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Abstract—We propose a new approach to the problem of esti-
mating the hyperparameters which define the interspeaker vari-
ability model in joint factor analysis. We tested the proposed esti-
mation technique on the NIST 2006 speaker recognition evaluation
data and obtained 10%–15% reductions in error rates on the core
condition and the extended data condition (as measured both by
equal error rates and the NIST detection cost function). We show
that when a large joint factor analysis model is trained in this way
and tested on the core condition, the extended data condition and
the cross-channel condition, it is capable of performing at least as
well as fusions of multiple systems of other types. (The compar-
isons are based on the best results on these tasks that have been re-
ported in the literature.) In the case of the cross-channel condition,
a factor analysis model with 300 speaker factors and 200 channel
factors can achieve equal error rates of less than 3.0%. This is a
substantial improvement over the best results that have previously
been reported on this task.

Index Terms—Channel factors, Gaussian mixture model
(GMM), speaker factors, speaker verification.

I. INTRODUCTION

FACTOR analysis is a model of speaker and session vari-
ability in Gaussian mixture models (GMMs). This paper

is concerned with the speaker variability component of our ver-
sion of factor analysis. In our approach to speaker recognition,
the role of this component is to provide a prior distribution for
target speaker models (we use the term prior distribution in the
sense in which it is used in Bayesian statistics [1]). As such, it
plays a key role in estimating target speaker models at enroll-
ment time.

In order to formulate precisely the problem that we address,
we begin by recapitulating the basic assumptions in factor
analysis. Let be the number of components in a universal
background model (UBM) and the dimension of the acoustic
feature vectors. We use the term supervector to refer to the

-dimensional vector obtained by concatenating the -
dimensional mean vectors in the GMM corresponding to a
given utterance.
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Our assumptions are as follows. First, we assume that a
speaker- and channel-dependent supervector can be decom-
posed into a sum of two supervectors, a speaker supervector ,
and a channel supervector

(1)

where and are statistically independent and normally
distributed.

Second, we assume that the distribution of has a hidden
variable description of the form

(2)

where is a supervector, is a rectangular matrix
of low rank and is a normally distributed random vector, is
a diagonal matrix, and is a normally distributed

-dimensional random vector. We will refer to the columns
of as eigenvoices, and we will refer to the components of as
speaker factors.1

Third, we assume that the distribution of has a hidden vari-
able description of the form

(3)

where is a rectangular matrix of low rank, and is a normally
distributed random vector. We refer to the components of as
channel factors, and we use the term eigenchannels to refer to
the columns of .

Finally, we associate a diagonal covariance matrix with
each mixture component whose role is to model the variability
in the acoustic observation vectors which is not captured by ei-
ther the speaker model (2) or the channel model (3). We de-
note by the supercovariance matrix whose di-
agonal is the concatenation of these covariance matrices. Al-
though most authors (e.g., [4] and [5]) use the term factor anal-
ysis to refer to the channel model (3) alone, we have always used
this term in a broader sense which includes the speaker model
(2) as well. (Where it is necessary to make this distinction ex-
plicitly we speak of joint factor analysis.) Our concern in this
paper is with the way the hyperparameters and in (2) are
estimated. These hyperparameters provide a prior distribution
for maximum a priori (MAP) estimation of speaker-dependent
GMMs at enrollment time, and they are critically important to
the success of our approach to speaker recognition. (The MAP

1As in our previous work, we are following the usage of [2]. A different usage
prevails in the general statistical literature: the columns of would be referred
to as speaker factors and the entries of as factor loadings. The terminology
is used in this way in [3] where factor analysis methods are applied to the face
recognition problem.
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calculation is explained in Section III of [6].) Since the assump-
tion in (2) is equivalent to saying that is normally distributed
with mean and covariance matrix , (2) is a model of
interspeaker variability. Our goal in this paper is to show how
improved interspeaker variability modeling can lead to substan-
tial gains in speaker recognition performance. If and

, then the assumption in (2) is the same as in classical
MAP [7]; on the other hand, if and , the assump-
tion is the same as in eigenvoice MAP [8].

