints 
for a nonlinear constrained optimization problem, Tapia [38) suggested using the quo­
tient of successive Lagrange multipliers and the quotient of successive slack variables 
as indicators in the context of an iterative procedure that enforces linearized comple­
mentarity. 

For linear programming problems, the Tapia indicators are 

(6.1) 

and 

(6.2) 

where xk+l = xk + ~x, yk+l = yk + ~y and e = (1, ... , 1)7'. 
El-Bakry [8) studied the behavior of the Tapia indicators in primal-dual interior­

point methods. He also used both indicators to identify and remove zero variables 
in primal-dual interior-point methods using a successive projection method, where 
the iterates are successively projected onto the hyperplanes of active constraints once 
these hyperplanes are identified. Some of these results are presented in Section 8. 
Mehrotra [31) used the Tapia primal indicator Ip in his perturbation method to iden­
tify a vertex solution using interior-point methods. The properties and the behavior 
of these indicators in various interior-point methods are discussed in detail in Sec­
tion 6.1. For the sake of completeness we present the following proposition which 
establishes the sharp and uniform separation properties for the Tapia indicators. It is 
essentially a specialization to problem (1.1) of a general result proved by Tapia [38]. 

PROPOSITION 6.1 (TAPIA). Assume that the sequence of iterates {(xk,yk,>.k)}, 
generated by an iterative procedure, converges to a strict complementary solution 
{(x*, y*, >.*)} of the first-order necessary conditions for problem (1.1). Assume further 
that linearized complementarity 

Xk ~l + yk ~xk = -XkYke 

is satisfied. Then for i = 1, ... , n 

(6.3) 
x~+l { 0 

lim ~---+ 1 k-..oo X; 

and 

if i E Z(x*) 
if i {/. Z(x*) 

(6.4) 
yk+I { Q 

lim ( 1 - -'-k-) ---+ 
1 k-..oo Y; 

if i E Z(x*) 
if i ft Z(x*) 

h k+l k A d k+l k A w ere X; = X; + ux; an Y; = Y; + uy;. 
It is obvious from the above proposition that ~xf / xf --+ 0 for i ft Z ( x*), and 

~xf /xf --+ -1 for i E Z(x*). Hence, the relative change ~xf/:r:f, which is merely 
a restatement of the Tapia indicator, can also serve as an indicator. We emphasize 
that in general the relative change is not a good indicator, a fact well-known from the 
elementary theory of sequences. In the context of linear programming problems, it is 
the linearized complementarity and the additional condition of strict complementarity 
that make the Tapia indicators (or equivalently the relative change) effective. How­
ever, in the primal-dual interior-point methods, the iterates satisfy a perturbation of 
the linearized complementarity equation, namely 

X~y + Y ~x = -XYe + µ(x, y)e. 
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The question as to whether the Tapia indicators can retain their useful properties in 
that framework is addressed below. 

6.1. The Tapia Indicators in Interior-Point Methods. It, was observed, in 
our numerical experiments, that the Tapia indicator is more effective than the primal­
dual indicator in identifying zero variables in most test problems, see Section 8. This 
led us to investigate the structure of the Tapia indicators in the framework of primal­
dual interior-point methods for linear programming. As we shall soon see the fit is 
surprisingly good. 

PROPOSITION 6.2. Consider a sequence of iterates {(xk, yk, Ak)} generated by 
Algorithm 1. Assume that 

1. (xkf yk --> 0. 

2 min(XkYke) 0 f 11 k d 
. (xk)Tyk 2: 'Y > Jor a an some 1 . 

3. The algorithmic parameters <Tk and rk have been chosen so that 

Then for i = 1, ... , n 

and 

x~+l { 0 
lim -'-k---+ 

1 k-+oo xi 

if i E Z(:r:*) 
if i (/. Z(x*) 

y~+l { 0 
lim (1 - -'-k-) --+ 

1 k-+oo Y; 

if i E Z(x*) 
if i (/. Z(:r:*) 

where xk+l = xk + (Jk 6.x and yk+l = l + (Jk 6.y for any (Jk E [ci, 1) with rxk given 
in Step 3 of Algorithm 1. 

Proof Consider 

X.6.y + Y Ax= -XYe + µ(:r:, y)e. 

It is clear that 

X(y + (36.y) + Y(x + (36.x) = (2 - fJ)XYe + (Jµ(x, y)e. 

Hence 

(6.5) 

Very recently Tapia, Zhang and Ye [40] demonstrated that (A:r:f, Ayf)--> O; hence 

(6.6) 
6.xk 6.y~ 
--' -+ 0 for i (/. Z(x*) and --' --> 0 for i E Z(:r:*). xf yf 

It follows from (6.6) and the definition of r.xk that &k -+ l. Hence nk --> 1 and therefore 
(Jk --> l. The result follows now from (6.5) and Assumptions 2 and 3. D 
Remarks: 

l. The consistency of the three assumptions of Proposition 6.2 is proved for a 
large class of primal-dual interior-point algorithms in Zhang and Tapia [50]. 
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2. The fact that /Jk _. 1, under the assumptions of Proposition 6.2, motivated 
us to use /Jk = 1 in the calculation of the Tapia indicators. This proved to give 
superior results over /Jk = ak in our numerical experiments. 

