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A  STUDY  OF MONOTONICALLY NORMAL  SPACES

CARLOS R.  BORGES

Abstract. We obtain various characterizations of monoton-

ically normal spaces which not only answer various questions of

Zenor but also allow an elementary proof of a result of Heath and

Lutzer. We also prove that elastic spaces are monotonically normal.

Recently P. Zenor introduced the class of monotonically normal spaces

(his results will appear in [3]). Soon afterward, R. Heath and D. Lutzer

proved that each linearly ordered topological space is monotonically

normal (see [3]). Since Zenor did not know if monotonically normal

spaces were hereditarily monotonically normal and the result of Heath

and Lutzer had a very long proof, my interest in the study of these spaces

was aroused. The characterizations of monotonically normal spaces

which follow not only answer Zenor's questions but also permit us to

prove, quite easily, that linearly ordered topological spaces and elastic

spaces are monotonically normal. (Our proof of the first result appears in

[2]. For the second result, see Theorem 2.3.)

1. Characterizations of monotonically normal spaces. For the sake of

completeness, we will first define this class of spaces.

Definition 1.1. For any space X, let 3)X={(A, B)\A and B are disjoint

closed subsets of A"}. The Trspace X is said to be monotonically normal

provided that to each (A, B) e @)x one can assign an open subset G(A, B)

of X such that

(a) A<=G(A,B)<=G(A,B)-^X-B,
(b) G(A, B)^G(A', B'), whenever A <=A' and B'<=B.

The function G is called a monotone normality operator.

Theorem 1.2.    The following are equivalent:

(a) X is monotonically normal.

(b) X is Tx, and to each pair {A, B) of subsets of X, with A f~\B~= 0 =

A~C\B, one can assign an open subset G(A, B) of Xsuch that

(i) A<=G(A, B)^G(A, B)-cX-B,

(ii) G(A, B)^G{A', B') whenever A^A' and B'cß.
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(c) To each pair (A, U) of subsets of X, with A closed, U open and

A^U, we can assign an open set UA=>A such that

(i) UA<= VB whenever A^B and £/<= V,

(ii) UAn(X-A)x_v=0.
(d) For each open U<^ X and x e U there exists an open neighborhood

Ux of x such that Uxc\Vyj^0 implies x e V or y e U.

(e) There exists a base 38 for X such that, for each B e 88 and x e B,

there exists an open neighborhood Bx of x such that

Bx n Cy 9± 0    implies   x e C    or   y e B.

(f) X satisfies Lemma 2.1 of [1].

(g) X satisfies Theorem 5.1 of [1].

Proof. The scheme of this proof will be (a)=>(c)=>(d)=>(e)=>(f)=>

(g)=>(a) and (d)=>(b). This suffices since, obviously, (b) implies (a).

(a) implies (c). By [3, Lemma 2.2], X has a monotone normality

operator G such that G(A, B) nG(B,A)=0 for each (A,B)e@x

(indeed, the proof consists of observing that, for any monotone normality

operator //on X, letting G(A, B) = H(A, B)-H(B, A)~ will do the trick).

Now, for each pair {A, U) with A closed, U open and A<=U, let UA =

G(A, X—U). It is quite easy to see that conditions (i) and (ii) of (c) are

satisfied.

(c) implies (d). For each open ¡/cj and x e U, let UX=U{X]. Suppose

UxrlVy7¿0, x$ V and y$U. Then Uxn(X-{x})x_rj=0 and Vy<=

{X—{x})x_tj. Consequently UxC\Vy=0, a contradiction. This proves

that UxC\Vyjí0 implies y e U or x e V.

Clearly (d) implies (e). Therefore we next prove that (e) implies (f).

For each pair (A, U) of subsets of X, with A closed and U open, let

UA «= U {V„ | x eA and V <= U}.

