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ABSTRACT 

 

 

 The purpose of this study was to validate an approach to estimating the induced 

drag on a finite wing by using a wake integral analysis. The long-term goal is related to 

developing an aerodynamic-structural systems integrated design methodology for wings 

through the use of a transpiration boundary condition to control the spanwise lift 

distribution throughout a typical aircraft mission so as to minimize lift–induced drag. The 

short term goal addressed by this study is to develop a methodology to extract accurate 

and robust calculations of the induced drag from second order numerical solutions. 

Numerical results for an untwisted, finite rectangular wing (NACA 0012, AR = 

6.7) using no flap deflections are compared against theoretical lifting line predictions. 

The numerical approach used an Euler-based computational fluid dynamic (CFD) solver. 

An in-house lifting line code was used to predict the theoretical reference values. By 

dividing the wing into twenty span-wise sections and using a surface integral of pressure 

at each section, a span-wise lift distribution was extracted from the CFD solution. Under 

flow conditions representing subsonic and transonic flows (Mach 0.3 – 0.7) at small 

angles of attack, the comparison between the predicted numerical and lifting-line span-

wise lift distributions show good agreement with a maximum deviation of only 2.4% over 

the wing span.  

The induced drag was extracted from the downstream wake using a wake integral 

technique referred to as Trefftz plane analysis. This approach was attempted because (1) 

there are known inherent inaccuracies associated with using the more common surface 

integral method for calculating the drag of a wing, and (2) the wake integral approach 



 

directly isolates the induced drag from other drag (viscous and wake) components. The 

predictions for induced drag based on surface integration, wake integration and lifting 

line methods are compared. The numerical induced drag results show a dependency on 

the downstream location of the Trefftz plane. Near wake and compressible flow 

corrections were applied to improve the induced drag predictions by wake integration. 

The wake integration approach is susceptible to artificial dissipation due to the numerical 

flow grid used, which provides an error that increases as the position of the Trefftz plane 

moves further downstream. Attempts to estimate the extent of this effect and to correct 

for it are discussed. 

The numerical solution of the Euler equations demonstrates successful 

implementation of the wake integral method via a Trefftz Plane analysis of the induced 

drag. The study details an initial effort to identify and to quantify the numerical 

uncertainties associated with the simulation and, specifically, the induced drag prediction. 
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NOMENCLATURE 

 

 

A Area 

A Axial force 

AR Aspect ratio 
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b Span length 

c Chord length 

CDi  Coefficient of induced drag  

CL Lift force coefficient 

Cl Section lift force coefficient 

Cp Pressure coefficient 

D Drag force 

Di Induced drag 

Dp Profile drag 

e Specific energy per unit volume 

Fs Factor of safety 

H Total Enthalpy 

h Enthalpy 

k Thermal conductivity 
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L Section lift force 

M Mach number 

N Normal force 

n̂  Normal vector 

P Static pressure 

q Dynamic pressure 

R Gas constant 

r Grid refinement ratio 

S Total surface area 

s Entropy 

T Static temperature 

t Airfoil thickness 

t Time  

TE Trailing edge 

U Uncertainty 

U Velocity 

u Component of velocity in the x-direction 

V Volume 

v Component of velocity in the y-direction 

W Conservative Variables 

w Component of velocity in the z-direction 
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w Downwash velocity 
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Γ  Circulation 
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ρ  Density  
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 Modern aircraft wings are simple structures that enable heavier-than-air vehicles 

to take flight.  In the first hundred years of powered flight, aircraft wings evolved and 

became more efficient with each decade.  The structural design of the wings changed 

from bi-plane and tri-plane designs, with external supports and mechanical rigging for the 

wing, to monoplane designs with internal mechanisms and supports.  A variety of 

mechanical systems were adopted for aerodynamic control.  These included flaps, slats, 

ailerons, and spoilers.  Wings also became fuel tanks, antennas, and payload carriers, in 

addition to the prime devices used for generating lift.  Wings continued to evolve 

geometrically by incorporating taper, winglets, and sweep to improve aerodynamic 

efficiency.  It is anticipated that aircraft wings will continue to evolve in the second 

century of flight to allow the wing to adapt to best meet the needs for a particular flight 

segment [1].  Adaptive-surface flow control is one of the technologies that will contribute 

to this evolution.  The integration of adaptive control surfaces into aircraft designs will 

allow wings to actively respond to their environment either to enhance performance or to 

improve efficiency.  Whether the airplane is taking-off, ascending, cruising, descending, 

loitering, or landing, this technology will allow a wing to tailor its shape to achieve 

optimal flight conditions.   

Generally, aircraft design engineers optimize such a conventional flight vehicle’s 

wings for a specific flight condition or set of conditions.  Design optimizations, however, 



 

often do not consider aerodynamic efficiency.  Different criteria pertinent to a vehicle’s 

mission are the primary concern in these design optimizations.  An aircraft mission could 

demand that a vehicle have traits that give it enhanced speed, stealth, maximum loiter, 

endurance, range, maneuverability, high wing loading, survivability, stability, high 

ceiling, or a combination of these.  Often, highly constrained design optimizations have a 

negative impact on overall aerodynamic effectiveness.  Conventional wing designs are 

often optimized for specific mission criteria, so some designs tend to be inadequate 

during off-design flight regimes that are not associated with the aircraft’s overall purpose.  

Designers typically incorporate mechanical systems such as slats, spoilers, and flaps into 

wing designs to mitigate the design deficiencies in the off-design flight regimes.  Despite 

the design improvements in the first century of powered flight, conventional wings 

lacked flexibility to adapt to unknown or changing flight conditions. With recent 

advances in both material sciences and electro-mechanical systems research, adaptive 

control surface technology can now be incorporated into wing designs.  Previously, such 

systems were impractical because size, cost, and weight offset their benefits.  Now with 

smaller, more powerful, inexpensive, and energy efficient sensors, control systems, and 

actuators, adaptive control surfaces are becoming a reality both in dynamic wind tunnel 

models and flight test vehicles. The power of modern numerical methods can be 

leveraged through computational fluid dynamics (CFD) to solve for steady and transient 

flow conditions as a means for benchmarking and testing this technology.  It has the 

potential to reveal any problems with aircraft aerodynamics before a single component is 

constructed. With this vision in mind, this study looks at a method to enable the 
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numerical modeling of the aerodynamic effects of adaptive trailing edge control within a 

design capable environment. 

