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A STUDY OF METHODS FOR SELECTION OF. 
.QUOTIENT DIGITS DURING DIGITAL DIVISION 

Daniel Ewell Atkins , . 111, Ph. D. 
Department of Computer Science. 
univers i ty  of I l l i n o i s ,  19'70 

This study concerns a c lass  of non-restoring divis ion schemes i n  

which redundancy i s  introduced i n to  t h e  representation of t h e  quotient  thereby 

permitting quotient  d i g i t s  t o  be se lected 'from highly t runcated versions of 

t he  d iv i s i o r  and p a r t i a l  remainders. The mechanism f o r  se lec t ion  of quotient 

d i g i t s  i s  a l imi ted precision model of t h e , f u l l  precis ian divis ion which it 

controls by t h e  generation of simple microprogram ins t ruc t ions .  A.major 

advantage of t h i s  approach t o  divis ion i s  a high 'degree of congruity with 

commonly used mul t ip l icat ion s t ruc tu r e s ,  including those making use of l imi ted 

propagation adder-subtracters, f o r  example, carry-save adders. 

A cost  versus performance analysis  fo r  a l a rge  c lass  of quotient  

se lec t ion  mechanisms (model divisions ) i s  developed.   he' c l a s s  i s  defined i n  

terms of a block diagram and a s e t  of ten  design parameters. By varying t h e  

s t ruc ture  of t h e  sub-blocks and t he  values of t he  parameters, t h e  model 

division scheme ranges from t h a t  of forming q u o t i e n t ' d i g i t s  by multiplying t h e  

dividend by t h e  inverse of t he  d iv i sor ,  t o  t h a t  of a d i r e c t  t ab l e  look-up o f .  

the  quotient '  d i g i t .  So .called hybrid s t ruc tures  e x i s t  between these  two cases. 

Algorithms are described wh5ch synthesize near minimal cost rea l i za t ions  of t h e  

'most complicated sub-blocks: a combinatorial logic  network t o  produce appro- 

p r i a t e  estimates of t he  reciprocal  of t he  d iv i so r ,  'and a combinatorial l og i c  

network t o  generate a quotient d i g i t  d i r e c t l y  as a function of t h e  b i t s  i n  

estimate of t h e  divisor  and p a r t i a l  rernai-nder. ~ o & u l a s  are given f o r  t h e  

cost  of t h e  remaining sub-blocks. .For a given type s t ruc ture  t h e  .primary 



determinant of performance i s  t h e  radix  of t h e  model d ivis ion,  r = zk , where 

k i s  t h e  number of b i t s  of qilotient produced per access t o  t he  model. division.  
. . 

A FORTRAN. implement a t ion  of the '  synthesis  rout ines  i s  used t o  obtain . 

' 

t he  near, minimal cdst f o r  several  d i f f e r en t  s t ruc tures  and s e t s  of des,ign 
. . 

values. The n m e r i c a l  r e s u l t s ,  t,ogether with t h e  insight ,  gained i n  

obtaining them, are  applied t o  hypothesize a formula f o r  minimal cost.  The 

analysis  includes a multi-variable expression which r e l a t e s  cost t o  t he  radix  

of t h e  model d ivis ion,  r ,  t h e  degree of redundancy i n  t h e  quotient  representa- 
. . 

t i o n ,  and t h e  magnitude andd i r ec t i on  of the  maximum truncat ion e r ro r  i n  t he  

divisor  and p a r t i a l  remainder estimates. The cost formulas, together with 

ea s i l y  derived performance forniulas, are  used t o  t abu la te  expected cost and 

performance f o r  a var ie ty  of structures. .  It i s  found t h a t  f o r  most schemes 

t he  cost  va r ies  exponentially with performance and consequently, t h a t  many of 

the  higher radix  schemes are not pract icable .  A radix  4 , , d i r e c t  t ab l e  look-up, 

however, can be b u i l t  with about t e n ,  10-input ga tes ,  and assuming 10 ns. 

log ic ,  could produce 60 b i t s  of quotient  i n  about 4- ps. The study i s  concluded 

with suggestions fo r  fur ther  . invest igat ion.  



. ,  1. INTRODUCTION . . 

. . . . . . .  . " 

1.1 Background 

. . 

Since d iv i s ion  i s  t h e  matheniatical inverse  of mu l t i p l i c a t i on ,  one 
. . . . 

might hope t h a t  the  c o s t ,  of implementing both a  mul t ip l i ca t ion  and d iv i s ion  

operation would not be much d i f f e r en t  than t h e ' c o s t  of  implementing mul t ip l i -  

ca t ion alone. Furthermore, f o r  a  given operand leng th ,  one might expect t he  

. : 
executions times f o r  t h e  operations t o  be about t h e  same. I n  ac tua l  p r ac t i c e  

t h i s  hope has not been rea l i zed ,  l a rge ly  due t o  t he  f a c t  t h a t  d iv i s ion ,  un- 

l i k e  mul t ip l i ca t ion ,  i s  inherent ly  a  t r ia l -and-error  process. 

In  mul t ip l i ca t ion ,  a  product i s  accumulated by t he  successive 
. . . . , .  . .. . 

addi t ion of mul t ip les  of t h e  mult ipl icand t o  a  hroduct. The se lec t ion  

of which mult iple t o  add i s  dependent upon a d i g i t ,  r ad ix  r ,  of t h e  multi- 

p l i e r  --a quant i ty  which i s  known ap r io r i .  

Now consider a  recurs ive  re la t ionsh ip  f o r  a  c l a s s  of d iv i s ion  
. . 

techniques based upon subtract ion.  This re la t ionsh ip  i s  defined by 

i n  which 

p  i s  t h e  dividend, 
0 

i s  t h e  p a r t i a l . r e m a i ~ d e r  used i n  t h e  jth recurs ion,  

p  i s  t h e  remainder, . . 
m 

j i s  t h e  recursion index, . :  

q .  i s  t h e  jth quotient  d i g i t ,  
J 

d  i s  t h e  d iv i so r ,  and. , . . 

, . 

r i s  t h e  radix.  



In  forming t he  p a r t i a l  remainder, pj+l, a mult iple of t he  divisor  

i s  subtracted from t h e  previous p a r t i a l  remainder sh i f t ed  l e f t  . by . one d i g i t a l  

posi t ion.  The se lect ion of which multiple t o  subtract  i s  dependent upon a  

b .  

d i g i t  of t he  quotient;  but  it i s  precise ly  t h i s  quotient  d i g i t  t h a t  we must 
. . 

compute. It i s  not known ap r io r i .  As it stands t h i s  re la t ionsh ip  f o r  d ivi -  

s ion does not adequately specify how qj+l i s  se lected u n t i l  we add a  r e s t r i c -  

t i ~ n  such as lp I < [ d l .  The important point here i s  t h a t  d ivis ion not 
j .I I 

only requires  an addi t ion o r  subtraction as  i n  mul t ip l icat ion,  but a l so  t he  

se lec t ion  of a  quotient d i g i t  such t h a t  t h e  value of t he  contents of the  ac- 

cumulator a f t e r  t he  subtraction i s  within a  specif ied range. I f  it i s  not 

within t h i s  range then some correction i s  required. 

Several e f fec t ive  techniqyes have been developed f o r  accelera t ing 

t he  execution of mul t ip l icat ion.  Foremost among them are  t h e  following: 

1. Use of adders or subtracters  which postpone carry ur 

borrow propagation u n t i l  n terminal  s tep.  

2. The use of a higher rad ix  (,gce.ter than 2). so tha3 

s e v e r a l ' b i t s  of the  mul1;iplittr a re  r e t i r e d  i n  one 

i t e r a t i on .  

3. The introduction of redundancy* i n t o  t h e  mul t ip l i e r  

by mul t ip l i e r  recoding. 

The success of such techniques i n  mul t ip l icat ion r a i s e s  t he  question 
' 

of t h e i r  app l icab i l i ty  t o  divis ion.  A s ign i f ican t  contribution t o  t h e  answer 

was made with the  discovery of SRT divis ion.  

"Redundancy o r  redunddnt representa t ion r e f e r s  t o  a  number representa t ion i n  
which each radix  r d i g i t  may assume more than r d i f f e r en t  ~ a l u e s .  



In  t h e  middle 1950's  D. Sweeney of IBM, J. E. Robertson of t h e  

Universi ty of I l l i n o i s  [ I ]* ,  and T.  D.  Tocher [ 21 of Imperial College,. 

London, 'independently discovered ' a  b inary  d iv i s ion  technique espec ia l ly  su i t ed  

f o r  implementation. .in an e lec t ron ic  d i .g i t a l  computer. SRT d iv i s ion  was named 

by C .  V. Freiman of IBM in '  a paper d iscuss ing i t s  s t a t i s t i c a l  p roper t i e s  -1'3.1 

although an example of t h e  technique may a c t u a l l y  have been presented by 

Nadler [ 4 ] ' i n  a 1956 paper describing a computer designed and b u i l t  by t h e  

I n s t i t u t e  of Mathematical Machines of t h e  Czechoslovak Academy of Science 

under t h e  d i r e c t i o n  of D r .  Antonin.Svoboda. Whether o r  not t h e  Nadler work 

i s  equivalent  t o  SRT i s  obscured by t h e  f a c t  t h a t  it i s  'discussed i n  conjunc- 

t i o n  with a stored-carry adder and accumulator. 

The b a s i s  of SRT d iv i s ion  i s  t h e  discovery t h a t  introducing redun- 

dancyintotherepresentationofthequotientyieldsmorefreedominthe 

se lec t ion  of a quotient  d i g i t  a t  each s t e p  of t h e  recursion.  I n  SRT d iv i s ion  

t h i s  freedom i s  used t o  increase  t h e  p robab i l i ty  of a zero quotient  d i g i t ,  f o r  

which t h e  next p a r t i a l  remainder i s  produced merely by a s h i f t  r a t h e r  than by 

a subtrac t ion followed by a s h i f t .  This f l e x i b i 1 i t y . i ~  i n  con t ras t  t o  con- 

vent ional  r e s t o r i n g  o r  non-restoring d iv i s ion  which requ i re  a fu l l -p rec i s ion  

subtrac t ion f o r  each quotient  b i t  generated. Even though we a r e  considering 

a binary number system, d i g i t  values f o r  SRT d iv i s ion  a r e  1, 0 ,  i . ( t h e  . over- 

bar  denotes negation,  i . e .  -1), and thus  we have redundancy. 

I n  1965, Robertson [ 5 ] extended t h e  concepts inherent  i n  SRT 

d iv i s ion  t o  higher r a d i x  d i v i s i o n  schemes. The fundamental . tenets  of t h e  

method remain, namely, t h a t  by introducing redundancy i n t o  t h e  represen ta t ion  

*Numbers i n  brackets  r e f e r  t o  e n t r i e s  under References. 



of t h e  quot ient ,  t h e  se lec t ion  of a  quotient d i g i t  a t  each s t ep  of t he  recur- 

s ion need not be precise .  Fo r ' t he  higher radix  cases,  a l a rge r  s e t  of quo- . .  

t i e n t  d i g i t s  i s  necessary and thus  t h e  probabi l i ty  of & zero quotient d i g i t  

i s  reduced t o  t he  extent  t h a t  adder bypass .no longer y i e ld s  s ign i f ican t  speed . 

improvement. However, t h e  redundancy may s t i l l  be put t o  advantage; it 

permits t he  se lec t ion  of a  quotient d i g i t  based only upon high-order d i g i t s  

of t h e  divisor and hip$-order dig1'l;s of *the sh1Pted pa;l.tial,r.enia.iuder. 

I u  re fe rz~ice .  [ .  5 1 ,  rZobertoon introduheo tho notisn of a q1.iotien.t 

\ 

se lec t ion  mechanism with inputs  consist ing of estimates of t h e  d iv i sor  and 

sh i f t ed  p a r t i a l  remainder. He notes t h a t  t h e  mechanism fo r  se lec t ion  of quo- 

t i e n t  d i g i t s  may be thought of as  a  l imi ted precision model of t h e  f u l l  

precis ion divis ion.  The procedures i n  t he  model need not be t h e  same a s  t h e  

procedure of t h e  f u l l  precis ion scheme which it controls.  The model divis ion 

generates simple microprogram ins t ruc t ions  t o  t h e  ful l -precis ion un i t .  His 

paper a l so  presents an i n d i r e c t ,  r e l a t i v e  .measure of Lhe cusl; of' sel&ctioil  sf 

quotient  d i g i t s .  

The authors Master' s  Thesis i n  1967 i s  .based la rge ly  upon 'Robertson's 

work as  described i n  references [ .  11 and [ 5 1.  The complete t h e s i s , .  inclui -  

ing an example of a  ac tua l  implementation of a  model d ivis ion scheme, i s  

avai lable  i n  repor t  form [ 61; t h e  more t heo re t i c a l  aspects of the  work a re  

avai lable  i n  journal  form [ 71. Implementation i s  a l so  discussed . i n  a  more 

recent repor t  i n  conjunction with t he  development of t he  ar i thmet ic  u n i t s  of 

t h e  I l l i a c  111 Computer [ 81 , [ 9 1.  

~he ' au tho r ' s  paper [7] i s  l a rge ly  t u t o r i a l .  It presents a  de ta i l ed  

review of Robertson's proof of the  validi'1;y of t h e  c l a s s  of d ivis ion techni- 

ques t o  which the  model d iv i s ion  approach i s  applicable.  The proof w i l l  not 





s t ruc tu r e  which i s  po t en t i a l l y  highly compatible with a  given mul t ip l icat ion 

scheme. The di f ference i n  t h e  execution time between t he  i t e r a t i v e  port ion 

of mul t ip l icat ion and d iv i s ion  i s  e s sen t i a l l y  the  difference between t he  t o t a l  

time required t o  recode t h e  mul t ip l i e r  and t h a t  t o  recode t he  quotient .  The 

bulk of t he  logic  accounting f o r  t h e  difference i n  cost  of a mul t ip l i e r  and 

t he  cost  of a  mul t ip l i e r  and divider  may then be associated with t h e  cost  of 

implementing t he  model d ivis ion.  

. . 
1 . 2  Present Work 

With t h i s  background i n  mind, we now tu rn  t o  an introduction t o  t he  

present work. Section 2 begins by defining a  c l a s s  of ful l -precis ion multi- . , 

pl icat ion-divis ion s t ruc tures .  We then define a  r a t h e r  general block 

s t ruc tu r e  of a  quotient  se lect ion mechanism su i t ab l e  f o r  use a s  a  model 

d ivis ion.  The parameters of t he  model iliclude t he  radix ,  t he  magnitude of 

t h e  l a r g e s t  quotient  d i g i t ,  t he  rarige of t he  d iv i sor ,  and t he  t runcat ion 

e r r o r  i n  t h e  est imates of ' the divisor  and p a r t i a l  remairlder. 

The f l e x i b i l i t y  of the  model d iv i s ion  approach and t he  general i ty  

.of t h e  model proposed i n  Section 2 of f e r  a  l a rge  number of design poss ib i l i -  

t i e s .  A major goal  of t h i s  work i s  t o  inves t iga te  t h e  cost versus perfor- 

mance of various designs and attempt t o  ex t rac t  analyt ic  r e s u l t s ,  Such an 

attempt requires  t h e  def in i t ion  of a  measure of cost  and performance. A 

usefu l  cost  measurement'should, i n  some sense,  be minimal, and therefore  we 

must consider minimization c r i t e r i o n  and a  minimization algorithm. These 

t op i c s  a r e  discussed i n  Section 3. 

The f i r s t  approach t aken ' t o  determining cost  and performance of 

various quotient se lec tors  i s  t h a t  of computer-aided generation o f ' a  spec i f i c  



design followed by analysis .  In  Section 4 algorithms a r e  described which, 

when supplied with parameter values,  w i l l  generate log ic  def in i t ions  of t he  

sub-blocks of t he  model. Most of t h e  logic  w i l l  be defined i n  a minimal sum- 

of-products form which could serve , as , inpu t  t o  a log ic  design' program custom- 
. . 

ized for.  a given c l a s s  of ' logic. . . 

.To t h i s  point we w i l l  have developed a,mechanism. f o r  generating 

and comparing.various designs . f o r  a model d ivis ion.  The approach has been 

one of computer-aided design followed by computer-aided minimization. The 

r e s u l t s  from t h e  computer work are  tabulated i n  Section 5. Although the  

design and minimization programs a re  qu i te  e f f i c i e n t ,  t h e  l a rge  number of 

design p o s s i b i l i t i e s  together with t he  l a r g e  number of terms i n  t he  logic  

equations f o r  t he  higher radix  models strongly discourages an exhaustive 

analysis .  An addi t ional  r e s u l t  described i n  Section 5 has been ins ight  which 

l ed  t o  development of analyt ic  expressions f o r  t he  cost  of a s t ructure .  

Section 6 i s  a tabula t ion of estimates of'  cos t :  ahd performance 

based upon t he  equations and comiuter generated r e s u l t s  described i n  ,Sect ion 
. . 

5 .  The f i n a l  se lec t ion  i s  a summary and some  conclusions as  t o  t he  r e l a t i v e  

merits  .of various members of the  family of model d ivis ion schemes considered. 

The section i n c l u d e s . a . l i s t  of suggestions f o r  fu r ther  invest igat ion.  



2 .1  Formal Definit ion of t h e  Fu l l  Precision Division 

The members of t h e  c lass  of d ie is ion.  algorithms which may be. em- 

ployed t o  perform the  f i l l - p r ec i s i on  divis ion are  those defined by t h e  
> 

recurs ive  re la t ionsh ip  (1.1) and t h e  l i s t  of r e s t r i c t i o n s  given below. The 

recurs ive  re la t ionsh ip  i s  repeated here f o r  convenience. 

i n  which 

po i s  t h e  dividend, 

p .  i s  t h e  p a r t i a l  remainder used i n  the  j t h  recursion,  . . 
J 

p  i s  t h e  remainder, 
m 

j i s  t h e  reciilisioii .indE%, 

q .  i s  t h e  j t h  quotient  d i g i t  ( rad ix  - r )  , 
J 

d  i s  t h e  d iv i so r ,  and 

r i s  t h e  radix.  

The quanti ty r p .  i s  re fe r red  t o  as t h c  sh i f t ed  p a r t i a l  remainder. 
J 

Res t r ic t ions  which apply a re  as  follows: 

1. Allowable quotient  d i g i t s  a re  

> 
n  i s  an in teger  such t h a t  n  - ( r  - .l)/2. 



2. . The dividend; po, must be i n  t h e  range defined by 

where p = n/(r -1) .  

. . 
3. The divisor  must be within a given range, i . e .  t h e  

quan t i t i es  a and b must 'be defined such t h a t  

4. Every quotient d i g i t ,  qj+l f o r  j from 0 through m-1, 

must be chosen such t h a t  pj+l as  defined by (1.1) i s  

within t h e  range 

The der ivat ion of these  r e s t r i c t i o n s  i s  . given . i n  

[ 6 ] and [ 7 1. Note t h a t  t h e  forms of r p  a,nd d hav'e' 

not been l imi ted ' t o  non-redundant representations.  
. ' <  . 

They may be i n  forms such a s  produced by carry-save 

adders o r  borrow-save subtracters .  

2.2 Graphical Representation of t h e  Division Procedure 

This d ivis ion hrocedure may be defined graphically with a .con- 

s t ruc t ion  suggested by C .  V. Freiman [ 5 ]. The bas i s  f o r  t h e  construction i s  

t h e  recurs ive  re la t ionsh ip  (1.1) together with t he  range r e s t r i c t i o n  (2 .5) .  

The f igure  i s  e s sen t i a l l y  a p lo t  of p a r t i a l  remainder versus divisor  values 

and i s  thus designated a P-D p lo t .  



Solving t h e  recurs ive  re la t ionsh ip  f o r  r p .  y i e ld s  
J . 

- 
r P j  - pj+; + Pj+l d. 

For a f ixed  quotient  d i g i t ,  t h e  upper . l imi t  of r p  j as  a 

function of the  d iv i so r  ,d ,occurs when p is  maximum, i . e. , when p = pd 
j +l j +l 

and thus  

rpj  max = ( P  + qj++ 

Likewise t h e  lower l i m i t  i s  defined by' 

rpj min = ( -P + qj++ 

These l i n e a r  f'unctions of d m a y b e  p lo t t ed  as  a family of curves with q as 
j +l 

a parameter ranging from -n through +n i n  s teps  of  '1. The a rea  between 

and r p j  min f o r  a given q = i w i l l  be denoted t h e  ' I q ( i )  region." 
rPj max j+l 

For given r ,  n ,  a ,  and b y  t h e  divis ion prockdure i s  speci f ied  by 

t h e  corresponding P-D p l o t .  A given value of d and r p  w i l l  specify a point  
j 

i n  a q ( i )  area. The quotient  d i g i t  qj+l i s  the re fore  i and i s  used i n  

' forming P ~ , ~ .  

