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ABSTRACT 

Niranjan, Suman. Ph.D. Egr., Industrial and Human Systems Engineering, Department of 

Biomedical Industrial and Human Factors Engineering, Wright State University, 2008. A 

Study Of Multi-Echelon Inventory Systems With Stochastic Capacity And Intermediate 

Product Demand.  

 

The research in this dissertation involves the study of several multi-echelon inventory 

systems with stochastic capacity and intermediate product demand. Specifically we 

analyze the behavior of the system which consists of several intermediate product 

demands. The analysis is primarily three fold i) developed update (relational) equations 

for all the multi-echelon inventory systems under several inventory allocation policies, ii) 

develop two simulation optimization approaches 1) OptQuest framework, and 2) IPA 

(Infinitesimal Perturbation Analysis) framework, used to minimize the total cost of the 

inventory systems that satisfy the desired customer service level, iii) obtain numerical 

results for all the multi-echelon inventory systems under several scenarios and instances, 

and an extensive analysis and implications of the results. 

The research done in this dissertation differ from earlier works, since it considers a 

complex (combination of serial and assembly systems) multi-period multi-echelon 

inventory system with several sources of demand (specifically intermediate product 

demands). We obtain the best found base-stock levels for each node in the system that 

satisfies the required customer service level. A SIO (Simulation based Inventory 

Optimization) approach is used to obtain the best found base-stock level for the system 

under several inventory allocation policies. We consider a system which is closer to the 

actual world and can be used to solve contemporary issues like, 1) manufacturing firm 



v 

 

that produces finished products as well as spare parts, 2) manufacturer – warehouse – 

distribution center – retail outlets etc. I am not aware of any work that studies the impact 

of inventory allocation polices for multi-period in a multi-echelon inventory system, and 

obtains best found base stock level for each node using an IPA framework. Moreover the 

best found base-stock level for each node is obtained under realistic conditions like 

stochastic demand, stochastic capacity, and lead time. 
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EXECUTIVE SUMMARY 
 

This research involves the study of multi-echelon inventory systems with 

intermediate, external product demand in one or more upper echelons. This type of 

problem is of general interest in inventory theory and of particular importance in supply 

chain systems with both end-product demand and spare parts demand. The multi-echelon 

inventory system considered in the research consists of a combination of assembly and 

serial stages with demand directly from more than one node. The demand and capacity 

are considered as stochastic in nature. A fixed supply and manufacturing lead time is 

used between the stages. This research develops a mathematical model for capacitated 

multi-echelon systems (three-, four-, five-, and m-echelons) with demand for intermediate 

and final products. The equations describing the multi-echelon inventory dynamics 

including all of these factors allows simulation of the system. The multi-echelon 

inventory system is shown to be Lipschitz continuous. The update equations for the 

multi-echelon system are based on the following variables for each node: the outstanding 

orders, net inventory, and on-hand inventory.  

This research utilizes two frameworks to carry out simulation-based optimization of 

the inventory parameters in the mathematical model: 1) an OptQuest framework, and 2) 

an Infinitesimal Perturbation Analysis (IPA) framework. The primary goal is to 

determine best found base stock levels for the components, intermediate product and final 

product based on a required customer service level at each stage. The OptQuest 

framework consists of a combination of ARENA (a simulation package) and OptQuest 

(black-box optimization engine in ARENA).  OptQuest in ARENA implements a 

simulation based inventory optimization to determine the best found base-stock levels. 
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The status equations are updated every period with the help of ARENA. The objective 

function, service level constraints, and bounds for the decision variables are represented 

in OptQuest. The initial points, i.e. base-stock levels, for each node for this simulation 

optimization are provided by OptQuest to ARENA. Based on the service level obtained 

for each node from ARENA at the end of the simulation run (consisting of a sufficient 

number of periods), a new set of points are determined. The process iterates until a best 

solution (a non- improving base-stock value) for all nodes that satisfy the service level 

constraints is obtained.  

 The IPA framework utilizes ARENA, VBA (Visual Basic for Applications a tool in 

ARENA), and Xpress (optimization package). A Simulation-based Inventory 

Optimization (SIO) algorithm is developed to obtain the best found base-stock levels with 

the help of nonlinear programming methods. ARENA in combination with VBA and 

Xpress are used to develop the SIO algorithm, and solve the nonlinear problem. A 

Lagrange function that incorporates all the constraints in a single equation is developed.  

The first order derivative estimation equations for all the status equations, service level 

equations, and Lagrange equations are used in the SIO. Infinitesimal Perturbation 

Analysis (IPA) is used for gradient estimation. The objective function is shown to be 

Lipschitz continuous.  A modified Zoutendijk’s feasible direction algorithm is used to 

obtain the best found base-stock levels. Xpress is used to solve a linear program (LP) 

within this procedure. A golden section algorithm is use to solve the line search (a part of 

the feasible direction algorithm). ARENA is used to update (simulate) the first order 

equations, and status equations. The feasible direction algorithm, the line search 

algorithm, and termination conditions are implemented in VB. Initial points, (i.e. base-
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stock values, and Lagrange multipliers for each node) are specified in ARENA. The 

information is exchanged between ARENA and VBA to guide the search to an best found 

base-stock level using the IPA-based gradients. VBA is also used to invoke Xpress to 

solve the LP when required. The search continues until the termination condition is 

satisfied, which is based on the magnitudes of the gradients and the required service level 

for each node.  