The inspiration for the chosen approach comes from the pioneering work by 

Kolonay, Eastep, and Sanders [2] on active conformal control surfaces utilized to explore 

the issue of inflexibility in conventional designs.  In their study, they simulated active 

conformal control surfaces to tailor the spanwise lift distribution of a given wing to a 

desired shape and subsequent control of the drag induced by the tip vortices.  Their study 

employed a lattice vortex method coupled with a generic optimizer to yield an elliptical 

spanwise lift distribution using trailing edge controls. This promising effort inspired 

further development of the work.  This study represents an extension of the Kolonay et al 

[2] approach by using a three-dimensional unstructured finite-volume solver and 

transpiration boundary conditions to facilitate CFD-based optimization studies. The use 

of an inviscid flow solver is the logical next course in this research because the inviscid 

solver has a higher fidelity than the vortex lattice method used by Kolonay et al [2]. 

Unlike a panel method or a potential flow solver, an Euler code does not require a priori 

knowledge of a wake’s geometry [3]. Moreover, an Euler solver serves as a good 

transition because it has less of a computation overhead than a Navier-Stokes flow solver. 

This results from not having to compute the viscous fluxes. Lift-induced drag is 

independent of fluid viscosity; it is an artifact from the formation of the trailing edge 

vortices which are by-products of the pressure difference used to generate lift [4]. This is 

why the viscous terms of the governing equations of fluid mechanics can be neglected.  

Transpiration boundary conditions impose a velocity component normal to a wing 

section in a manner such that the instantaneous tangential velocity component at that 
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section takes on the same value that would exist with a physical geometric surface 

deflection, such as the deflection of a flap. The successful use of transpiration boundary 

conditions would overcome a major hurdle of computational complexity and time when 

using high fidelity CFD methods by circumventing the need to re-grid and test the flow 

domain with each geometric variation.  As such, it enables the CFD code to be used 

efficiently particularly when coupled with other time-intensive numerical predictors, such 

as structural codes and geometry optimizers, within a design environment. 

The focus of this thesis is on the methodology used to extract both the spanwise 

lift distribution and the induced drag from the CFD solution, and to identify potential 

elements of error, as well as to quantify those errors through an uncertainty analysis. At 

present, drag over a finite wing can be extracted from a numerical flow solution via two 

methods: a surface integration or a farfield analysis. The surface integration method is 

elementary by design and simply gives a mechanical breakdown of the forces acting on 

the wing into its normal component (pressure) and its tangential component (friction). 

However, this method has proven to be relatively inconsistent at predicting drag [5], 

especially with reasonable mesh sizes. With this noted deficiency in mind, the latter 

method will be used in this study which, although requiring more computational 

resources during the post-processing phase, allows “a phenomenological breakdown of 

drag into its physical components (lift-induced drag, wave drag, and with the Navier-

Stokes equations, viscous drag)” [6]. While this delineation of drag into its components is 

attractive, the farfield method is not without issues of its own. Numerical methods, and 

the grids associated with them, give rise to spurious sources of drag that affect the 

induced drag prediction. In farfield methods, the induced drag estimate, which should be 
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a constant for a wing configuration and flight condition, is found to decrease as the 

location of analysis is moved further downstream [3]. However, with appropriate analysis 

of the solution field, Bourdin shows that these errors can be identified, estimated, and 

potentially eliminated. 

The global objective of the project, of which this study is but one part, is to 

achieve a closed loop abstract control system by coupling flow solver code with a 

structural optimization program in a design capable environment. We envision that 

multiple virtual trailing edge control surfaces will be used to change the span-wise lift 

distribution of a finite wing within an Euler solver. The manipulation of the lift 

distribution by these virtual control surfaces will cause a change in lift-induced drag 

which will show up in the farfield analysis, thus allowing optimization of the lift 

distribution for specific needs such as minimum induced drag. This larger objective will 

require the transitioning of methodologies and techniques developed in the post-

processing stage of analysis directly into the flow solver. Only then can the flow solver’s 

link to an optimization routine be constructed, and the control loop closed. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

 Over the past century and since the realization of powered flight, the study of drag 

has remained a primary focus of aircraft research and design. Drag is an essential design 

criterion that affects a multitude of capabilities including, but certainly not limited to, top 

speed, range, and fuel consumption. At cruise, generally the greatest portion of any flight, 

Kroo [7] estimates that lift induced drag accounts for approximately 40% of the total drag 

for a typical transport aircraft. At lower speeds, and especially at takeoff, lift induced 

drag can account for as much as 80-90% of the total drag. Kroo argues that although 

takeoff is arguably very short when compared to the total duration of flight, “it’s 

influence on the overall aircraft design is profound.” He goes on to note, “that it remains 

an area of great interest reflects both the importance and the complexity of this topic.” 

Admittedly, much research continues even after a century of progress. 

 

Near-Field vs. Far-Field 

 

At present, drag over a finite wing can be extracted from a numerical flow 

solution via two methods: surface pressure integration about the wing surface or a far-

field analysis. The surface integration method, also called the “near-field method” is 

elementary by design and simply gives a mechanical breakdown of the forces acting on 

the wing into its normal component and its tangential component. Most all commercial 

CFD codes include this method as a tool for estimating drag.  



 

Far-field analyses are performed in the wake region and thus are often referred to 

as wake integration techniques. This technique for determining drag, or in some cases lift, 

on a body is based on a control volume approach. Special care is taken so that the control 

volume is large enough so as to assume negligible flow escapes the control volume at any 

face other than the downstream outflow face. This ensures that all appreciable changes in 

the flow due to the body will be evident on this downstream face. A momentum balance 

is then applied over the inlet and outlet to calculate the drag force. The conservation 

equations are used to develop integral relations which can be performed over the rear 

outflow face to calculate the drag force. The wake integration method is commonly 

referred to as Trefftz plane integration; named after Trefftz, one of the first to use a far-

field technique for determining induced drag in the early 1920’s. The wake integration 

plane, or Trefftz plane, is placed aft of the wing as is orientated perpendicular to the 

freestream direction. 

Nikfetrat et al. [8] used a far-field technique to evaluate drag in an Euler 

simulation. A wing with an elliptic spanwise chord distribution made of NACA 0012 

airfoil sections and having an aspect ratio of seven was used. The far-field technique 

coupled with an Euler solution provides a decomposition of total drag into induced and 

wave drag, and thus provides more information on drag sources than that of surface 

pressure integration. The focus of the paper is to draw a comparison between the drag 

obtained from evaluation of the wake integral to the more conventional drag based on the 

integration of surface pressures. Two separate Euler codes are used in the study. The lift 

coefficient obtained from both surface pressure integration as well as evaluation of the 

wake integral agree very well with lifting line theory and serve as a consistency check of 
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the numerical solution. However, the surface pressure integration severely overestimates 

the induced drag coefficient by more than 40% in both simulations. Evaluation of the 

wake integral, on the other hand, is within 1% of the value predicted by lifting line. The 

authors note that lifting line theory is known to be quite accurate for this high aspect ratio 

un-swept configuration at incompressible conditions. The wake integration plane is 

placed immediately aft of the trailing edge, yet no discussion or reasoning is provided for 

this placement.  