3. According to the theory of Tapia, Zhang and Ye [40], the assumptions of 
Proposition 6.2 are not sufficient to ensure that the iteration sequence generated by 
Algorithm 1 converges. To ensure the convergence of the iteration sequence, according 
to their theory, Assumption 3 in Proposition 6.2 must be strengthened so that erk _. 0 
at least R-linearly, see Tapia, Zhang and Ye [40]. 

4. It is satisfying to us that the conditions which guarantee the usefulness of 
the Tapia indicators, i.e. conditions 1-3 in Proposition 6.2, are exactly the conditions 
which guarantee fast local convergence, i.e. superlinear convergence of the duality 
gap sequence to zero (see Zhang, Tapia and Dennis [52] and Zhang and Tapia [50]). 
It is equally satisfying that we obtain this pleasant behavior of the Tapia indicators 
without the assumption that the iteration sequence converges, as Tapia [38] assumed 
in Proposition 6.1. 

5. It is clear, from the proof of Proposition 6.2, that the Tapia indicators con­
verge under the conditions that (1) linearized complementarity is approached suffi­
ciently fast, (2) all limit points of the iteration sequence satisfy strict complementarity 
and have the same zero-nonzero structure, and (3) the sequence {(Axk, Ayk)} con­
verges to zero. It is not hard to see that these assumptions are sufficient for the 
convergence of the Tapia indicators to their 0-1 limits (defined by (6.3) and (6.4)) 
even for nonlinear programming problems. 

6. We emphasize that if the condition erk _. 0 is replaced by the conditions 
the iteration sequence converges to a solution in ri(T) and that erk _. er > 0, then 
the 0-1 separation property (6.3) is not retained. In other words the convergence 
of the iteration sequence in the primal-dual interior-point methods is not enough to 
guarantee that the Tapia indicators have the 0-1 separation property. The assumption 
erk _. 0 is crucial in this context. 

Now we discuss the use of the Tapia indicator in several interior-point methods. 
The search directions in many interior-point methods satisfy the following system of 
equations (see Ye [48]) 

AA:r: = 0, 

Different interior-point methods correspond to different choices of Dx and Dy. The 
first equation is of particular interest in our analysis. If Dx, Dy > 0 then this equation 
can be written 

(6.7) 
xTy 

D- 1 A + D- 1 A = -'-D- 1 D- 1 - D- 1 D- 1 XY y X X y (T n y X e y X e. 

In order for the Tapia indicators to retain their effectiveness we should have: 

D; 1 Ax+ D-; 1 Ay _. x- 1 A:r: + y- 1 Ay 
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and 

xTy 
-n- 1n- 1 + n- 1n- 1xy - -<T y x y x e e. 

n 

Examining the different choices for Dx, Dy and u for the primal ( or dual) affine scaling 
algorithms, the primal (or dual) potential-reduction algorithms and the primal (or 
dual) path-following algorithms, it is easy to see that it is extremely unlikely that the 
Tapia indicators will retain their 0-1 separation property in these contexts. 

In conclusion, we believe that primal-dual algorithms where uk --. 0 are the 
natural setting for the use of the Tapia indicators. Moreover, in this case the Tapia 
indicators and the primal-dual interior-point methods are an excellent match. 

Finally we list the properties of the Tapia indicators that make them effective in 
practice as demonstrated in Section 8. These properties are as follows. 

1. They are inexpensive to compute. 
2. They satisfy both the uniform and the sharp separation properties. The 

indicator parameters ¢ = 0 and 0 = 1 are independent of the problem. 
3. From our numerical experience, the Tapia indicators give reliable information 

early. 
4. They are scale independent when the variables are scaled by any positive 

diagonal matrix. 
5. They do not require feasibility or nondegeneracy. 
6. They do not require convergence of the iteration sequence. 

7. Rates of Convergence. In this section we study the rate of convergence of 
several indicators. Studying the behavior of indicators is more subtle than studying 
the behavior of other sequences generated by Algorithm 1 in several respects. Among 
them we emphasize the following 

l. The behavior of the components of the indicator function is more important 
than the general behavior of the indicator vector itself. 

2. The ability of an indicator to identify elements of Z(x*) far from a solution 
is more important than fast local convergence of this indicator. In other words it is 
the global behavior of the indicator that makes it effective, not its fast local behavior. 
The difficulty in studying the global behavior of indicators is essentially the absence of 
a qualitative measure of this behavior. In the absence of such a qualitative measure, 
numerical experimentation may be used to study the global behavior of the indicator in 
an attempt to generate concrete mathematical conjectures that explain this behavior. 

Now we proceed in our study of the convergence rate of the variables as indicator, 
the primal-dual indicator and the Tapia indicators. First we state the result for the 
variables as indicator. 

PROPOSITION 7 .1. Consider a sequence of iterates {( xk, yk, _xk)} generated by 
Algorithm 1. Assume that 

l. (xkf yk --. 0. 

2 min(XkYke) 0 f // k d 
· (xk)Tyk 2:: 'Y > Jor a an some 1 . 