 A number of scenarios are solved using both the frameworks, revealing some 

interesting interactions among inventory, cost, and service levels. A comparative analysis 

for few specific cases between the two frameworks show that the IPA-based approach 

more often provides a better solution much quicker than OptQuest framework. One 

interesting aspect of the system is how scarce inventory is allocated between different 

sources of demand. Four allocation policies have been used for computing the current 

results for three-echelon and five-echelon assembly systems. In order to show that the 

multi-echelon inventory model developed in this research is applicable on a wide range 

of multi-echelon network models, results for two large network models are computed. 

The two network models focus on the contemporary issues and further show the 

robustness, and practicality of the multi-echelon inventory system studied. Two heuristic 

approaches were constructed, 1) rule based approach, 2) decomposition approach, which 

are used as initial points in the IPA-based search. 

 

 



1 

 

1. INTRODUCTION 

1.1 Background  
Operations and production managers constantly face the challenge of determining the 

correct level of inventories, and service levels at each stage of the supply chain. Over the 

last two decades considerable emphasis is put on the coordination of all operations of the 

material supply chain. Effective management of inventories at every stage of the supply 

chain offers a great prospective for increasing system efficiency, customer service level 

and further helps in diminution of total system costs. Typically, the inventory position 

maintained in each stage should be based on a pre-specified customer service level while 

not violating budgeting constraints. In order to accomplish these goals mathematical 

models must be brought closer to the complexity of systems seen in practice. 

One of the main difficulties of cost-efficient and effective supply-chain management 

is to determine the internal service-levels, so that the pre-specified external service levels 

are met at minimum cost.  Unpredictable variability in demand is a factor in many 

systems.  Increased complexity in modern manufacturing has led to significant levels of 

uncertainty in production as well, making it even more difficult to achieve the target 

service level. These uncertainties are due to the occurrence of machine failures, 

maintenance, service, rework, and other unpredictable events. These events cause 

difficulties in achieving the desired production quantity and service level in view of 

demand. The rapid development of manufacturing processes based on state-of-the-art 

technologies can outpace efforts to maintain quality, and can lead to uncertainties in 

many production processes.  These uncertainties in production output can come from the 

use of relatively new technology in day-to-day manufacturing.  Because of competition 
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and shifting consumer preferences, predicting demand for a product is difficult, and it is 

even more difficult if there are multiple demands.  Production needs to be carried out in 

an economic manner, despite the intrinsic uncertainty of the production processes and 

demands. In these situations an accurate production planning model would consider both 

uncertainties in production capacity as well as demand for all the stages in the model.  

There are relatively few studies that have dealt with this model. An appropriate model for 

planning the production quantity at each stage should include consideration of these 

production or supply uncertainties.  

Determining appropriate production and procurement quantities and their timings is a 

critical issue. Management of material flow from suppliers through various stages of 

manufacturers and finally to the end customers is also crucial, especially because of the 

large investments involved. The control of the net investment made in raw materials, 

work in progress, and finished good’s is important. Several factors, such as the review 

period, costs, the nature of demand and supply, and system structure play a crucial role in 

defining an optimal production policy. In order to effectively control the inventory, all 

the aforementioned mentioned factors should be considered carefully.  

Inventory review and decisions can occur on two different time bases, periodic 

review, and continuous review. In the case of periodic review time is split into discrete 

periods, and ordering decisions are made only at the beginning of the period, but not 

during the period. In the continuous review case ordering decisions are made at any 

instance of time. The type of review considered affects how accounting of costs occurs in 

a model of the decision. A cost function can be developed based on the setup cost, 
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inventory holding cost, shortage or backorder cost, per unit cost. Per unit costs could 

occur directly from manufacturing or could be as a result of procuring from a supplier.  

The nature of both demand and supply affects the difficulty of the decision problem. 

Demand can be categorized into four different categories: deterministic & stationary, 

random & stationary, deterministic & time varying, and random & time varying. In the 

case of deterministic & stationary, the demand is a known quantity and is constant over 

all periods. In the case of random & stationary, the demand is uncertain and its 

distribution is unchanging over all the periods. In case of a deterministic & time varying, 

the demand is a known quantity and it could vary over all periods. Finally, in a random & 

time varying case the demand is an unknown quantity and its distribution could vary over 

all periods.  

The nature of supply can be categorized based on three different issues:  

• Infinite production capacity (supply)/ limited production capacity (supply). 

• Perfect yield/ imperfect yield. 

• Deterministic production (supply)/ random production (supply). 

When supply is infinite the ordered quantity is obtained irrespective of the order size. 

When supply is capacitated, we may not obtain the entire order quantity i.e., the actual 

quantity received is the minimum of the quantity ordered and the available capacity. 

Supply process imperfections lead to defects in items being manufactured. In the face of 

such process imperfections the planned quantity may not be obtained. In the case of a 

perfect yield, the entire planned quantity is manufactured without any defective items. In 

the case of imperfect yield, some of the completed items are defective and not usable. In 



4 

 

case of a deterministic supply, the supply is known in advance, whereas in case of a 

random supply it is an unknown quantity. 