Hunt et al. [9] also speak to the inadequacy of using a surface integral technique 

to calculate drag over a wing. They note that although theoretically sound, in practice 

artificial smoothing acts to corrupt the results. They go on to say that the effects of 

artificial smoothing appear as entropy in the far field creating a mismatch of the surface 

integration and far-field integration results, although from a momentum balance approach 

these methods should be equivalent. Wong et al. [10] is referenced for showing that 

although the far-field crossflow plane integration for induced drag was not greatly 

affected, the drag predicted by surface integration increased significantly as the level of 

artificial smoothing was increased. 

Smith [11] suggests, “There is a substantial amount of evidence that the accuracy 

of surface pressure integration is insufficient for a careful study of induced drag and 

therefore alternate techniques are required.” He notes that in typical wing configurations, 

this inaccuracy is likely due to subtractive cancellation that is inherent in surface pressure 

integration.   

Amant [12] suggests, “Another way to tackle the problem is to study the influence 

of the model on the surrounding fluid, rather than the effect of the fluid on the body 
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skin.” This is exactly the approach taken by a far-field method. Not only does the far-

field method offer the potential for accurate calculations, “but it also gives the 

opportunity to extract each component of drag: viscous drag, wave drag, and induced 

drag.” In fact, this strength of the far-field method is the reason many researchers choose 

it over the more basic near-field method of surface pressure integration. 

 

Far-Field Drag Studies 

 

Eppler [13] gives a sufficient yet concise explanation of the evolution of a wake 

region behind a wing as follows; “the drag causes a wake behind the airfoil which 

becomes with increasing distance of the airfoil wider and shallower.” Wider refers to the 

spanwise direction while shallower refers to the deviation from freestream values. In 

essence, the drag acts to slow the air just behind the wing which causes the deviation 

from freestream velocities to decrease in the downstream direction yet spread to cover a 

larger area. Eventually a downstream distance is theoretically reached where the 

deviation from freestream is negligible so that in the limit as downstream distance 

approaches infinity, deviations from freestream velocities will disappear. If a control 

volume is fit around the wing to encompass the entire wake region at these distances as 

described, a simple calculation of pressure drop times the cross-sectional area of the 

control volume perpendicular to the freestream direction will yield the drag force. 

However, a computational domain of this size is rare in most situations, and an 

alternative method must be used to calculate drag. 

Giles et al. [14] give a theoretical development for calculating drag via wake-

survey methods. They use a momentum balance approach to develop a system of 
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integrals that “reduces the task of force computation to the integration of various flow 

parameters in a crossflow plane downstream of a body.” Drag is decomposed into 

entropy, enthalpy, and vorticity components that are directly related to standard wave and 

profile drag, engine power and efficiency, and induced drag, respectively. Comparisons 

are drawn between experimental and computational formulations of the drag integrals, 

and equivalence is derived. 

Kusunose [15] focuses a study on wind tunnel experiments and the analytical 

aspects of the determination of drag acting on such a model. He notes that “the drag of a 

model located in a control volume can be calculated from the change in momentum in the 

direction of the undisturbed free stream flow.” His work includes a detailed derivation of 

the drag integral which contains individual integrals for profile and induced drag, using 

just such an approach. 

Cummings et al. [16] and Schmitt et al. [17] both observe from far-field analyses 

of numerical studies that the transverse kinetic energy, and thus the induced drag, 

decreases downstream of the wing at a much faster rate than reality dictates. According to 

the Euler theoretical model, it should remain constant downstream. This phenomenon is 

attributed to artificial, or numerical, dissipation which can be quite strong in the far-field 

where cells typically grow unavoidably coarse. Schmitt et al. argue that these spurious 

contributions to drag cannot be separated from physical production by surface force 

integration because spurious contributions are embedded within the pressure and shear 

stress distribution over the wing surface. 

Destarac [18] presents theoretical and numerical aspects of drag extraction 

including a drag balance, for which he credits J. van der Vooren [19], and numerical 
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deviations such as spurious production and transformation of drag components. He then 

moves on to discuss specific applications and drag reduction techniques. Destarac argues 

that the near-field far-field drag balance “ensures exact balance of pressure drag plus 

friction drag (near-field) and viscous drag plus wave drag plus induced drag (far-field).” 

He also notes that although the spurious drag appears explicitly in the farfield breakdown, 

it is actually implicit in the near-field breakdown. This is yet another argument for the 

far-field method as “this error can by no means be corrected using the near-field approach 

only.” In reference to the downstream decay of crossflow kinetic energy, and thus 

induced drag, Destarac states, “In computations, mainly because of the coarseness of the 

grid in the downstream far-field, numerical smoothing dominates over physical 

dissipation and causes the trailing vorticity to decay….. There is neither loss nor 

production of total drag, but a transfer of one form of drag to another.”  

Hunt et al. [9] use cutoff parameters, based on viscosity and entropy, to reduce the 

size of the crossflow plane in an effort to increase accuracy and decrease computational 

time. Hunt et al. show that the size of the bounding control volume, more specifically the 

downstream distance of the outflow plane, does not significantly affect the induced drag 

calculation. However, it is noted that the values of induced drag decrease downstream 

due to numerical dissipation converting crossflow kinetic energy into entropy. This 

decrease in induced drag is complimented by a corresponding increase in entropy drag. 

Due to this “interchange of vorticity for entropy that is caused by numerical dissipation as 

the vortex convects downstream,” it is suggested that the best position for the crossflow 

plane is in the near field just aft of the wing so as to largely avoid this phenomenon.  
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Bourdin [3,6] takes a look at the wingtip and planform effects on lift induced drag 

in his studies. He uses strictly Euler solutions arguing that the mechanism for producing 

lift induced drag, the influence of the wing trailing vortex sheet on the wing itself, is a 

fundamentally inviscid mechanism. He also points out that lower fidelity methods (vortex 

lattice methods (VLM), panel methods, full potential codes) are computationally less 

expensive, but a major weakness lies in their wake modeling which require wake 

geometry to be specified or fitted as a boundary condition a priori. Alternatively, Euler 

solutions are capable of capturing the freely deforming wake shape. Bourdin also uses the 

far-field technique, as opposed to surface pressure integration, which admittedly requires 

“complex post-processing of the numerical flow solution,” but in its defense does give “a 

phenomenological breakdown into physical components (lift induced drag, wave drag, 

and with Navier-Stokes equations, viscous drag).” Noting that CFD numerical schemes 

along with their meshes produce spurious drag sources, Bourdin views this ability to 

provide a phenomenological breakdown as the main asset of the far field technique. 