Figure 1 i s  an example of a P-D p l o t  with r = 4, n = 2, a = 112 

and b = 1. The equations f o r  t h e  l i n e s  denoted 2 ' ,  2,  e t c .  a r e  defined i n  

Table 1. Note t h a t  a s  a consequence of t he  redundancy introduced i n t o  t h e  

representa t ion of t h e  quotient  the re  i s  overlap between adjacent quotient  

regions.  Some p a i r s  ( d ,  r p . )  w i l l  specify a point  f o r  which e i t h e r  
J 

q j + ~  
= i o r  q = i - 1 i s . a  v a l i d  choice.. It i s  t h i s  overlap which permits 

j +l 

quotient  d i g i t  se lec t ion  t d  be made on t h e  bas i s  of est imates.  of t h e  fill 

prec i s ion  d iv i sor  and s h i f t e d  p a r t i a l  remainder. 

2.3 ~orma.1 ' ~ e f i n i t i o n  of t h e  Quotient  Select ion procedure 

The quotient  se lec t ion  mechanism may be defined as  a device t h a t  



Figure 1. P-D .Plot with r=4, n=2 . . 

Designation 
in Figure 1 

Equation , 
- 

rPj - 

Table 1. Equations Defining the Regions of Figure 1. 



when given estimates of t h e  divisor  and sh i f t ed  p a r t i a l  remainder of "suff i -  

cient" precis ion;  w i l l  produce a  quotient d i g i t ,  i,  such t h a t  r e s t r i c t i o n  

(2 .5 )  i s  s a t i s f i ed .  The 'def ini t ion of suf f ic ien t  precision i s  given i n  

t h e  following. 

With a ,  . b ,  n ,  and, r given, the  P-D p lo t  i s  specif ied.  Let D be t he  

s e t  of a l l  div i sor  values f o r  a  given operand length and range specif ied by 

(a ,  b ) .  Let P be t he  s e t  of 'all values of allowable sh i f t ed  p a r t i a l  remain- 

ders.  The area of t h e  P-D p lo t  i s  t he  Cartesian product of P and D ,  i . e .  t he  

a rea  i s  t he  s e t  

P x U = { ( r p , d ) l r p  E P and d E U). ( 2 . 8 )  

Every element of P  x D i s  contained i n  one o r  more q(i) regions; 

thus  each element implies a  s e t  I =' { i  1 (rp, d )  i s  within t he  q(i) region). 

I n  Figure 1, every pa i r  ( d ,  r p )  w i l l  be contained i n  e i t h e r  one or  t w o  g , ( i )  

regions. This w i l l  be the  case f o r  a l l  examples discussed i n  th2s study,  

however, f o r  p = n / ( r  - 1) grea te r  than 1, a given (d ,  r p )  would be contained 

wi thin  two o r  more q , ( i )  regions. 

The inputs t o  the  quotient  se lec t ion  mechanisms are estimates of t h e  
A  A '  

div i sor  and sh i f t ed  p a r t i a l  remainder. Let d  and r p  denote these  est imates,  

A  

respec t ive ly ,  and l e t  ~ ( r p ,  d )  be t he  output of t he  quotient se lect ion 

A  A  

mechanism ( a  quotient  d i g i t )  f o r  given estimates ( rp ,  d ) .  

A  A  

The s e t  of rp and d values a re  of su f f i c i en t  precision and. the  

quotient  se lec t ion  procedure i s  correct  i f  f o r  every p a i r  (,rp, d ) ~  P x D ,  

A  A A h  
. . 

t he r e  ex i s t s '  an ordered p a i r  (rp, d )  such t h a t  ~ ( r p ,  d )  = i, where. i belongs 

t o  t he  s e t  I implied by (rp, d ) .  



A A 

I n  a c t u a l  p r a c t i c e ,  d and r p  a r e  formed by uniformly t runca t ing ,  o r  

t runcat ing and rounding d and r p ,  respect ively .  Assume t h a t  a  b inarx  repre- 

sen ta t ion  of d i s  t runcated  between pos i t ion  6 and 6 + 1 t o  t h e  r i g h t  of t h e  

binary po in t ,  and t h a t  a  binary representa t ion of r p  i s  t runcated  between 

pos i t ion  E and E t 1 t o  t h e  r i g h t  of t h e  b inary  point . .  -Let, 

. . .  
Ad .= 2-6 , and ' .  (2.9)  

Arp = 2-'. 

A 

The s e t  of d-values a r e  the re fo re  in teger  mul t ip les  of Ad and t h e  
A . . , A I 

s e t  of r p  values a r e  in teger  mul t ip les  of Arp.. A given value of d i s  repre- 

s e n t a t i v e  o f .  t h e  range of fill precis ion d iv i so r  values given by 
. . 

where a = a '  Ad (2.12) 

f3 = @ '  Ad. . . (2.13) ' . 
. . 

A 

Simi'larly, r p  i s  represen ta t ive .o f  t h e  range of f u l l  prec is ion s h i f t e d  par t ia l :  

remainders i n  t h e  range 

where , , A = .A ' Arp, and 
- . . . .  

The q u a n t i t i e s  a ' ,  B ' ,  A ' ,  and y '  a r e  i n  t h e  range 0 t o  2 and depend 

upon t h e . t r u n c a t i o n  procedure and t h e  form of representa t ion of d and rp .  

2.4 Physical  Model of t h e  Quotient s e l e c t i o n  Mechanism 

. . . .  , 

W e  now t u r n  t o  t h e  quest ion of t h e  physical  r e a l i z a t i o n  of a  quo- 
,. A 

t i e n t  se lec t ion  mechanism; t h e  device which p e r f o m s  t h e  operat ion rp /d  t o  . 

produce t h e  quot ient ,  i ,  such t h a t  i belongs t o  t h e  s e t  of quot ient  d i g i t s ,  I, 



implied by ( rp ,  d ) .  Since t h e  operation time of divisicjn r e l a t i v e  t o  multi- 

p l i c a t i on  i s '  l imi ted by t he  model d iv i s ion ,  t h e  requirements fo r  a  high perfor- 

mance .arithmetic processor would demand the  'design of a high-speed model 

d ivis ion.  One'way t o  achieve t h i s  would.be.to use a  higher-speed c lass  of 

log ic  i n  building t he  model d iv i s ion  than i n  building t h e  remainder of t he  

ar i thmet ic  processor, but i n  t h i s  work we a re  assuming one given c l a s s  of 

log ic  and a r e  constraining t h e  design pro'blem such t h a t  speed advantages must 

be gained by organization.  

Any va l id  divis ion. technique i s  a  candidate f o r  a model division.  

One aspect of t h i s  study was a survey of known divis ion techniques su i t ab l e  

for.implementation i n  a  d i g i t a l  computer. References [14] through 1321 are  

some of t he  works consulted. In evaluating possible. candidates we should 

keep i n  mind the  advantages of dealing with r e l8 t i ve ly  shor t  operands coupled 

with t h e  po t en t i a l  requirement f o r  low operating times. 

Digi taJ  divioion ochcmca may be c l a s s i f i ed  as addi'tive , u u l  Liplica- 

t i v e ,  t abu l a r  or some combination of t he  three .  Additive techniques are. 

those such as  res to r ing  and non-restoring divis ion i n  which addit ion and 

subtract ion are t h e  fundamental operations; t h e  divisor  remains invar iant .  

~ u l t i p l i c a t i v e  schemes are  those i n  which both t h e  dividend and divisor  a re  

mult;3.plied by fac tors  i n  such a  manner t h a t  the  modified d iv i sor  converges t o  

1 and thus t he  modifzed dividend converges t o  t h e  quotient .  Tabular techni- 

ques are those based upon a  combinational network: t he  quotient d i g i t  i s  

produced by table-look-up,. Note t h a t  nei ther  of t h e  two l a t e r  techniques 

produces a  remainder but  t h a t  a  remainder i s  not needed f o r  a  model d ivis ion.  



We have eliminated,analog schemes and threshold log ic  from consid- 

e ra t ion  i n  t h i s  study. We have a l so  ruled out logarithmic techniques s ince ,  

although 'the divis ion i s  transformed t o  a subtract ion,  ,the equipment-time 

r a t i o  suf fe r s  due t o  necessi ty f o r  'forming logs  and ant i logs .  

We now propose a generalized s t ruc ture  i n t o  which'wil l  f i t  m u l t i -  
. . 

p l i ca t i ve  and tabu la r  techniques : These schemes appear t o  have a po ten t i a l  

f o r  higher operating speeds t h q  the  addi t ive  techniques. Since it i s  an 

addi t ive  (non-restoring.) scheme which i s  control led with t h e  model d ivis ion 

it seems i n t u i t i v e l y  j u s t i f i a b l e  t o  consider a higher performance c lass  f o r  

t h e  model. Emphasis on hardwired t ab l e  look-up techniques i s  a l so  j u s t i f i ed  
. . 

by trends of technology towards LSI. 

Figure 2 i s  t h e  generalized s t ruc ture .  The parameters and blocks 

a r e  as  follows: 

Divisor Estimate Formation - This block accepts a fW.1 precision 

< 
d iv i so r ,  d ,  i n  t he  range a - d < b ,  and from it produces an est imate of t he  

, . 
A 

div i sor ,  d ,  with maximum negative uncer ta inty ,  a, and maximum pos i t ive  uncer- 

t a i n t y ,  B. This box may a l so  incorporate provisidns fo r  changing t h e  form 

A 

of representation of d from t h a t  of d. For example, i f  t h e  model d iv i s ion  

s t ruc ture  accepts only pos i t ive  quan t i t i es ,  but d i s  i n  both negative and 

A 

pos i t ive  range,. t h i s  box could convert d t o  a s ign and magnitude form. The 

magnitude would serve as. input t o  t h e  model. The s ign  would be used t,ogether 

w i t h  t he  sign of the  p a r t i a l  rema;inder in ,  d.etermining t h e  s ign of t h e  quo- 

t i e n t  d i g i t .  This block i s  pa r t  of t h e  in te r face  between t he  f u l l  precision 

s t ruc ture  and t he  model.division. 

In  addi t ion t o  t h i s  in te r fac ing  funct ion,  t h e  d iv i sor  est imate 

formation box a l so  serves as a se lec tor .  Note t h a t  t h e  output of Mul t ip l i e r  2 
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i s  coupled back i n to  t h i s  box. . This feedback loop t ,ogether,with t h e  one from 

Multiplier  1 t o  t h e  p a r t i a l  remainder estimate formation.box admits i t e r a t i v e  

mul t ip l icat ive  schemes i n to  t h i s  s t ruc ture .  

Table 1 - This block' accepts d as t he  input and pioduces a value, 

A A 

A ,  as  a function of d ,  i. e. A = f  ( d )  . The quanti ty A i s  a fac tor  by which 
A A 

both d and r p  a re  mult iplied ( t he  quotient i s  therefore  not changed). It may 

A 

be interpreted as  a sca le  fac tor  used t o  t r b s f o r m  t h e  range 'of  d o r  a s  an 

n 

estimate of t he  inverse of d. 

P a r t i a l  Remainder Estimate Formation - This block accepts a f u l l  

precis ion sh i f t ed  p a r t i a l  remainder, r p ,  and from it produces an est imate of , 

A 

t h e  sh i f t ed  p a r t i a l  remainder, r p ,  with maximum negative uncer ta inty  of A and 

maximum pos i t ive  uncertainty,  y .  As with d iv i sor  est imate formation, t he  

est imate i s  i n  p rac t ice  a truncated version of the  f u l l  precision quanti ty.  

The block may a l so  incorporate provisions' f o r  changing t h e  form'of ;the 

. representation.  

I n  actual  implementations t he  full precision remainder may be t he  

r e s u l t  of operations using an adder-subtracter which produces a redundant 
A 

representation.  The estimate of t he  remainder, .rp,  however, i s  r e s t r i c t e d  t o  

non-redundant representations.  We have assumed, although not r igorously 

,demonstrated t he  f a c t ,  t ha t  use of a redundantly represented value would un- 

duly complicate t he  s t ruc ture  of t he  quotient se lec t ion  mechanism. Merely 
' 

del;ermining t he  s ign ,  f o r  example, i s  of t he  same order of complexity a s  con- 

ver t ing  t h e  value i n t o  a non-redundant form. It i s  important t o  r e a l i z e , ' .  

however, t h a t  t h e  estimate cdns i s t s  of only t h e  high order d i g i t s ,  of t h e  f u l l  

precision remainder. In p rac t ice  t h i s  estimate i s  s u f f i c i e n t l i  shor t  t o  

permit conversion t o  a non-redundant form using full-lookahead techniques. 



The p a r t i a l  remainder estimate formation block a l s o  enables the  

o u t p u t , o l M u l t i p l i e r  1 t o  couple back i n t o  the  input s i de .  A s  with t he  

d iv i sor  loop, t h i s  path i s  necessary f o r  t he  inclusion of the  i t e r a t i v e  mul-  

t i p l i c a t i v e  division scheme. 

Mult ip l iers  - Mult ipl ier  1 and Mult ip l ier  2 form, respect ively ,  t he  

A  A  A  h 

quan t i t i e s  P  = A r p  and D = A d. The outputs of both mul t ip l i e r s  a r e  t h e  
A  

inputs t o  t h e  second t a b l e  look-up s t ructure , '  Table 2. P may be thought of 
A  

as  a  transformed version of rp .  The maximum negative uncertainty i n  P is  

AAmU; t he  maximum pos i t ive  uncertainty i s  yA where Amax = f ( b ) .  
m x  ' 

I f  t h e  product, Arp i s  truncated so  t h a t  non-zero d i g i t s  a re  l o s t ,  addi t ional  
A  

uncer ta in t ies  A and ym areintroduced. .  I n  t h i s  case P represents trans- 
m .  

formed r p  values i n  t h e  range 
A < < A  
P - A A - A  D - h p - P + A y + y m .  

Similar ly ,  the  maximum uncer ta in t ies  i n  D a r e  A max' 'Amax with Amax = f ( b ) .  

I f  D i s  t runcated with maximum truncat ion e r ro r s  (au, B ) then D i s  r e ~ r e s e n t a -  
u 

t i v e  of transformed d values i n  t he  range 

A 
i < A  

D - A a - a  - A d - D + A B + B m  
nl 

Table 2 - This s t ruc ture  i s  an implementation of t he  function 

,. A  

which r e l a t e s  quotient d i g i t s ,  q,  t o  the  products P and D ,  t he  scaled 

remainder and d iv i sor ,  respect ively ,  f o r  t he  model d ivis ion.  

Quotient Recode - The quotient recode block represents t he  in te r -  

face  between the  output of t h e  model d iv i s ion  and t he  f u l l  precision divi- 

s ion.  The output of Table 2 ,  q, may require  a  recoding i n to  a f o m  d i r e c t l y  

usable by t h e  s h i f t  gate complex which s e l ec t s  t he  next mult iple of t h e  

divisor  t o  be used in  forming t h e  subsequent p a r t i a l  remainder. 



A t  t h i s  point we narrow the '  scope of the 'p resen t  research t o  eiclude 

i t e r a t i v e  mul t ip l icat ive  schemes: the  feedback loops of Tigure 2 w i l l  not 

be used. The remaining s t ruc ture  includes what might be considered two 

extremes or  boundary cases. In  t he  one s t ruc ture ,  t o  be designated Tjrpe 1, 
A 

Table 1 i s  defined such t h a t  t h e  rounded, in teger  port ion of t h e  product .A rP  

i s  t h e  correct  quotient  d i g i t  f o r  t h e  d iv i s ion ,  rp /d .  For a Type 1 s t ruc ture  

nei ther  Table 2 nor Mult ip l ier  2 need be implemented. The other  extreme 
A 

occurs when A = f ( d )  = 1. In  t h i s  case,  designated Type 2,  Table 2 bears t he  

f u l l  burden of quotient se lec t ion  and ne i ther  Table 1 nor t h e  mul t ip l i e r s  
. . 

are  required. 

. , 

But there  a r e  also '  intermediate,  hybrid, structures:  i n  which nei ther  

Table l nor Table 2 i s  degenerate. I n  these  s t ructures .Table  .l and. the  . 
A A 

mul t ip l i e r s  a re  u s e d - t o  transform A d i n t o  a range c loser  t o  1 than was d. 

The e f f ec t  of t h i s  range transformation i s  t o  simplify Table 2.. I n  , the  next 

chapter we s h a l l  examine t h e  design of Table 1 and Table,,2 independently' and 

then make some observations about hybrid s t ruc tures .  The s h i f t  from a Type 1 
. . 

struc-Lure t o  Type 2 s t ruc ture  and accompanying trade-off between speed and 

hardware i s  but an example of t h e  trade-offs avai lable  between, sequential  

networks and t h e i r  combinatorial equivalent. 



3. DEFINITION OF COST AND PEBFORMANCE 

3.1 Preliminary Remarks 

To t h i s  point  i n  t h e  t h e s i s  we have defined a divis ion procedure 

which generates a quotient  by &ccessive c a l l s  t o  a lower .precisiqn, model . .  

div i s ion  uni t . .  A generalized s t ruc ture  of t h e  model d ivis ion was proposed and 

..now we begin t o  consider t he  synthesis  of such a u n i t .  

~ e s i d e s  t he  de f in i t i ve  aspects of t h i s  work, a major goal  is  t o  

derive useful  estimates of minimal cost  and performance a s  functions of t he  

design parameters of t h e  generalized s t ruc ture  i n  Figure 2. Design parameters 

include such quan t i t i es  as  radix ,  r;  magnitude of maximum quotient d i g i t ,  n; 

and the  point  of t runcat ion of r p  and d . .  I n  t h i s  sect ion,  the  important boxes 

of Figure 2 are  made su f f i c i en t l y  spec i f ic  t o  allow a measure of minimal cost  

and performance t o  be proposed. 

I n  f inding a mcaourc of cogt o r  pcrfoimance, t he  desigi~ei- i s  faced 

with a trade-off between general i ty  and accuracy. ,Determining absolute cost  

o r  absolute performance i s  very much dependent upon hardware and d e t a i l s  of 

implementation;. but r e s t r i c t i n g  t he  study t o  a spec i f ic  c l a s s  of logic  l i m i t s  

t h e  s ignif icance of t he  work. Questions of minimization. a r e  f'urther complicated 

by controversy as t o  what t o  minimize. 
8 ,  

This work makes a compromise. Since much of t he  emphasis i s  on 

comparison,. a r e l a t i v e  measure of cost  and performance i s  adequate. On t h e  

other  hand, some est imate of absolute cost  i s  des i rable .  The higher-radix, 

t a b l e  look-up schemes o f f e r  po ten t ia l ly  high performance but require  a l a rger  
I 

number of gates  t o  construct .  Whether, i n  f a c t ,  they a re  a t  a l l  feas ib le  f o r  



a r e a l  machine strongly depends upon t he  ab.solute 'cost .  . 

3.2 Definit ion of Cost 

3.2.1 Preliminary Remarks 

. . 

For t h i s  study, the  cost of a log ic  network i s  defined as  the  t o t a l  

, - number of l i t e r a l s  required t o  implement t h e  network i n  two-level, sum-of- 
\ 

products (AND-OR or  equivalent)  logic .  The choice ignores fan-in and fan-out. 

r e s t r i c t i o n s ,  but t h i s  shortcoming i s  outweighed by t h e .  following considera- 

t ions .  

1. The log i ca l  de f in i t ions  of t h e  networks a r e  i n  a 

canonical form which can serve as an 'input t o  a spec i f i c  

minimization'and/or design automation package. 

2. The networks are rea l ized  i n  t he  t heo re t i c a l  mini- 

mum number of c i r c u i t  delays and .thus w i l l  be an upper 

bound on speed and cos t .  

3. The t ab l e s  f o r  higher-radix s t ruc tures  a re  c&dj.da.tes 

f o r  LSI. I n  t h i s  case t h e  number of l i t e r a l s  i s  a measure 

of s i l i c o n  area  required and power d i ss ipa t ion  requirements. 
, 

4. A very e f f i c i e n t  computer program f o r  sum-of-products 

minimization i s  availa.ble t o  t he  author. 
. . 

The cost  of implementing t h e  s t ruc ture  shown i n  Figure 2 i s  t h e  sum 

of t he  costs  of 'implementing .each sub-block. Symbolically, 

- k c .  
= C ~ p .  + + 'jvll + ' ~ 2  , PREF + ' ~ 2  + CR 

where 

C i s  t h e  t o t a l  co s t ,  . . 



C ~ E F  
i s  t he  cost  of t h e  Divisor Estimate Formation block, 

i s  t h e  cost  of Table 1, 
C ~ l  

i s  t h e  cost  of Mult ip l ier  1, cm. 

CM2 i s  t h e  cost  of Mult ip l ier  2; 

i s  t h e  cost  of the  P a r t i a l  Remainder Estimate Formation block, 
'PRE-F .. 

i s  t h e  cost  of Table 2,  and 
' ~ 2  

CR i s  t h e  cost  of t he  Quotient Recode block. 