Classical MAP adaptation (including relevance MAP [9]) is
by far the most popular type of speaker modeling in text-indepen-
dent speaker recognition, but our experience has been that MAP
adaptation using eigenvoices is generally much more effective, at
least in situations where limited amounts of enrollment data are
available. Classical MAP adaptation can only adapt those Gaus-
sians which are seen in the enrollment data but, if large amounts
of enrollment data are available, it is arguably the best way of esti-
mating speaker supervectors since it is asymptotically equivalent
to maximum-likelihood estimation. On the other hand, eigen-
voice MAP is helpful if only small amounts of enrollment data
are available, since only a small number of free parameters need
to be estimated at enrollment time. The fact that the supervector
covariance matrix is full rather than diagonal in this case ensures
that MAP adaptation takes account of the correlations between
the different Gaussians in a speaker supervector so that all of the
Gaussians are updated at enrollment time even if only a small
fraction of them are observed. An extreme example of the effec-
tiveness of eigenvoices can be found in [10], which is concerned
with the use of factor analysis to model syllable-level prosodic
features. The number of feature vectors per conversation side
is only about 400; it is unrealistic to expect classical MAP
adaptation to be very effective in this situation.

It should be possible to capitalize on the advantages of both
classical MAP and eigenvoice MAP by including both terms
and in (2) (this was first suggested in [11]). However, exten-
sive experimentation in [12] showed that the term was only
helpful on an extended data task where 15–20 min of enrollment
data are available for each target speaker. (The term is helpful
in all circumstances, even in the extended data task.) Since in-
cluding the term is the source of most of the mathematical
complication in [6], and the extended data task is of secondary
interest to most researchers, this led us to wonder if we would
not be better off suppressing the term altogether.

The reason why the term was not helpful in [12] is that in a
typical factor analysis training scenario with, say, 1000 training
speakers and 300 speaker factors, almost all of the speaker vari-
ability in the training set can be well accounted for by alone
( has 300 times as many free parameters as ). Thus, if the
maximum likelihood criterion is used to estimate and , what
tends to happen is that ends up playing no useful role unless
very large amounts of enrollment data are available (as in the
extended data task). However, there is reason to doubt that the
maximum-likelihood criterion is appropriate for this type of es-
timation problem. Even if the linear/Gaussian assumptions in
(2) are granted, there is no reason to believe that (2) is a cor-
rect model of interspeaker variability—it is just a compromise
that is forced on us by the fact that a supervector covariance
matrix of sufficiently high rank to be realistic would probably

be impossible to estimate or to calculate with. (Impossible to
calculate with because the rank of the covariance matrix would
be too high; impossible to estimate because many more training
speakers would be needed than are currently available.)

This led us to explore another way of estimating and
which we will explain in Section II, and which we refer to as
decoupled estimation. In Section III, we show how decoupled
estimation leads to 10%–15% reductions in error rates (as mea-
sured both by equal error rates and the NIST detection cost func-
tion) on both the core condition and the extended data condi-
tion of the NIST 2006 speaker recognition evaluation data. In
order to be able to turn around these experiments in a reason-
able time, we used factor analysis models of relatively modest
dimensions. Our final results, using a much larger factor analysis
model, are presented in Section IV. These results show that a
stand-alone joint factor analysis model is capable of performing
at least as well as fusions of large numbers of systems of other
types (based on comparisons with the best results that have been
reported in the literature). The results on the NIST 2006 cross
channel condition are particularly impressive: equal error rates
of less than 3% can be achieved without any special-purpose
signal processing. Results of other tests are presented in [13];
these include cross-channel tests in which microphone speech
is used for enrollment as well as for verification and tests in-
volving very short utterances at verification time.

II. ESTIMATING THE HYPERPARAMETERS

The supervector defined by a UBM can serve as an estimate
of , and the UBM covariance matrices are good first approxi-
mations to the residual covariance matrices .
The problem of estimating in the case where was ad-
dressed in [8] and a very similar approach can be adopted for
estimating in the case where . We first summarize the
estimation procedures for these two special cases and then ex-
plain how they can be combined to tackle the general case.

A. Baum–Welch Statistics

Given a speaker and acoustic feature vectors , for
each mixture component we define the Baum–Welch statistics
in the usual way

where, for each time is the posterior probability of the
event that the feature vector is accounted for by the mixture
component . We calculate these posteriors using the UBM.