3. The algorithmic parameters uk and Tk have been chosen so that 

Then for each i E Z(x*) 

x7 --+ 0, Q-superlinearly. 
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If in addition the algorithmic parameters uk and Tk have been chosen so that 

(7.1) 

for some e E (0, 1], then there exists x* E ri(T) such that for all i <t, Z(x*) 

k * 
X; -+X;, 

with R-rate 1 + e. 
Proof For each i E Z(x*), Assumptions 1 and 2 guarantee the convergence of 

{xf} to zero, see Tapia, Zhang, and Ye (40]. By Proposition 6.2 we have 

x~+l 
-'-k--+ 0, for i E Z(x*), 

Xj 

which proves the first part.. 
If { uk} and { rk} are chosen according t.o (7.1), then Theorem 4.1 in Tapia, Zhang, 

and Ye [40) implies the convergence of the iteration sequence generated by Algorithm 
1 to a solution x* in the relative interior of the solution set T of problem (1.1). The 
rest of the proof follows from Theorem 3.2 in Zhang and Tapia [50]. D 

It may seem surprising that an indicator possessing Q-superlinear convergence, 
component.wise, does not demonstrate good behavior in practice. The discussion in 
Section 4 on the effect of convergence particulars of interior-point methods as well 
as the effect of the structure of the solution set on the behavior of the variables as 
indicators explains this phenomenon; essentially we have superlinear convergence to 
a misleading value. 

Now we prove that the components of the primal-dual indicator that converge to 
zero do so Q-superlinearly. In this case the poor practical behavior of the primal-dual 
indicator is due to its lack of scale independence and to the structure of the solution 
set as discussed in Section 5. 

PROPOSITION 7.2. Consider a sequence of iterates {(xk,yk,Ak)} generated by 
Algorithm 1. Assume that 

1. (xkf yk -+ 0. 

2 min(XkYke) 0 /: II k d 
. (xk)Tyk 2'. 1 > 1or a an some 1 . 

3. The algorithmic paramaters uk and rk have been chosen so that 

Then for i E Z(x*), 

Q-superlinearly, 

where xk+l = xk + (Jk 6.x and yk+ 1 = yk + (Jk 6.y for any (Jk E [ak, 1] with ak given 
in Step 3 of Algorithm 1. 

Proof For i E Z(x*) we have 

PD~ xk+l yk xk+ljx;k __ • ___ , _ ___L t t 

PD7-i - y7+i xf - y;+i /yf ' 
i E Z(x*). 

The result follows directly from Proposition 6.2. D 
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It is worth mentioning here that the Q1 factor of the primal-dual indicator is the 
quotient of the Tapia primal indicator to the Tapia dual indicator. 

Now we consider the rate of convergence of the Tapia indicators. 
PROPOSITION 7.3. Consider a sequence of iterates {(xk,yk,Ak)} generated by 

Algorithm 1. Assume that 
1. (xkfyk-+O. 

2 min(XkYke) Q F I[ k d 
• (xk)Tyk 2: r > JOT a an some r. 

3. The algorithmic paramaters <Tk and Tk have been chosen so that 

Then 

if i E Z(x*) 
if i (/. Z(x*) ' 

with an R-rate of convergence of 1 +~, where xk+l = xk + f3k ~x and yk+l = yk + f3k ~y 
for any /3k E [ak, 1] with ak given in Step 3 of Algorithm 1. 

Proof Assumptions 1-3 guarantee, by Theorem 4.1 in Tapia, Zhang and Ye [40], 
the convergence of the iterate sequence generated by Algorithm 1 to a solution x* in 
the relative interior of the solution set of problem (1.1). By Theorem 3.2 in Tapia, 
Zhang and Ye (40], we obtain 

IT;(xk) - 1 I = l/3k ~xf I :S /3: (/3'(:1lf yk + /3" uk), i (/. Z(x* ), 
X; :i;i 

for some positive constants /3' and /3". On the other hand, 

I ( k)I I ( k) I dxkf yk /n . ( *) T;x :ST;y -l+u kk zEZ:i:. 
X; Y; 

The remainder of the proof follows from Assumptions (2) and (3) and the above two 
inequalities. D 

It is not clear that a corresponding Q-rate result can be proved for the Tapia indi­
cators. Although the above result is satisfying, it may seem to fall short of explaining 
the good behavior of the Tapia indicators. In the next proposition we try, at least 
partially, to explain this behavior. 

PROPOSITION 7.4. Consider a sequence of iterates {(xk,yk,Ak)} generated by 
Algorithm 1. Assume that 

1. (xkfyk-+O. 

2 min(XkYke) 0 F II k d 
· (xk)Tyk 2 r > JOT a an Somer. 

3. The algorithmic parameters <Tk and Tk have been chosen so that 

Then for i = 1, ... , n 

x/+l y/+l 
-- + -- - 1 -+ 0 Q-superlinearly, 

x;k y;k ' 

where xk+l = xk + /3k ~x and yk+l = yk + /3k ~y for any /3k E [ak, l] with ak given 
in Step 3 of Algorithm 1. 
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Proof Define 

k Xjk+l Yik+l 
f; = --k- + --k- -1, i = 1, ... , n. 

Xj Yi 

Then 

ll+l I o-k+l xk+1T yk+l T /x;k+ly/+1 _ 

1/ll - o-k xkT ykT /x/y;k 

hence 

1/k+l I _ xk+1Tyk+1 T/x .k+1y.k+1 
' - C ' ' (1 k(l k))e 7JFf - xkT ykT /x;ky;k - a - o- ' 

where C is some positive constant. From Assumption 2 we have 

Also we have 

xkT yk 1 
--<-. 
x;ky;k - r 

Together the last three inequalities imply that 

k+l -
l&_j < C (1 - ak(l - o-k))E 
IHI - f3 

and completes the proof. 0 
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It is well-known that if a sequence of reals converges at least Q-linearly, then 
eventually the sequence of errors is strictly monotone decreasing. This is not neces­
sarily the case for R-linear convergence. Hence Propositions 7.3 and 7 .4 imply that 
while the error sequence of the Tapia primal indicator or the Tapia dual indicator is 
not necessarily monotone decreasing, the sum of the two error sequences will eventu­
ally be strictly monotone decreasing. This fact speaks for using the two indicators in 
tandem. 