A t  t h i s  po in t ,  it i s  convenient t o  introduce intermediate var iables ,  

'TMM and C ~ ~ ~ i .  

and group t he  cost  terms as  follows: 

- 
. 'DPQ - 'DEF + 'PRFP + 'R 

( 3 . 3 )  

The cost  terms CT2, Cm; and C a re  funct ional ly  r e l a t ed  t o  t h e  
DPQ 

design parameters such a s . r a d i x ,  maximum quotient  d i g i t ,  range of d iv i so r ,  and 

uncer ta inty  i n  t h e  estimates of t he  d iv i sor  and remainders. The terms CT2 and 

i n  C are t h e  most complex and w i l l  be studi6d by computer synthesis .  
C ~ l  TMM 

Estimates of C and t he  remaining terms of CTm w i i l  be obtained manually a s  
DPQ 

required.  . I n  most cases,  t h e  term C i s  dominated by CT2+Cm and may be 
npQ , 

neglected. 

3.2.2 Structure  f o r  ~ i n d i n ~ : C o s t  of Table 2 

Table 2 w i l l  be studied a s  a multiple-output log ic  network. It may 

be represented a s  shown i n  Figure 3. The 'functions, f through f n  a re  Boolean 
0 

A ,. 
. functions of the  b i t  vectors  corresponding t o  d and rp .  These vectors  a r e  

- - 
A h 

denoted d and rp ,  respect ively .  



f, (a, ,$I 
b 

b 

Figure 3. . Network Def in i t ion  of Table 2 

I n  specifying t h e  quotient  s e l e c t i o n  c r i t e r i o n  ( s e c t i o n  2.31, every 

T A B L E  2 

MULTI - OUTPUT 

LOG I C- 

NETWORK 

L 

A A 

p a i r  ( d ,  rp) has been associa ted  with a s e t ,  I ,  o f  quot ient  d i g i t s  which t h e  
. . 

* 
b 

9 

A A 

quotient  s e l e c t i o n  mechanism may generate 'when given inputs  (d ,  r p )  . The 

f u n ~ t i o n s  , f o ,  f l  , . . . , f must be found such t h a t  f o r  every ordered p a i r ,  , n ,. A 

( d ,  rp) with allowable quotient  d i g i t  s e t ,  I ,  

- - 
A A 

f i  ( d ,  r p )  = 1 f o r  one and only one i s I ,  

and ' f k  ( d ,  r p )  = 0 f o r  a l l  o ther  va lues  of i. (3.5) 

A A A A 

In  o ther  words, every p a i r  ( d ,  rp) i n  t h e  s e t  D x  must cause one and only one 
. . 

d 

of t h e  outputs  t o  be t r u e ,  and t h i s  output  must correspond t o  a  co r rec t  quo- 

t i e n t  d i g i t .  

Due t o  t h e  overlap of aa jacent  quot ient  regions  produced by redun- 

,. A 

dancy, many elements i n  D x P may have s e t s ,  I ,  containing more than one 

element., thus  many s e t s  of d i f f e r e n t  funct ions  ' b e  a l l o w a b l e , f o r  given design 



parameters. But our wish t o  compare minimal* costs  imposes another cons t ra in t ,  

namely, t h a t  the, cost  of the  mult iple output network (as  defined i n  Sect ion 

3.2.1) i s  minimal. Symbolically s ta ted :  t h e  requirement i s  t h a t  Cost ( f  
0 + f2  

+ f 2  
+ * * *  + f ) be minimal.' 

n 

1n' the  general  m ih ikza t i on  of two-level, AND-OR r ea l i z a t i on  of a 

multiple-output network, it i s  necessary t o  generate t h e  prime implicants of 

each of t h e  individual  output functions,  plus t he  prime implicants of t h e  

functions which a re  equal t o  a l l  possible products of two output funct ions ,  

t h r ee  output functions,  e t c  . Each product i s  a m i l t  iple-output prime implicant . 
McCluskey [33] ,  s t a t e s  t h e  following theorem of use here: 

J 

Theorem:  or any de f in i t i on  of networks cost  such t h a t  t he  
cost  does not increase when a ga te  or  gate  input i s  removed, 
the re  e x i s t s  at l e a s t  one minimum-cost, two-stage network i n  
which t h e  corresponding expressions f o r . t h e  output f'unctions, 
f , are  a l l  sums of m u l t  iple-output grime implj r.n.nt,s. A l l .  

t i e  product terms which occur only i n  t he  expression f o r  f j  
, . a r e  prime implicants of f J ;  a l l  t he  product terms which . . 

occlrr i n  both t he  express~uns  f o r  fj and f k  but ' i n  no other , , ' 
expressions a r e  prime implicants of f i  f k ,  e tc .  

. . 

2. . 

But i n  t h e  present case,  no two functions a re  ever simultaneoualy 

t r u e  and thus none of t he  prime implicants o f ' f  a r e  contained i n  any other  
j 

funct ion,  f k ,  k # j. Thus, by t he  theorem s t a t ed  above, the re  e x i s t s  a minimum 

c o s t  two s tage network which may be found by minimizing each function indepen- 

dent ly  nf: t.hc rest;, i .c. 

Min Cost ( f  + f + + f ) = Min Cost ( f o )  + Min Cost 
.o n .  

( f l )  + * - * *  + f i n  Cost (f,).  

*The term minimal, implies t h a t  we wish t o  f i nd  any one of .poss iblymore than 
one mi'nimum cost  implementations. 



3.2.3 St ruc tu re  f o r  Finding Cost of Table 1 a n d ' t h e ' M u l t i @ l i e r s  

A s  with Table 2 ,  Table 1 w i l l  be def ined a s  a multiple-output ' logic 
- 
A 

network as shown i n  ~ i g k e  4. The input  i s  d ,  t h e  b i t -vector  r ep resen ta t ion  
- - ,. A 

of d .  The outputs  a r e  t h e  va r i ab les  a-l= ~ - ~ ( d ) ,  ad = go ( d )  , 
- * * '  a~ = Q~ 

( d ) ,  where g i s  a Boolean funct ion .  The b i t s ,  'a through a comprise t h e  
i -1 j 

.. . . 

binary representa t ion  of inverse  of d ,  A., unfor tunate ly ,  i n  t h i s  case ,  we 
' 

cannot cons t ra in  t h e  problem so  t h a t  none .of t h e  outputs  a r e  simultaneously 

t r u e .  For ~ u r p o s e  of es t imat ion ,  however, it w i l l  be.assumed t h a t  t h e  r e s u l t s  

obtained by.minimizing.each fbnct ion  independently w i l l  y i e l d  an adequahe 

est imate of t h e  minimum cos t ,  i ; e .  CTl = Min Cost go + Min Cost gl + . . . + 

Min Cost g . 
J 

Figure 4. Network ~ e f  i n i t i o n  of Table 1 
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We nowiconsider'the cost  of t h e  m u l t i p l i e r s . ,  It i s  beyond t h e  scope 
. . 

of t h i s  work t o  develop a cost-performance analys is  f o r  mul t ip l i ca t ion  strut- 
. . 

t u r e s .  The approach adopted here i s  t o  present  a s t r u c tu r e  which experience 
. . . .  . 

has shown t o  be e f f i c i e n t  and t o  approximate C from t h e  s t ruc tu re .  .More 
M 1  

information .about such a s t r uc t u r e  may be found i n  [ 8 1. 
. . . . 

The mul t ip l i e r  i s  i l l u s t r a t e d  i n  Figure 5. It cons i s t s  .of a  cascade 

of l i m i t  carry-borrow adder-subtracters together  with shi f t -gates  ( S. G. ) which 

form t h e  nec,essary mult iples 0.f the  mult ipl icand (rp) .  S h i f t  ga te  SGU, i n  con- 

junction . with . complementing c i rc .u i t s ,  form the ,mul t ip les  +1 and 22 times;SGl 

forms 2 4 ,  - +8 t imes;  and, i n  general ,  SGi, form mult iples .of - +2 2i t imes  t he  

mult ipl icand.  The mul t ip les  a r e  se lected by a recoding of a through a . 
o j 

Appended t o  t he  output of  t he  l a s t  adder i s  hardware which converts t h e  pro- 

ducts from t h e  redundant representa t ion produced by t h e  limited-carry o r  

borrow device t o  a non-redundant format. The cost  o f M u l t i p l i e r  1, Cm, w i l l  

be defined by 

where 

C i s  t h e  cost  per input d i g i t  of t h e  recoding l o g i c ,  
R 

N i s  t he  number.of adders i n  t h e  mul t ip l i e r  and i s  given by 
A 

N = In teger  por t ion of ( j  + 1 ) / 2 ,  ' 

A 

N i s  t h e  number of  b i t  posi t ions  per adder and i s , g i v e n  by 
E . . 

CA i s  t h e  cos t  of one pos i t ion  of = .adder ,  

'SG 
i s  t h e  cost  of one pos i t ion  of a s h i f t  gate ,  

C i s  t h e  cos t  of converting one d i g i t  from redundant t o  non- 
C 

redundant form (assuming the  use of look ahead techniques).  



Figure 5. Structure of Multipliers 



The quanti ty,  j ,  i s  t h e  index of t he  low-order b i t  of A, t h e  approxi- 

mation of d-I (A = a a . ) ,  E i s  t h e  number of b i t s  t o  t.he r i g h t  of t he  
0 ' ala2"' J 

r ad ix ,po in t  i n  r p ,  a n d r  i s  t h e  radix  of t h e  model d ivis ion.  
6 

As the  need 

a r i s e s ,  estimates of minimum values of .CR C A Y  CSG ,. and CC may be obtained. 

. . 

The cost  of Mi, CM2, is given b y  Equation 3.6 with E replaced by ( E + log 2 r ) 
6 

replaced by 6 ,  t h e  number of b i$s  i n  d. 

3.3 Def ini t ion of 'Performance 

3.3.1 Performance of the.Mode1 Division 

Performance w i l l  be measured 'in un i t s  of nimber of b i t s  of quotient  
. ., . .  . 

generated per: ga te .  delay. For p r a c t i c a l  cases,  t he  number of b i t s  of quotient 

generated by the  model d ivis ion i s  log r. Since t h e  d iv i sor  i s  constant f o r  
2 

a given divis ion operation,  t h e  opera t ing  time of t h e  model d ivis ion i s  l imi ted 

by t h e  paths driven by t h e  remainder. The time, Tp, i n  ga te  delays,  required 

t o  produce a quotient d i g i t ,  radix  r ,  i s  given by 

., . 

T~~~~ 
i s  t he  number of log ic  delays required i n  forming t h e  

estimate of t h e  remainder, 
. . 

6 

T M l  
i s  t h e  number of logic  delays required t o  form A r p  i n  

Multiplier  1, 

T ~ 2  
i s  t ~ e  number of logic  delays t o  s e l ec t  a quotient  d i g i t  

i n  Table 2,  and 

T i s  t h e  number of logic  delays t o  recode t he  output of T2. 
R 



Performance of t he  quotient  se lec tor ,  P i s  therefore  given by 
Q ' 

log r 
2 p = -  

Q 
T~ 

3.3.2 ~ e r f o r & n k '  of t he '  niil  redi is ion ~ i v i s i d n  

The measure of primary i n t e r e s t  i s  t h e  performance of t he  f u l l  

precision divis ion.  We s h a l l  assume a  fill precis ion multiplication~structure 

s imilar  t o  t h a t  shown i n  Figure 5. It consis ts  of a' cascade of K adder sub- 

t r a c t e r s  each of which i s  capable of r e t i r i n g  K '  b i t s  of. t he  mul t ip l i e r .  The 

kk ' 
ef fec t ive  radix  fo r  mul t ip l icat ion i s  therefore  rM = 2 .  . 

Let, 

M be t he  quotient length i n  b i t s ,  

T be t h e  number of log ic  delays required fo r  t h e  i t e ra t ive"  
D 

s teps  of d ivis ion,  

TA be t h e  number of logic  delays required t o  add two ful l  

precision numbers, 

T be t h e  number of log ic  delays required f o r  control  a f t e r  
C 

t h e  quotient b i t s  have been generated by t he  quotient  

s e l ec to r ,  and 

N be t he  number of c a l l s  t o  t h e  quotient  se lec tor .  
Q 

Then, 

where, if r i s  t he  rad ix  of t h e  model d iv i s ion ,  

N = M 
Q log r 

2 



For this study, K' = 2, thus 

TD = , M  (> log r 
2 

The performance of the full precision division is defined by 



4. ALGORITHMS, FOR SYNTHESIS, AND. ANALYSIS 

4 . 1  Preliminary Remarks 
. . 

'The de r iva t ion  of =os t  and performance funct ions  by a d i r e c t , .  . , + . 

ana ly t i c  approach i s  complicated by t h e  d i s c r e t e  n a t u r e - o f  khese Functions and 

by t h e  l a r g e  number of va r iab les .  An empirical ,  const ruct ive  approach was 
. . 

the re fo re  adopted. The f i rs t  phase of t h e  experiment ( t h e  top ic  of t h i s  

sec t ion)  required' t h e  formulation of a systematic approach t o  t h e  synthes is  of 

a minimal c o s t ,  mathematically accurate,  quotient  s e l e c t i o n  mechanism f o r  a 

given s e t  of design parameter values.  Although t h e  synthes is  rou t ines  i n  
- . ,  . 

themselves would be of use i n  designing a quotient  s e l e c t i o n  mechanism, i n  
. . .  

t h i s  study they a r e  used a s  t o o l s  i n  studying t h e  cos t  and performance 
. , 

functions.  . . We are  performing analys is  by means of computer-aided synthes is .  . . 
. . . :: 

, I n  t h e  second phase of t h e  experiment, t h e  .programs deve1,oped i n  t h e  

, f i r s t  phase were run wi.th various,coinbinations of parameter values  i n  order . t o  

est,imate cos t  and performance. The' r e s u l t s .  of each run might .be thought 

of as determining a . p o i n t . o n  a cos t  versus performance curve. The hope i s .  

. t h a t  only a.few runs ,  r e l a t i v e  t o  all poss ib le  parameter combinations, would 

be necessary i n  order t o  f i n d  approximations, which would be use fu l  f o r  i n t e r - .  

, pola t  ion  and ext rapola t  ion. 

But t h i s  empirical  approach i s  not without major p r a c t i c a l  prob- 

lems. ' There- a r e  a huge number of p o s s i b i l i t i e s  f o r  parameter values ,  and t h e  

minimization problems a r e .  +ery l a r g e  a i d  demanding of .! com&ter time. These 

problems were mi t igated  by r e s t r i c t i n g  . the values of parame6ers t o  those of 

p r a c t i c a l  importance and by concentrat ing on t h e  e f f e c t s  of dominant parameters. 



A s  discussed i n  Section 3,  t h e  daminant cost  term f o r  ,a  Type 2 

s t ruc tu r e  i s  CT2, t he  cost  of Table 2. For a  Type 1 s t ruc tu t e ,  although t h e  

cost  of Table 1 ( C  ) inay not dominate t h e  cost  of t h e  mul t ip l i e r ;  it i s  t he  
T 1  

l e a s t  s tudied term. The ' following sub-sections comprise a  descr ipt ion of 

algorithms which generate log ic  equations which define Table 1 and Table 2 

f o r  given values of design parameters, The algorithms do not produce a  defi-  

n i t i o n  of t h e  other blocks of Figure 2, but ,  do place some constra ints  upon 

t h e i r  s t ruc ture .  

4.2 Deriving a  Minimal Cost Design'for 'Table 2 

Conceptually, Table 2  i n  Figure 2 i s  a d i r ec t  implementation of a 

P-D p lo t .  To implement a  given P-D p l o t ,  a  r e l a t i o n  must be defined from the  
n n 

s e t  D x P t o  a  subset of D x P ,  D x P, such t h a t  each element of D x  maps 
n h A .  

i n t o  an.element of D x P and with e r r o r  bounds fo r  each element (d ,  rp) such 

t h a t  t he  quotient se lec t ion  c r i t e r i o n  i s  s a t i s f i e d .  Note t h a t  we have not 

r equ i r ed . t ha t  t h e  r e l a t i o n  be a function,  s ince ,  due t o  redundant representa- 

A 

t i o n ,  t he  same rp-value o r  d-value may map i n t o  d i f f e r en t  r$ or  d  values;  

uniqueness i s  not guaranteed. For p r a c t i c a l  reasons t h e  rexat ion i s  r e s t r i c t e d  

t o  those which may be defined by t h e  successive operations of t runcat ion and 

ass imila t ion (conversion t o  a  non-redundant form) . Even within t h i s  r e s t r i c t i o n ,  

however, the re  a re  many possible a l t e rna t5ves .  The maximum amount of trunca- . . 

h 

t i o n  e r ro r  which may be t o l e r a t ed  f o r  a  given p a i r  ( d ,  rp) depends upon t he  

loca t ion  o f . t h e  point .  There i s  a l so  trade-off between E and 6 ,  t he  points  of 

t runcat ion of r p  and d  , respect ively .  

The followi,ng i s  a  l i s t  of t he  s teps  i n  t he  process of deriving a 

minimal cost  design f o r  Table 2. 
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1. Set t h e  values f o r  design parameters: 

n ,  r ,  a ,  b y  b ' ,  B ' ,  y ' , , X 1 ,  E ,  6.* . . 

. , 

2. Run t h 8  program QS3 (described i n  Sect ion  4.2.1) t o  

,a  sum-of-products ( m i n t e 6 )  d e f i n i t i o n  of each' output funct ion  . 

of Table 2. 

3. Run t h e  program, P I ,  wi th .each s e t  of Ante rms  produced by 

Q S ~ '  a s  input .  The program PI'  f i n d s  a l l  prime implicants  of 

t h e  func t ions ,  i d e n t i f i e s  t h e  e s s e n t i a l  prime impl icants ,  and 

generates t h e  cons t ra in t s  which must be s a t i s f i e d  i n  order  t o  

cover t h e  funct ion .  

4. Run an In teger  Linear Programming rou t ine  t o  f i n d  a'minimal 

cds t  s e t '  of prime implicants  which s a t i s f y  t h e  c o n s t r a i n t s  
. . 

produced i n  s t e p  3. The cos t  of a  prime implicant i s  t h e  

number of l i t e r a l s .  The combination of t h e  prime implicants  

se lec ted  i n  t h i s  s t e p ,  together  with t h e  e s s e n t i a l  prime 

implicants  i d e n t i f i e d  i n  s t e p  3 ,  de f ine  t h e  Boolean f'unction. 

5 .  Tabulate t h e  t o t a l  number of l i t e r a l s  requi red  t o  define 

each output funct ions .  Tte  t o t a l  of these  values w i l l  be 

taken a s  t h e  cos t  of implementing Table 2. 

4.2.1 Defining t h e  Output Functions 
. . - . . 

As described i n  Section 3.2.2, Table 2 i s  t r e a t e d  a s  a  m u l t i p l e  out- 
. . 

put network. This sec t ion  descr ibes  an algori thm f o r  speci fy ing t h e s e  

h 

" I n i t i a l l y ,  Table 2 i s  s tudied  apa r t  f r a n  T1, M1, and M2.. A = I? (.a) = 1. 



functions a s  sums-of-products of minterms. The minterms a re  formed by con- 
- - 

A A 

catenating b i t  vec tors ,  rp, with b i t  vectors ,  d. A Fortran program ca l led  QS3 

( ~ u o t i e n t  Select ion Program 3) was wr i t t en  t o  accept design parameters and t o  - - 
A A 

produce t he  minterm def in i t ions  of each of the  output functions,  f o  (rp, d )  , 
- - 

,The der ivat ion w i l l  be r e s t r i c t e d  t o  t h e  f i r s t  quadrant (pos i t ive  

r p  and d ) .  of the  P-D p lo t .  The fill P-D p lo t  i s  symmetric about both axes and 

thus  t h e  cost  of implementing one quadrant i s  a good est imate of t he  cost  of 

implementing any other .  

Figure. 6 i l l u s t r a t e s  a port ion of t he  f i r s t  quadrant of a P-D p lo t .  

Three adjacent quotient  regions,  q ( i + l ) k q ( i ) ,  and q (i-1) are  des,ignated 
A 

together with the  horizonal l i n e ,  r p  = r p  = mArp. Every l i n e  of t h i s  form w i l l  

be designated an "rp-line". The quant i ty ,  m, i s  an i n t , e ~ e r .  and Arp = 2-'. 

The task  of defining t h e  output functions f o r  Table 2 may be reduced t o  t h a t  of 

assigning adjacent sect ions  of every rp-l ine t o  one and only one q-region. For 

example, t he  segment of t h e  rp- l ine  between d = a and d = b must be subdivided 

i n t o  th ree  segments: one i n  each q-region shown. The dividing l i n e  between 

adjacent l i n e  segments assigned t o  q(i) and q ( i + l )  w i l l  be ca l led  t h e  

''di~tr'f so r  t r a n s i t i o n  value between q(i ) and q(i+l) . I' A div i sor  t r a n s i t i o n  value 

between q(i) and q ( i + l )  may 'be picked from a sub-range of t he  d iv i sor  between 

t h e  in te r sec t ions  of t h e  rp-l ine and t he  boundaries o f  t h e  overlap region. 

The range i n  which the  d iv i sor  t r a n s i t i o n  value may be chosen i s  determined 

a s  folluws. 