We denote the centralized first- and second order
Baum–Welch statistics by and
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where is the subvector of corresponding to the mixture
component . In other words

Let be the diagonal matrix whose diagonal
blocks are . Let be the
supervector obtained by concatenating .
Let be the diagonal matrix whose diagonal
blocks are .

B. Training an Eigenvoice Model

In this section, we consider the problem of estimating
and under the assumption that . We assume that initial
estimates of the hyperparameters are given. (Random initializa-
tion of works fine in practice.)

The approach that we adopt is similar to Gales’s cluster adap-
tive training [14] in that it does not rely on techniques such as
MAP or MLLR to produce GMMs for the training speakers (all
of the computation is done with Baum–Welch statistics rather
than GMMs). It differs from the approach in [14] in that the hy-
perparameter estimation problem is formulated in terms of max-
imum likelihood II [15]. As such, our approach is very similar to
the probabilistic principal components analysis (PPCA) of [16]
(which is formally a special case of our procedure). Note that, as
in PPCA, the terms eigenvector and eigenvalue do not appear in
our formulation but it is known that, unless the optimization gets
stuck locally, PPCA does succeed in finding principal eigenvec-
tors. Thus, it is appropriate for us to speak of eigenvoices even
though our estimation procedure is not formulated as an eigen-
value problem.

1) Posterior Distribution of the Hidden Variables: For each
speaker , set . Then the posterior dis-
tribution of conditioned on the acoustic observations of the
speaker is Gaussian with mean and covari-
ance matrix . (See [8, Prop. 1].) We will use the notation

to indicate posterior expectations; thus, denotes the
posterior mean of and the posterior correla-
tion matrix.

2) Maximum-Likelihood Re-Estimation: This entails accu-
mulating the following statistics over the training set, where the
posterior expectations are calculated using initial estimates of

and ranges over the training speakers

For each mixture component and for each
, set ; let denote the th row of

and the th row of . Then is updated by solving the
equations

The update formula for is

(See [8, Prop. 3].)
3) Minimum-Divergence Re-Estimation: Given initial esti-

mates and , the update formulas for and are

Here

is an upper triangular matrix such that

(i.e., Cholesky decomposition), is the number of training
speakers, and the sums extend over all speakers in the training
set. (See [6, Theorem 7].) This update formula leaves the range
of the covariance matrix unchanged. The only freedom
it has is to rotate the eigenvoices and scale the corresponding
eigenvalues. This type of hyperparameter estimation was intro-
duced in [17]; its role is to get good estimates of the eigenvalues
corresponding to the eigenvoices ([18], Section II-C). Thus, it
is useful for diagnostic purposes; for example, in comparing
the eigenvalues of with those of as in Table VI. Max-
imum-likelihood estimation on its own produces eigenvalues
which are difficult to interpret [6].

C. Training a Diagonal Model

An analogous development can be used to estimate and
if is constrained to be .
1) Posterior Distribution of the Hidden Variables: For each

speaker , set . Then the posterior distri-
bution of conditioned on the acoustic observations of the
speaker is Gaussian with mean and covari-
ance matrix . (The derivation here is essentially the same
as in Section II-B1.)

Again, we will use the notation to indicate posterior ex-
pectations; thus, denotes the posterior mean of and

the posterior correlation matrix.
It is straightforward to verify that, in the special case where
is assumed to satisfy

this posterior calculation leads to the standard relevance MAP
estimation formulas for speaker supervectors [9] ( is the
relevance factor). The following two sections summarize
data-driven procedures for estimating and which do not
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depend on the relevance MAP assumption. It can be shown that
when these update formulas are applied iteratively, the values
of a likelihood function analogous to that given in Proposition
2 of [8] increase on successive iterations.

2) Maximum-Likelihood Re-Estimation: This entails accu-
mulating the following statistics over the training set where the
posterior expectations are calculated using initial estimates of

, and ranges over the training speakers

For let be the th entry of and similarly for
and . Then is updated by solving the equation

for each . The update formula for is

3) Minimum-Divergence Re-Estimation: Given initial esti-
mates and , the update formulas for and are

where

is a diagonal matrix such that

is the number of training speakers, and the sums extend over
all speakers in the training set.