Uncertainty in production could be broadly classified into external uncertainty 

(supply uncertainty) and internal uncertainty (yield, capacity uncertainty). External 

uncertainty is caused due to the supply uncertainty, usually due to the delay in the 

delivery of materials on time, or due to shipment delays. Decisions in these cases require 

consideration of the distribution of supply in order to specify the optimal inventory 

stocking policy. Internal uncertainties are fundamentally classified into two types: yield 

models and capacity models. Yield models focus on output loss due to process 

imperfections, while capacity models deal with production loss due to resource 

unavailability. In random yield models, the defective units are identified after processing 

the entire input quantity and incurring the production cost. In uncertain capacity models, 

one may not be able to process the entire input material due to resource constraints, so 

that unused input incurs no production cost. In the case of random yield models safety 

stock is typically used to control the uncertainty involved. In case of capacity uncertainty 

usually a single critical number policy or dual critical number policy is used to control 

the uncertainty involved (Ciarallo et al., 1994; Bashyam and Fu, 1998). In recent years 

production uncertainty has received more attention in the academic literature. 

1.2 Research Preview 

For over 50 years researchers have been addressing a variety of problems in multi-

echelon inventory systems. Multi-echelon inventory systems are broadly categorized as 

serial or assembly systems (as discussed in a subsequent sub-section). The current 
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research is unique and distinct from previous research because it combines all of the 

following features: 

• A multi-echelon inventory system which is a combination of serial and 

assembly components  

• A multi-echelon system with multiple product demands, where some of the 

demands are in the form of intermediate products, as well as finished goods 

(final product) 

• The presence of intermediate product demand gives rise to an interesting stock 

allocation problem at each echelon in the system, i.e. how to assign limited 

stock to multiple customers  (through priorities assigned to intermediate 

demand and downstream final product demand)  

• An Infinitesimal Perturbation Analysis (IPA) framework is used to obtain the 

best found base-stock levels at each node. The IPA estimates are used in a 

simulation-based, non-linear optimization search.  

• Each node in the multi-echelon problem is subject to a random capacity, and 

the demands on the system are also random. 

• A deterministic lead time for supply exists between nodes. 

No existing research has considered all of these factors simultaneously, and provided 

an optimization based solution to stocking decisions.  Each of the points discussed above 

has been discussed separately in previous research, but no research has addressed all the 

issues. In particular, a combination of serial, and assembly components with intermediate 

product demand and capacity allocation has not been widely explored. This makes the 

problems considered here closer to a generic multi-echelon system and most widely 
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applicable to actual inventory and supply networks.  The following section explores how 

the features included in this research apply to systems encountered in practice. 

1.2.1 Practical Applicability  

The multi-echelon model considered in this research is sufficiently generic so that it 

can be used to solve many practical problems. This sub-section describes some 

contemporary scenarios that can be tackled using the proposed framework.  The two 

network structures discussed below are presented in detail in Chapter 10. 

Manufacturer supporting a major finished-product and spare-parts  

Many manufacturing companies produce a combination of a finished product, and 

supporting spare-parts (consisting of a major sub-assembly or component part).  For 

example car manufacturers produce finished vehicles as well as spare vehicle body 

components for crash repairs. There is often a decision on how many of the component 

parts will be sold as spares and how many will be used for satisfying the final product 

demand. The spare-parts market is often very lucrative because of significant price 

markups and less competition, leading to a high profit margin on the spare-parts. In 

general, final products have a high allocation priority in order to maintain a high service 

level for the final products, and not to lose the good will of the customer in the market for 

the final product. Higher sales of the final-product will also result in higher sales of spare 

parts, since they are directly related to one another. Moreover there is usually more 

competition in the market for final products compared to spare parts, so the profit margin 

for the final product is relatively lower. So there is an important trade-off that needs to be 

considered, which determines the right amount of inventory to support spare-parts and 
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final-products.  The models and procedures described in this research address this type of 

tradeoff. 

Manufacturer-Warehouse-Distribution Center-Retail Industry  

The multi-echelon problems considered in this research can also be used to address 

problems in a supply chain consisting of a manufacturer with a warehouse, which 

supplies customer distribution centers (DC) that replenish retail locations. This type of 

supply chain is common in industries such as groceries and electronics, among others.  

The manufacturer (e.g. Sony) performs some fabrication or assembly for a product, 

which it stores at a warehouse. Demand on the manufacturer’s warehouse comes from 

multiple customers (e.g. Best Buy, Circuit City) who take the product from the 

warehouse to their DC. The manufacturer must make a decision on how to allocate scarce 

stock to the demand from the various DC’s. Further downstream a decision needs to be 

made at the DC’s on the allocation of scarce stock to each of several retail outlets (e.g. 

individual Best Buy stores). The multi-echelon problem considered in this research 

addresses the inventory stocking and allocation decisions in this scenario. 

1.3 Multi­Echelon System Elements  

In planning and control of supply chains there are several elements that define, the 

characteristics of the problem: the network structure, ordering policies, system control, 

service measures, and formulation. The first sub-section discusses the ordering policy, 

followed by the network structures, system control, service measures, and formulation.  

1.3.1 Ordering Policy 

An inventory order policy can generally be broken down into two distinct parts:  
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• Determining the order quantity, or the amount of inventory that will be 

purchased or produced with replenishment. 

• Determining the reorder point, or the inventory level at which a 

replenishment will be triggered. 