. . 



BOUND 

BOUND 
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Figure 6. Portion of P-D Plot  I l l u s t r a t i n g  Segmentation of rp- l ine  
. . .  

A A 

Let d be t he  divisor  t r a n s i t i o n  value f o r  r p  = r p ,  between q(i) ' and 
t 

A 4 

( - 1 ) .  Then the  .ordered pa i r  (rp, d ) w i l l  be representa t ive  of a l l  (rp, d)  
t 

4 A A 

i n  t h e  rectangle shown i n  Figure 7.  Since d i s  a t r a n s i t i o n  value,  (at ,  r p )  
t 

n 

implies a quotient  d i g i t  of i-1 and (dt - Ad, rp) implies a quotient  d i g i t  of i. 

C 4 

The rectangle corresponding t o  (dt ,  r p )  must be completely within t h e  

q( i -1)  regiori.  The s t r i c t e s t  bound i s  therefore  at the  upper, lefthand corner 

of t he  rectangle i n F i g u r e  7,  and thus t he  following must hold. 



UPPER BOUND OF q(i-1) 

LOWER BOUND OF qI 

Figure 7. Port ion a P-D Plo t  I l l u s t r a t i n g  Constraints  i n  

Finding Divisor Transi t ion In te rva l  

n 

Similar ly ,  t h e  rec tangle  corresponding t o  (dt - Ad, r p )  must be com- 

p l e t e l y  within t h e  q!i? region.  The s t r i c t e s t  bound i n  t h i s  case i s  a t  t h e  

lower, r'ighthand corner of t h e  rec tangle  where t h e  following must hold. 

In p r a c t i c a l  .cases ,  t o  insure  t h a t  all d values map i n t o .  a t  l e a s t  

one d value ,  Ad = f3' and thus (4 .2)  becomes 

Combining ( 4 . 1 )  and ( 4 . 3 )  y i e l d s  a range r e s t r i c t i o n  on dt,  namely, 

A .  n 

( r p  + y) . / ( i - l+p)  + a 
dt 6 (r; -, ~ ) / ( i - p )  

Note t h a t  t h e . s t r a t e g y  i s  t o  s e l e c t  t h e  s i z e  of t h e  rp-steps,  Arp, 



and to allow the algorithm to find the maximum size steps allowable for d. 

Theoretically, the program could be designed such that ~d would b;e specified 

and the precision requirements for the partial remainder would be-determined. 

The former.approach is taken due to the fact that control of Arp is-more 

critical. The precision of the estimate of the partial remainder (the number 

of bits) should be kept low in order to keep down the time required to convert 

A 

from a redundant to a non-redundant form. The logic paths involving rp as 

n 

opposed to those involving d, are changing with each call to the model 

division. For this reason there is motivation to simplify the logic involving 

A A 

only rp at the expense of complicating the logic involving only d. It should 

also be realized that the precision requirements on the estimate of the par- 

tial remainder are based upon worst case calculations. Although QS3 uses 

this worst case precision uniformly in generating the division precision 

requirements, the minimization routines will remove unneeded precision. 

The quantity, dt, may be any value in the range defined in Equation 

4.4. Since the design goal is to.minimize the total number of literals 

A 

repired to implement the table, d is picked to be a number which can be 
t 

represented with the fewest bits. 1n other words, if all numbers in the ra,nge 

specified by (4.4) are represented as .the ratio of two integers in' the form 

~/2~,,the dt selected is one satisfyi,ig (4.4) 'and with the minimum value of M. 

Using the algorithm of selecting the simpliest binary number in the 

allowable divisor transition ranges, the rp-line in Figure 6 is divided into 

three segments, as follows: 
, . . . ' 8  

Segment Assigned 'to 

a L'd < d  
tl 

q( i+l 

. dtl d < dt2 qci 

dtn 4 d b q(i-l.) 



The segments are next defined as.minterms and t he  minterms a re  assigned t o  t h e  

appropriate output funct ion,  fi+l, f i  , fi,l, e t c .  

The complete family of rp-l ines i s  produced by stepping along the  

rp-axis (beginning at'  in increments of Arp. By s,egmenting t h e  rp-l ines a t  

t h e  boundaries of the  P-D p lo t  and t h e . d i v i s o r  t r a n s i t i o n . ~ a l u e s ,  each quotient 

region,  q ( i , )  fo r  i = O  through n, i s  defined by a s e t  of t r i p l e t s  of t he  form 

where 

d i s  t he  l e f t  end of t h e  segment of t he  mth r p l i n e  
1 ,m 

d i s  the  r i g h t  end of t h e  segment of t h e  mth rp-l ine 
r ,m 

i n  q(i) ;  and 

m* Arp def ines  t he  values of rp. 

Rather than being s tored as  t r i p l e t s ,  each segment i s  s tored a s  a s e t  of min- 

terms. 

- . -  
A A .  A A 

Given t h e  ordered p a i r ,  (d , r p  ) , t he  minterm equivalent i s  r p  I I d 

where I I denotes b i t  s t r i n g  concatenation. The minterm may be represented a s  
- - 

a b i t  s t r i n g  or as decimal in teger  equivalent of r i  I I d ,  t r e a t ed  a s  a binary 

in teger .  Each t r i p l e t ,  (dl ,m, d mArp) i s  transformed i n t o  a p a i r  of 
r ,my 

mintermc , (MINT , M I N ~ ~ ) .  Under t h i s  t ransfornat ion,  each aeguen l  or the 

rp- l ine  i s  l og i ca i l y  defined by MINTRM 1 v ( M I N T R M ~  + 1) v . . . v MINTRMr: 

The t r i p l e t s  are cdnverted t o  mi'nterms as follows. 

The quan t i t i es  d . and d are  a l l  d iv i sor  t r a n s i t i o n  values and 
1 ,m r 9  

, d 
a r e  there fore  of t h e  form N/2 . For a given q(i) region,  f i n d  t he  l q g e s t  6 ,  

Then 2 
- 6max 

&max ' required t o  represent d 
Or dr ,In. 

is.  t h e  maximum precis ion . 
1 ,m 



required t o  represent d. Given d = N1 / Dl ; d = Nr/D (both  f rac t ions  
1 ,m r ,m r 

i n  reduced form) r p  = mArp, and NBDL = t h e  nbmber of b i t s . o f  t h e  divisor  t o  

t he  r i gh t  of t he  rad ix .po in t ,  then 
. . . . 

MINTRM = (m2 (&ax + NBDL) + ( 2 6 m a  N r ) / ~ r )  - 1. 
r 

A useful  estimate of t h e  number of minterms required t o  define a 

given q (i) region may be derived. The QS3 algorithm w i l l  ac tua l ly  s e l ec t  t h e  

upper and lower boundary of each q (i ) region which'wixl be a s t a i r s t e p  i n  t h e  

t r ans i t i on  -region between q (i) , q (i  + 1) and q ( i  - 1). For purposes of. .  

t h i s  est imate,  assume t h a t  the  dividing l.i.ne between q (i) and q' (i + 1) i s  

the  average value between t he  upper boundary of q (i)  and t h e  lower boundary 

of q (i  + 1). The boundary between q (i) and q (i + .l) i s  thus  defined by 

r p  = (i + 112) d. The area  of each q ( i)  region w i l l  be defined a s  t he  a rea  

between t he  l i n e s  d =. a ,  d = b y  rp = (i  + 112) d ,  and r p  = (i - 112) d. Thus, 

Area (q  ( i )  ) = 
2 2 

x dx = ( b .  . -  a )/2. (4.7) 

a 

The area i s  independent, nf t h e  value of the  quotient d i g i t .  Let E 

- 
be t h e  number o f  b i t s  t o  t he  r i gh t  of t he  rad ix  point  i n  rp (drp = 2 ') and 

CI 

6 be t he  number of b i t s  t o  t he  r i g h t  of t he  rad ix  point  i n  d. Note t h a t  t h e  

minimum value of 6 may increase .wi th  i. I f  the  worst case value of 6 i s  

applied uniformly i n  defining all quotient regions,  t h e  b i t s  of excess pre- 

c i s ion  w i l l  become don't care l i t e r a l s  i n  t he  course of minimization. To 

reduce t he  minimization problem, 6 may be t r ea t ed  as a function of i by 

4 

defining 6 ( i )  as  t h e  minimum number of b i t s  required i n  d i n  order t o  

cdrrectlj .  define t h e  q (i) region f o r  the, given value of E .  The number of 



4 0 

minterms f o r  each q (i) region, M (i) , i s  thus given by 

2 2 ( s + 6 ( i )  - 1) 
M ( i )  = (b -a ) 2 

Figure 8 i s  an annotated flowchart of t h e  pr,ogr'am ( ~ 3 )  which 

ac tua l ly  produces t h e  def in i t ion  of the .ou tpu t  functions f o r  Table 2. The 

following assumptions and conventions should be noted : 

1. The program was wr i t t en  i n 'Fo r t r an  and thus Fortran 

nota t ion and var iable  names a r e  used i n  t h e  flowchart. 

2. In most cases,  t h e  Fortran variable names d i f f e r '  

from t h a t  used i n  Section 2. Included i n  t h e  cominents 

are  statements which r e l a t ed  t h e  Fortran name t o  t ha t  

' used i n  t he  derivations.  For example, DLEFT E a (2 .1) .  

The number i n  pazentheses i s ' t h e  sect ion number i n  

which "a" i s  defined; 

3.  The divisor  i s  r e s t r i c t e d  t o  pos i t ive  values i n  a 

non-redundant representa t ion and thus a = O i n  

Equation 4.4. 

4. Single c i r c l e s  on t he  f l owchq t  denote entrances; 

double concentric c i r c l e s  denote ex i t s .  



DLDENO, DRNUM, 
DRDENO . 

The endpoints of t h e  d iv i sor  
i n t e r v a l  are  read i n  a f r ac t i ona l  
form. DLNlTM and DLDENO a re  t h e  
numerator and denominator, 
respect ively ,  of t h e  l e f t  end. 

'DRNUM and' DRDENO are  t h e  : 

numerator and .denominator., ' 
respect ively ,  of t h e  r i g h t  end. 

DLEFT - a ( 2 . 1 )  
DRIGHT ' b (2 .1)  

ERR RP P i s  t he  maximum pos i t ive  
t runcat ion e r ro r  i n  rp;  ERR RP N 
i s  the  maximum negative t runcat ion ' . 

e r ro r  i n  rp. . . 

ERR RP P 5 . Y  (2 .3)  

ERR RP N 5 h (2 .3)  

N i s  t he  maximum allowable 
quotient d ig i t . '  R i s  t h e  radix.  

N ~ t e :  NR i s  REAL 

~ i g u e  8. Flowchart of QS3 Program 



DELRP = l./DENOM c. 
IC 

JMAX = ( N  + N R )  * DENOM * 
DRIGHT + '1 

t 

DO 20 J = 1,m 

. . 

. . .  

' .  ' .  . .. . . 
'I 

F J = J - 1  
RP = RT/DENOM . 

RPU = RP + ERR RP P 
RPL = RP - ERR RP N 
J M 1  = J - 1 

'I. 

IZCK , =  0 

IWHICH = 1 

DELRP i s  t h e  increment between 
successive values of r$. DENOM 
i s  dekined by an assignment s ta te -  
ment' p r i o r  t o  t h i s  s tep .  

DELRP = . A r p  

JMAX i s  t he  upper l i m i t  on t h e  
index use t o  s t ep  along t h e  
rp-axis . 

This i s  t he  beginning of t h e  outer 
loop which st'eps al'ong t h e  rp-axis. 

' 

Compute t h e  present value of RP 
tn ' be  used R.S rf n.nd ~. l .sn  t h e  
11pper (RPIJ) and 1,ower (RPL) 
bounds of t h e  ' r p  'values 
represented by  r$. 

I n i t i a l i z e  two control  var iables .  
I f  I Z C K  remains at 0 through t h e  
inner-loop, which var ies  t he  
quotient  d i g i t ,  then no divisor  
Lrarlsi Liun inLervals  uccur  I~eLwee~l 

( a , b )  . I W H I C H  =. 1 ind ica tes  t h a t  
we are  looking f o r  t h e  f i r s t  
d iv i sor  tsransj,t.ion i n t e r v a l  f o r  
t he  present value of r$. In  t h i s  
case,  a EDLEFT, w i l l  be used a s  
t h e  l e f t  end of t he  segment. 

, . 

Figure 8 (continued). Flowchart of QS3 Program 



&I, t h e  quotient '  d i g i t  value, i s  . . 

i n i t i a l i z e d  a t  t h e  g rea tes t  value '  
suc,h t h a t  t h e  part' of t h e  l i n e  
segment formed by RP + FJ/DENOM 
and t h e  end points  of t h e  d iv i sor  
i n t e rva l ,  ( a , b ) ,  i s  i n  t h e  
QI-region. 

DUL i s  t he  l e f t '  endpoint of t he  
divisor  t r a n s i t i o n  interval. 
between QI and QI - 1. 

, . This t e s t s  whether o r  not t h e  
t r a n s i t i o n  i n t e rva l  i s  t o  t he  
l e f t  of t he  l e f t  boundmy of t he  
P-D p lo t .  . If so,  Q I  i s  decremented. 

A divisor  t r a n s i t i o n  i n t e rva l  within 
(a,b) has bee11 fuund. 

.This t e s t s  whether o r  not t h e  
divisor  t r ans i t i on  i n t e rva l  i s  t o  t h e  
r i gh t  boundary of t h e  P-D 
p l o t .  I f  so ,  continue with new 
RP-value , 

Figure '8 . ( continued) . Flowchart of QS3 Program 



DUR i s  the  r i g h t  endpoint of . 

t h e  divisor  t r a n s i t i o n  i n t e rva l  
between .QI and QI - 1. 

t 

CALL DT (DUL, DUR, NNy MM) 

CALL MINTAL ( IT~IIIGH,  MN, MM, 

J-1, &I) 

IWHICH = 0 .  *I 

Subroutine DT se l ec t s  t h e  
d iv i sor  t r a n s i t i o n  value between 
DUL and DUR. The value se lected 
i s  returned i n  a f r ac t i ona l  form 

(NN/MM). MM = 9, where m i s  t h e  
smallest  in teger  such t h a t  
DUL 5 NN/MM 2 DUR. 

Subroutine MINTAL creates  t h e  
minterm definj . t ion of t h e  rp-l ine 
segments I I f  IWHICH = 1, then 
DLNUM/DLDF,NO i s  t h e  l e f t  end of 
t h e  segment and NN/m i s  t h e  
r i gh t  end. I f  IWHICH = 0 ,  
then thc  valuc of NN/MM on the  
prcviouo c a l l  t o  MINTAL i s  t b e  
l e f t  end and the  p r ~ s c n t  NN/MM 
i s  t he  r i gh t  end. J-1 denotes 
the  r$-line and &I, t h e  quotient  
region. 

Set  I W H I C H  = 0. 

Figure 8 (continued). . Flowchart of Q S . ~  Program 



. . 

Decrement QI 

Check whether o r  not a l l  
QI-regions have been accounted 
fo r .  

Yes 

Does 
NN = DRNUM 

and 

CALL MINTAL ( I W H I C H  ,NN ,MM, 

J-1 ,&I) 

NN = DRNUM 
MM = DRDENO 

Use DRNUM/DRDENO 
of t h e  l a s t  r5-li 
t h e  present .  

. t h e  r i g h t  end 
segment f o r  

End of DO-Loop which increments rp .  

Figure 8 (continued).  Flowchart of QS3 Progiam 



Minimi zing ' the  Output Functions 

A discussion of t h e  minimization of two l e v e l  switching c i r c u i t s  i s  

beyond t h e  scope of t h i s  t h e s i s .    ow ever, t h i s  sect ion sketches' t he  approach 

used i n  t h i s  work and' references a de ta i l ed  descr ipt ion of t he  algorithms. 

These algorithms a r e  noteworthy due t o  the  f a c t  t h a t  they w i l l  minimize 

functions of many var iables  involving many minterms. , I n  t h e  present work 

they have been used t d  minimize functions of 19 var iab les  with over 3100 

The program QS3 generates a sum-of-products (each product i s  a min- 

term) de f in i t i on  of each output f'unction. For each f'unction, t h e  remaining 

tasks  a re :  1) t o . o b t a i n  all t h e  prime implicants of t h e  function;  and 2 )  t o  

s e l ec t  a minimal cover which consis ts  of some subset of all prime implicants. 

The program used t o  accomplish s t ep  1 was recent ly  developed by 

V. G. Tareski [34 1. It i s  an extension of an 'algorithm developed by Carrol l  

e t .  a l .  [35] i n  l a t e  1968. Tareski has coded h i s  improved version of t h e  

algorithm i n  both PL/1 and Fortran IV on t h e  IBM 360/75. 

,The outp& 'from t h e  prpgram (PI f o r  Prime Implicant) i s  a l i s t  of 

prime implicants,  each i n  t h e  form: 

TTTTTT, where T i s  

1 i f  t h e  corresponding var iab le  a p p e e s  .in t he  t r u e  form; 

0 i f  t he  corresponding.variable appears i n  t he  complement 

form ; and 

X i f  t h e  ~6r re i~ondi .n .g  var iable  i s  not present.  

Each prime implicant i s  assigned an iden t i f i ca t ion  number. The P I  .program 

a l s o  p a r t i a l l y  solves t h e  covering problem i n  %hat it i d e n t i f i e s  a l l  ' esser i t ia l  



prime.:implicants. A prime implicant i s .  es sen t i a l  (must be se lected f o r  t he  

covering) i f  it covers a . c e l l  i n  t h e  n-cube representation of t he  . func t ione  

which i.5 not covered by any other  prime implicant . . . . . <  

The p r p g r e  generates bet of constra int  'equations which must be. 

simultaneously s a t i s f i e d  t o  guarantee covering.   he‘ cons t ra in t s  a r e  

specified"by ' a  s e t  of equations, each of which i s  a Boolean sum of prime im- 

p l icant  iden t i f i ca t ion  numbers. The i den t i f i c a t i on  number i s  "truet '  i f  the  

prime implic$nt i s  selected;  f a l s e  otherwise. For example,'two such equations 

might be ' . 

  he s e t  of "constra int  equations pose a ~ove r i , ng"~ rob l em,  i . e. the  

problem of f inding a s e t  of prime implicants which s a t i s f y  every equation. 

The problem i s  fu r ther  constrained by the  requirement t h a t  t h e  sum of t h e  

l i t e r a l s  of t he  se lected prime implicants be minimal. Fortunately,  Liu 1361 

and Ibaraki  e t  . a l .  [37 ] recent ly  developed a very e f f i c i e n t '  algorithm and 

computer program which w i l l  solve t h i s  problem. The ' program accepts t h e  

constra int  equations together with t he  number of t h e  l i t e r a l s '  i n  each prime 

implicant , and produces a .minimal cost  covering. - These prime implicants' 

together with t he  e 'ssential 'prime implicants found by the  PI  program con- 

s t i t u t e  t h e  . t o t a l  f'unction. An example i s  given i n  Appendix B. 

It must be noted t h a t  t h e  minimization i s  not mak i~g  e x p l i c i t  
A 

use of "don't care'' minterms. If E '  i s  t he  t o t a l  number of b i t s  i n  r p  and 6 '  

' A 

i s  t he  t o t a l  number of b i t s  i n  &, 'then, t he  t o t a l  number, of minterms which can 
n A 6 '  + E '  

be formed by concatenating r p  and d i s  2 . Many of these  minterms m a y  

not correspond t o  area  within t h e  range o f . t h e  P-D p lo t  and therefore  a r e  don't 



cares  i n  t h e  sense t h a t  they may .be a r b i t r a r i l y .  added' t o .  o r .  deleted f ram a 

function depending upon which -y ie lds  t h e  simplest function.  . In  t h e  cases . 

ac tua l ly  designed, the  number of donlt:cares f a r  exceeds the  number of t r u e  

minterms. For example, with a divisor  i n  the  . range . 112 t o  1 , : t h e  number O f  

minterms required t o  define a P-D p lo t  with p = 2/3 and a uniform gr id  of 
, . ,  

2-6 x 2-€ is: .25 r - ~ ~ + ' ,  and the  number of don' t  care  minterms i s  , 

. 7S  r 2&+'. Since i n  cases studied 6+5 may be a s  g rea t  as  1 4 ,  the don't care 
. . .  

minterms wo,uld severely t a x  t h e  minimization rout ines .  They have, therefore ,  

not been included exp l i c i t l y .  The po ten t ia l  e f f e c t ' o f  t he  don't cases can be 

approximated i n  spec i f i c  cases considering the  following observations: 

1. For d , i n  t h e  range 1 /2  d L 1, t he  don't care  

m i n t e p s  corresponding, t o  area of t he  P-D p lo t  t o  t h e  
A 

l e f t  of d = 1/2 would el iminate t he  d b i t  of weight 

. 1 / 2  from a l l  output functions of Table 2. The cost 

i n  l i t e r a l s ,  therefore ,  reduced by t h e  number of 
. . 

I '  
prime implicants.  