We will need a variant of this update procedure which applies
to the case where is forced to be . In this case, is estimated
from by taking to be such that

D. Joint Estimation of and

There is no difficulty in principle in extending the max-
imum-likelihood and minimum-divergence training procedures
to handle a general factor analysis model in which both and

are nonzero [6, Theorems 4, 7]. We used this type of joint

estimation in all of our previous work in factor analysis and to
produce benchmarks for the experiments that we will report in
this article.

However, joint estimation of and is computationally
demanding because, in a general factor analysis model, all of
the hidden variables become correlated with each other in the
posterior distributions. Our experience has been that, given the
Baum–Welch statistics, training a diagonal model runs very
quickly, and training a pure eigenvoice model can be made to
run quickly (at the cost of some memory overhead) by suitably
organizing the computation of the matrices in Section II-B1.
Unfortunately, no such computational shortcuts seem to be
possible in the general case. Furthermore, even if the eigenvoice
component is carefully initialized, many iterations of joint
estimation seem to be needed to estimate properly and, because
the contribution of to the likelihood of the training data is
minor compared with the contribution of , it is difficult to
judge when the training algorithm has effectively converged.

E. Decoupled Estimation of and

A much more serious problem with joint estimation is that
it tends to produce estimates of which are too small, so that
almost all of the speaker variability in a factor analysis training
set is accounted for by the term in (2) and very little of the
variability is accounted for by the term . Thus, in practice, the
term is of little use except in situations where large amounts
of enrollment data are available (as we observed in [12]).

It is probable that the reason why joint estimation behaves
in this way is that it is a maximum-likelihood estimation pro-
cedure, and has many more free parameters than . How-
ever, as we mentioned in Section I, there is reason to doubt the
appropriateness of maximum-likelihood estimation in this sit-
uation, and there is a good argument which suggests that the
term ought to be helpful in distinguishing between speakers.
The term can only capture interspeaker variability which is
confined to a low-dimensional affine subspace of supervector
space (namely the subspace containing which is spanned by
the eigenvoices). It is reasonable to believe that the orienta-
tion of this subspace reflects attributes which are common to
all speakers. No such constraint is imposed on the term , so
it ought to be capable of capturing attributes which are unique
to individual speakers. Similar considerations led the authors in
[19] and [20] to construct speaker recognition systems which
operate in the orthogonal complement of the principal compo-
nents of a large training set. (This orthogonal complement is
referred to as the “speaker unique subspace” in [20].)

This raises the question of how to produce a reasonable esti-
mate of which is not “too small.” Since the term models
residual interspeaker variability which is not captured by a large
set of eigenvoices, this can be achieved by withholding a subset
of the training speaker population; the speakers that are with-
held serve to estimate but they play no role in estimating .

Thus, we split the factor analysis training set in two and
use the larger of the two sets to estimate and and the
smaller to estimate and . We first fit a pure eigenvoice
model to the larger training set using the procedures described
in Sections II-B2 and II-B3. Then, for each speaker in the
residual training set, we calculate the MAP estimate of ,
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namely , as in Section II-B1. This gives us a preliminary
estimate of the speaker’s supervector , namely

(4)

We centralize the speaker’s Baum–Welch statistics by sub-
tracting the speaker’s supervector (that is, we apply the formulas
in Section II-A with replaced by ). Finally, we use these
centralized statistics together with the procedures described in
Sections II-C2 and II-C3 to estimate a pure diagonal model
with . This gives us estimates of and .

Since this training algorithm uses only the diagonal and
eigenvoice estimation procedures, it converges rapidly.

III. EXPERIMENTS

A. Enrollment and Test Data

We used the core condition and the extended data condition
(in which eight-conversation sides are available for enrolling
each target speaker) of the NIST 2006 speaker recognition eval-
uation (SRE) for testing [21]. Although we will report results
on male speakers as well as female, we used mostly the female
trials in the 2006 SRE for our experiments.

B. Feature Extraction

We extracted 19 cepstral coefficients together with a log
energy feature using a 25-ms Hamming window and a 10-ms
frame advance. These were subjected to feature warping using
a 3-s sliding window [22]. coefficients were then calculated
using a five-frame window, giving a total of 40 features.