System structures vary and can be classified as: single or a multiple item, single stage 

or multiple stage, and having assembly or distribution characteristics. The extensions of 

the single item models lead to larger systems in two specific directions, single-stage 

systems producing multiple items, or a multi-stage system producing single or multiple 

items. A single-stage/multi-item system could consist of a type of equipment which is 

used for processing/producing multiple items. In the case of single-stage, multiple item 

systems the number of items produced/processed is usually constrained by the production 

capacity, budget issues, or demand, in turn linking decisions between the items. 

Decisions in the case of multi-stage systems depend on effective coordination between 

different stages in the network.  

Several standard policies are used to control inventory. These policies include EOQ, 

base stock, (Q, r), order-up-to, and (S, s). EOQ works in a deterministic, continuous 

review frame work, and typically the order is placed when the inventory reaches zero. In 

case of a continuous review base stock policy, orders are placed each time a demand 

occurs, with a goal of returning inventory to the base-stock level. In a continuous review 

(Q, r), an order is placed when the inventory drops to r, with an order quantity of Q. For 

the periodic review case, the order-up-to policies (which are similar to base-stock) place 

an order each period that will return inventory back to the order-up-to level. The periodic 

review (S, s) policy is similar to the continuous review (Q, r) policy.  The parameters of 
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these policies are based on the costs, nature of demand & supply, and system structure 

(Hopp and Spearman, 2000). The standard models discussed in the literature are known 

as: The classic news vendor model, economic order quantity (EOQ) or economic 

manufacturing quantity (EMQ) model, and time varying and deterministic model 

(Wagner-Whitin). Figure 1.1 summarizes the preceding discussion.  

 

Figure 1.1: Factors involved in making a decision on type of policy 

EOQ/EMQ is one of the earliest models that dealt with setting of manufacturing lot 

sizes. The classical EOQ/EMQ model is used when demand or production is 

deterministic in nature. The classical news vendor model is used when a scenario similar 

to the typical newspaper vendor ordering decision arises. In this case there is a single 

period demand with uncertainty.  The news vendor model could also be extended beyond 

a single period (multiple-periods). In the classical news vendor model the demand occurs 

only once, since it is a single period problem, and only single replenishment can be done. 

The issue is to determine an appropriate order quantity in face of uncertain demand. 

Periodic 
Review/Continuous 
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The classical Wagner-Whitin model represents a situation with deterministic but 

dynamic demand in every period. In case of the optimal Wagner-Whitin solution the 

inventory carried over from period t to t+1 will be zero or the quantity produced in period 

t+1 will be zero. This simply means that, if inventory is carried over consecutive periods, 

production will not take place, and similarly production for a period could take place if 

the inventory carried over from the past period is zero and has a positive demand ( )tD .  

These characteristics of optimal solutions are tightly coupled to the assumption of no 

uncertainty in this model. 

Variations in each classical model have been extensively studied and optimal policies 

derived in the academic literature. In traditional inventory management studies the 

production process is usually deterministic in nature with known lead times and no setup 

costs. But more recently, the stochastic component in demand, supply, yield, and capacity 

has been studied with fixed setup cost and variable lead times. When one or more 

uncertainties are involved in a model, deriving optimal policies tends to become 

increasingly complex. 

In a base stock policy, inventory is replenished one unit at a time as the demand 

occurs. Because of this, the policy consists of a single critical number and specifying the 

policy requires determining this “base stock level”. The base stock level is the target 

inventory level set for the system. Because of the structure of ordering, the base stock 

level is the total amount of inventory in the system at any time (in stock and on order). 

The extension of news vendor and base stock models in the literature include uncertainty 

in supply/capacity apart from uncertainty in demand. 
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The (Q, r) policy structure that guides the management of a system can be as simple 

as determining the re-order quantity using standard EOQ model to a relatively complex 

re-order point, and re-order quantity computation. The re-order quantity is defined as the 

amount of inventory that will be produced when a replenishment order is placed, whereas 

the re-order point is defined as the inventory position at which the production will be 

triggered. In models with uncertainty, determining the optimal re-order point is difficult. 

In these models safety stock is employed to reduce the risk of running out of stock.  In 

practice, to some extent, the insights from the classical models, and some modified 

models are encapsulated in packages like ERP, MRP, and MRP II. The decisions driven 

by these packages help in smoothing production and controlling inventory. 

The remaining portion of this chapter reviews some of the important concepts of 

supply chain management with respect to colloquial research on multi-echelon inventory 

optimization with multiple intermediate product demands. Concepts like multi-echelon 

system elements, information sharing, allocation policies, and simulation based 

optimization are discussed in the subsequent sub-sections followed by my contributions 

to research. This chapter also summarizes the main points of the research done. Chapter 2 

discusses the literature review, Chapter 3 discusses the multi-echelon model, Chapter 4 

discusses the multi-echelon simulation based optimization model and initial results using 

ARENA and OptQuest as tools, Chapter 5 presents the gradient estimation results, 

Chapter 6 discusses in detail the algorithm used for the simulation based optimization 

using IPA, Chapter 7 includes details on the numerical analysis for three-echelon 

assembly system., Chapter 8 describes the 1) four different inventory allocation polices 

used, 2) the change in the update equations for the three-echelon and five-echelon 
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assembly systems, 3) numerical results and inferences based of several cases, 4) 

statements based of hypothesis testing. Chapter 9 discusses, 1) the contemporary issues 

the multi-echelon inventory models can address, 2) update equations for the two large 

multi-echelon network models, 3) numerical results based of several cases considered. 