 Knowing that part of the lift induced drag is transformed into spurious viscous 

drag, and does so mostly in the area of the wing tip vortex, Bourdin notes that this is an 

irreversible phenomenon and thus can be computed by applying an integral formula for 

irreversible drag between the wing tip vortex and the wake interrogation plane. Using 

ONERA software, he shows results from a study of induced drag over an elliptical 

planform using a multi-block structured grid. He plots what he calls the apparent lift 

induced drag, the irreversible correction, and the corrected lift induced drag. The 

corrected lift induced drag is simply a summation of the previous two drag forms. The 

most significant result from this study is that once corrected by the addition of the 
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irreversible drag, the corrected lift induced drag calculation is nearly independent of 

downstream location. This downstream independence is crucial if induced drag is to be 

used in an automated optimization routine. 

Amant [12] also uses the far-field approach in wind tunnel applications as well as 

CFD solutions to calculate and decompose drag. He utilizes both an Euler solver as well 

as a Navier-Stokes solver. Although there is some significant error when applied to the 

wind tunnel experiments, largely due to instrumentation difficulties, the induced drag 

results from the CFD solver are very satisfactory. Amant also makes use of the ONERA 

post-processing software to enable the separation and elimination of spurious drag 

sources. Again, this allows induced drag calculations that are nearly independent of 

downstream location. Amant ignores an axial velocity deficit term, resulting from the 

presence of the vortical sheet, from the induced drag integral; this is discussed in a later 

section in more detail. This is a common practice due to its relatively smaller contribution 

when compared to the terms related to the action of the viscous layers. 

Stewart [13] develops a method for estimating the exergy utilization of a wing in 

a low subsonic, three-dimensional, viscous flow field using a RANS solver. Assuming 

steady flow, this essentially requires the estimation of entropy generation. He develops a 

far-field method to calculate drag by establishing a relation between drag and exergy 

destruction. Using his newly developed methodology, his results compare satisfactorily to 

experimental data and lifting line theory, while surpassing the traditional surface 

integration results. He notes that “mapping of entropy generation clearly details regions 

of irreversibility in the flow field,” and thus enables the designer to locate, and possibly 

reduce, sources of drag. 
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Far-field analysis of the crossflow kinetic energy has been performed for a 

number of years, and has become essentially the standard practice for calculating induced 

drag. Although spurious contributions are noted more and more, relatively few papers to 

date actually address this issue with actual CFD results. While the standard wake 

integration techniques require simple post-processing that is available in many 

commercial software applications, the extraction of the spurious drag requires a more 

hands-on approach involving cell-by-cell calculations that require access to the flow 

solver code itself. 

Numerical Uncertainty 

 

Concerns about numerical uncertainty have been around since the early 20
th

 

century, around the time of L. F. Richardson. Detailed history of the progress of 

numerical uncertainty efforts are outlined by both Freitas et al. [21] and Roache [22]; 

some highlights of which are repeated here. The realization of modern computers 

provided a means for significant advancement in this area, and in fact the first conference 

to truly address numerical uncertainty to any real extent was the Stanford Olympics of 

1968 [23], the primary objective of which was to “identify the fundamental predictive 

capabilities of early CFD codes and turbulence models, as they related to turbulent 

boundary layer flows” [21]. A major step was taken by the American Society of 

Mechanical Engineers (ASME) Journal of Fluids Engineering in 1986 when they 

released the first editorial policy statement making it clear that the journal would “not 

accept for publication any paper reporting the numerical solution of a fluids engineering 

problem that fails to address the task of systematic truncation error testing and accuracy 

estimation” [24]. Although such testing and estimation is worthwhile, the policy failed to 
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define a set procedure for performing such an analysis. Discussions continued through 

the mid 1990’s when policies were adopted by both ASME and AIAA to help control 

numerical accuracy.  

Freitas et al. [21] review the progress made by ASME to quantify numerical 

uncertainty. It is important to note that ASME’s Fluids Engineering Division (FED) does 

not attempt to set a specific level of acceptable uncertainty, citing that “the factors that 

define an acceptable solution and uncertainty band are unique to each simulation study.” 

Rather than push for this threshold condition, ASME’s FED simply attempts “to lay the 

foundation for all CFD simulations to include as part of the reporting of the results, an 

assessment of the uncertainty band for the pertinent variables of the simulation.” Freitas 

et al. also admit that there are several existing methods for calculating numerical 

uncertainty and make no attempt to require a specific method. However, they do outline a 

specific procedure for the uniform reporting of grid convergence developed by Patrick 

Roache and based on Richardson Extrapolation. 

Roache proposed the use of a Grid Convergence Index (GCI) in 1994 [25]. He 

argues that it “provides an objective asymptotic approach to quantification of uncertainty 

of grid convergence.” Roache acknowledges that systematic grid convergence studies are 

arguably the most common and most reliable technique for quantifying numerical 

uncertainty. He also notes that the reporting of such studies is terribly inconsistent and 

even confusing. With this in mind, the general purpose of the GCI is to provide a 

common platform on which to compare grid convergence results. “The basic idea is to 

approximately relate the results from any grid convergence test to the expected results 

from a grid doubling using a 2
nd

-order method.” The method is, as stated above, based 
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upon the theory of generalized Richardson Extrapolation, however, it is not required that 

Richardson Extrapolation actually be used to improve the accuracy. A final redeeming 

quality for GCI is that it may easily “be applied a posteriori by editors and reviewers, 

even if authors are reluctant to do so.” This is important not only when the author is 

reluctant, but also when reviewing papers written before such a process has become 

standard practice. 
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CHAPTER 3 

 

 

OBJECTIVES 

 

 

 The primary objective of this thesis work is to develop a methodology for the 

extraction of accurate and robust estimates of induced drag from flow over a finite wing 

in a computational fluid dynamics (CFD) solution. To meet this objective, a 

computational domain will be created to surround a simple rectangular wing, which will 

be subjected to subsonic, inviscid, numerical simulation. The standard farfield technique 

will be amended in an effort to combat physical and numerical issues that arise. Modeling 

these issues to remove their influence will enable the extraction of an induced drag that 

more closely agrees with real-world physics and is truly independent of downstream 

location. 