8. Numerical Experience . In this section we present several numerical exper­
iments with three indicators: the variables as indicators, the primal-dual indicator, 
and the Tapia indicator. The purpose of these experiments is to demonstrate the 
undesirability of variables as indicator, to study the behavior of the primal-dual in­
dicator in primal-dual interior-point methods, and finally to compare between the 
ability of the three indicators to identify zero variables in linear programming. These 
experiments are performed on a subset of the nctlib test set using a predictor-corrector 
primal-dual interior-point code that was developed at Rice University. The code gen­
erates a sequence of iterates that approach feasibility and drive the absolute duality 
gap cT x - bT y to zero. For numerical purposes our stopping criterion is stated in 

terms of the relative gap 0;;lb~:r, rather than the absolute gap. We will say that a 

problem is solved to an accuracy of 10-d for some positive integer d if the algorithm 
is terminated when 
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In the following experiments all problems are solved to an accuracy of 10-8 unless 
otherwise specified. This choice agrees with the default choice for the stopping crite­
rion in many interior-point codes. The experiments were performed on a Sun 4/490 
workstation with 64 Megabytes of memory. 

8.1. The Undesirability of Variables as Indicator. Historically, the vari­
ables were probably the first indicators used to predict Z ( x*). In Section 4 we dis­
cussed, in detail, the disadvantages of this indicator. In our numerical experiments, 
we observed that in many test problems from the netlib collection it was extremely 
difficult, and sometimes even impossible, to distinguish between zero and nonzero 
variables, in an approximate solution generated by primal-dual interior-point meth­
ods, using only the values of these variables. In the following we will investigate some 
ideas that have been proposed for using the variables to determine Z(x*). 

(i) Set x; = 0 if xf ~ 8zero· 

Gill et al. [11] chose 8zero = 10-8 . In many cases the algorithm terminated with 
most of the zero variables having values greater than 10-5 , e.g. SHARElB and 
SCAGR25 (in fact some problems had zero variables of order 10- 2 when the algorithm 
terminated, e.g. SCAGR25). So, this choice is very conservative. If we use 8zero = 
10-6 some of the nonzero primal variables in PILOT4 and some of the nonzero dual 
elements in CYCLE have values less than this threshold. So, a good choice of 8zero 

is extremely difficult to find. We also observed that for a particular problem zero 
elements may have a wide range of magnitude at the approximate solution generated 
by the primal-dual interior-point method. For example in GREENBEA the zero 
variables in the approximate solution have magnitudes ranging from 10- 1 to 10-5 . 

(ii) Set x; = 0 if xf '.S 8x and yf ~ 8y. 
From our experience with the netlib problems we observed that the final approximate 
solution generated by a primal-dual interior-point method may not have enough sepa­
ration between the primal variables and the dual slacks. For example, the pair ( :r:;, y;), 
for some values of i, is of order (10- 6 , 10-4 ) in LOTFI and BANDM, (10- 2 , 10-1 ) 

in SCAGR25 and (10-4, 10-4) in both SCAGR25 and FFFFF800. This shows that 
choosing effective thresholds 8x and 8y for a given set of problems is practically im­
possible. It is also worth mentioning that in SEBA the pair (x;, y;), for some values of 
i is of the order c10- 3 ' 10- 1) while for a different value of i it is of order (10- 4 ' 10- 2). 

This shows that choosing these thresholds is practically impossible even for variables 
in the same problem. It is interesting to observe that in problem NESM the algorithm 
terminated with a certain pair equal to (1.543, 0.000015); which gives the impression 
that the dual slack is zero and the primal variable is nonzero at the solution. Solving 
the problem to an accuracy of 10- 15 reduced the value of x; to 0.21 x 10-9 while the 
value of the dual slack remained the same, see Table 1. In Table 1, the letter N in the 
last row means that we could not solve the problem to an accuracy of 10- 16

. This 
example shows how misleading the variables can be. 

Some authors propose choosing 8zero adaptively. Although this idea may slightly 
improve the results obtained by using the variables as indicators, we believe it will 
not account for that much improvement. The reason is that, as mentioned in Section 
4, at an approximate solution generated by a primal-dual interior-point method the 
variables x; with i E Z(x*) have small, but not zero, values. In fact, we observed that 
the algorithm may terminate with some of these values relatively large. In several 
cases, some of these values were larger than values of the positive variables, e.g. 
GREENBEA and NESM. This phenomenon implies that, at least for these problems, 
the choice for 8zero is practically impossible. One may then suggest that we solve 