Chapter 10 describes the two heuristic approaches used for generating good starting 

points for the IPA based search, 1) rule based approach, 2) decomposition approach. 

Chapter 11 provides the conclusion of this research, future research directions, and 

additional results are provided in the appendix.  

1.3.2 Network Structure 

The defining feature of a multi-echelon supply chain is that the downstream stages 

are supplied by the upstream stages. However within this framework there are several 

possible variations, and if transshipments between locations at same level are allowed, 

the very definition of a stage becomes unclear. For this reason only two types of network 

structure are discussed: 

• General Arborescent systems (Graves and Schwarz , 1977) 

• Serial State Arborescent System  

• One Manufacturer - One Warehouse - Four Retailer Arborescent 

System 

• A Seven Stage General Arborescent system 

• Convergent Systems 

In arborescent systems each inventory location is supplied by a single source. A few 

examples of a general arborescent system are described:  the serial system, one 

warehouse- three retailer system, and a seven stage system. In a serial state arborescent 
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system there are a series of stages in which each stage supplies only a single destination, 

and the supply is received from a single source. Figure 1.2 shows the schematic 

representation of a serial state arborescent system. 

 

Figure 1.2: Schematic Representation of Serial State Arborescent System 

A one manufacturer - one warehouse- four retailer arborescent system is 

characterized by a node that is supplied by exactly one other node, and supplies four 

nodes. The schematic representation of a divergent system is shown in Figure 1.3.  

 

Figure 1.3: Schematic representation One Manufacturer - One Warehouse - 

Four Retailer Arborescent System 

 

The schematic representation of a seven stage general arborescent system is shown in 

Figure 1.4. The system shown below is a combination of the earlier two systems, with 

more than one node diverging. 
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Node 2
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Stage 1 Stage 2

Stage 3
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Figure 1.4: Schematic Representation of a Seven Stage General Arborescent 

system 

 

A convergent multi-echelon system is characterized by the property that a node is 

supplied by more than one other stage, and supplies exactly one stage. The schematic 

representation of a convergent system is shown in Figure 1.5. Usually convergent 

systems represent an assembly process for a subassembly or a final finished product, 

where the upstream nodes represent the components and the downstream node represents 

a final or intermediate product.  

 

Figure 1.5: Schematic Representation of a Convergent System 
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1.3.3 System Control  

The control of multi-echelon systems is broadly classified into two categories: 

decentralized, and centralized.  Multi-echelon systems most often are decentralized in the 

sense that the ordering decisions are solely based on the installation stock, i.e., the 

inventory position at a particular stock point (node). The inventory position is defined as 

the outstanding orders at the stock point plus physical inventory minus backorders. An 

advantage of an installation stock based policy is that it does not require any information 

about the inventory at other stages/nodes in the system. Due to the lack of information 

availability about the entire system the cost effectiveness of these policies could be 

limited (Diks, 1996). One way of taking control of the entire system is to use the echelon 

based  stock policy, i.e. the echelon inventory position is defined as the sum of all 

outstanding orders at the current stock point plus its physical inventory plus pipeline 

inventory minus eventual backorders at earliest stock point downstream which has an 

external demand. Since in the echelon based stocking policy the ordering decisions are 

made with complete knowledge of the downstream stages it is essential that the 

information of other stages/nodes are known.  

An important difference between installation stock and echelon stock is stated by 

Chen and Zheng (1994). In the former policies the inventory position of a stock point 

includes all outstanding orders, i.e., in transit to this stock point or backorder at the 

supplier, whereas in the case of an echelon stock policy the echelon inventory position 

only includes the in transit orders to the stock point. As a result a policy based on 

installation inventory can always raise a node’s inventory position to the desired 

inventory level, and if some part of the order is not satisfied it can be immediately 
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backordered. So every stocking point can be modeled as a single location inventory 

system with random lead time. In echelon stock policies this lead time exactly equals the 

transportation time. However it is more difficult in echelon-based inventory models to 

determine the inventory position due to the fact that the stocking point cannot be 

considered as a single location inventory system (Diks, 1996). 

1.3.4 Service Measures  

In order to determine the cost minimizing parameters of the ordering policy inventory 

holding costs, order costs and cost of stockout need to be determined. A stockout cost is 

ascribed to a lost sale or a rush delivery. Often the stockout cost is due to a loss of 

customer goodwill.  It is difficult to assign a precise cost to these factors. Because of this, 

in practice, these factors are determined indirectly by assigning service levels. There are 

several ways to measure the service level, but we limit our discussion to three different 

service measures which are widely used (Hopp and Spearman, 2000). 

• The non-stock out probability (α /Type-I): the probability that the net stock 

(the stock on-hand minus backorder) is non-negative at the end of an arbitrary 

replenishment cycle.  

• The fill rate ( β /Type-II): the fraction of the demand that is satisfied directly 

from the stock on hand.  

• The modified fill rate (γ ): one minus the ratio of the average shortage 

immediately before arrival of a replenishment order and the average demand 

during an arbitrary replenishment cycle.  
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1.3.5 Formulation  

There are two types of optimization formulations for inventory management that are 

widely used in the literature: a service level constrained model, and a backorder cost 

model. The succeeding paragraphs describe each of these. 