C. Factor Analysis Training Data

We trained two gender-dependent UBMs having 1024 Gaus-
sians and gender-dependent factor analysis models having 0,
100, and 300 speaker factors. Except where otherwise indicated,
the number of channel factors was fixed at 50.

For training UBMs, we used Switchboard II, Phases 2 and 3;
Switchboard Cellular, Parts 1 and 2; the Fisher English Corpus,
Parts 1 and 2; the NIST 2003 Language Recognition Evaluation
data set; and the NIST 2004 SRE enrollment and test data.

For training factor analysis models, we used the LDC releases
of Switchboard II, Phases 2 and 3; Switchboard Cellular, Parts
1 and 2; and the NIST 2004 SRE data. We used only those
speakers for which five or more recordings were available. For
decoupled estimation of and , we estimated on the Switch-
board data and on the 2004 SRE data.

In order to ensure strict disjointness between the factor anal-
ysis training data and the NIST 2006 SRE data which we used
for testing, we made no use of the 2005 SRE data. (For the ex-
tended data condition, some of the 2005 data was recycled in
2006. In [23], we reported how failing to keep the training and
test sets disjoint could produce extremely misleading results.)
Note also that, since the Switchboard corpora consist of English
only data and English is predominant in the NIST 2004 SRE
data, the factor analysis training set is biased towards English
speakers.

D. Implementation Details

The first step in building factor analysis models is to train
gender-dependent UBMs in the usual way. Baum–Welch sta-
tistics extracted with these UBMs are sufficient statistics for
all subsequent processing: hyperparameter estimation, target
speaker enrollment, and likelihood calculations at verification
time.

To estimate and , we pooled all of the recordings of each
speaker in the factor analysis training set and ignored channel
effects as in [24]. (The rationale here is that channel effects can
be averaged out if sufficiently many recordings are available
for each speaker.) In implementing decoupled estimation of
and , we ran the algorithms in Section II-B to convergence
(seven iterations of maximum-likelihood estimation and one of
minimum-divergence estimation) before calculating the speaker
supervectors for each training speaker according to (4).

We decoupled the estimation of from that of and as in
[25] and [24] (rather than using the maximum-likelihood proce-
dures in [6] and [18]).

Recall that (2) can be interpreted as saying that speaker su-
pervectors are normally distributed with mean and covariance
matrix . For the purposes of enrolling target speakers,
we interpret this normal distribution as a prior distribution in the
sense in which this term is used in Bayesian statistics. Given an
enrollment utterance and the hyperparameters and , we
enroll a target speaker by calculating the posterior distribution
of the hidden variables and , using the maximum a poste-
riori estimate of as a point estimate of the speaker’s
supervector. (We do not use the point estimate of since the
channel effects in the enrollment data are irrelevant.)

As is generally the case with a Gaussian prior, the posterior is
also Gaussian and can be calculated in closed form [1]. The case
where and is treated in Section II-B1; the case
where and is treated in Section II-C1; the casewhere

, and there is a single enrollment utterance is
treated in theAppendix to[26]; thecasewhere

, and there is a single enrollment utterance is formally equiva-
lent to this—one only has to replace by the matrix

Finally, the general case in which there are multiple enrollment
utterances is treated in [6, Sec. III], but we have found that
pooling the Baum–Welch statistics from the various utterances
together (as if we had a single utterance for enrollment) works
just as well as the complicated calculation described there.

Note that our enrollment procedure results in a point of esti-
mate of each target speaker’s supervector, rather than a poste-
rior distribution as in the Bayesian approach that we originally
attempted [18].

At verification time, likelihoods were evaluated according to
(19) in [24]. (We did not use the correction (20) in [24]. This is a
minor technical issue which is discussed at length in [12].) Thus,
we account for channel effects in test utterances by integrating
over the channel factors in (3) rather than by using a point
estimate of the channel factors for each test utterance as other
authors do.