. 2. I f  t h e  don' t  case minterms above t h e  upper ' 

. boimilal-y of the  q ( n )  rcgion arc combined . ~ ~ i t h  %ha 

. t rue .  mint e m s  defining q ( n )  , ' the,. gutput function 

f o r  q ( n )  i s  g r ea t l y  minimized.. The cost  of q (.n) 

w i l l ,  the re fqre ,  be neglected i n  est imating t h e  t o t a l  

cost  of Table 2. 

3. I f  , t he  don' t  care minterms above the  upper 

boundary of q (n )  region a r e  combined with t h e  t r u e  , 

minterms defining q (.i), i # n ,  then some l i t e r a l s  

may drop out of t he  b i t .  s t r i n g  corresponding t o  t h e  



n 

in teger  port ion o f . r p ,  but none, a re  removed from t h e  
n n 

. 
' f r ac t i ona l . pa r t  of r p  .o r  d. This reduction may be 

approximated by studying the  problem of minimizing a 

decoder of the  int,egers: 0 through n ,  each of . b i t  

length ,  lo&r.  The minterms n + 1 through r - 1 . 
should be t rea ted  as  don ' t  cares.  It has been e s t h a t e d  

t h a t  t h i s  e f f ec t  w i l l  reduce t h e  t o t a l  cost of Table 2 

by about 15%. 

4.3 Deriving a . ~ i n i m d  Cost 'Design f o r  Table 1 

This sect ion describes t he  algorithms used t o  synthesize a des ign '  

f o r  Table 1 of a Type 1 s t ruc ture .  The approach can y ie ld  o@y an estimate 

of minimal cost s ince  t h e  minimization algorithm i s  applied t o  each output 

f'unction independent of t he  others .  Furthermore it has not been demonstrated 

t h a t  t h e  algorithm used t o  define t h e  output function n e c e s s q i l y  produces a 

minimal cost design. . Despite these  shortcomings, the  algorithms appear t o  
. . 

produce su f f i c i en t l y  accurate r e s u l t s  f o r  purposes of cost  comparison and.for  

studying trade-offs between t he  cost  of Table 1 and Table '2. 

The f o l 1 o w i n g . i ~  a l i s t  of t h e  s teps  i n  t h e  process of generating 

Table 1 and evaluating th; cost :  

1. Set t he  values f o r  design pmameters = n, r, a ,  b ,  a ,  B ,  y, , . A .  

2 .  Run t he  program Q S ~  (described i n  Section 4.3.1) t o  produce a 

sum-of-products (minterm) de f in i t i on  of each output function of 

Table 1. . . 

3. Run t h e  program PI ( sec t ion  4.2.2) with each s e t  of minterms 

produced by Q S ~  as  input .  



4. Run.an. In teger  Linear Programming rou t ine  t o  f i n d  a  minimal cos t  . . 

s e t  of  prime impiicants  which s a t i s f y  t h e  c o n s t r a i n t s  produced 

i n  s t e p  3.' 

5 .  ~ a b u l a t e  t h e  t o t a l  number of l i t e r a l s .  required  t o  def ine  each 

output function.  The t o t a l  of these  yalues w i l l  be taken as, t h e  

cos t  of' implementing Table 1 .. 

4.3 .1  Defining t h e  Output Functions 

Generat,ing a  quot ient  d i g i t  using a Type 1 s t r u c t u r e  i s  accamplished 

a s  fol lows : . 

1. Given d ,  form a.r~ est imate of d ,  d ,  and from d,  form an. est imate 

' 2 .  Form y = r p  A + ' 1 / 2 .  

3. Take t h e  i n t e g e r  por t ion  of y  a s  t h e  quotient  d i g i t ,  i. e. 
, . 

The algorithm c o n s i s t s  of two s teps :  
I .  

h 

1. For a given Arp, y,, A ,  n,  r ,  a ,  B ,  f i n d  a  D such t h a t  t h e  

s e l e c t i o n  c r i t e r e o n  i s  s a t i s f i e d  everywhere on t h e  P-B, p l o t .  

A 

The d-values a r e  of t h e  form j Ad, where j i s  a n , i n t e g e r .  Each 

A .  A 

d  rcprcocnto a divioor  i n t c r v a l  d t o  d  + Ad. For every; d, we 

n A A 

must f i n d  a  yalue  of t h e  function A ( d )  such t h a t  i f  (d ,  rp) 

A h  

implies q = i, t h e n  1 ( ~ ( d )  r p  + 112) = i. 



a .  . . . .  . . 

The s t r i c t e s t  bounds occur i n  t he  vic ' ini ty of t h e  t r a n s i t i o n s  

A '  

between adgacent quotient  regions. For a given d consider r p  l i n e s  i n  t h e  

n 
, .  . 

v i c i n i t y  of t h e  in te r sec t ion  . . of d  and the  upper boundary 'of q ( i-1)  and lower 

. . boundary of q  ( i ) .  See Figure 9. . . 

A 

Figure 9 .  Portion of P-D P lo t  I l l u s t r a t i n g  Constraints  i n  Finding ~ ( d ) .  . . 



Each rp- l ine  has a  d i v i s i o n  t r a n s i t i o n  range between i and i-1 with 

l e f t  end given by 
a 0 . . . * .  

A h 

dl (q) = ( / - -  + (4.9) 

and r i g h t  end given by 

This de r iva t ion  i s  given i n  Sect ion  4.2. i .  

1f d c di ( r p )  (4.11) 

A 

then  a  quot ient  d i g i t  of i must be se lec ted  and thus  a  va lue  of ~ ( d )  

6.  < A ' A 

must be found such t h a t  i - 2  - A < i + / / p  Simi lar ly ,  i f  

d + ~d > d ( r p )  (4.13) 
. . . . . . .. 

t hen  a quot ient  d i g i t  of i-1 must be se lec ted  and thus. an es t imate  must '. . ' 

. 3 .  be found such t h a t  

Equation 4.11 i s  t r u e .  Denote t h i s  quan t i ty  r p  . . Also f i n d , t h e  maximum value  
t o p  

A A 

of r p  s u c h t h a t  Equation 4.13 i s  t r u e .  Denote t h i s  v d u e  rpbot. 

Subs t i tu t ing  t h e s e  q u a n t i t i e s  i n t o  Equations 4.12 and 4.14, 

r e s p e c t i v e l y ,  y i e l d s  

A value of A ( d )  i s  needed which s a t i s f i e s  both Equations 4.15 and 

4.16. Such a  value must be wi th in  t h e  range 



Denote t h e  lower bound of t h i s  range, L B ( ~  ) ,. and ' t h e  upper bound, 

U B ( ~ ) .  Now f o r  a l l  i , f ind  maximum value of L B ( ~ )  and &signate it LB max. 

Find. minimum U B ( . ~  ) and designate it UB min. Then s e l e c t  A ( d )  such t h a t  

LB =A[d)  =UBmin 
max 

and A(.d) i s  t h e  .simplest binary number i n  the. riqnge. 

Every value of d '  i s  of t h e  form ~nAd where m i s  an in teger  and d i s  

a negative,  int ,eger 'power of 2. The index; m y  i's the re fo re  a unique, minterm 
. . 

A 

d e f i n i t i o n  of d. Let a-l 'ao . 
al-.*..a 

be a b i t  s t r i n g  representa t ion of 
j 

A 

~ ( d ) .  Each b i t  corresponds t o  a Boolean funct ion of d and thus  a Boolean 

, funct ion of a. 

A 

. ' Each funa t ion ,  gi, i s  definkd as t h e  OR of aL1 d-minterms f o r  which 
A . . 

a i s  1 i n  t h e  b i t  s t r i n g  version- of A.(d). I n  o the r  words, t h e  s e t  of min- 
i 

terms, M corresponding t o  g i s  
i ' i .  

= ' {mlai i n  A (mbd) i s  1 1  . Mi 

Figure 10 i s  an annotated flowchart of t h e  program ( Q S ~ )  which " 

actual ly 'produces  t h e  d e f i n i t i o n s  of t h e  output f lmctions f o r  Table 1. 



For g2ven values of r , n,  a , 6,. 
A ,  y f ind  the  maximum Ad which 
w i l l  s a t i s f y  t h e  precision 
requirements everywhere on t he  
PD-Plot . 

Generate the  array NDT ( I )  
where NDT ( I )  i s  t h e  numerator 
of t h e  I t h  value of a, where 
a = (1 - M) -Ad, M i s  a constant 
determined by t h e  minimum value 
of d. Let .MM1 be t h e  number of 
elements i n  NDT. 

I D = NDT (I) * DELD I 

DELD = Ad 

This loop increments t he  
value of a. M M l  i s  t h e  
number' of a values. 

Set quotient d i g i t  
value at M. ,Work 
from Q '= N down t o  
Q = 1. 

Figure 10. Flowchart of 434 Algorithm 



Yes ERPP = l./DELRP 
* ERPN = ERPP 

4 

Input. 0. 

Define maximum 
truncation error 
in r$. 

Work from Q = N 
DOWN to Q - 1. 

J = D * (Q-NR) *'DELRP 
Find minimum ri, for which 
transition interval could 
intersect dt. 

Note: D m P  = l/~rp. 

Figure 10 (continued) . Flowchart of Q S ~  Algorithm' 



RPU. = RP + ERPP 
. . DL = RPU/ (Q-1+NR) 

Find l e f t  end, DL, of d i v i s o r  
t r a n s i t i o n  i n t e r v a l  f o r  present  
RP . 

ERPP = y 

DL = dl 

RP = J/DELRP 
RPL. =. RP-ERPN 

RPTOP has been found.  
IQ i s  an in tege r  vers ion  
of Q. 

Move down t o  next lower 
1-$ . 

Find r i g h t  end, D R Y  of d i v i s o r  
t r a n s i t i o n  i n t e r v a l  f o r  present  
RP . 

. . 

Figure 10  .(continued). Flowchart of Q S ~  A l g o r i t h '  



t 
For J = 1, N 
Find 

.. . , . 
L W  = max (DIMIN ( J ) ) 
UBMIN = min (DIMAX(J)) 

TN =,DIN (I) 
TD = DID (I) 1 

RPBOT has been found. , 

Subroutine DT f inds  a value f o r  
t h e  inverse of D, DI, such t ha t  
DI = DIN (I)/DID (I),. 
LBMAX DI < UBMIN, and DI i s  
t he  s imples t  binary f r ac t i on  i n  
t h e  i n t e rva l .  . 

Figure 10  ( continued). F l o w c h ~ t  of Q S ~  Algorithm 



This DO-Loop assigns each 
migterm corresponding t o  
a d value t o  t he  .appropriate 
output f'unctions. 

1s U = NU'll (1) * UELU implies 
b i t  K of t h e  outpi1% i s  1, t h e  
NDT ( I )  i a  added t o  t he  
minterm l is t  for. A ( K ) .  IP(K) is 
t h e  pointer  f o r  t h e  Kth l i s t .  

F i g y e  10 ..( continued'). Flowchart of Q S ~  Algorithm , 
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4.3.2 .Minimizing t h e  Output Functions 

The same techniques used t o  minimize t h e  output funct ions  of Table 2 

a r e  used t o  minimize t h e  output funct ions  of Table 1. These were described 
. . 

i n  Section 4.2.2. 



5 .  RESULTS FROM DESIGN PROGRAMS . 
. . - . .  .. . . , 

. ,. .. . . 
. . . . .  . , "  

The se r i e s  of computer runs of the .des ign  and analysis  rou t ines  

described i n  the  l a s t  chapter, gave r i s e  t o  four types of r e s u l t s .  F i r s t ,  t he  

algorithm produced'nutherical'results f o r  t he  cost of implementing Table 1 or  

Table 2 f o r  various values of design parameters. But i n  re t rospect  it appears 

t h a t  t h e  v-alue of t h e  computer was more ins igh t  than numbers. Studying t h e  

numerical r e s u l t s  gave r i s e  t o  same t h e o r e t i c a l ' r e s u l t s  with which t o  a t t ack  

. t h e  problem of determining cost  without ac tua l  design. . 

A t h i r d  r e s u l t  was a  discrepancy. F O ~  some pasameter values t h e  

t heo re t i c a l  r e s u l t s  and t h e  r e s u l t s  .obtained from t h e  computer-aided synthesis  
- 

. were i n  disagreement. Closer stvdy revealed a weakness i n  t he  QS3 algorithm. 

The four th  and f i n a l  r e s u l t  of the  work t o  date  was therefore  an improved 

algorithm fo r  designing Table 2. 

5.2 Numerical Results from Design Programs 

5.2.1 Cost of Table ' 2  f o r  'Type ' 2  Structure  

Considering t he  l a rge  number of possible combinations of parameter 

values ,  even' i f  r e s t r i c t e d  t o  p r ac t i c a l  cases ,  very few designs were ac tua l ly  

generated i n  t h i s  present work.. After  generating t h e  'cost data  f o r  Table 2  

with r = 1 6 , ' n  = 10 ,  a  = 112, b = 1, y =, X = 1/16, a = 09 and B = 11256, 

su f f i c i en t  ins ight  was gained t o  propose an analyt ic  expression f o r  t h e  cost  

of implementing each quotient  region of t h e  t ab le .  Two addi t ional  runs  of 

t h e  Table 2  rout ines  with di f ferent  parameter yaliles $ended t o  substant ia te  





t o  symmetric .adders o r  sub t rac te r s  [ 1 0  1. 

 h he div i sor  i s  s t r i c t l y  pos i t ive  and non-redundantly represented 

thus  a = 0. The pos i t ive  t runcat ion ' e r r o r  was the  maximum-necessary t o  

s a t i s f y  t h e  se lec t ion  c r i t e r i o n  (section 2.3) everywhere on the '  P - D ' P ~ O ~  f o r '  . 

t h e  given value of y a.hd A .  

. . 
Table 2 summarizes t h e  cost  computations f o r  a Table 2 s t r u c tu r e  with 

. , 

r = 16 ,  n = 10 ,  a = 112, b = 1, y = 1/16, A = 1/16 ,  a = 0,  and 6 = 11256. 

Radix 16 was se lected as su f f i c i e n t l y  l a rge  t o  be i n t e r e s t i n g  but not so l a rge  

I .' 

as t o  demand grea t  expense of computer time. Table 4 presents corresponding 

r e s u l t s  f o r  d iv i sors  i n  t he  range 314 d < 918. No cost  values a r e  given f o r  

t h e  upper quotient  region,  q ( n ) .  These regions were not minimized s ince  t h e  

r e s u l t s  would be highly inaccurate without t h e  a b i l i t y  t o  include don ' t  care  
, . ,  . . 

minterms. The upper boundary of g ( n )  need not be implemented s ince  t h e  range 
. . 

A , A  

r e s t r i c t  ions imposed by t h e  d iv i s ion  algorithm would p roh ib i t  (d , rp ) values' 

t o  occur above t h e  q ( n )  region. A l l  minterms corresponding t o  points  above 

t h e  l i n e  r p  = (n + p )  d a r e  the re fore  don ' t  care  minterms which sharply 
. .. 

. . 

minimize t h e  cost  of implementing t h e  adjacent  q ( n )  region. 

Note tha.1; t h e  cost  of a Table 2 s t r u c tu r e  f o r  r = 4, n = 2 i s  a l s o  
I I 

contained within Sa b l e  2. Neglecting t h e  upper region q (2)  t h e  cost  i s  t h e  
- .  

cost  of q ( 0 )  + q (1) f o r  rad ix  16 l e s s  2 l i t e r a l s  per required prime 



Table 2. . Summary of Cost Calculat ions f o r  Table 2 with 

Min. No. Min. No. 
Min. No. 

of B i t s  of Min- of Prime 
No. of Reqyired 

9- B i t s  
t e m s  Impli- No. of L i t e r a l s  Average 

in to  t o  Define Define 
Region i n  r@ Define 

cants to t o  Define Region  an-in 
t h e  

t h e  Region 
. .Region 

Region ~ ' ( i )  
~ ' ( i )  ~ ' ( i )  

Est .  Act. r@ d Tota l  

Totals  540 .. 3509. 2532 6041 



Table 3. summary of Cost Calculat ions f o r  Table 2 

with r = 16,  n = '10, a = 314, b = 918, y = 1/16, 

x = 1/16 ,  a = 0,  B = 11128. 

Min. No. Min. No. 
Min. No. , 

08 B i t s  of Min- 
. No. of Req2ired 

q- t e m s  Impli- NO. of ~ i t e r a l s  
B i t s  i n  d t o  , to Define Cants to t o  Define Region 

Region i n  r p  Define Define 
t h e  

t h e  
Region . 

Region 
Region M' ( j . )  ' C '  (i) 

A 

E s t .  Act. rtJ d Tota l  

Totals  



5.2.2 Cost of Table '1 f o r  'Type 1 Structure  
. . 

The design of Table 1 i s  considerably l e s s  complicated t h q  t h a t  of 

Table 2 s i n c e - i t  i s  a f'unction of only one input  r a t h e r  than two; The cos t s  L 

. . . . . . 

f o r  r ad ix  '4, 16 ,  and 64 were generated and summarizdd i n  Table 4. The c h -  
. . . . 

p l e x i t y  of t h e  t a b l e  i s  adequate t o  produce a quotient  d , ig i t  i n  t h e  leading 
' '  

b i t s  of t h e  product  A r;, where A = f (2) and i s  of t h e  form a .ao . a1 . . . a j  . 

Table 4. Suqnary of Cost CalCuht ions  f o r  Table 1 with 

Note: NPI = Minimum Number of Prime Implicants 
NL = Minimum Number of L i t e r a l s  

. . 

K 

Out put r = 4 , n = 2  . r = 1 6 ,  n = 1 0 ,  r = 64, n = 42 

 it = 1/16 6 = 11256 6 = 111024 

Tota ls  

NPI NL NPI 

1 

3 

8 

12 

1 6  

19 

LO. : 

- 

7 7 



. . 
5.3 Analytic Resuits concerning Cost of Table 2 

5.3.1 Preliminary Remarks 

Figure '11 is  a ,p lo t  of cost  i n  l i t e r a l a  of implementing q c i )  versus 

i f o r  r e s u l t s  given i n  Table 2. To a f i r s t  approximation t h e  cost  va r i e s  

l i n e a r l y  with i. This observation l e a  t o  a comparison'of t h e  empirical r e s u l t s  
. 

with t h e  t heo re t i c a l ,  indirect: measure 'of the. C O S ~  of se lec t iun  ul q u ~ t i c l ~ t  

d i g i t s  suggested by Robertson [ 5 1. This cost f'unction a l so  exh ib i t s  a s imilar  . 

behavior with i. In  t h e  following we will ' review of Robertson's work, 

suggest extensions and then propose an expression f o r  t he  'cos t  of implementing 

Table 2 as  a function.of design parameters. . 

. . 

i- QUOTIENT REGION, q( i) 

Figure 11. Cost of "Implementi,ng q ( i ) - ~ e g i o n  YS. i f o r  Data i n  Table 2. 



5.3.2 Defini t ion of s  i~ s t  i' . and .  s" 
i. 

. . 

1; Robertson's work the '  design problem i s  presented a s  t h a t  of 

choosing comparison constants against  which r p  i s  compared and of determining . , .  

J . . 

t h e  d iv i sor , range  fo r  which each camparison constant i s  va l i d .  The proposed 

measure of cost  of se lect ing between q ( i )  and q( i -1)  i s  the  minimwn number of 

comparison constants required t o  caver t he  given range of t h e  d iv i sor .  , 

The select ion r a t i o ,  ai,  i s  first define&. It i s  t he  r a t i o  of the  ' 

slope of t he  l i n e  definipg t he  lower boundary of q ( i )  t o  the  slope of t h e  l i n e  

defining t he  upper boundary of q( i-1) , i. e. , 

The se lec t ion  r a t i o  i s  a r e l a t i v e  measure of t h e  width,of t h e  d iv i sor  i n t e rva l  

f o r  which a s ing le  comparison constant i s  v d i d .  The minimum number of divi-  

so r  in te rva l s  required t o  cor rec t ly  dis t inguish between q = i and q = i-1 

corresponds t o  t h e  number of t reads  i n  t h e  s t a i r ca se  between t h e  upper boundary 

of q( i-1) and lower boundary of q( i ) . 

Let s .  denote t he  minimum number of s teps  required t o  span t he  over- 
1 

l ap  region between q ( i )  and q( i -1)  f o r  t h e  d iv i sor  range a t o  be a s  shown i n  

Figure 12. The slope of t he  upper boundary i s  v = i - l + p  and t h e  slope of t he  

lower boundary i s  w = i - p .  Let A be t h e  width of t he  rightmost t r e ad ,  A 2  be 
1 

t he  width of t he  second -bread (moving from r i g h t  t o  l e f t ) ' ;  e tc .  .The quanti ty,  

h ,  i s  t he  height of t he  r i s e r  between t r ead  1 and t r ead  2. 

By de f in i t i on  

y = hlA2 , 

and thus , 



Figure 12. Graphical ~ n t e r ~ r e t a t i o n  of si. 

Ry d e f i n i t i o n  . . . 

. . 