The cost function for a traditional service level constrained model uses an inventory, 

holding cost, and decision variables like the base-stock level (target stock level in case of 

the base-stock policy). The holding cost creates an incentive in the formulation to 

minimize inventory in order to minimize cost. The service level constraint creates an 

incentive to hold sufficient inventory to ensure the required service is maintained at each 

stage, (i.e. probability of demand or collection of demands is met). The service level 

could either be a type-I or a type-II service level. As discussed in earlier, Type-I service 

level (also denoted asα ) is defined as the proportion of cycles (periods) in which no 

stock out occurs, whereas type-II (also denoted asβ , and known as fill rate) service level 

measures the proportion of demand that is met directly from the stock without delay 

(Nahmias, 2001). Existence of customer lead time would be usually based on the 

environment. For instance, in a make-to-stock environment the customer lead-time is 

usually zero, whereas in a make-to-order environment the customer lead time would be 

the amount of time the customer allows the firm to produce and deliver the item. 

Typically this kind of formulation is associated with make-to-order environment, and 

usually involves type-I service level constraint, but however type-II service level 

constraint can also be used. 

Equation 1 represents a mathematical formulation for a single-stage system with a 

type-I service-level constraint (Bollapragada et al., 2004).  
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[ ]
0

( ) min

subject to

s
C s cs

P I D α
≥

=

≥ ≥
       (1.1) 

where c is the unit cost, s represents the base-stock level, I represent the on-hand 

inventory level, and D represents the demand. The objective function in equation (1.1) is 

to minimize the total cost subject to the type-I service level constraint. The cost function 

assumes that holding cost is proportional to the unit cost of the item. Equation (1.2) 

represents another example of single-stage service level constrained formulation, where 

the cost function involves the use of holding cost, and the service constraint is of type-II 

(Boyaci and Gallego, 2001). In 1.2 h is the holding cost, and ( )sβ is the fill rate. 

( )
0

( ) min

subject to ( ) ( )

s
C s hE I s

P D s sβ
≥

= ⎡ ⎤⎣ ⎦
< ≥

       (1.2) 

As an alternative to the service level constrained formulations, the traditional 

backorder cost formulation considers shortage penalty costs (backorder costs), holding 

costs, and set-up costs (if any) in developing the cost function. The backorder cost 

replaces the service level constraint and acts as the balance to the inventory minimizing 

influence of the holding cost.  The service level in this kind of formulation is obtained as 

an output, i.e. the choice of backorder penalty cost induces a service level based on the 

solution of the problem (Boyaci and Gallego, 2001). Either type of service levels could 

be used to evaluate the resulting solution of the inventory optimization, but usually type-

II service level is used. In this formulation customers experience some of the lead time 

when the system is out of stock, i.e. the time between the order placement and order 

arrival. 
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Equation (1.3) represents a simple mathematical formulation of the backorder plus 

holding cost function in a period for a single-stage inventory system. The inventory level 

I will depend on the base-stock level chosen (Glasserman et al., 1995). 

( ) [ ] [ ]C s I b I h
+ −= +         (1.3) 

where b is the backorder cost per unit, and h is the holding cost per unit, 

[ ] ( ),I max 0 I
+ = , and [ ] ( ),I min 0 I

− = . 

To summarize the preceding discussion, the service level constrained formulation and 

the backorder constraint formulation are different ways of achieving a balance between 

too much and too little inventory. The objective of both models is similar, i.e. they are 

cost minimization formulations. The service level constraint model minimizes the cost 

with respect to the bounds placed on the service, whereas the backorder cost model 

minimizes the cost with respect to the tradeoff between shortage costs and holding costs.   

1.4 Inventory Allocation Policies 

Inventory allocation becomes important when a supplier has a collection of orders 

that are due immediately whose total requirement exceeds the current inventory level.  In 

this case, there is an inventory shortage at the supplier end. The supplier checks the 

received orders with his available inventory and if the orders sum up to be more than the 

available inventory, the inventory is allocated among the retailers using an inventory 

allocation policy. A list of possible allocation policies is discussed below (Cachon and 

Lariviere, 1999). 

Guaranteed fraction allocation: The supplier promises in advance that a guaranteed 

fraction of the retailers order will be filled. 
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Maximum allocation: A supplier promises in advance the maximum amount allocated 

to each retailer 

Fixed allocation: When there is no information regarding the past sales data, the 

supplier may use a fixed allocation. The retailer receives at most the fraction of the scarce 

stock agreed upon. 

Uniform shortage allocation: In this mechanism the supplier indexes the retailers in 

the decreasing order of their order size and supplies each retailer with his order minus 

some common deduction.  

Proportional allocation: Each retailer receives an equal proportion of his order.   

Pareto allocation: This kind of allocation policy is used when a set of allocation 

policies are currently in practice. The aim of this allocation policy is maximizing the sum 

of retailer’s profits by improving the profit of at least one retailer without changing the 

profit of all the other retailers, assuming all the retailers submit their optimal orders 

truthfully. It can be interpreted as maximizing supply chain profits subject to no retailer 

ever receives more than his true need. 

Lexicographic allocation: In this allocation policy the retailers are ranked in some 

manner independent of their order size. Orders from retailers are filled completely in the 

order specified in this ordering, until all stock is exhausted. As the rank of the retailer 

decreases the chance of having orders completely filled also decreases.  

Uniform allocation: All retailers receive the same quantity, regardless of order size. 