If a test utterance is sufficiently long, the posterior distribu-
tion of the channel factors will be sharply peaked and using a
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TABLE I
RESULTS OBTAINED ON THE CORE CONDITION OF THE NIST 2006 SRE

(FEMALE SPEAKERS, ENGLISH LANGUAGE TRIALS)

point estimate of the channel factors (either a MAP estimate or
a maximum-likelihood estimate) will give essentially the same
result as integrating over the channel factors. However, in the
case of short test utterances (say 10 s of speech), integrating over
channel factors seems to be the right thing to do. (Since the inte-
gral in question is Gaussian, there is no difficulty in evaluating it
in closed form.) It was reported in [27]–[29] that channel factors
are unhelpful for tasks involving short test utterances, but this
does not agree with our experience. In [13] we present some
good results on 10-s test conditions; we believe that our suc-
cess can be traced to not attempting to obtain point estimates of
channel factors under these conditions.

Finally, the denominator of the log likelihood ratio statistic
used for verification was calculated in exactly the same way as
the numerator with the UBM supervector used in place of the
hypothesized speaker’s supervector.

E. Imposters

The verification decision scores obtained with the factor anal-
ysis models were normalized using -norm. As in [12], we used
283 -norm speakers in the female case and 227 in the male case.
We used 1000 -norm utterances for each gender. The imposters
were chosen at random from the factor analysis training data.
The reasons for using such a large number of -norm utterances
are explained in [12].

F. Results

The results of our experiments on the female portion of the
common subset of the core condition of the NIST 2006 SRE are
summarized in Table I. (EER refers to the equal error rate, and
DCF to the minimum value of the NIST detection cost function.
The common subset consists of English language trials only. All
results in this paper were obtained using version 5 of the 2006
SRE answer key.) There are some blank entries in the table be-
cause decoupled estimation applies only in the case where both

and are nonzero. The best result is obtained with 300 speaker
factors and decoupled estimation. It is apparent that, contrary to
our conclusion in [12], the term in (2) can play a useful role
in restricted data tasks after all. There is an anomaly in the joint
estimation column: In the 300-speaker factor case, we obtained
a better EER by setting than by joint estimation of
and . We attribute this to the convergence issue mentioned in
Section II-D.

Table II gives the corresponding results on all trials of the fe-
male portion of the core condition. Again, the best results are ob-
tained with 300-speaker and decoupled estimation. Comparing

TABLE II
RESULTS OBTAINED ON THE CORE CONDITION OF THE

NIST 2006 SRE (FEMALE SPEAKERS, ALL TRIALS)

TABLE III
RESULTS OBTAINED ON THE EXTENDED DATA CONDITION OF THE NIST 2006

SRE (FEMALE SPEAKERS, ENGLISH LANGUAGE TRIALS)

TABLE IV
RESULTS OBTAINED ON THE EXTENDED DATA CONDITION OF THE

NIST 2006 SRE (FEMALE SPEAKERS, ALL TRIALS)

TABLE V
RESULTS OBTAINED ON THE CORE CONDITION AND THE EXTENDED DATA
CONDITION OF THE NIST 2006 SRE FOR MALE SPEAKERS (50 CHANNEL

FACTORS, 300 SPEAKER FACTORS, , DECOUPLED ESTIMATION)

the second row of Table II with that of Table I we see that, if
is estimated with decoupled estimation, then the term in (2)
is particularly effective in modeling non-English speakers. This
is to be expected since we used a large amount of English-only
data (namely, the Switchboard corpora) to estimate .

We replicated these experiments on the female trials of the ex-
tended data condition. The results are summarized in Tables III
and IV. Patterns similar to those in Tables I and II are evident.

We report results on male speakers in Table V. Note that these
results are much better than the results we obtained for female
speakers.
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G. Note on Baum–Welch Statistics

The results we have obtained using speaker factors are clearly
much better than those obtained using alone, but the reader
may have noticed that the figures presented in the fourth rows
of Tables I and II are not quite as good as the best results that
have been reported with comparable stand-alone GMM/UBM
systems as in [30], [5], and [31]. These systems are comparable
because they use relevance MAP for speaker enrollment and
channel factors to compensate for intersession variability. As
we mentioned in Section II-C1, relevance MAP is essentially a
special type of diagonal factor analysis model.