A second objective is to develop a methodology to extract, from CFD results, the 

spanwise lift distribution of an untwisted, finite rectangular wing. The resulting spanwise 

lift distribution will be compared against theoretical lifting line results for verification of 

the methodology. The lift distribution will also be compared against the distribution 

obtained by the pioneering work of Kolonay and Eastep [2] for further verification. 

A third objective is to perform an initial uncertainty analysis on the prediction of 

induced drag. The performance of such an analysis on CFD data is still in its relative 

infancy, but will serve to provide a basic understanding of the benefits that can result 

from further uncertainty analyses. 

 



 



 

 

CHAPTER 4 

 

 

Model Development 

 

 

Geometry and Flow Conditions 

 

Two geometric configurations were studied in this investigation; a wing with a 

NACA 0006 profile, and a wing with the NACA 0012 airfoil shape. Both wings were 

symmetrical, untwisted rectangular planform with aspect ratios of 6.67. The wing with 

the NACA 0012 cross-section is presented in Figure 1. The total wingspan is forty feet 

(half-span of twenty feet) and the chord length is six feet. Most work was conducted at a 

freestream mach number of 0.3, however the velocity was varied in the subsonic and 

transonic flight regimes to gain an understanding of the affects. The geometric angle of 

attack was set at five degrees to avoid the complications of high angles of attack, namely 

flow separation, while still providing sufficient lift for accurate calculations. The study 

was also restricted to steady, level flight at sea level conditions. 

 

Figure 1.  Wing Geometry 



 

 

Grid Generation 

 

The domain of interest for this study consisted of uniform flow past a three-

dimensional wing. Due to the assumption of symmetrical wing loading and wing 

geometry about the span for level flight, the modeled domain includes only half of the 

wing with one domain boundary designated as the plane of symmetry. This approach will 

roughly halve the computational expense by allowing the computational domain, and 

therefore the number of total cells, to be cut in half.  

With the wing geometry and flow conditions determined, grid construction 

followed a systematic process. Points were imported from a NACA four-digit series 

profile generator to form the wing’s airfoil cross-section. These points were connected 

utilizing a polynomial curve fit to form three individual panels; the lower surface, the 

upper surface, and the control surface. Together, these three panels form a complete 

cross-sectional loop. The airfoil section was rotated five degrees to generate the proper 

angle of attack, and the wing surface itself was then extruded from this 2D airfoil shape 

into twenty equal spanwise segments to allow for later spanwise calculations. A 

representation of these extruded surfaces can be seen in Figure 2.  
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Figure 2.  Wing panel construction 

A second surface is wrapped around the wing to form a far-field boundary condition, as 

seen in Figure 3, at a minimum of five chord lengths spacing from the wing surface in 

any given direction and extending far enough downstream to capture all necessary wake 

effects. The far-field surface follows a curve along the upstream side of the wing in order 

to minimize the number of cells, and therefore computation cost.  

Once the wing geometry and control volume are outlined, an unstructured mesh is 

generated on all surfaces; including wing panels and far-field surfaces. The grid 

generation software then fills in the three-dimensional control volume itself with 

unstructured cells based upon the user designated grid points. An unstructured mesh was 

chosen to ensure the minimum number of cells, as compared to a structured Cartesian 

mesh, as well as to easily interface with the given flow solver. Also, since an unstructured 

cell does not require opposing sides to have the same number of grid points, cells may be 

clustered in the vicinity of solid surfaces and grow relatively coarse where freestream 

conditions are expected.  

A couple of methods were used in order to minimize the number of total cells 

while still enhancing the accuracy of the solution. As shown in Figure 3, a permeable 

surface was constructed along the anticipated wake plane in order to ensure clustering of 

grid points in the wake region of the flow. Clustering was also used along the leading and 

trailing edges of the wing, the region just aft of the trailing edge where the wake begins, 

and the virtual control surfaces found along the trailing edge of the wing. Much of this 

clustering can be seen in Figure 4. Again, the use of unstructured cells allows the 
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abovementioned clustering of grid points in regions of interest, but then grid relaxation to 

a relatively coarse mesh towards the far-field boundary.  

 
Figure 3: Permeable wake plane surface and far-field boundaries 
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Figure 4.  Clustering of unstructured mesh 

Flow Solver 

 

 AVUS (Air Vehicles Unstructured Solver) was utilized as the flow solver for this 

thesis research. AVUS, formerly Cobalt60, is an in-house research code maintained by the 

US Air Force Research Lab’s Air Vehicles Directorate – Computational Sciences branch. 

AVUS is designed primarily for unstructured grids, but structured grids may be used if a 

mesh’s structure is defined explicitly. AVUS is capable of handling two or three 

dimensions, as well as axis-symmetric grids. Viscous fluxes have the option of being 

neglected in order to process inviscid flows. AVUS solves the Euler and Navier-Stokes 

equations in an inertial reference frame and, in integral form, the Navier-Stokes equations 

are [21]: 

( ) ( )∫∫∫∫∫∫∫ ⋅++=⋅+++
∂
∂

∀ S

dSnktjsirdSnkhjgifQdV
t

ˆˆˆˆˆˆˆˆ

δ

. (1) 

where: 
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In this case a = uτxx + vτxy + wτxz + kTx, b = uτxy + vτyy + wτyz + kTy, and c = uτxz + vτyz + 

wτzz + kTz; V is the fluid element volume; S is the fluid element surface area; n  is the 

outward-pointing unit normal to S; , , and  are the Cartesian unit vectors; ρ is the 

density; p is the pressure; u, v, and w are the velocity components; e is the specific energy 

per unit volume; T is the temperature; k is the thermal conductivity; and τ

ˆ

î ĵ k̂

xx, τyy, τzz, τxy, τxz, 

 and τyz are the viscous stress tensor components. This system of equations is closed by 

the ideal gas law and nondimensionalized by freestream density and speed of sound. 