28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 

Identifying Zero Variables in Interior-Point Methods 

TABLE 8.1 
NESM: A particular solution pair 

relative 
gap 

10-6 
10-6 

10-1 

10-8 

10-0 

10-9 
10-11 

10-12 
10-13 
10-15 
10-16 

X 

21.793 
17.905 
7.946 
1.543 
0.2648 

0.35D-l 
0.13D-2 
0.44D-4 
0.18D-5 
0.21D-9 

N 

y 

1.58D-5 
1.57D-5 
1.58D-5 
1.59D-5 
1.59D-5 
1.59D-5 
1.59D-5 
1.59D-5 
1.59D-5 
1.59D-5 

N 

I TAPIA 
For x 

0.878 
0.784 
0.443 

0.26D-2 
0.14D-3 
0.57D-5 
0.25D-6 
0.19D-7 
0.26D-8 
0.19D-9 

N 

PRIMAL 
DUAL 

0.12D+7 
0.10D+7 
0.50D+6 
0.13D+4 
0.14D+2 
0.96D-1 
0.45D-3 
0.16D-5 
0.47D-8 
0.16D-12 

N 
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the problem to a greater accuracy so that there is a clear distinction between zero 
and nonzero variables. Although this idea is conceptually correct, it overlooks three 
important issues. 

l. It is not, generally, known a priori to what accuracy a particular problem 
should be solved. For example, we solved problem D2Q06C to an accuracy of 10- 11 

and we still had some pairs (x;, y;) of order (10- 5 , 10-4 ) and even (10-4, 10-4 ). An­
other example is problem CYCLE which we solved to an accuracy of 10- 12 and we 
had pairs of order (10- 9 , 10-5), (10-8 , 10-6), (10- 8 , 10- 7 ) and (10- 1 , 10-7). 

2. Since the linear systems we are solving are necessarily singular at any so­
lution for degenerate problems, in some problems these systems may become very 
ill-conditioned near a solution so that we cannot solve the problem to the desired 
accuracy. An example of this is problem NESM. We solved this problem to an accu­
racy of 10- 15 _ We observed that some pairs (x;, y;) were of the order (10- 1

, 10-1
). 

Unfortunately, we cannot ask for more accuracy with the given precision. 
3. Finally, even if we know the required accuracy and we are able to solve the 

problem to that accuracy, we miss one of the main objectives of the indicators. This 
objective is to predict zero variables as early as possible in order to save computational 
work. 

8.2. The Behavior of Several Indicators. This experiment compares the 
ability of three indicators, the variable as indicator, the Tapia indicator and the 
primal-dual indicator, to identify zero variables. Naturally, the number of zero vari­
ables predicted by each indicator will depend on the indicator's threshold 81 in the 
identification test 

For this experiment we choose 811 ariables = 10-6
, DTapia = 0.1 and Dprimal-dual = 0.1. 

The choice of this value of Dprimal-dual is based upon our own experience that if 
Dprimal-dual > 1, the primal-dual indicator predicts the wrong set of zero variables 
more often. We choose Dvariables = 10-6 because in some of the test problems the 
terminal values of zero variables are greater than 10-6 at the approximate solution 
when the problems are solved to an accuracy of 10-8 ; which is the default choice in 
our algorithm as well as most primal-dual interior-point methods. In Table 2, the first 
column gives the problem name. Corresponding to each problem the second column 
gives the name of the indicator used to predict members of Z(x*). Columns 3 to 9 
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give the quotient l~~::~1, i.e. the percentage of the zero variables correctly identified 
at the corresponding iteration. These columns correspond to the last 7 iterations 
before the algorithm terminated. Here M is the total number of iterations required 
to solve the problem to an accuracy of 10-8 . We stress that we count the predicted 
zero variables only when the set zk ~ Z(x*), i.e. zk does not have any member i 
with the corresponding xt positive at the solution. 

For the set of problems given in Table 2, the Tapia indicator shows a better 
ability to predict zero variables. It is also clear that the ability of the variables to 
determine Z(x*) early is minimal. An obvious example is problem GROW7, where 
the variables, used as indicators, were able to determine only one element of Z(x*) 
when the algorithm terminated. All the problems in Table 2 are solved to an accuracy 
of 10-8 • It is worth mentioning here that at iteration 7 in problem SCSDl the set 

TABLE 8.2 
Comparison between indicators 

PROBLEM INDICATOR I M-6 I M-5 I M-4 I M-3 I M-2 M-1 

AFIRO VARIABLES 0 0 0 0 0 0 
(M=8) PRIMAL-DUAL 0 0 0 0 0 100 

TAPIA 0 0 3 14 93 100 

ADLITTLE VARIABLES 0 0 0 0 7 78 
(M=12) PRIMAL-DUAL 0 0 0 0 0 0 

TAPIA 7 9 52 79 94 100 

SCSDl VARIABLES 0 0 0 0 0 100 
(M=9) PRIMAL-DUAL 0 0 0 0 0 100 

TAPIA 0 0 25 66 99 100 

SHIP04L VARIABLES 0 0 11 11 11 98 
(M=17) PRIMAL-DUAL 0 0 0 0 0 0 

TAPIA 0 0 97 10 100 100 

SHARE2B VARIABLES 0 0 0 0 0 73 
(M=12) PRIMAL-DUAL 0 0 69 76 81 100 

TAPIA 3 30 63 79 97 100 

GROW7 VARIABLES 0 0 0 0 0 0 
(M=14) PRIMAL-DUAL 0 0 0 0 0 98 

TAPIA 0 0 0 0 11 96 

Ml 
100 
100 
100 I 
100 
100 
100 

100 
100 
100 

100 
100 
100 

100 
100 
100 

2 
100 
100 

Z 7 that is determined by the primal-dual indicator contains all correct zeros as well 
as one nonzero variable. This shows that one should be cautious when using the 
primal-dual indicator. This behavior is observed in other problems as well. 