The reason for the discrepancy in performance is that we use
the UBM to extract Baum–Welch statistics in our system rather
than speaker-dependent GMMs. It turns out that, in the case
of a diagonal factor analysis model, using speaker-dependent
GMMs does indeed produce better results. For example, on the
English language trials in the core condition, a diagonal model
with 100 channel factors produces an EER of 2.8% for male
speakers, which is similar to the results presented in [30], [5],
and [31] (but not as good as the result in the first line of Table V).

However, for a factor analysis model with 300 speaker factors,
using speaker-dependent GMMs (estimated with speaker fac-
tors) to extract Baum–Welch statistics turns out to be harmful.
For example, on the English language trials in the core condi-
tion, a factor analysis model with 300 speaker factors and 100
channel factors produces an EER of 4.2% for male speakers if
the Baum–Welch statistics are extracted with speaker-dependent
GMMs;on theotherhand,anEERof1.4%isobtained if theUBM
is used for this purpose. This is the reason why we have always
used the UBM to extract Baum–Welch statistics in our work
on factor analysis. (The extraordinarily low error rate of 1.4%
is attributable to using 100 channel factors rather than 50 as in
Table V.)

IV. RESULTS OBTAINED WITH A LARGE
FACTOR ANALYSIS MODEL

In this section, we report results obtained on the NIST 2006
SRE test set by increasing the dimensions of the male and fe-
male factor analysis models. We increased the number of Gaus-
sians from 1024 to 2048, we increased the dimension of the
acoustic feature vectors from 40 to 60 by appending co-
efficients, and we increased the number of channel factors from
50 to 100. We kept the number of speaker factors at 300 be-
cause previous experience has shown that using larger numbers
of speaker factors is not helpful [12].

In presenting the results that we obtained with the large factor
analysis models, we will break them out by gender because (as
we saw in the previous section) there are large differences in
performance between males and females. Some insight into this
phenomenon can be gained by inspecting the way the male and
female factor analysis models fit the training data. Table VI gives
the traces of the matrices and for the two gender-de-
pendent factor analysis models. It is clear that, as measured both
by the trace of and by the trace of , there is substantially
greater variability among male speakers than among female
speakers. Thus, distinguishing between male speakers seems
to be intrinsically easier than distinguishing between female
speakers, at least if the feature set consists of cepstral coefficients.

TABLE VI
SPEAKER AND CHANNEL VARIABILITY IN MALE

AND FEMALE FACTOR ANALYSIS MODELS

TABLE VII
RESULTS OBTAINED WITH A LARGE FACTOR ANALYSIS MODEL

ON THE CORE CONDITION OF THE NIST 2006 SRE

(Inourearlierworkweused12cepstralcoefficients.Weincreased
the number of cepstral coefficients to 19 in the present work in the
hope that this would narrow the gender gap.) Perhaps even more
surprisingly, we observe that the trace of is substantially
larger for the male model than for the female model, which seems
to indicate that the channel model (3) gives a better fit in the case
ofmale speech.However, although the figures in the fourth row of
Table VI are not really comparable with the others, they suggest
that most of the variability in the data is not captured by either
the speaker model (2) or the channel model (3), and this residual
variability is larger in the case of males than in the case of females.

A. Core Condition

The results we obtained on the core condition of the NIST
2006 SRE with the large factor analysis model just described
are summarized in Table VII. Even though they were obtained
with a stand-alone system, these results compare very favor-
ably with the best results on the 2006 core condition that have
been reported in the literature, namely those obtained by STBU
[32], SRI [33], and MIT/IBM [4]. The STBU system achieved
an EER of 2.3% (English language trials only, results pooled
over male and female speakers) by fusing ten subsystems (cep-
stral and MLLR); SRI achieved an EER of 2.6% by fusing eight
subsystems (cepstral, MLLR, and higher level); and MIT/IBM
achieved an EER of 2.7% by fusing nine subsystems (cepstral,
MLLR, and higher level).