Retailers with smaller orders usually benefit most from this allocation policy.  

Inventory allocation plays an important role in determining levels of service in a supply 

network, especially when there is more than one demand on a particular node/stage. It is 
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crucial that an appropriate allocation policy is chosen so as to optimize the performance 

of the entire supply chain.  

1.5 Research Summary 

This sub-section describes in brief the research that has been done for the dissertation, 

and summarizes some of the important results which are discussed in detail in subsequent 

chapters. The notation that is used throughout the research is provided below. 

1.5.1 Notation  

The lists of notations used are described below: 

j

n
ξ : Product j demand in period n  

i
l :   Resupply/processing lead time for component i 

i

nη : Realized capacity at stage i in period n 

i
s : Base-stock level for item i 

i
c : Cost per unit of item i 

iα : Required type-I service level for retailer i (external source of demand) 

i

n
Y : Outstanding orders of item i in period n that have not been delivered due to limited 

capacity (shortfall of item i) 

i

nI : On-hand inventory level of item i in period n before the demand is realized 

i

n
IP : It is the on-hand inventory plus the pipeline inventory for component i in period n 

i

nNI : The net inventory for component i in period n 

1

n
DS  : It is the downstream shortage at node 1 in period n 
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1.5.2 Analytical Review 

A mathematical model for a capacitated multi-echelon systems (three-, four-, five-, 

and m-echelons) with demand for intermediate and final products has been developed. 

Figure 1.6 shows a three-echelon assembly system. As seen in the figure 1.6 components 

1 and 2 are procured from the suppliers 1 and 2 by nodes 3 and 2. The procured 

components are assembled at node 1, where node 1 satisfies an intermediate product 

demand as well as a downstream demand. Node 0 procures the intermediate product from 

node 1 and it is further processed to be sold as a final product.  

 

Figure 1.6: Three-echelon assembly system  

All the events occur at the beginning of each period in the following sequence:  

i) The outstanding orders are updated, i.e. items that have not been delivered in 

the previous period due to limited capacity 

ii) The on-hand inventory is updated, i.e. the physical inventory  

iii) Demand is realized 

iv) Capacity is realized.  

Node  3

Node 2

Node 1 Node 0

Supplier 1
Component 1

Supplier 2
Component 2

Final Product,
Demand 2

Intermediate 
Product,

Demand 1
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An order is placed with the supplier in response to demand j

nξ . The order can be 

received either in full or could be constrained by the node’s capacity. Thus the amount 

received is ( )min ,i j i

n n nY ξ η+ , where i

nη the realized capacity, and j

nξ is the demand facing 

that stage. 

Since a base-stock policy is followed for each component, at the beginning of period 

n we have  

0 , for alli i i

n n nI Y Y s i+ − =           (1.1a)  

Equation 1.2a represents the outstanding order (shortages) for stage 0, from the 

equation we can observe that the outstanding orders are zero or constrained by the node’s 

capacity, i

nη  .   

( ) { }2

1 max 0, 0i i i

n n n n
Y Y where iξ η+ = + − ∈        (1.2a) 

Let us assume that 2

n
ξ , is the demand for the final product. The net inventory depends 

on demand during the lead time, and the outstanding orders. The on-hand inventory 

(physical inventory) is an extension of the net inventory, but on-hand inventory must 

always positive.  The update of these variables between periods 1n−  and n is described 

in (1.3) and (1.4) below: 

2 2

1 ...... where 0i i

i i i

n n n l n l
NI s Y iξ ξ− − −

= − − − − ∈  (Node 0)      (1.3) 

2 2

2 1 2max 0, , where 0i i i

n n n n
I s Y iξ ξ− − −⎡ ⎤= − − − ∈⎣ ⎦ (Node 0)      (1.4) 

The first order derivative equation of 0 0

1 ,  n nY I+  
is as shown in equation (1.5) and (1.6) 

respectively. As you can observe the first-order derivative for 0

1n
Y +  has two possible 



24 

 

states, it is equal to zero (first state) when there are no shortages, and equal to  
0

0
ndY

ds
 if 

shortages exist. Similarly we can see that the first order derivative of 0

n
I  shown in 

equation (1.6) also has two states. 

0

10

1 0
0 0 0 2 0

1 10

0 0n

n

n
n n n n

if Y
dY

dY
ds if Y Y

ds
ξ η

+
+

+ +

⎧ =
⎪=⎨

= + −⎪⎩

       (1.5) 
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−⎪⎩

       (1.6) 

More complex and detailed interactions are discussed in chapters 3 and 5. First order 

derivative estimates for each node in the supply chain networks are derived using the IPA 

approach in the succeeding chapters, and are used during a simulation to update 

derivatives of these variables with respect to the inventory parameters. 