The l e f t  s ide of Equation 5.5 i s  the  sumof a geometric s e r i e s  and thus 



Since A = b(1-o. ) ,  s .  i s  t h e  smallest in teger  that '  s a t i s f i e s  
1 1 1 

For presentpurposes ,  consider s t o  be a continuous var iab le ,  r a t h e r  
i 

than an integer.  Then, . . 

. We w i l 1  now change t he  expression f o r  s i n t o  a form whichmakes apparent the  
i 

l i nea r  behavior with i. By the  proper t ies  of 1ogarithm.s 

log ( oi = log ( i - p  - l og  ( i-l+p ) (5.9)  

= , log ( l+x)  - log. (1-x) 

where x = (1-2p) / (2i-1).  

With p r e s t r i c t e d . t o  t he  range 112 4 p < 1, then. -1 < x < 1 and thus a 

s e r i e s  form of l og ( l+x )  - log(1-x) may be used. Therefore, 

x5 
2m-1 1 X 

l o g ,  = .,[Ix+&+-+ 3 5 .:- +-+  2m-1 g o *  (5.10) 

and thus ,  

The quant i ty ,  s as  defined so f a r  i s  based upon t he  assumption of 
i ' 

ful l  precision i n  th; representation of t h e  d iv i sor  and p a r t i a l  remainder. The 

expression f o r  s w i l l  now be modified t o  y i e ld  t h e  minimum number of s teps  
i 

required t o  transerve t h e  t r a n s i t i o n  region between q ( i )  .and q( i -1)  when only 

estimates of r p  and d a r e  avai lable ,  r$ and 2 respect ively .  Assume as  before 

t h a t  rg i s  representa t ive  of rp-values i n  a range . . given by rg  - A 6 r p  6 r$+y , 

and t h a t  d i s  representa t ive  of d-values i n  t h e  range 2 - a 6 ,  a 6 a + 8.  . For  



t h e  time being, assume t h a t  r p  and 2 may a s s e e  any value, not merely d i s c r e t e  

. . 
values.  

A A 

If we consider t h e  s t a i r ca se  t o  be t h e  upper b,oundary of t h e  (d ,  rp) 
1 

A ,  6 .  

values defining t h e  q(i-l) region,  then f o r  "all p a i r s ,  (di-l , rpi-l ), defining 

t h e  r i s e r s  and t r eads ,  t h e  r e s t r i c t i o n  

must hold. Thinking o f . t h e  ' s ta i rcase  a s  t he  .lower boundary of values defining 

t h e  q ( i )  region, then fo r  e l l  pa i r s  (2 i ' rp.) 1 defining t h e  r i s e r s  and t reads ,  

t he  r e s t r i c t i o n  

must hold. 

A 

Since 'adjacent values of r p  a r e  separated by. 'Arp and adjacent values 

h 

of d a r e  'separated by Ad, 
' 

- 
rPi - rPi-l + Arp. 

The s t a i r ca se  must s a t i s f y  both r e s t r i c t i o n s  5.12 and 5.13 subject  t o  

equations 5.14 and 5.15. Subst i tu t ing Equations 5.14 and 5.15 i n to  5.13 y ie lds  

A 

another r e s t r i c t i o n  i n  terms of r p  and di namely 
. . i-1 - . . 

For' a given value o f - rp  th'e max ' immi  t r e ad  width i s  the re fore  t h e  .distance 
i-1 , 

betweek'the ' i n t e r s ec t i i n  of t h e  . l i n e  rp = r p  i-1 and' t h e  l i n e s  . . . 

, . .  . 
. . 

' rp = ~ ( d  - ~d + 8 )  + , A  - Arp, and'. (5.17) 

. . 

. .  . 
. . 

r p  = v(d  - a ) ' -  y .  ' (5.18) 



v = i - l + p  w = i - p  

@ rp  = vd . . @) r p  = w(d - dd + B )  + - Arp 

@ r p  = v(d  - a )  - y @ r p  = wd 

Figure 13. Graphical In te rpre ta t ion  of sl. 

Figure 13 i s  a graphical in te rpre ta t ion  of the  minimum s t e p  boundary 

between q ( i )  and q( i -1)  f o r  t h i s  non-precise case. 
, . 

The e f fec t  of t h e  imprecision on s .  I may be thought of a s  sh i f t i ng  

the  divisor  range of the  P-D plo+ by an amount, d'  given by 

d! = A ' +  y - Arp + va + w(f3 - Ad) 
2p - 1 

The value of si  i n  t h i s  case,  denoted s i ,  i s  given by 
. . 

fj' = log(  ( a  - d l )  / (b  - d t )  ) 
i .  l o g  a i  



Note t h a t  t h i s  equation i s  equivalent t o  replacing a by a-d' and b by b-d' i n  

Equation 5.8. This may be ve r i f i ed  by replacing A i  i n  Equation 5.6 by the  

appropriate expression, i n  t h e  present case,  namely by 

= b -  ~ ( b  + B - Ad) - (y S A - Arp) + a 

A1 . . v 

Geometrically, d '  i s  the  value of d a t . t h e .  in te r sec t ion  of t h e  l i n e s  

defined :by &quat idns 5 .  l ' l  and 5.18. 
' '- , 

Equatiorl 5.19 implies t h a t  it i s  not; merely t he  imprecision but 

ra ther  t h e  redundancy i n  t he  representa t ion of r i  and which increases t he  

, .. 

number of t reads  i n  t he  boundary s t a i r ca se .  F'irst', note t h a t  t o  insure  cover- 

. A 

ing , i. e.  t h a t  every value of r p  and d map i n t o  a t  ' least .  one r p  and i, respec- 

. . 
t i v e l y ,  t he  inequa l i t i e s  

.. . 

;' . . . .  . X + y . -  Arp + 0 ,  and.  

must hold. This r e s t r i c t i o n  forbids  d' from 'being negative and thus s !  7. being 

l e s s  than s . .  If 'A + y - Arp = 0 ,  a = 0, and f3 - Ad = 0; then s i  = s ' This 
. 1  i ' 

corresponds t o  t h e  case i n  which every r p  and d value map i n t o  one ' a& only one 
. . . . 

r p  and d ,  respectively.  

I n  ' t e r m s  .of t h e  ' P-D plo t  t h i s  means t h a t  the re  i s  no overlap between 

the  area  represented by t he  pa i r s  ( d ,  , rp) . .  
A A 

. I n  t h i s  case,. even t houghrp  # r p ,  
A 

A 

and d # d,. . the se lec t ion  i s  . theore t ica l ly  no more complicated . . . than . i n  t h e  f u l l  

precis ion case. . ,. 

For the  cases t r e a t e d ' i n  t h i s  study X = AIArp, y = y'Arp, a = 0,  
. .  . . .  & ,  . . -  - .. 

B = Ad, and thus 



The analysis  .so 'far has allowed fo r  an e r ro r  i n  representing d and r p  

A 

but has not r e s t r i c t e d  t h e  value of d and rp.  I n  pract ice  these  are formed by 

tlllllcation 'and therefore  are r e s t r i c t e d  t o  i n t eg ra l  ' m l t i p l e s  of Ad = 2-& and 
. . 

drp  = 2-' where S and r are  the  number. of b i t s  t o  t h e  r i g h t  o f  the .  binary point 

i n  t h e  represen ta t ion  of d and rc respectively.  The l o c a t i d i  of t he  tread! arid 

r i s e r s  of t he  ac tua l  s t a i r ca se  which can be implemented may therefore  simulta- 

neously d i f f e r  by as much as Ad and 'brp ,  respectively.  The m a x i m  number of 

s teps  ( taking i n t o  account both e r ro r  and d i s c r e t e  e f f e c t s )  required t o  define 

the- .boundary between q( i ) and q( i-l ) may therefore  be given by 

s I' = log(  ( a  - dl1) / ( b  - dl1) ) 
i log a 

i 

where 

dl1 = A + y - Arp + 2-' + v(a  + 2-&) + W ( B  - ~ d )  
2p - 1 

(5.26) 

The actua1,number of s teps  required,  s i s  therefore  bounded by 
i , a c t  

S '  S G S1f 
i i ac t  i ' 

Equation'5.26 may be used t o  determine t h e  minimum values o$ E and 6 

reqGired f o r  a given P-D p lo t .  The quanti ty,  s" .and thus t h e  cos t ,  w i l l  tend 
i' 

t o  i n f i n i t y  as  d" approaches a. To insure t h a t  every region of t h e  P-D p lo t  

may be 'correctly defined f o r  given values of . A ,  . y , a ,  B ,  t h e  quan t i t i es  E and 
. . 

6 therefore  must . . be selected such t h a t  d" < a .  
. . . . 

5.3.3 An Estimate of Cost as  a Function of s l  

I n  t h i s  sect ion we w i l l  hypothesize an expression f o r  t h e  cost  of 

implementing t h e  q(i) region of a given P-D p lo t .  Consider t he  region t o  be 

A e 

defined . by . a s e t  of minterms corresponding t o  t h e  s e t  of ordered pa i r s  (d ,  rp) 



f o r  which q = i. Let Ad f o r  t h e  region be 2-6(i) and Arp f o r  t h e  region be 

2 The number of minterms t o  define t h e  region w i l l  ,be . 
' ,  . . 

. '. 
. . 

' ~ ( i )  = (b2 - a2)  2 
~ ( i )  + 6 ( i )  - 1 

' 

6 - 2 8 )  
- . .  

The fan-in t o  each minterm, ~ ( i )  i s  given b y .  
. . 

. . 

~ ( i )  = E ' + & '  ( 5 .29 )  
. . . . . , . . 

where E '  = log2 + ~ ( i ) ,  and (5.30) 

-6 (i) s f  = 1 ( l o g 2  (b - 2 
. . 

) +1) + 6(i). 
.: . 

(5.31) 

The t e r m  I ( l og  (b-2-&) + 1) i s  pere1.y t h e  nyuber of  b i t s  of t h e  d iv i sor  t o  
2 '  

t h e  l e f t  of the  rad ix  point .  Recal l  t h a t  ~ ( x )  has been defined as t h e  in teger  

por t ion  of x. 

The cost  before minimization i s  given by 

The term MF i s  t h e  number .of l i t e r a l s  i n  t h e  AND ga tes ,  t h e  term M i s  t h e  

number? of l i t e r a l s  i n  L h t :  OR gate .  

. . A f t e r ,  . m i n m z a t i o n  , . 

c$ ( i )  = M ! ( i )  ( F 1 ( i )  + 1) . (5.33) 

where ~ ' ( i )  i s  the'number. of prime implicants and ~ ' ( i )  i s  t h e  average fan in  

t o  each prime implicant. 

. . 
I n  order t o  obta in  approximations of Mi (i ), and ~ " ( 1  )', w e  now tlppruxi- 

, 

mate t h e  e f fec t s  of minimization by t h e  following algorithm. 

Figure 14 i l l u s t r a t e s  a por t ion of a quotient  region. Notd t h a t  it 

may be defined b y  a s e t  of adjacent rectangles '  (denoted by heavy l i n e s )  each 

of which i s  defined by a s e t  of minterms (denoted by s m a l l  squares) .  'consider 

one oY t h e  rectangles  of width W and'height  H. Assume that 'miniinization 



Figure 14. Model of t h e  q(i) Region Used i n  

Approximating Effects  of Minimization 

procedes f i r s t  i n  t h e  d-direction by combining- adjacent minterms which d i f f e r  

by only t he  low 6rder bit:. I f  the re  were i n i t i a l l y  M .mintems i n  t h e  rectan- 

g l e ,  a f t e r  t he  f i r s t  s t ep  there  a r e  M/2 implicants. Next, t h e  implicants which 

'differ  only i n  t h e  next t o  low-order posi t ion may combine t o  produce ~ / 4  impli- 

. . 

cants ,  e t c .  The minimization i n  t he  d-direction continues f o r  k  d  = I ( log2 W) 

kd 
s teps  t o  form M/2 implicants. Similar ly ,  'combinations take place i n  t he  rp- 

kd + k 
d i rec t ion ,  f'urther reducing the  number implicants t o  M / 2  rp where 

*k, = I (log* HI. 
, r p  



The minimization of the  quotient region w i l l  be characterized by an 

average rectangle of dimensions W H .  ' The width i s  defined by % 

where, 

The ~11 ,an t i ty .  W ,  i s  , J.l;llerefore . t h e  average width of t he  minimum-number t reads  

defining t he  upper and lower boundary of q(i). The height i s  defined by 

which i s  t h e  average value of the dis taace  lrrtctelz r p  (i + 112) d (nominal 

upper boundary) and r p  = (i - 1/21 d (nominal lower boundary). 

The preceeding argument suggest a cost  expression of the  following 

form: * 

where 

M and F are  defined 'by Equations 5.28 and 5.29, rcspect ively ,  

. . 
and k i s  defined by 

. . 
k = k d + k  

rP 

I .  . .  , = log2 WH (5.38) 

. The fac tors  0 and (d2 are  constants which w i l l  be determined 
1. 

empirically.  Equation 5.37 may be rewri t ten  a s  

: 'c' ( i)  = M '  (i) F' (i)  ( 5 . 3 9 )  

where 

*Note tha t ,  C '  ( i . )  i s  t h e  number of l i t e r a l s  i n  t h e  AND .gates; 
C!&(i)  = ~ ' ( i )  + ~ ' ( i )  i s  t o t a l  number of l i t e r a l s  for  t h e  region. 



M', (i)  i s  t h e  minimal number of prime implicants required t o .  implement t h e  

Boolean function fo r  q ( i )  and F' (i) i s  t he  average fan in  t o  each prime impli- 
. . 

cant. 

We now use numerical r e s u l t s  from Tables 2 and 3 t o  f i nd  values f o r  

g1 and and t o  t e s t  t h e  predic t ive  worth of Equation 5.39. The value of g1 
2 

i s  obtained by a l e a s t  squares f i t  of t h e  ac tua l  values  of M f ( i )  t o  Equation 

5.40. The value of @ i s  obtained'by a l e a s t  squares f i t  of t h e  ac tua l  values 
2 

of F' (i)  t o  Equation Values of @, = 2.12 and g2 = 1.68 were 

obtained. 

  able 5 summarizes t h e  r e s u l t s  of t he  f i t .  Figures 1 5 ,  16, and 17 

display t h e  r e s u l t s  graphical ly  with a s  t h e  independent var iable .  The heavy 

l i n e  denotes t he  predicted values ; t he  c i r c l e s  denote ac tua l  values.  

Note t h a t  ~ ~ u a t i o n s  ' 5.40 and 5.41 do not e x p l i c i t l y  account . fo r  t h e  

d i sc re te  e f f ec t s  resu l t ing  from the  f a c b t h a t  t h e  t reads  and r i s e r s  of t h e  

q-region boundaries a r e  r e s t r i c t e d  t o  in teger  mult iples - of 2-€ and 2-6, 

' respect ively .  The e f f ec t  i s  included empirically . . i n  t h e  choice of g1 and g2. 

There a re  indicat ions  t h a t  a more e x p l i c i t  cost  function of both s '  i and s", 1 

which does include d i s c r e t e  .ef fects ,  might be f o h d .  For present purposes, '. 

however, t he  'est imates given by Equations 5.40 and 5.41 were judged t o  be 

adequate . 



Table 5 .  Results  of Least Squares F i t  of M '  (i) ,  F' ( i ) ,  and C '  (i) 

for Data.$rom Table 2. 
a = 1 / 2 , . b  = 1 

i r -  ' ' M'  (.i) F' ( i)  C '  (i) 
i .  

, . .Equation . QS3 ' . ~ ~ u a t  ion . . Q S ~  Equation Q S ~  
- 



Figure 15. M' (i ) versus . . 





Figure 16b .. F' (i ) versus s' 
. . i 



Figure 17a. ' ~ ' ( i )  versus 





5.3.4 Discrepancies 

The two cases f o r  which numerical r e s u l t s  were ,present'ed i n  Sect ion  

5.2.1 d i f f e r  only i n  t h e  range of t h e  d i v i s o r .  We should a l s o  consider t h e  

effec ' t  of varying t h e  p rec i s ion  i n ' t h e  es t imates  of t h e  operands. The program, 

QS3, was the re fo re  a l s o  run  f o r  t h e  same parameter values a s  l i s t e d  i n  Table 2 

( s e c t i o n  2.5.1) except t h a t  Arp, y, and X were decreased from 1/16 t o  1/32. 

The minimized r e s u l t s  a r e  shown i n  Table 6. Numbers under t h e  heading 

'Equationt  a re  from t h e  evaluat ion  of Equation 5.39; numbers under t h e  head- 

i n g  'QS3' a r e  from t h e  QS3 and minimization programs. 

Table 6. Comparison of Resul ts  from Estimating Equation 

and t h e  QS3 Program f o r  Arp = 1/32. 

M' (i ) 

Equation QS3 

5 3 

10  10  

20 . 20 

31 . 3 4 

4 1  44 

5 1 62 

61 67 

71 84 

82 9 0 

92 110 

~ ' ( i )  

Equation QS3 

7.37 7.66 

8.41 8.20 

3.43 9.65 

10.01 10.02 

10.43 10.8 

10.75 10.9 

11.02 l l . 4  

11.24 .11.5 

11.43 11.9 

11.60 11.8 

C '  (i) 

Equation QS 3 

36 2 3 

8 4 82 

1'31 193 

306 346 

425 476 

548 679 

67 4 749 

802 970 

933 1067 

1-06> 1303 

I n  Figure 18, t h e  da ta  from t h e  C ' ( i ) - Q S ~  column of Table 6 have 

been added (denoted by X ' S )  t o  Figure 17(a): Note t h a t  t h e s e  X-points s t a r t  

near  t h e  predic ted  values ( s o l i d  l i n e )  but  increas ingly  f a l l  above t h e  

expec tedva lues .  . 





The source of t h i s  discrepancy t u rns  out not t o  be the  predic t ive  

equations, as might be f i r s t  suspected, but r a the r  the  QS3 algorithm; speci- 

f i c a l l y  t he  decision t o  pick divisor  t r ans i t i on  values a s  the  simplest binary 

f r ac t i on  i n  the  allowable in te rva l .  This. choice was made i n  t h e  ea r ly  s tages  

of t he  research when other  measures of cost  were being used and i n  changing 

t o  t h e  minterm approach it was not evaluated c r i t i c a l l y .  Fortunately, as  

w i l l  'be explained, it was possible t o  salvage t h e  numerical r e s u l t s  produced 

by QS3. A correct  algorithm has a l so  been found and i s  described i n  t h e  

Appendix. 

The essence of t h e  problem i s  t h e  f a i l u r e  t o  f u l l y  appreciate t he  

two-dimensional nature of t he  minimization problem. For several  of t h e  q- 

regions which produced doubtful r e s u l t s ,  the  areas corresponding t o  t h e  prime 

implicants of t h e  reduced function were drawn on a P-D p lo t .  The upper and 

lower s t a i r s t e p  boundaries were therefore  made apparent.' 

By close inspection of t h e  'boundaries, it could be seen t h a t  the  

decision t o  force the . . locat ion of r i s e r s  t o  t h e  simplest binary f r ac t i on  some- 

times over-constrainted t h e  locat ion of t h e  t read.  In  other words, i n  some 

cases f o r  which a d iv i sor  i n t e rva l  would have been spanned with one t read ,  t h e  

algorithm generated two t reads .  Furthermore, each of these  ex t ra  t reads  

required an ex t ra  prime implicant t o  define it. Thus, although the  output 

function was minimal f o r  t h e  given de f in i t i on  of t h e  q-region, t he  given 

de f in i t i on  of t h e  q-region,was unduly complicated and therefore  not t r u l y  

minimal. By manually revis ing t he  boundary t o  eliminate t h e  superfluous prime 

implicants,  it was found t h a t  the  cost  was reduced t o  c lose  agreement with 

t h e  predicted values.  



But the  constants i n  t he  equation f o r  estimating cos t ,  fll and g2, 

were specif ied based upon r e s u l t s  from t h e  QS3 program. Why should they be 

t rus ted?  The answer t o  t h i s  question i s  found i n  t he  following argument. 

If we think of t he  t r a n s i t i o n  region between q ( i )  and q(i-1) a s  

being. de'fined by ' a  g r id  of v e r t i c a l  spacing, Arp, and hor izontal  spacing, Ad, 

then the  s e t  of a l l  boundaries between q ( i )  and q(i-1) i s  a l l  s t a i r s t e p s  

which can be &a& alo,ng these, g r ids  and s t i l l  remain ins ide  t h e  t r a n s i t i o n  

region. As Ad and Arp a r e  decreased t he  number of d i f ferent .boundar ies .  

i nc r ea se s  exponentially. The problem i s  t o  pick boundaries t h a t  w i l l  mini- 

mize the number of l i t e r a l s  i n  t h e  Boolean function defining t he  area  enclosed 

by t h e  boundaries. (such an algorithm i s  described i n  t h e  Appendix. ) For- 

tunate ly  fo r  t he  parameter values used t o  derive the  constants d and d2, 
1 

there  was very l i t t l e  choice i n  se lec t ing  t he  boundaries due t o  t h e  dimen- 

sions of t he  t r a n s i t i o n  regions. It i s ,  therefore.,  . a sse r ted  t h a t  t h e  boundary 

produced by ' the  QS3 algorithm and a cor rec t  algorithm would be very near ly  t he  

same. A graphical  spot check of severa l  of t he  boundaries, confirmed t h i s  

asser t ion.  When however, Arp was reduced from 1/16 t o  1/32 t h e  number of 

possible boundaries increased and thus  t h e  discrepancy became apparent. 