Incomparingour resultswith thoseofSTBU, it shouldbenoted
that the individual subsystems of the STBU system were trained
on pre-2005 data, but the fusion parameters were estimated using
the data made available for the 2005 NIST SRE. (Robust fusion
was a key ingredient in the success of the STBU system in the
2006 SRE.) On the other hand, our reason for excluding the 2005
data from the factor analysis training set was simply to enable us
to experiment properly with the extended data condition in the
2006 evaluation set (as we explained in Section III-C). Had we
included the 2005 data in factor analysis training, the proportion
of Mixer data in the factor analysis training set would have in-
creased from 20% to 50%, and this would presumably have re-
sulted in even better performance on the 2006 evaluation set.
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TABLE VIII
RESULTS OBTAINED WITH A LARGE FACTOR ANALYSIS MODEL ON THE

EXTENDED DATA CONDITION OF THE NIST 2006 SRE

TABLE IX
RESULTS OBTAINED WITH A LARGE FACTOR ANALYSIS MODEL ON THE

CROSS-CHANNEL CONDITION OF THE NIST 2006 SRE

B. Extended Data Condition

Table VIII summarizes the results obtained with the large
factor analysis model on the extended data condition of the 2006
NIST SRE. The best results on this task in the literature are those
reported by MIT/IBM [4] where EERs of 1.5% (English lan-
guage trials, male and female results pooled) and 2.6% (all trials)
were obtained by fusing nine subsystems (cepstral, MLLR, and
higher level). It is interesting to note that, although the extended
data task was intended to encourage research into higher level
systems, and higher level systems (including an MLLR system)
play an important role in reducing the error rates in [4], we
were able to obtain better results using cepstral features alone.

C. Cross-Channel Condition

In the cross-channel condition, the enrollment data for each
target speaker consists of a conversation side extracted from a
recording of a telephone conversation but the test data consists
of recordings made using one of eight different microphones.
(The identity of the microphone is not given. The cross-channel
task is described in detail in [34].)

We used the development data provided by NIST to estimate
100 eigenchannels to model the effects of the various micro-
phones, and we appended these eigenchannels to the 100 eigen-
channels that we had previously estimated on telephone speech.
Thus, the factor analysis model that we used at recognition time
had 200 channel factors rather than 100. Since the enrollment
data in this task consists of telephone speech, we did not have to
make any change to the factor analysis model used at enrollment
time. The only other modification that we made was to choose
the -norm utterances from the cross-channel development data
rather than from the factor analysis training data described in
Section III-C.

The results we obtained on the cross-channel test data are sum-
marized in Table IX. These results are a good deal better than the
best results that have been reported on this task, namely an EER
of 4.0% obtained by MIT [34]. The MIT results were obtained by
fusing two cepstral systems (a support vector machine with nui-
sance attributeprojectionand a GMM/UBMsystemwith channel
factors) and speech enhancement played an important role in re-
ducing error rates. Our system makes use of no special-purpose

signalprocessing; it reliessolelyonalargenumberofchannel fac-
tors tocompensate for transducereffects.Theresultsofotheraux-
iliary microphone tests (where microphone speech is used at en-
rollment time as well as at verification time) can be found in [13].

V. CONCLUSION

We have shown how careful modeling of interspeaker vari-
ability enables a stand-alone joint factor analysis system to
perform as well as fusions of large numbers of systems of other
types (which typically include models of intersession variability
but not of interspeaker variability). Of course, this achievement
comes at a cost—the implementation is more complicated
and painstaking experimentation is needed—but our approach
beats the state-of-the-art on the NIST 2006 extended data task
(without using higher level features) and on the cross-channel
task (without using speech enhancement).

The principal departure from our earlier work is that we aban-
doned (at least partially) the maximum-likelihood principle for
estimating the hyperparameters which define a joint factor anal-
ysis model. This decision was driven by the results in [12],
which led us to conclude that the maximum-likelihood prin-
ciple could not produce useful estimates of the hyperparameter

in (2), apparently because (2) is not a realistic model of in-
terspeaker variability. There is an obvious parallel here with
speech recognition: Hidden Markov models are not realistic
models of acoustic–phonetic phenomena, and maximum-likeli-
hood estimation does not perform as well as other estimation cri-
teria (such as maximum mutual information or minimum phone
error). This raises the question of whether similar discriminative
training criteria can be used to estimate factor analysis hyperpa-
rameters. First steps in this direction have been taken in [35] and
[36], but the results suggest that getting this type of approach to
work in speaker recognition may require a large effort, just as it
has in speech recognition.
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