 AVUS is based upon a first-order accurate, exact Riemann method developed by 

Gottlieb and Groth [27]. Second-order spatial and temporal accuracies, as well as implicit 

time stepping, are built upon this core procedure. AVUS uses a cell-centered, finite 

volume approach. 
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CHAPTER 5

ANALYSIS

Lifting Line Theory

Thin airfoil theory provides a method to calculate the lift of a two-dimensional 

airfoil. A substantial assumption in the theory requires that the span of these airfoils is 

infinite, which in turn produces a constant lift distribution along the infinite span. Finite 

wings differ, of course, in that they have a finite span. As the high-pressure flow on the 

underside of the wing tends to flow outward towards the tip and the low-pressure flow 

above the wing tends to flow inward towards the root, a trailing vortex is formed as these 

two flows meet at the trailing edge. Figure 5 clearly shows this vortex as it forms aft of 

the wing.
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Figure  5. Wing tip vortex

This trailing vortex sheet and the tendency for these pressures to equalize induces 

a downwash velocity, visible in Figure 6, in the downward direction, normal to the 

undisturbed free stream, defined as

   


 



2

2 04

1
b

b

dz
zz

z
zw

 (4)

where Γ(z) represents the span-wise circulation distribution and b is the total span length. 

This downwash velocity alters the approach angle of the free stream flow by an amount 

termed the downwash angle defined as

 



U

zw
z 1tan)( (5)
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Figure  6.  Induced flow over airfoil

which is often simplified to

 



U

zw
z)( (6)

where U∞ represents the undisturbed freestream velocity. The effective angle of attack at 

a given span-wise location then is defined as

)()( zze  (7)

where a represents the geometric angle of attack. The downwash velocity increases along 

the span from root to tip, resulting in a span-wise lift distribution that drops as you 

approach the wingtip. It is also important to note that since lift acts normal to the 

freestream velocity direction, the effective lift will act normal to the effective freestream 

velocity as shown in Figure 6. It follows, then, that the effective lift has also been altered 

by the same downwash angle. This effective lift has a force component in the direction of 

the undisturbed freestream velocity which is termed lift induced drag; the focus of this 

project. 

Glauert considered a circulation distribution expressed by a Fourier sine series, 

the first term of which represents the elliptic distribution. A circulation distribution then 

can be defined as

    nAsU n

N

sin4
1
  . (8)

where s represents the half-span length and the number of terms, N, is determined by the 

desired number of discrete span-wise locations used to describe the distribution. The 

physical span-wise coordinate has been replaced by  according to the transformation:
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cos
s

z
. (9)

Since the span-wise lift distribution represented by the circulation is symmetrical, only 

the odd terms are used. A derivation is given by Bertin and Smith [28] that concludes 

with the governing equation shown here, termed the monoplane equation; 

     sinsinsin
1

0  nnAn

N

l . (10)

where μ is defined as

b

cae

4
 . (11)

and ae, the lift curve slope, is assumed to be 2π according to thin airfoil theory. After 

solving for the Fourier coefficients, lift and drag characteristics can be calculated. The 

total lift coefficient can be approximated using the equation

ARACL  1 (12)

where CL is dependent only on the first Fourier coefficient, regardless of the number of 

terms in the series. The coefficient of induced drag can also be approximated by



























2

1

2

2

1

2

7

2

1

2

5

2

1

2

3

2
753

1
A

nA

A

A

A

A

A

A

AR

C
C nL

Di 
(13)

which is obviously influenced by the number of terms used. As more terms are added to 

the Fourier sine series, the induced drag coefficient will more nearly approximate the 

asymptotic value. The span-wise lift coefficients can also be approximated for a given 

span-wise unit section by

     
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It is also important to account for compressibility effects, which can be easily 

done by applying the Prandtl-Glauert Formula [28]; defined as

2
1 




M

C
C

p

p . (15)

At low Mach numbers, just as you would expect, this will not have much affect on the 

outcome of the calculations. However, at higher Mach numbers the effects become very 

noticeable. Figure 7 shows the results on the span-wise lift distribution with and without 

the discussed compressibility effects at differing Mach numbers. At a Mach number of 

0.3, compressibility effects alter the lift distribution by about 5%, whereas at a Mach 

number of 0.7 the effect is closer to 40%.

Figure 7.  Compressibility effects

With efficiency in mind, a lifting line code was written by the author using 

MATLAB to automate the theoretical calculations. Given a set of geometric and flow 

condition inputs, the code returns a multitude of output variables as displayed in Figure 8. 

Each of these variables is available for manipulation and/or plotting upon completion of 

the code. Care was taken to write the code in general terms to ensure flexibility across 
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varying input conditions. The code also has the ability to read in post-processed results 

from numerical cases in order to compare, as well as report the error, when fitting the 

numerical results over the theoretical. A sample output from the code can be seen in 

Figure 9.

Figure 8.  Lifting Line code – Inputs/Outputs

Figure  9. Example output screen from MATLAB code
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Induced Drag Calculation

In computational fluid dynamics, we have generally two methods for calculating 

the lift-induced drag of a wing, a surface integration method and a wake integration 

method. As discussed in a previous section, this work utilizes the wake integration 

approach.  The surface integration method relies on calculations of pressure and skin 

friction over a series of flat surfaces (facets) that approximate curved surfaces of a three-

dimensional wing. The sensitivity of computing aerodynamic drag using a surface 

integration method can lead to a notable uncertainty, although it is suitable for computing 

the lift force coefficient computations because lift tends to be one or two orders of 

magnitude larger than drag force coefficients.  For accurate, robust drag calculation, the 

far-field volume-integral or wake-integration (Trefftz-plane) approach appears to be a 

worthwhile alternative and one that allows the drag to be estimated by its components, 

namely profile, wave, and induced drag [3,14,19]. 

The wake integration method, also often referred to as Trefftz-plane analysis, 

quantifies induced drag by extracting flow data from a cut-plane downstream of the wing 

and perpendicular to the freestream direction. This analysis often takes place in post-

processing since it requires interpolating flow field data to arbitrary planes where the 

nodes or cell centers of a CFD grid do not necessarily intersect. The Trefftz-plane 

integration equation is derived from the momentum equation of the governing equations 

of fluid mechanics. 

Assuming steady state flow and negligible body forces, the drag of a wing in a

CFD model can be found from a momentum balance on the wing of Figure 10 as

   dydzuPdydzUPD
SS

  

21

22 
(16)
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Figure  10.  Schematic representation of control volume around a finite wing

In Figure 10, S1 and S2 represent the traverse planes located upstream and downstream 

respectively of the wing. The first and second terms on the right hand side of the equation 

represent the pressure forces driving the flow through the control volume and the flux of 

momentum across the faces of the control volume. Conservation of mass for steady flow 

through the control volume is given as

  
S

dSnu0 . (17)

Assuming the upstream and downstream planes have equivalent areas, the drag equation 

is rewritten as 

    dydzPPuUuD
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2


(18)

In a manner presented by Kusunose [15], small perturbations are assumed in the 

properties of the downstream flow so that further substitutions and simplification gives

        dydzuOuMPPuUUD
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In order to put this equation in terms of entropy production, an enthalpy change is 

introduced, 

       
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where the enthalpy change is given as
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and substituting back,  we obtain
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The second law of thermodynamics and Gibbs’ equation give the connection between 

enthalpy and entropy, which when substituted gives
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This expression can be decomposed into two drag contributions: the induced drag and the 

profile drag.  The induced drag is given by
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The profile drag is represented by
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The remaining terms of Equation (23) represent higher-order terms and are consequently 

ignored in many classical Trefftz plane analyses [14, 19, 29].