An example of the undesirable behavior of the primal-dual indicator for some 
variables in problem WOODlP is shown in Figures l. In Figure 1, the variable (rep­
resented by the solid line) is very small but not zero at the solution (the optimal 
value of that variable is 1.1 x 10-5 ). The corresponding primal-dual indicator (rep­
resented by the dotted line) has very small values (less than 10- 4 ) for 12 iterations 
(the algorithm terminated at iteration 13) giving the impression that this variable is 
zero at the solution. The Tapia indicator for the same variable is presented by the 
dashed line. The indicator accurately predicts very early that the terminal value of 
this variable is not zero. Note that this problem is very well behaved in the sense that 
the variables start approaching their optimal values reasonably early. Figure 2 shows 
the behavior of the Tapia indicator for all the variables in problem SCSDl. Although 
a few of the indicators converge to their terminal values late, most indicators do give 
the correct information early. Finally, we do not mean to imply that the primal-dual 
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FIG. 8.1. The Tapia and primal-dual indicators for a small nonzero variable. 
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indicator always follows the pattern seen in Figures l. In fact, Figure 3 shows an ex­
ample in which the primal-dual indicator performs very well, again here the solid line 
represents the variable and the dotted line represents the corresponding primal-dual 
indicator. However, from our numerical experience, we believe that much care should 
be taken when the primal-dual indicator is used. 

Finally, Table 1 gives an example in which both the variables and the primal-dual 
indicator fail to give the correct information when the algorithm terminated. The 
first column of that table gives the iteration count. The second column gives the cor­
responding relative gap. The last four columns give the values of the primal variable, 
the corresponding dual slack, the Tapia indicator and the primal-dual indicator, re­
spectively, for a given variable in problem NESM. This variable is zero at the solution. 
We note that when the algorithm stops at iteration 31, the primal-dual indicator has 
a very large value. So, it fails to give the correct information at this iteration. Note 
that the Tapia indicator, at the same iteration, correctly indicates that this variable is 
zero at the solution. We had to take two more iterations in order for the primal-dual 
indicator to give the correct information. 

8.3. A Generic Procedure. In the following we introduce a generic procedure 
to identify zero variables in linear programming problems. This procedure is a sample 
procedure of what, in our opinion, should be a framework for zero-variable identifica­
tion techniques. It is our considered opinion that any effective procedure of this kind 
should have three features 

(i) An effective indicator. 
(ii) A good way of handling the information from the indicator. 
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FIG. 8.2. The Tapia indicators for all variables in problem SCSDJ. 

(iii) A mechanism to detect and recover if an error is made in predicting members 
of Z(x*). 

PROCEDURE 8 .1. 
At iteration k, 

(i) Test for errors in Z(xk). If they exist, recover. 
(ii) Test indicators l;, i E ( { 1, ... , n} - Z( xk)) using the identification cr·iterion 

(8.1) I;~ 8. 

(iii) Use information from (ii) to update the estimate of Z(xk). 
We emphasize again that far away from the solution set of the linear programming 

problem all indicators give only heuristics for the identification of zero Z*. This fact 
emphasizes the importance of a recovery procedure if an error is made. It also supports 
the strategy that we adopted in our application of Procedure 8.1 on the netlib set of 
test problems. This strategy has the following two features 

(i) We used two indicators to confirm information obtained from each of them 
individually. From our numerical experiments it seems beneficial to use more 
than one indicator (in particular if they are not expensive to compute). 

(ii) We adopted a conservative strategy in using the information obtained in 
Step (ii) in Procedure 8.1. 

Now we discuss the particulars of our implementation of Procedure 8.1. For step (ii) 
we use two indicators, the sum of the Tapia indicators 

k - I x:+1 I I y:+1 I TI; - --k- + 1 - --k- , 
X; Y; 
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FIG. 8.3. The primal-dual indicator for a positive variable. 

and the primal-dual indicator 

P'Dk -;-
x~+1 

i 

k+l' Y; 
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where x~+l = xf + Axf and Y7+l = yf + Ayf. For the the indicator Tlf we used 
{jTI = 0.2 and for the primal-dual indicator we used bprimal-dual = 0.1. 

For step (iii), we adopted the strategy proposed by Tapia [38]. This strategy was 
implemented by Vardi [46] in the context of nonlinear programming problems. The 
idea is to divide the set { 1, ... , n} at iteration k into three categories, Z( x:k) consisting 
of indices corresponding to variables that are predicted to be zero, NZ(xk) consisting 
of indices corresponding to variables that are predicted to be nonzero, and a third 
category U(xk) = {1, ... , n} - (Z(xk) U NZ(xk)) consisting of indices corresponding 
to variables that we feel we do not have enough information about to move them 
to one of the first two categories. There are several ways to specify each of the 
three categories and the rule to move a variable from one category to another. In 
our implementation we start with NZ(x 0