There i s  one other case f o r  which a discrepancy i s  apparent. In  

Table 5 f o r  a = 314, b = 918, and i = 7 ,  not ice  t h a t  M' (i) from QS3 i s  '54 

while the' predicted value i s  45. This d i f ference accounts f a r  t h e  high points 

. - 
a t  s! = 10.72 i n  Figures 15 and 17 (h ) .  The prime implicant covering f o r .  t h i s  

1 

case (q (7 )  ) was drawn and it was thus  discovered t h a t  s i x  ex t ra  prime impli- 

cants had been generated. In t h i s  case,  although Arp i s  a l so  1/16, t he  

sh i f t i ng  of t he  d iv i sor  range t o  the  r i g h t  increases t h e  width of t h e  t rans i -  

. . 
i 

t i o n  region t o  the  extent  t h a t  t h e  QS3 algorithm may f a i l  badly f o r  d values 

near the  upper l i m i t ,  b. Fortunately,  it did  not except i n  t he  one- region. 



.5.4 Analytic Results  Concerning Cost of Table 1 

5.4.1 Preliminary Remarks 

The program, Q S ~ ,  produces a cos t  est imate of Table 1 f o r  a Type 1 

s t ruc tu r e  f o r  which t h e  precis ion of A; i s  such t h a t  t he  rounded, in teger  

por t ion of A; i s  a correct  quotient  d i g i t .  A s  mentioned i n  Section 2.4, we 

a r e . a l s o  in te res ted  I n  hybrid B Z r u C t u r e G  in wnich 'Fable 1 and ene 131Uitfple~ 

a r e  used t o  transform t h e  d iv i sor  and remainders before they a r e  applied t o  

Table 2. I n  t h e  following sect ions  we consider t h e  e f f e c t  of t he  t ransfor-  

mation on t h e  design parameters f o r  Table 2 and . then propose an express2on t o  

A 

est imate t he  cost  of implementing Table 1 f o r  given precis ion i n  A and d.  

5.4.2 Worst Case Bounds on Transformed Parameters 

A s  i n  Section 2.2,  assume t h a t  we a r e  given 2 which i s  representa- 

t i v e  of d iv i sor  values i n  t h e  range - a 6 d + f3 and a r e  given rC? 

A ,. 
which. i s  representa t ive  of remainders i n  t he  range r; - A 6 r p  r p  + y; 

,. 
Let A = ~ ( d )  be generated by Table 1. The range of t he  transformed d iv i sor ,  

dT, now represented i s  given by 

and t he  range of t h e  transformed remainder rpT i s  by 

T T 
The d iv i so r  range which must be accommodated by Table 2 i s  ( a  , b ) , 

where 

aT = (A;) - Amax - a ,  and 
min 
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,. 
product dA. The number of addit ions i s  t h e  dominant f ac to r  i n  determining 

t he  operating time of t h e  Tl . ,  M1, M 2  part of t h e  quotient se lec tor .  

Let the  s e t  of d i s c r e t e  values of t he  output of Table 1 be defined 

by I 

where T = 2-' fo r  some pos i t ive  in teger ,  j ,  and m is an in teger  ruigiug from 

11-c through 2 / ~ .  The t i c k  marks on t he  ordinate of Figure 19 designate such 

1 
Figure 19. Geometry f o r  Derivation of Estimates of d- 



For every element of A we must define a d iv i sor  i n t e rva l  f o r  which 

mT i s  used a s  t h e  estimate of the  reciprocal  of d iv i sor  values i n  t he  in te r -  
. . 

va l .  In terpreted -graphically,  t h e  elements of A determine t he  loca t ion  of '  

. , .  . . .  -1 
t h e  t reads  of a s t a i r s t e p  approximation t o  d . The remaining t a s k  i s  t o  

specify t h e  locat ion of the  r i s e r s  ( t he  dotted l i n e s  i n  Figure 1 9 ) .  ' . 

Let d and d denote t h e  l e f t  and r i gh t  ends respect ively  ,of the  . 
l , m  r ,m 

d ivisor  i n t e rva l  fo r  which A = m.r i s  taken a s  t h e  inverse of d iv i sor  values 

i n  t he  range' d 4 d L d It may be shown t h a t  t he  optimum values 
..1 ,m r ,ma 

f o r  d and d i n  t h e  sense of minimizing. t h e  maximum value of Il-$Al: are  
1 ,m r ,m 

d - - 2 

. -  lg T (an + 1) and 
(5.51) 

These equati'ons correspond t o  t h e  .reciprocal  of t h e  average .value 

of -cm and ~ ( m + l ) ,  and -cm ,and ~ ( m - 1 ) .  For d iv i sor  values,  d ,  i n  t he  range . . 

d .  L d ~ . d  t h e  range of dA i s  given by 
1 ,m r ,my  

1 - E - ( m )  d~ L l + ~ + ( m )  ' (5.53) 

where 

The negative e r ro r  i s  maximum f o r  m = m 
min 

= 1/~ ,  but s ince  1 /2  d L 1, 

+ 
t h e  posi t ive  e r r o r ,  E ( m )  i s  maximum a t  m = m + 1. 

m i l l  

In pract ice  d and d a re  a l so  d i s c r e t e  values and thus i n  
1 ,m r ,m 

general ,  cannot be placed prec i se ly  a s  specif ied by Equations 5.51 and 5.52. 

A 

In  th i s '  case t h e  determination of ' the  e r ro r  bounds on the 'product  dA i s  more 

complicated. 



I f  d apd d a r e  represented t o  6 places t o ' t h e  r i g h t .  of t h e  
1 ,m r ,m 

rad ix  point  then t h e  a c t u a l ' e n d  po in t s  can be wi th in  2 of t h e  theore- 

t i c a l l y  optimal point .  Let A = 2 f o r  t h e  worst case,  replace  d 
1 ,m 

by .dl ,m 
- A and replace  d by drym + A ,  

2. ,m 

Now, 

l - ~ ( m )  L $A ' L  1 + ~ + ( m )  

where 

+ . 
E. ( m )  = ~ L A T  + 1 .I (h -.l) 

E - ( m )  =   AT + 1 I (2m + 1) 

Note t h a t  due t o  t h e  range r e s t r i c t i o n  of d ,  

+ 
(mmin ) = 

m AT 
min 

Since we requ i re  

- 6 
f o r  a l l  allowable m ,  t h e  m&imum value of 2 should be l e s s  than o r  equal t o  

r / 4 ,  and 6 should be l e s s  than o r  equal j + 2. 

For given values of T and A 

taken over a l l  m i n  t h e  range l / r  t o  2 / r .  



5,. 4.3 An 'Estimate of t he  Cost. of Table ' 1 
. ~ 

. . 
We now derive an expression.with which t o  estimat'e t he  minimum cost  

i n  l i t e r a l s  of Table 1 . when . s t ructured a s  'specified i n  Section 3.2.3. . Let . ' 

t he  outputs of value A be of t h e  form 
. . 

- 6 
and considered t he  d axis  of Figure 19 t o  be equally divided i n  u n i t s  of 2 .  . 

After a l l  values of d and d a r e ' spec i f i ed ,  each b i t  of A may be  defined 
1 ,m r ¶m 

-6 . , 

by a sum-of-products of minterms of t he  form k 2 . 
. , 

' Let A = a a a . . . a ;  . We w i l l .  now derive an estimate of t h e  
-2a-l-. 1 2 J -  . . 

cost  of implementing ai = f i ( d )  I n  t h e  range 1 L A L 2, each b i t ,  a 
i ' 

i-1 
i s  1 i n  2 i n t e rva l s ,  each of length 2-i. Let y i 9 k  be t h e  value of t h e  

- .  

bottom of t h e  bth i n t e rva l  along t h e  dl a x i s  Por b i t  ai and l e t  'y;,k b e  t h e  

top of t he  in te rva l .  

Thus, - 

= 1 + (2k--  1) 2-i 
y l  ,k 

( i-1) 
fo r  i = 1 ,  2, ..., j a n d k = l ,  2,  ..., 2 

LetXiyk be the  width of t he  corresponding i n t e rva l  along t he  d-axis, 

thus , . 
2- i 

- - (5.66.). 

: (4k2 - 2k) 2-2i + ( 4 k  - 1) 2-i + 1 
. . 

Let each  i n t e rva l  of width 2-6 along t h e  d-axis correspond t o  a 

minterm, each with a fan-in of 6 .  The number of minterms required t o  define . " 

Xi,  i s .  



t h e  number of l i t e r a l s  i s  

Using t h e  same approximation t o  t h e  minimization algorithm a s  

described i n  Section 5.3.3, t h e  cost  i n  l i t e r a l s ,  a f t e r  minimization f o r  

implementing t h e  X i n t e r v a l  i s  
i ,k 

i s  an approximation t o  t h e  number of prime implicants required and 

i s  an approximation t o  t h e  average fan-in. 

T11e cost of -implemariting a i = f. 1 ( d )  i s  thcrcforc  

The t o t a l  number of prime, implicants required i s  

The cost  f o r  t h e . e n t i r e  t a b l e  i s  the re fore  



6. . ESTIMATES OF COST AND PERFORMANCE 
. . 

I n  t h i s  sect lon we u s e  t h e ' a n a l y t i c  t o o l s  awelopea  i n  Section 5 
, .  . . 

together with t h e ' d e f i n i t i o n s  i n  Section 3 t o  t abu la te  samples of expected 

cost  and performance. Besult s aTe given' f OT Type 2 s t r u c tu r e s ,  Type 1 
. .. 

s t r u c t u r e s ,  and f i n a l l y  for a family of h ib r i d  s t ruc tu res .  Since, the  r a d i x  

of t h e  model d ivis ion i s  the '  pri-mary determinant, of performance, f o r  each 
. . 

s t ruc tu re  we f i rs t  consider cos t  ve rsus  rad ix ,  then' p&formance versus  rad ix ,  
. .. 

. . . . 

and f i n a l l y  cos t  versus  performance. 

. . 

Same of t he  r e s u l t s  depend upon assignment of n u m e r i c a l ~ a l u e s  t o  

quan t i t i e s  used i n  t he  de f i n i t i o n s  of Section 3. The values  se lected axe 

based upon experience i n  ari thmetic u n i t  design. A d i f f e r e n t  s e t  of 

r e a l i s t i c  yalues would only s h i f t  t h e  locat ion of th'e cost-performances 

curves and not mate r ia l ly  a l t e r  t h e  shape.of the  curve. General conclusions 

. in fe r red  from them would not change. 

. , 

h , 2  Type 2 Structures 

6.2.1 'Cost versus Radix 

T h e  cost  of Table 2 , .  CT2, i s  given by 

.. .. 
. . . , n-l . . 

where d l ' ( i )  i s  defined by Equation 5.39 and M 1 ( i )  i s  defined by ~ ~ u a t i o n  5.40. 



96 
. . 

Tables 7a and 7b summarize cost  versus radix  f o r  several  values of Arp. 

Table 7a is  fo r  a  . d iv i so r  i n  t h e  range 112 t o  1 and Table 7b i s  f o r  a  divi-  

s o r  i n  the . range 314, t o  918. In a l l  cases,  p = 213, y '  = A' = 1, B' = 1, 
. . 

-6 
and a' = 0. The quanti ty Ad is' 2  where 6 i s  given f o r  each en t ry  i n  t he  

t ab l e s .  

The l im i t i ng  cases (4 and 8)  are  based upon the  assumption t h a t  

t h e  precision i n  r5 and 2 is  increased such t h a t  s t  i = s  i . A near minimal 

- cost  should l i e  between Cases 1 and 4 f o r  t he  f i r s t  d ivis ion range or  between 

Cases 5 and 8 fo r  t h e  second d iv i s ion  r?nge. The cost  e n t r i e s  are  given ' in  

t h e  following rofm: 

18 (prime ~ m ~ l i c a n t s )  
111 ( ~ i t e r a l s  i n  AND ~ a t e s )  - 
129 ( ~ o t a l  c o s t )  

Table 7a. Cost, nf T a b l e  2  versus Radix 

. . 

r Case 1 Case 2 Case 3 Case 4 ,  
6 nrp=1/16 6 Arp=1/32 . 6 ~rp=1 /64  6 Arp=O 



'Tab le  7b. Cost of Table 2 versus Radix 

r Case 5 case 6 Case 7'  Case 8 
6 ~ r p = 1 / 1 6  6 Arp=1/32 6 hrp=1/64 6 Arp=O 

6.2.2 Perforniarice versus Radix 
., 

The following equations from Section 3 a r e  re levant  t o . t h e  calcu- 

l a t i o n s  i n  t h i s  section.  . 
. . 

Operating Time of .Moael . ~ i v i s i o n  : 

Performance of Model Division: 



Operating Time of Fu l l  Precision Division: 

Performance of F u l l  Precision Division: 

2 log, r 

Table 8 i s  a summary of P and P f u r  several  radices  with TpRD=3, 
Q D 

- 
T ~ l  - O y  T ~ 2  

= 2, T = 1, T = 3, Tc = 4. For these values T = 6. Note 
R A Q 

t h a t  we have ac tua l ly  computed a best-case f o r  performance since we have 

assumed t h a t  Table 2, even f o r  t he  higher radices ,  can be implemented i n  two 

delays (T, , ,~  = 2 ) . 

Table 8. Performance of Type 2 Structure  versus 'Radix 

6.2.3 cos t  versus Performance 

Neglecting t h e  cost  terms CpREF, CDu, and CR,  t h e  cost  of 

implementing a Type 2 s t ruc ture  i s  CT2 Table 9 summaries t he  bounds on CT2 

versus performance of t he  f u l l  precision division.  The ac tua l  cost  should 



l i e  between the  lower bound (LB) and the  l e a s t  upper bound (LUB) correspond- 
' 

ing t o  Case 1 i n  Table 7a; and Case 5 i n  Table 7b. - These. r e s u l t s  a r e  p lo t ted  

and discussed fu r ther  i n  t he  summary and conclusions (sect ion 7 ) .  

Table 9. 'Cost Bounds versus Performance f o r  . . 

Type 2 Model Division 

p~ 
. CT2 ( l i t e r a l s )  

( b i t s l de l ay  ) Times a = 112, b = 1 Times a = 314, b = 918 , . 

, , . Increase . . . . LB . . . . . .LUB . Increase . . LB . 
. . 

LUB 

-15 1.00 87 129 i 5 3 71 . 
. . 

-25 1.67 4,691 6,722 54 2,817 3,649 

i a. 

6.3 Ty-pe 1 StMctur'es 

6.3.1 Cost versus 'Radix 

Neglecting t h e  cost  terms Cpm, CDEF and CR,  t h e  cost  of imple- 

menting a Type 1 model divis ion i s  t he  sum of CT1 and Cm. Values for  CT1 

a r e  t&en from t h e  r e s u l t s  given i n  Table 4. The term Cm i s  computed from 

Equation 3.6 , namely, . 

2 

Cm = j CR + N A B A  N C + (NA + 1) N g C S G +  (NB)  C C .  

The following values a;se assumed: 

Table 10' summarizes the  r e s u l t s .  



Table 1 0  .. Cost of Type 1 Structure versus Radix 

6.3.2 . Performance versus Radix 

In  computing t h e  operating time f o r  a Type 1 s t ruc ture  we assume 

t h a t  TpREF = 3 , - ~ ~ ~  = 0 ,  T~ = 1, TA = 3, TC = 4, and Tm = 3 NAY and there- . . 

fo r e  from Equation '3.7, 

Table 11 presents P  quati ti on 3.8) and PD  q qua ti on 3.12) f o r  t he  cases 
Q 

which wcrc described i n  Table 4. 

Table 11. Performance of Type 1 Structure versus Radix 

6.3.3 cost  versus Performance 

Table 12 merges t he  computations of the  previous sections.  



Table 12.. Cost ~ e r s u s  . Per%ormance..:-for ,Type 1 ..Model Division 
. . ' "  

p~ Times . ' .  Times 
(b i t s /de lay) .  . . . . . . Increase : . . . . . C  . ( l i t e r a l s )  . . . . . . . Increase 

,, 6.4 Hybrid Structures  

6.4.1 , Cost versus Radix arid Number of A ~ ~ O P S  . i n  ~ u l t i p l i e r  1 

For hybrid s t ruc tures  t h e  cost  i s  computed i n  several  stages.  F i r s t ,  

' T  T 
C ~ l  

and the  worst-case bounds on 6he transformed d iv i sor  range (a ., b ) i r e  ' 

computed f o r  t h e  cases of 1, 2,  ' 3 ,  a& 4 adders,  i n  Mult ip l ier  1. The number 
. . . . 

o f a d d e r s ,  NA, i s  the. dominant fac tor  i n  the  performanceof t h e  model d ivis ion 
... 

and furthermore spec i f ies  the. cost of Table 1 under the  assumptions presented 

i n  Section 5.4.2. Recall t h a t  the  max- uncer ta inty  i n  A, r ,  i s  2-j. where 

where j = 2 NA; t h a t  t he  maximum uncertkinty i n  d ,  6,  is 2 ; and t h a t  

T and 6 determine CT1. 

Next t h e  transformed parametkrs a r e  computed f o r  each of t he  four 

designs. The cost  equation fo r  Table 2 i s  evaluated f o r  each s e t  of t rans-  

formed parameters, each f o r  four d i f f e r en t  rad ices ,  t o  y i e ld  a t o t a l  of six- 

teen designs. The t o t a l  cost  f o r  each hybrid s t ruc ture  i s  taken t o  be 

CQ, + Cu + CM2 + CT2. 

Table 1 3  summarizes t h e  cos t s  f o r  t h e  s ixteen cases. The quan t i t i es  

T 
aT and b a r e  defined by Equations 5.62 and 5.63, respect ively ,  and CT1 i s  

defined by Equation 5.73. The terms Cm and CMB a r e  computed from Equation 3.6 ' 

with CA = 50, C = 10,  CSG = 6, CC = 4,  and E = 5. The cos t  t e r n ,  CT2; i s  
R 



computed from Equations 5.33 , 5.39, and 5.40 with ' the transformed parameters 

spec i f i ed  a s  follows : Am= = 2, prpT = 2-J-5 , ~ d '  = 2-j-'¶ .yT, = 1/16, 

hT = 1/16, d = 0 ,  gT = 2- '+l, P = 2/3.. 

Table 13. Cost Computations for Hybrid Structures 

Case 
Table 1 Parameters No. C ~ l  ''Ml c ~ 2  

6.4.2 ' performance versus Radix and Number of Adders i n  Mult ip l ier  1 

In  computing t he  operating time f o r  t he  hybrid st;ruc-tures we assume 

t h a t  TpREF - - 3, TT2 = 2,  TR = 1, TA = 3, TC = 4 i~ld Tm = 3 N A Y  and therefore 

from Equation 3.7, 





. . .  . 

6.4.3 Cost versus ~erformance 

Table merges the' cost and performance (P ) data .for the hybrid 
D 

structures. 'These results are plotted and discussed further' in the next 

section. 

 able 15. ,dost versus Performance for Hybrid . . 

Model Division Structures 

Case No. p~ Times 
C r, 

limes 
( b i t  s/delay) InCrease (lit eraln ) Incre~se  



7. SUMMARY AND CONCLUSIONS . 

7 .1  General Summary 

In  t h e  summary and conclusions it i s  convenient t o  dis t inguish be- 

tween t he  def.init.ive, synthet ic ,  and ahalyt ic  aspects of t h i s  study. ,Sections 

2 and 3 are  de f in i t i ve .  Section 2 defines t h e  c lass  of d iv i s ion  techniques 

t o  be studied and Section 3 defines t h e  measure of cost  and performance t o  be 

applied. It i s  noted t h a t  an advantage of t h e  model d iv i s ion  approach i s  

congruity with commonly used mul t ip l icat ion s t r u c t w e s  including t h e  capacity 

t o  form t h e  p a r t i a l  remainders using non-.propagating adders o r  subtractors .  . ' 

The attendant disadvantages a re  t h e  necess i ty  t o  s t o r e  two b i t s  per quotient 

d i g i t  and t h e  requirement for  a terminal  s t e p  t o  convert t he  redundant . to  non- 

redundant form. The f a c t  t h a t  ' fo r  division',  unl ike  mul t ip l icat ion,  t h e  

se lect ion of t h e  j t h  quotient d i g i t  cannot be straightforwardly overlapped 

with the. formation of t he  j t h  p a r t i a l  remainder, prompts consideration of. 
. . 

high-speed d iv i s ion  techniques f o r  t he  model. Furthermore, t h e  overhead 

required t o  "ca l l "  and "return" f rom.the  model d ivis ion prompts study of 

higher rad ix  s t ruc tures  which produce several  b i t s  per ' c a l l .  A var iable  . 

radix  block s t ruc ture  of a c l a s s  of model d iv i s ion  schemes i s  proposed f o r  

study. 