First we show that (UA)~<^A UÍ/: Pick any x £ A\JU. Then it is easily

seen that (X—A)xr\UA=0. This shows (UA)-^A UÍ/. Next we show

that (iv) is satisfied: Suppose A<^U and UA n(X—A)(x_u)9£0. Then

Var\Wh^0 for some a e A and V^U, b e X-U and W^X-A. From

(d) we get that a e W or b e V, a contradiction.

Clearly all other requirements are satisfied.

(f) implies (g). This proof is exactly the same as the proof of Theorem

5.1 of [1].

(g) implies (a). For each pair (A, B) of disjoint closed subsets of X, let

G(A,B)=fx\B,A[0,-H

It is easily seen that the conditions (a) and (b) of Definition 1.1 are satisfied.
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Finally we show that (d)=>(b). For each pair (A, B) of subsets of A with

AC\B-=0=A~r\B, let

G(A,B)=\J{Ux\xeA,U c X -B}.

Clearly we only need to show that G(A, B)~<=X — B. Indeed we prove the

stronger result that G(A, B)nG(B, A)=0 : Assume there exists

w e G(A, B)(~\G{B, A). Then weUa for some a e A and some open

U^X—B and we Vb for some beB and some open F<=A—A. Then

UaC\Vbj£0 implies that b e U or a e V, a contradiction (for example,

b e £/<= X—B contradicts the fact that b e E). This completes the proof.

Corollary 1.3.    Monotone normality is hereditary.

Proof.   Immediate from Theorem 1.2(d).

2. An application. Throughout this section, E is an elastic space (see

[5] for definition) and 0* is an elastic base for E. Furthermore, for i= 1, 2,

let P^iP^Px, Pt) e^or (Pt, P2) e 0>}.
Definition 2.1.    For each open [/<= E and P= (Px, P2) e 0>, let

U(P) = U iVi I Ci. V2) £ 0, V2 e U and Vx ̂  Px}.

Lemma 2.2.    The sets U(P) satisfy the following conditions:

(a) U(Py c u for all P e & and open t/<= £.

(b) (J {U{P)\P e 0>}=U,for each open U<=E.
(c) U<= W, U and W open, implies that U(P)<= W(P)for each PeSP.

(d) IfPxfkQx then U(P)<=U(Q) for all open U^E.
(e) For each collection °li of open subsets of E and P e 2?,

(U {U(Q) | ß, ¡SP, andUe®})- e U {U \ Ue %}.

Proof. Parts (a)-(d) follow easily from the definition of the sets U(P).

Part (e) is an immediate consequence of (a), (c) and (d),  because

(U {U(Q) | Qx Ú Pi and (/ef})-

<=[(\J{U\Ue *})(/»)]- e U {V | U e *}.

Theorem 2.3. Tac« elastic space E is monotonically normal. (Note that

the transitivity of the relation ^ o« 3?x is not needed in this result.)

Proof. Because of Theorem 1.2(d), it suffices to show that for each

open £/<= E and x e U there exists an open neighborhood Ux of x such that

Uxr\Vyji 0 implies x e V or y e U. This is easily done. Indeed for each

open U^E and xeU, let P(U, x)t be any element of ^ such that

xeP(U, x)1cP(f7, x)2c U. Then let

£4 = P(U, x)x - (X - x)(P(U, x)).
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Let us now suppose that Uxr\Vy^0, x $ V and y £ U. Then P(U, x^n

P(V,y)l9£0 which implies that P(U, x\<:P{V,y)x orP(F, y^PÍJJ, x)v
This yields a contradiction. (For example, P(U, x)1^P(V,y)1, given

that P(U, x)^P{U, x)2<=U^(X-y), implies that Ux <=P(U, x)xc

(X—y)(P(V,y)), in contradiction with Ux(~\Vy^0.) This completes the

proof.

Gruenhage [4] has proved that the Sorgenfrey line (the real line with

the half-open interval topology) is not elastic, even though it clearly is

monotonically normal.
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