) = Z(x 0
) = 0 and U(x 0

) = {1, ... , n }. An 
index i is moved fromU(xk) to Z(xk) if the identification criterion (8.1) is satisfied for 
the two indicators T; and PD; for two consequent iterations. If (8.1) is not satisfied 
for at least one of the two indicators for more than one iteration then i is moved 
from U(xk) to NZ(xk). An index i E NZ(xk) moves to U(xk) if the two indicators 
satisfy (8.1) at the same iteration. This procedure was tested on a subset of the 
NETLIB set of LP test problems. The results were quite satisfying. With no recovery 
technique the procedure failed in 12 problems out of the 80 problems tested. When a 
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simple recovery technique was used the procedure failed only on one problem, NESM, 
where the procedure predicted only some members of Z(x*). The performance of our 
procedure, for some problems from the netlib, is given in Table 3. The first. column 
of this table gives the names of the problem solved while columns 2 to 10 give the 
number of positive variables at the corresponding iteration aft.er the zero variables 
have been identified and removed. Here M is the total number of iterations required 
to solve the problem to an accuracy of 10-8 . We stress that for the results in Table 3, 
the procedure was activated when the relative gap was smaller than 10- 1 . However, 
some experiments were conducted using the procedure from the first. iteration and 
the results were also promising, although in this case we had to be more conservative 
in choosing the thresholds DTapia and Dprimal-dual. The total numbers of iterations 

TABLE 8.3 
Identifying zero variables for some test problems 

PROBLEM ! M-8 I M-7 I M-6 I M-5 I M-4 I M-3 ! M-2 M-1 M 

FINNIS 985 545 503 482 469 407 394 390 390 
PILOT4 1181 899 840 840 756 667 667 611 607 
SCRS8 1275 1204 1141 1096 553 379 329 325 325 
DEGEN2 595 595 595 555 543 436 70 53 53 
GFRD-PNC 1149 1149 1149 1011 872 842 426 407 407 
CYCLE 2139 2139 2139 1865 1655 1495 1360 1265 1260 
MAROS 1906 1906 1906 1832 1806 634 493 480 476 
WOODlP 2395 2288 2181 2151 1767 1418 52 39 39 
SHIP12L 5533 5533 5528 5528 5306 5306 3590 726 726 
GREENBEA 5283 5283 5051 1790 1639 1543 1429 1384 1375 

required by the ten problems listed are as follows: for FINNIS M=27, PILOT4 M=35, 
SCRS8 M=26, DEGEN2 M=14, GFRD-PCN M=18, CYCLE M= 26, MAROS M=24, 
WOODlP M=14, SHIP12L M= 17 and GREENBEA M=44. 

The following remarks are of interest 
(i) If the procedure is used very early in the iterative process, the algorithm may 

converge to a point on the relative boundary of the solution set, i.e. a solution with 
more zero variables than the ones in the relative interior of that. set. An example of 
this phenomenon is problem SCSD6. When the identification procedure was activated 
with the relative gap less than 10- 1 , the final approximate solution had 1168 zero 
variables. When we used the identification procedure from the first. iteration the final 
approximate solution had 1198 zeros. 

(ii) We noticed that identifying and removing zero variables early may actually 
reduce the total number of iterations required. Some examples are given in Table 4. 

TABLE 8.4 

Saving iterations by removing zero variables 

PROBLEM Total number of iterations Total number of iterations I 
without removing zero variables if zero variables are re1noved 

CYCLE 26 23 
SCSD6 12 10 
GREENBEA 45 44 
WOODlP 15 14 

9. Concluding Remarks. This study focused on three philosophically distinct. 
indicators: the variables as indicator, the primal-dual indicator, and the Tapia indi­
cators. Theorem 2.2, Proposition 5.1 and Proposition 6.2 describe the characteristic 
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behavior of these three indicators. An immediate implication of Theorem 2.2 is that 
the undesirable behavior that results from using the variables as indicator cannot 
be avoided. Proposition 5.1 pinpoints the source of the undesirable behavior that 
the primal-dual indicator exhibits in interior-point methods. Proposition 6.2 states 
that the Tapia indicator retains its useful properties, when used with primal-dual 
interior-point methods, under essentially the same conditions that guarantee fast lo­
cal convergence of the duality gap sequence. We emphasize that convergence of the 
iteration sequence is not required for this result. Our numerical results are interesting 
and present a solid case against the use of the variables as indicator, and motivate the 
use of the Tapia indicators over the so-called primal-dual indicator. In conclusion, we 
strongly believe that the use of indicators can be a very useful and powerful tool and 
deserves further study. 
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A. Appendix: Existing Indicators. In this appendix we catalogue various 
indicators that appear in the literature. 

A.1. The Kojima Indicator. Kojima [20] proposed a method to be used in 
Karmarkar-type methods for identifying positive variables. The Kojima indicator is 
defined as the piecewise linear function: 

CT Xk 1 
I; ( xk, p) = min { c1:1- + -- + ( P; 1· + - ) p : j # i}, i = 1, ... , n, 

n ' n 
(A.l) 

where P is a specific matrix of the form 

P = I - (ADf M - (1/n)eeT, 

where e = (1, ... , lf, Mis a specific m x n matrix, xk is a strictly feasible point, cP = 
P De where D = diag( xk), and p is a parameter. Kojima proved that Ii ( xk, p) > 0 is 
a sufficient condition for xr to be positive for any solution with nonpositive objective 
function. On the other hand, it is not clear that the Kojima indicator satisfies the 
sharp or the uniform separation properties. It also depends on an auxiliary parameter 
p and it is not obvious how it should be chosen. It was noted by Kojima that this 
indicator requires primal nondegeneracy. The test proposed by Kojima to identify 
zero variables costs O(mn) arithmetic operations for each variable. 