CHAPTER 6

RESULTS

Spanwise Lift Distribution

The span-wise lift distribution of the wing was generated to compare numerical 

data with lifting line theory. The computation of span-wise lift distribution like with the 

calculation of induced drag was computed as a post-processing step. In this computation, 

a wing was divided into sections. Each section was split at the chord line dividing the 

sections into their upper and lower surfaces. The static pressure was integrated over the 

section surfaces to generate the axial and normal components of force over each section.
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l dxbpdxbpN  coscos (26)
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l dxbpdxbpA  sinsin (27)

The normal and axial forces in addition to geometric angle of attack were then used to 

calculate the average lift of each wing section [2].

 sincos ANL  (28)

Figure 11 gives a visual representation of the rectangular wing span-wise lift distribution. 

The lift is plotted in the half span from wing root to wing tip, and the elliptical lift 

distribution plotted is presented strictly for comparison.
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Figure 11.  Span-wise lift distribution of a rectangular wing

The results from the span-wise lift analysis show that the numerical results correlate well 

with those of lifting line theory. The agreement between the two is within 2.4%. A large 

part of this error can be attributed to tip effects where the flows from the upper and lower 

surfaces of the wing interact. Rounding of the wing tip would most likely improve 

agreement. 

Induced Drag

The results from the Trefftz-plane analysis contain much detail. Several numerical 

experiments were performed to study the effects of domain size and grid refinement on 

the predicted drag. Figure 12 shows the lift-induced drag coefficient results for multiple

grids of varying size. The lift-induced drag coefficient results are shown normalized by 

the theoretical value obtained from lifting line theory. Each line in the figure represents a 
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Figure 12. Induced Drag - Trefftz plane analysis of various grids at Mach 0.3

single grid, and the information in the legend indicates the size of each mesh represented. 

For example, the 1.0M line indicates that the grid contains one million cells. The grids 

portrayed in the figure are also characterized by different attributes.  Some grids 

encompass a large domain focus while others span smaller domains (from the trailing 

edge of the wing in the streamwise direction).  The grids with a larger domain extended 

much further downstream as well as several chord lengths further away from the wing

geometry in the spanwise direction.  The grids with a smaller domain had the far-field 

surface located only several chord lengths downstream from the wing’s trailing edge.  

In Figure 12, three grids map only to seven chord lengths behind the wing’s 

trailing edge because those grids possessed a small domain focus. Testing grids with 

large and small domain focus allowed for verification of the far-field boundary condition. 

The circles that cover the lines indicate different Trefftz-plane surveys taken downstream 
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of the wing. The different plots show that a grids outer boundary distance from the wing 

geometry does not significantly influence the induced drag calculations. This 

demonstrates that the wing can be modeled with a relatively smaller domain without 

polluting the solution from the far-field boundaries.  The observed trend from the data 

indicates that as the grid density increases the numerical results approach the value 

predicted by lifting-line theory.  

Another and perhaps more obvious trend can be observed: the induced drag 

decreases as Trefftz-plane analyses progresses further downstream of the wing. Ideally 

the induced drag calculation should be independent of the downstream location of the 

Trefftz-plane. Several factors likely contribute to this phenomenon. One is a near-field 

effect. Ideally, the Trefftz-plane is located far downstream (infinity) such that 

longitudinal velocity components have diminished. The second is due to higher order 

terms in Equation 23. Lastly, the continued gradual decrease in (numerical) lift-induced 

drag with downstream location observed in Figure 12 is the result of spurious drag

contributions, which act to dissipate the strength of the wing tip vortex and, consequently, 

the induced drag. Spurious drag is an artificial phenomenon attributed to the relaxation of 

the grid cells downstream of the wing and the effect of artificial (numerical) viscosity.  

Grid cell relaxation (or grid stretching) is used to improve computation times by using 

larger cells away from regions of significant flow activity, like the lifting wing geometry, 

thereby reducing the total cell count in a grid.  This is a good trait for a CFD grid when 

considering analysis completion times and results convergence. However, this attribute is 

also a negative because it contributes to the error brought on by artificial viscosity.  

Artificial viscosity is the component of spurious drag that is associated with the 
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formation of the convective fluxes in an inviscid flow solver.  Inviscid flow by definition 

contains no dissipative effects and therefore has no viscosity; however, the fluid flow 

solver creates numerical dissipation when the convective fluxes are discretized.  Also, 

numerical damping, which again adds dissipation, can be used to improve steady-state 

convergence.  To correct these errors, different formulations were investigated to 

improve results.

Van der Vooren and Slooff [19] used a near-field “correction” to the Trefftz-plane 

analysis that includes the second-order term (Equation 23) originally neglected in the 

classical Trefftz-plane lift-induced drag formulation,  
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Figure 13 presents two grids utilizing this near field correction.  The plot shows both the

classical Trefftz-plane as well as near-field corrected (denoted ‘B’) results for both grids.
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Figure 13. Near field correction of the Trefftz-plane results
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With this correction, the overall induced drag prediction is improved within the first few 

chord lengths of the wing. This result is expected since the classical Trefftz-plane 

analysis is built on the assumption that the axial velocity is no longer changing.  

Similarly, note that beyond two or three chord lengths downstream of the wing, where the 

change in axial velocity is negligible, the near-field correction no longer deviates from 

the traditional Trefftz-plane results. Also note that the results of the two grids differ 

because one mesh was finer compared to the other, as indicated in the legend.  The finer 

mesh was designed to have a higher grid cell density in the wing near-field wake region. 

The correction still retains some systematic error in the far field as evidenced by the 

location dependent value of induced drag. To correct for this error, Bourdin [6] and Van 

der Vooren et al. [19] suggest applying a volume integral correction for the 

irreversibilities brought on by artificial viscosity from the origin of the wing tip vortex to 

the Trefftz plane. This “irreversible correction” is currently under study, although it is not 

applied here.