Section 4 describes algorithms with which t o  synthesize t h e  most 

complic'ated. sub-blocks of t h e  family. of proposed quotient  se lec tors  : a combi- 

natoria.1 network t o  produce an est imate of t h e  reciprocal  i f  t h e  d iv i sor  

 able 1 1 ,  and a combinatorial network t o  generate a quotient  d i g i t  when given 
.. A 

d and r p  ('Table 2 ) .  Although these  synthesis  routines, generate a iog ic  

equation de f in i t i on  of t he  s t ruc tu r e ,  t he  i n t en t  i n  t h i s  study i s  mere&y t o  



determine t he  cos t ;  e s sen t i a l l y  t he  number of l i t e r a l s  i n  t he  log ic  equations. 

After  t he  cost  vs .  performance behavior i s  su f f i c i en t l y  understood t o  permit 

spec i f i ca t ion  of of a pract icable  model, t he  synthesis  rout ines  

may be applied a s  a f i r s t  st'ep i n  implementation. 

Section 5 includes t h e  bulk of t he  analyt ic  work. The sect ion opens 

with a tabula t ion of cos t s  f o r  several  cases synthesized by t he  previously 

defined algorithms. But s ince  there  ex i s t s  many var ian t s  of the  model divi-  

sion and since even computer synthesis  i n  t h i s  case 13 cxpeueive, t h e  n~unerj- 

c a l  r e s u l t s  and ins igh t  are  applied t o  hypothesize formulas raLlier than . 

algorithms w i t h  which t o  estimate cost .  'I'he Y o m a s  t a k e  accuulL uf t h e  

t e n  var iab les  of t h e  model d ivis ion.  

Although one of t h e  formulas i s  normalized with two empirically 

definkd quan t i t i es ,  it i s  assumed t h a t  these quan t i t i es  are.  su f f i c i en t l y  

constant t o  permit meaningful prediction of cost  f o r  cases other than those 

used i n  t he  normaLization. I n  Section 6 ,  the  formulas fo r  both cost  and per- 

formance a re  applied t o  tabula te  expected values of cost  and perfo~mance. 

The present sec t ion  i s  an attempt t o  summarize t he  work i n  t h e  pre- 

vious sect ions ,  t o  reach some conclusions about the  f e a s i b i l i t y  of the  

invest igated quotient se lec t ion  schemes, and t o  suggest areas f o r  fu r ther  

invest igat ion.  The sect ion i s  subdivided i n t o  consideration of numerical 

cost  and performance r e s u l t s ,  ana ly t ic  r e s u l t s ,  and concludes with addi t ional  

remarks about areas f o r  fu r ther  research.  

7.2 'Cost 'and Performarice 

Figure 20 i s  a  graphical  summary of t h e  cost  versus performance 

est imates tabulated.  i n  Section 6. The necessi ty f o r  a f i v e  cycle semi-log 

p l o t  emphasizes t h e  extreme range of cos t s  and disappointing 'cost-performance 



Figure 20. Cost.yersus Performance for Samples of 

Model Division ~t&ctures 



behavior. It is apparent t h a t  many of t he  r e s u l t s  a r e  negative; they indicate  

what not t o  attempt t o  implement. The points on t he  graph a r e  taken from 
. . 

Tables 9 ,  12,  and 15. . Points corresponding t o  t h e  same type s t ruc ture  but 

d i f f e r i ng  i n  radix  are  connected by straight-1ine.segplents. Each of these  

11 curvest1 i s  . labeled with a Roinan numeral. 

Curves Ia and Ib, with points from Table 7b, a r e  t h e  lower and upper 

bounds on . t he  cost  of a Type 2 s t ruc ture  (d i r ec t  t ab l e  look-up) f o r  d iv i sors  

i n  t h e  range. (314, 9 / . 8 ) .  Curves I I a  and I I b ,  with points '.from Table 7a, a r e  

t h e  lower &d upper bounds f o r  a s imi la r  s t ruc ture  wi'tl~ diirisors i n  t h e  range 

2 1). To a ' f i r s t  approximation a l l  four curves (lag C) v a r y  lil~ctil .ly 
10 

with performance and thus 

Cost = 10 kPD 

where k i s  about 18. This exponerltial behavior i s  not ~ u r p r i s i n g  consi.dering 

t h a t ,  performance var ies  as  l og  r (see  Equation 3.12) and t h a t  cost  va r i e s  as  

2 
r log  r .  This l a t t e r  statement i s  derived from Equations 5.39, 5.40 , and 5.41. 

The radix  4 Type 2 s t ruc ture  i s  qu i te  pract icable ,  requir ing about 

ten,lO-input, gates t o  y i e ld  performance of .15 b i t s  per 1ogic.delay.  Assuming. 

10 ns . l og i c ,  the, scheme would generate 60 b i t s  of quotient i n  about 4 US. A 

rad ix  16 Type 2 s t ruc ture  t heo re t i c a l l y  increases performance by 513, conse- 

quently reducing divide time, under t h e  same assumptions, t o  2.4 US.  The 

cos t ,  however, increases over 50 times. 

statements about t h e  radix 16 s t ruc ture  must be qual i f ied  by the 

observation that due t o  ful-ill aid fan-out r co t r i o t i ons ,  the  t.?.hl.e cannot  

ac tua l ly  be implemented i n  two l eve l s  of log ic .  Since t he  d iv i sor  i s  con- 

A 

s t a n t ,  t he  d port ion of each prime implicant can be formed i n  a cascade of 

many log ic  l eve l s  without degradation of performance. But going t o  addi t ional  , 
A 

l eve l s  t o  form functions of r p ,  although cost  may be reduced, w i l l  decrease 



performance be lowthe  i d e a l  value assumed i n  Figure 20. J u s t i f i c a t i o n  f o r  

a radix  16 Type 2 s t ruc tu r e  i s  discussed fu r ther  i n  connection with a "quo- 

t i e n t  lookahead" s.cheme mentioned i n  Section 7.5. Ty-pe 2 s t ruc tures  beyond 

radix  16 are  too expensive t o  consider f'urther. 

Based upon Figure 20, curve 111, it appears t h a t  a Type 1 s t ruc ture  

. i s  never preferable t o  a Type 2 s t ruc ture .  Although t h i s i s  probably t r u e ,  

t he  Type 1 s t ruc tures  might be studied fu r ther  with t he  following points i n  

mind : 

1. The s t ruc tures  studied here employ a ra ther  conventional 

mul t ip l ier  requiring one cascaded adder per two b i t s  of 

mul t ip l i e r .  Perhaps f a s t e r  mul t ip l i e r s  may -be found. It 

is  doubtful, however, - t.hat they would be l e s s  expensive. 

2.  For a l l  s t ruc tures  'studied t h e  estimate of the  p a r t i a l  

remainders have been converted t o  a conventional form. For 

h 

s t ruc tures  requir ing a transformation of r p  , t h e  assimila- 

t f on  i s  performed a f t e r  t h e  mul t ip l icat ion.  The conversion 

t o  conventional form has been required as  a concession t o  

reducing the  cos t  of .Ta.hl.e 2. For 'Type 1 s t ruc tures ;  Table 

2 i s  not required and thus perhaps t h e  redundantly'represenked 

r e s u l t  could be used ' d i r ec t l y  by the  sh i f t ,  gates  i n  t h e  

f u l l  precision ari thmetic unit .  The elimination of t h e  

conversion. ' is roughly equivalent t o  el iminating one adder 
j 

from t h e  mul t ip l i e r  s t ruc ture .  
, . 

The cost  versus performance'of t he  hybrid s t ruc tures  a re  shown i n  

curves I V - V I I ,  corresponding t o  1 thro,ugh 4 adders i n  t he  mul t ip l i e r s ,  M1 

and M2. The curves i n i t i a l l y  r i s e  slowly r e l a t i v e  t o  t he  Type I1 curves but 

soon become s teep  as t h e  cost of Table 2 f o r  t h e  higher radices  dominates. 



2 
The r log r behavior of C i s  not easy t o  suppress. Again, based upon T2 

r e s u l t s  shown i n  Figure 20, i t  appears t h a t  hybrid s t ruc tures  shduld not be : 

chosen over a Type 2 s t ruc ture .  

- It i s  apparent from Equation 3.12 t h a t  . .  P,, as a function of r has an 

upper l i m i t  'of T 12.  This l i m i t  i s  t h e  t heo re t i c a l  upper bound on t h e  
A 

performance of t h e  i t e r a t i v e  s teps  of mul t ip l icat ion.  With TA= 3, t h e  

t heo re t i c a l  r a t i o  of performance of division'  t o  performance of mul t ip l icat ion 

f o r  cases i n  Figure 20 ranges from 0.09 t o  0.53. For praclict ible cases,  the 

range i s '0 .225  t o  0.375. 

7.3 Analytic Results 

Only a few of t he  cases studied appear t o  be feas ib le .  But negative 

r e s u l t s  a re  valuable, and furthermore it should be kept i n  mind t h a t  t h e  main 

purpose of t h i s  t h e s i s  i s  not t o  present an exhaustive enumeration of quotient 

select ion schemes, but ra ther  t o  develop , general . techniques ' f o r  analysis .  

It i s  important t o  appreciate t h e  general i ty  of thc  extension of 

~ i b e r t s o n '  s cost  measurement ( s  . ) t o  t he  imprecise cases (.sf and 's" 1. 
1 i i 

Although the  est imate of cost  as a function of s t  i s  not rigorous and includes 
i 

empirically defined constants ,  t he  der ivat ion of s t  i s  rigorous. The analysis  
i 

developed i n  Section 5.3.2 leads t o  a succinct statement of worst-case pre- 
,. n 

cis ion requirements i n  r p  and d ,  (d"< a )  and t o  ins igh t  i n to  the  e f f ec t  of 

the  parameters of the  model d ivis ion on t he  cost  of quotient se lect ion.  
* .  

The s! cost  r n e a ~ ~ e m e n t  i s  applicable t o  s t ruc tures  other  than those 
' 

1 

f i t t i n g  within t he  s t ruc ture  of t he  model d ivis ion shown i n  Figure 2. For 

example, a s  mentioned e a r l i e r ,  t h e  t reads  of t h e  s t a i r ca se  boundaries between 

quotient. regions may 'be viewed as comparison constan'l;~ against  which r p  i s  

compared t o  determine i n  which quotient  region it belongs. The d iv i sor  range 



i s  pa r t i t ioned  i n t o  i n t e rva l s  such t h a t  f o r  each i n t e rva l  the re  i s  a s ingle  

comparison constant between each quotient  region. The comparison constants 

could be stored i n  a r e a d  only memory. A div i sor  value would determine 

a column of comparison constants which would be read out t o  become one input 
I .  

, . A 

t o  a s e t  of comparators ; t he  other 'input t o  t he  comparators would be r p  .' 
If .ci i s  t he  comparison constant between q(i) and q ( i - l )  then q=k, where k 

i s  the  g rea tes t  such t h a t  r p  > ck. ' The number of s e t s  of comparison 

constants has a lower bound o f  s i  and upper bound of st'. n The number of 

comparison constants i n  each s e t  i s  n (assuming implementation of only t h e  

f i r s t  quadrant of t he  P-D p l o t ) .  

Among others ,  the  ana ly t ic  r e s u l t s  prompt t he  following observations: 

1. There are  minimum.requi.rements f o r  t he  precis ion i n  t h e  

n A 

estimates of r p  and d. 

2.  For given precision above t he  minimum required,  the re  i s  a ,. 

l i m i t ,  s!  1 y t o  t he  minimum number of comparison constants . 

required between . q ( i )  and q(i-l). 

3. The ac tua l  number of s teps ,  si act,  i s  greater  than sk due t o  

d i s c r e t e  e f f e c t s ,  i . e .  due t o  t h e  f a c t  t h a t  t he  locat ions  of 

t reads  and r i s e r s  are r e s t r i c t e d  t o  d i s c r e t e  values: 

. ' 4. The upper bound on si act, including t h e  d i s c r e t e  e f f ec t s ,  

i s  s t ' .  
i 

A A 

5 .  Increasing. precision i n  d and r p  moves s  i closer  . t o  s  i and 

s closer  t o  s '  but  by a decreasing amount. 
i: ac t  i ' 



7.4 Suggestions f o r  'Further Invest igat ion 

The following top ics .  f o r  fu r ther  invest igat ion have emerged i n  t h e  

course ,of t h i s  study. The order of l i s t i , ng  does not i m p l y  any p r i o r i t y .  

1. Compare t h e  cost and performance of t he  model d iv i s ion  approach 

t o  other d iv i s ion  algorithms such as  t h e  Wallace algorithm 1321 as  

implemented i n  t h e  IBM 360/91[14], and d iv i s ion  schemes i n  other 

l a rge  machines such as t h e  CDC 7600. 

2 .  Consider t h e  use of a  radix  4 ,  Type 2' s.l;ructure i n  a pipel ine  a r i th -  

metic u n i t .  Assuming t h a t  t h e  d iv i sors  and quotients may be streamed 

along with t h e  p a r t i a l  remainders, it appears t h a t  a s e t  of t h e  

. inexpens'ive radix  4,' Type 2 model divis ion s t ruc tures  may be used 

. . .  t o  e f fec t ive ly  pipel ine  t he  d iv i s ion  operation. Mult ip l icat ion and 

div i s ion  could be intermixed i n  t h e  same pipel ine ,  however, assuming 
a : 

synchrorious con t ro l ,  the clock f requ~l icy  i s  l imi tcd by the quotient 

se lec t ion  time and thus the multiply L i ~ u c  is degraded. 

3. Consider a  "quotient lookahead" scheme. Assume t h a t  each adder i n  

n cascade of adders i s  capable of performing a  mul t ip l i ca t ion  radix  

$. Then t h e  s h i f t  gates  f o r  each adder may be controlled by a 

model d iv i s ion  of the  same radix.  If t h e  rad ix  of t h e  model i s  

g rea te r  than 2k then more quotient d i g i t s  a re  formed than can be 

used i n  forming t h e  present p a r t i a l  remainder. It i s  conceivable, 

however, t h a t  as soon as they m e  foymed they cuuld be used t o  act  

s h i f t  gates t o  form t h e  next p a r t i a l  remainder thus overlapping 

control  time. For example, if k=2 but t h e  model d iv i s ion  i s  radix  

16,  control  s igna l s  f o r  the  s h i f t  gates  of two successive adders . . 



are  generated si&ltaneously. I f  a . r a d i x  16 quotient se lec tor  i s  

coupled t o  t h e  output of every adder i n  t he  cascade, then f o r  each . 

addition/subt.raction four b i t s  a re  formed, two of which overlap with 

the  previously formed b i t s .  ,The formation of t h e  . j th  p a r t i a l  re- 

mainder may therefore  be overlapped with formation of t he  j+l, 
' 

radix  4 quotient d i g i t .  After  s t a r t up ,  t h e  e f fec t ive  control  time 

per addit ion would be the .quot ien t  se lect ion time minus t h e  add 

time. If t he  times were equal; then divis ion could proceed a t  . 

multiply speed. 

4. Study t he  var ia t ion  i n  cost  of t h e  e n t i r e  ar i thmet ic  u n i t  as  a 

function of p ,  t he  redundancy r a t i o .  Recall t h a t p  is  one var iab le  

i n  t he  equation f o r  s;. In  a l l  numerical work produced i n  t h i s  

study p = n/(r -1)  = 213. ' The decision t o  keep'p constant excluded 

t he  exp l i c i t  study of radix  8; 32, and 128 f o r  which there  i s  no ' .  

in teger ,  n such t h a t  3'; ,213. 

Y .  

5 .  Study a model d ivis ion s t ruc tu r e  based upon simultaneous comparisons 

of r p  with comparison constants se lected b y t h e  value of t h e  divisor .  
,. 

. . 
' \  

6. Consider t h e  engineering d e t a i l s ' o f  a rad ix  16,  Type 2 s t ruc ture .  

7. Program t h e  correct  algorithm (Appendix A )  f o r  producing t he  minimal 

cost  de f in i t ion  of a Table 2 s t ructure .  Reference [34] defines t he  

minimization algorithm. Compare t h e  r e s u l t s  with those produced by 

t h e  QS3 algorithm (sect ion 4 1. 



APPENDIX A 

Algorithm f o r  Generating'Minimum Cost Sum-of-Products 

~ e f i n i t i o n s  of t h e  q - ~ e ~ i o n s  of Table 2 

1. COnsider the  P-D p l o t  t o  be covered by a uniform gr id  with spacing of Ad 

along t h e  d-axis and with spacing Arp along t h e  rp-axis. The . in ter-  

,, A 

sect ion of each-gr id  l i n e .  i s  defined by t he  order pa i r  (d ,  rp) where d 
A 

i s  an in teger  mult iple of Ad and .x-p i s  an in teger  mult iple of Arp. Every 

,. ... 
p a i r ,  ( d ,  r p )  i s  representa t ive  of f u l l  precision quan t i t i es  i n  t he  r u g s s  

definkd by Equatibns 2.11 and 2.14. ~ u f f i d i e n t  condition f o r  the chof cr 

. .  . 
of A ,  y , a ,  6, A Ad, d , and's i s  t h a t  d"  quati ti on 5.26) be. greater  

. , ,  

than a ,  t he  lower bound of the  d iv i sor  range. I f  ~d and/or Arp a re  
. . 

smaller t.han necessary, t he  excess precis ion i s  removed by mZnimization. 

However, the  smaller Ad and Arp, t h e  c loser  t he  boundaries between the  

q-regions may approach the theore.t;ical l imiG,  i . e .  t he  smaller wJ.j.1. be 

. .. 
t h e  d i s c r e t e  effects. .  

- - 
A h  A A 

2.. Every pa i r ,  ( d ,  rp) corresponds t o  a minterm, rpl Id. (see  page 38 for  

def ini t ion,  of t he  notation.  ) 
. 

3.  Let R .  be t he  s e t  of minterms which a re  required t o  d e f i n e v q ( i ) ,  1.e. 
1 

which must be assigned . t o  . the  output function f i . Thus, 

- - 
A n 

Ri = { r p  1 1 d I a l l  o r  m y  par t  of t h e  area corresponding 

A A 

t o  (d ,  r p )  i s  completely within t he  area defined by 

t he  l i n e s  rp=(i+l-p )d ,  rp=(i- l+p )d,  d=a; and a=b. 

Let T.  be t h e  s e t  of minterms which l i e  completely within the  overlap 
1 

region between q ( i )  and q ( i + l ) .  Thus, 
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- - 
A A .  3 6 

Ti 
= { r p  1 1 d I t h e  a rea  corresponding t o  (d ,  r p )  i s  

completely within t he  area  defined by t he  l i n e s  

rp=( i+p)d ,  rp=(i+l-p)d,  d=a, and d=b.} 
\ 

A A 

Let D be' t he  s e t  of all minterms which correspond t o  (d,  rp) 'which do not 

represent a rea  within the  boundaries of t h e  P-D p l o t ,  i . e .  a rea  not 
. . 

within any q-region. 

4. Assume a minimization algorithm 'such as  described i n  Section 4.2.2 which 

w i l l  accept both t n i e  minterms , 0 ,  and a s e t  of don' t  care  minterms, A ,  

of a given function.  The r e s u l t  of t he  minimization process i s  a minimal 

s e t  of prime implicants,  II. Let Q be t h e  s e t  of miriterms 'implied by II, 

i. e. ' a l l  minterms fo r  which t h e  function defined by t h e  OR of t h e  ele- 

ments of II i s  t r ue .  

5 . .  The following i s  the  proposed algorithm f o r  defining t h e  output f'unctions, 

f i ,  fo r  i = O ,  1 ,..., n. 4 . b  . I -  

b )  Execute t h e  minimization algorithms t o  produce Po = II, and 

construct  Mo = Q. Output function,  f o ,  i s  t he  OR of t he  elements 

c ) For i=1,2, .  . . ,n do t he  following: 

- ) ) ,  and A = T. U D: Let 0 = R .  U ( T ~  - ( T ~ - ~  l l  Mie1 1 1 
Execute 

the  minimization algorithms t o  produce P i = II and construct  

. Mi = L Output function f i  i s  t he  OR of t he  elements of 'pi. 
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APPENDIX B 

Example of Results,  of Q S ~  and Minimi.zation Program. 

Note : 

d'. dl d2 d3 db . 
, 

I n  t h e  following '1' implies t ha t  t h e  va r tab le  i s  present i n  t r u e  form; 

' 0 '  implies t h a t  va r iab le  is  present  i n  coniplement form; 'x" implies t h a t  

va r iab le  i s  absent. Variable P i s  dele ted by inspection.  

Minimal cos t  prime implicants f o r  q ( ~ ) :  

0 0 0 x 0 x x 1  
t .. 

Minimal cost  prime i m p l i ~ w i t s  f o r  q (1 ) :  
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