A.2. The Ye-Todd Indicators. Todd [41] proved that all dual optimal solu­
tions are contained in ellipsoids that can be generated as a by-product of the Kar­
markar algorithm. Using this information, he proposed an indicator that can identify 
a subset of primal variables that are zero at every primal optimal solution. Ye [47] 
rigorously studied this idea and proposed a closely related indicator in a closed form. 
The Ye-Todd indicator is 

(A.2) 

where Dk a positive diagonal matrix with dk as its diagonal (usually dk = xk), qk 
is the diagonal of the projection matrix Dk AT ( A( Dk )2 AT )- 1 A Dk and ck > 0 is a 
parameter of the dual-slack ellipsoid 
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that contains all the optimal dual slacks y*. The parameter fk is set equal to the 
duality gap at each iteration. Ye proved that I(yk, ck) > 0 implies that x; = 0 in 
all optimal solutions of that problem. The Ye-Todd indicator has interesting theo­
retical properties. Unfortunately, it is not clear that it satisfies the uniform or sharp 
separation properties. Also it is expensive to compute and finally, it requires primal 
nondegeneracy. Anstreicher [1] proposed a modification to the Ye-Todd approach to 
extend it to problems with primal degeneracy. 

Using a similar approach, Ye and Todd [43] described a path-following algorithm 
for convex quadratic programming problems which uses a sequence of ellipsoids. Each 
of these ellipsoids contains all of the primal and dual-slack solutions. They propose 
an indicator, using these ellipsoids, to identify zero variables in the course of an 
interior-point algorithm for linear programming. Although their indicator has very 
nice theoretical properties, it is expensive to compute at each iteration. It also requires 
nondegeneracy if all zero variables are to be identified. 

A.3. The Kovacevic-Vujcic Indicator. In an attempt to accelerate the con­
vergence of Karmarkar-type methods, Kovacevic-Vujcic [22] introduced the following 
indicator 

(A.3) 

where 

Kovacevic-Vujcic proved that this indicator is superlinearly faster than the vari­
ables, namely 

. III(xk, ~xk) - I* II 
hm k = 0, 

k--+oo llx - X*II 
where 

I* = lim I(xk, ~xk). 
k--+ CXJ 

On the other hand, this indicator satisfies neither the sharp nor the uniform separa­
tion property. It also requires dual nondegeneracy. Finally we note that while the 
Kovacevic-Vujcic indicator may be of use in Karmarkar-type methods; it is not clear 
that it is of use in the context of the recent primal-dual interior-point methods. The 
reason is that in the more effective implementation of these methods the step is taken 
to the boundary asymptotically, see Zhang, Tapia and Dennis [52]. This means that 
the indicator, asymptotically, will coincide with the iterate. 

A.4. The Mehrotra Indicator. Mehrotra [30] consider the quantity 

(A.4) I k+1 k I 
1-(yk ~yk ak) _ Y; - Y; 

i ' ' - k ' Y; 

which measures the relative change in the dual slack yf, as an indicator. Mehro­
tra used this indicator to drop constraints when implementing a dual affine scaling 
method. 
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A.5. The Tapia-Zhang Indicator. In an attempt to uncover an optimal basis 
of the linear program (1.1), Tapia and Zhang [39] introduced the indicator: 

(A.5) 

where Dk is the diagonal matrix with dk as its diagonal. The vector dk can be xk, yk 
or (Yk)- 1 Xke. Assuming primal and dual nondegeneracy Tapia and Zhang proved 
that this indicator satisfies both the sharp and the uniform separation properties, 
namely 

(A.6) k { 0 if i E Z(x*) 
kl~~ l;(z ) = 1 if i ft Z(x*) 

They also proved that it is quadratically faster than the variables, i.e. 

where 

I* = Jim I(zk). 
k-+oo 

This indicator can be used for primal, dual, and primal-dual methods. For some in­
teresting theoretical properties of this indicator see [39]. The disadvantages of this 
indicator are that it requires primal and dual nondegeneracy and is expensive if eval­
uated at each iteration. 

A.6. The Resende-Veiga Indicator. Resende and Veiga [36] used the recip­
rocal of the dual slacks as indicators, namely 

(A.7) 

where Y = diag(y). This indicator satisfies 

lim l;(yk) = Y, { 
1/ .2 

k-.oo 00 

They used the identification criterion 

if i E Z(x*) 
ifi ft Z(x*) 

l;(l) < 10-3 
fd ===} xf = 0, 

where fd is the geometric mean of the arithmetic and harmonic means of the compo­
nents of the vector (1/yr, ... , 1/y;,,). The use of this indicator requires strict comple­
mentarity. Unfortunately, this indicator satisfies neither the sharp nor the uniform 
separation property. 

A. 7. The Choi-Goldfarb Indicators. In an attempt to generalize Todd-Ye 
indicators to algorithms that are not necessarily interior-point methods, Choi and 
Goldfarb [5] proposed two indicators using ellipsoids that contain optimal solutions 
of the linear programming problems. As the case with the Todd-Ye indicators the 
Choi-Goldfarb indicators are expensive to compute at each iteration. Also if all zero 
variables (i.e. all members of Z(x*) are to be identified, then the assumption of primal 
nondegeneracy is required. 
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