Uncertainty Analysis

For a prediction to be useful in design it needs to be validated and its errors 

quantified. Numbers assigned to errors are called uncertainties. Here, an initial 

uncertainty analysis is applied to the prediction of induced drag.  Ultimately, the 

uncertainty in question can be estimated by the root-sum-square of the individual 

contributing uncertainties as [20]
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assuming that (1) each uncertainty can be decomposed into a random uncertainty and a 

systematic uncertainty, (2) each uncertainty is evaluated at the same confidence level, and 

(3) the systematic errors identified are uncorrelated. Random errors are those errors that 

contribute to data scatter, whereas systematic errors contribute to a bias or offset of the 

data from its true value. An attempt is made to estimate uncertainties at a 95% confidence 

level.

The studies of this problem within our lab shows that our computational domain 

is sufficiently large to minimize the effects of far-field boundary conditions to under 1%, 

so we assign Udomain/CDi = ±1%. The finest grid studies using surface integral integration 

to estimate induced drag can do no better than ±4% of the lifting line prediction. We do 

not know the correct value for induced drag given the assumptions inherent in the lifting 

line theory that do not hold for a full flow field solution, which we presume will decrease 

the induced drag value a small amount [3], so we assign an uncertainty in our reference 

value of Uref/CDi = ±5%. 

A grid convergence index (GCI) study was completed to provide an estimate of 

the magnitude of discretization and convergence errors. The GCI for the finest grid is 

shown by Roache [22] to be

1
1 


pSSfine
r

FEFGCI


(31)

where r is the grid refinement ratio, p is the order of convergence, FS is the factor of 

safety, and E1 is the error estimate from generalized Richardson Extrapolation (RE). The 

value of the error is found from
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1
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where f denotes the parameter of interest, in this case induced drag, and the subscript 1 

refers to the finest grid used. Experience [22] suggests that the accepted value of FS = 

1.25 be used for three or more grid refinement studies but FS = 3 be used for two grid 

refinement studies to achieve conservative estimates at the uncertainty equivalent of 95% 

confidence. Adopting this to the methodology well used for reporting experimental 

uncertainty [20], we write

%)95(GCIUGCI  (33)

Figure 14 shows that the relative uncertainty in induced drag due simply to the grid 

convergence, UGCI/CDi, ranged from 5% at a single chord length downstream to as much 

as 10% at 10 chord lengths downstream with 95% confidence. The values in the legend 

correspond to the number of cells in the coarse and fine grids, respectively.
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Figure 14.  Grid Convergence Index (GCI) Study
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We must also account for the dissipation downstream due to artificial viscosity. 

This will be treated as a non-symmetric systematic uncertainty since the artificial 

viscosity will always act to decrease the induced drag estimate. To estimate the potential 

magnitude of this uncertainty, we use lifting-line theory as our reference value.  We have 

previously accounted for the uncertainty in the lifting-line prediction as Uref, but the 

effect of artificial viscosity is a non-symmetric uncertainty, Udiss/CDi . This uncertainty 

contribution is calculated as laid out by ASME  PTC 19.1 Section 8.2.1 [30]. We believe 

that the true value falls between the numerical prediction and the value provided by our 

reference, lifting-line theory. In this we assume our lower level B
-
 = 0. If we made a 

correction to account for the effect of artificial viscosity, we would set B
+ 

equal to the 

uncertainty in that correction. But we do not make that correction. Instead, we set B
+ 

equal to the deviation between the numerical and lifting line prediction at each chord-

wise location. This approach contributes a large uncertainty to our solution, as it should

given the effect the chordwise location has on the predicted induced drag. Accordingly, 

we have identified 4 errors to which we need to assign uncertainties so that
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The resulting uncertainty is plotted in the form of traditional ‘error bars’ along the 

plot of the fine mesh grid as seen in Figure 15. The uncertainty in CDi varies from 0.83 < 

CDi < 1.12 just downstream of the wing to 0.64 < CDi < 1.09 at 10 chord lengths 

downstream. In examining Figure 15, the asymmetric behavior of the uncertainty is due 

to the non-symmetrical uncertainty of the contribution of artificial viscosity. 
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Figure 15.  Results of Uncertainty Analysis

If one applies the correction suggested by Bourdin [6] and Van der Vooren [19], the 

“irreversible correction” mentioned above, for the irreversibilities brought on by artificial 

viscosity, this asymmetric uncertainty contribution will be reduced significantly, thereby 

reducing the total uncertainty of the induced drag calculation.



 

 

CHAPTER 7 

 

 

CONCLUSIONS 

 

 

 A systematic approach was followed throughout this work. A technique was 

developed for extracting span-wise lift distribution. A lifting line code was written to 

handle the theoretical computations as well as comparison of the results and the 

researcher and code were verified against a theoretical baseline. Computational fluid 

dynamics (CFD) numerical results for an untwisted, finite rectangular wing (NACA 

0012, AR = 6.7) using no flap deflections were compared against theoretical lifting line 

results and were shown to have satisfactory agreement with a maximum deviation of only 

2.4% over the wing span.  

Inaccuracies associated with the common surface integral method of calculating 

drag as well as its inability to provide a phenomenological breakdown into physical drag 

components (lift induced drag, wave drag, viscous drag) prompted the implementation of 

a far-field wake integral method. Several modifications to a classical Trefftz plane 

analysis were explored to minimize spurious drag with the eventual goal of yielding 

results that are independent of downstream position of analysis. 

For a prediction to prove useful at the design stage it needs to be validated and its 

errors quantified. With this in mind, an initial grid convergence index (GCI) study was 

completed within the scope of an uncertainty analysis and served as an attempt to 

quantify the uncertainty associated with grid convergence and other related issues. A 

root-sum-square method was used to combine the effects of individual contributing 



 

uncertainties and provide an estimate of total uncertainty with respect to the calculation 

of induced drag. 
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CHAPTER 8 

 

 

FUTURE WORK 

 

 

 The next step of this research project is to continue to study and 

implement the “irreversible correction” suggested by Bourdin [6] and Van der Vooren 

[19]. Not only will the successful implementation of such a method reduce the total 

uncertainty of the predicted induced drag, but it will provide independency to the 

downstream location of the interrogation plane. With the global objective of the project 

being to achieve a closed loop abstract control system by coupling flow solver code with 

a structural optimization program in a design capable environment, this independency of 

downstream location is critical. Once the control loop is closed, the manipulation of 

multiple virtual trailing edge control surfaces will allow optimization of the lift 

distribution for specific needs, namely minimizing induced drag. 
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