1.5.3 Simulation Based Optimization Using OptQuest 

A simulation-based inventory optimization is carried out using the OptQuest 

framework. The aim of the OptQuest framework is to obtain the best base-stock levels for 

each node in the multi-echelon inventory system. Figure 1.7 shows a flowchart of how 

the framework is designed and carried out. The base-stock values are obtained from the 

OptQuest, and initial values are assigned in ARENA and the equations are updated 

(simulated) for a pre specified period of time (periods). At the end of the simulation run 

the service level values for each node are sent to OptQuest from ARENA. OptQuest then 

uses this information to check if all the constraints are satisfied and the process iterates 

until there is no further improvement in the solution or an iteration limit is reached.  
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Figure 1.7: Simulation in ARENA within OptQuest Framework 

1.5.4 Simulation Based Optimization Using IPA 

A simulation based inventory optimization is carried out using an IPA (Infinitesimal 

Perturbation Analysis) framework. The aim of the IPA framework is to obtain best found 

base-stock levels for each node in the multi-echelon inventory system with the help of 

nonlinear optimization methods. The IPA framework uses a combination of ARENA, 

Visual Basic (VB), and Xpress. ARENA is used to update (simulate) the equations (on-

hand inventory, outstanding orders etc.), first-order equations, and service level 

equations. A feasible direction algorithm and line search is implemented in VB. A 

modified Zoutendijk’s feasible direction algorithm is the basis of the optimization, with a 

golden section algorithm used for a lower-level line search. Figure 1.8 shows a flowchart 

for simulation based Inventory optimization (SIO) using IPA. A detailed description of 

the feasible direction algorithm and line search is provided in chapter 6.  
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Figure 1.9 shows the block diagram of various activities that are performed every 

period in an IPA framework.  The base-stock and the Lagrange multiplier values are 

initially obtained from VB and ARENA. The Initial values that are used in the update 

equations, first order equations, and service level equations are assigned. Once the initial 

values are assigned, the simulation runs for a pre-defined number of periods. The 

gradient estimates from the simulation are used to compute the Lagrange derivatives, 

which determine the direction of then nonlinear programming search.   A line search uses 

this direction vector to determine the next point in the search. The process continues until 

the termination condition is satisfied. More details for this process are provided in chapter 

6.   

 

Figure 1.8 Flowchart of SIO for IPA 
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Figure 1.9 Block Diagram of Simulation in ARENA within IPA framework 

1.5.5 Justification of Derivatives 

The first order equations for the on-hand inventory, outstanding orders, and net 

inventory with respect the all the base-stock levels are shown as valid and that the 

sample-path derivatives they generate are unbiased estimators of derivative of 

expectations. To accomplish this we show that the conditions in proposition 1 and 

proposition 2 that ensure the following properties are satisfied: 

• The outstanding orders, on-hand inventory, and the net inventory are 

differentiable with probability one, with respect to all base-stock levels  

• The expectation and derivatives are interchangeable for outstanding orders, on-

hand inventory, and net-inventory 

• Show that the Lagrange function (discussed in chapter 5) is Lipchitz continuous 
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In order to show that the Lagrange function is Lipchitz continuous: - we initially 

prove that all the components of the Lagrange function are continuous. This includes the 

demand, capacity, outstanding orders, on-hand inventory, and net inventory. Since the 

demand and capacity are derived from the probability distributions, it is known that they 

are continuous. The outstanding orders, on-hand inventory and the net-inventory are also 

relations which are based on the demand and capacity for period 0.  The important step in 

verifying that the derivative estimates based on the Lagrange function are unbiased is 

showing that the on-hand inventory, outstanding orders, and net inventory, with 

probability one are Lipchitz functions and have integrable moduli. This requires 

according to generalized mean value theorem, and dominated convergence theorem to 

show that, expectation and derivatives are interchangeable. The two propositions are 

stated below, the proofs of the propositions are derived in chapter 5. 

Proposition 1 

If { }, 1,2,... ; 1,2,..., 2j

n n N j mξ = = − , { }, 1,2,... ; 1,2,...,i

n n N i mη = = are independent, and  each

j

nξ , i

nη  has a density on ( )0,∞ , and then the following hold: 

i) For 1,....,i m= and 1,2,...n N=  each , ,i i i

n n nY I NI are differentiable, with probability 

one, at i
s with respect to i

s , 1,2,...,i m=  

ii) If 
2

1

m
j

n

j

ξ
−

=

⎡ ⎤
< ∞⎢ ⎥

⎣ ⎦
∑ , and i

nη < ∞ for all n, then , ,andi i i

n n nE Y E NI E I
′ ′ ′⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ exist and 

equal ( ) ( ), ,i i

n n
E Y E NI
⎡ ⎤ ⎡ ⎤′ ′
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

( )and i

n
E I
⎡ ⎤′
⎢ ⎥⎣ ⎦
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Proposition 2  

Let ( ){ }, , ,L s u s S u U∈ ∈
r r r r

be a random function with ,  S U ⊆ ฀ . If ( ),E L s u⎡ ⎤ < ∞⎣ ⎦
r r

for all

,s S u U∈ ∈
r r

. Assume that L is differentiable at i
s S∈ and i

u U∈ with probability one, and 

that L defined on set S, and U is almost surely Lipschitz continuous with modulus LM

satisfying [ ]LE M < ∞ . Then ( ),E L s u ′⎡ ⎤⎣ ⎦
r r

exists and equals ( ),E L s u′⎡ ⎤⎣ ⎦
r r

. 

1.5.6 Inferences from Three­echelon Computational Results 

In the experiments to date, the following are some of the important factors which 

were varied to study their effect on the best found base-stock levels, best found safety-

stock, and minimum total cost. The effects shown in table 1.1 are based on the 

computational results from the three-echelon assembly model using IPA framework. 

Detailed computational results for OptQuest and IPA frameworks are discussed in 

chapter 7. 
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Table 1.1: Factors and Effects Based on Computational Results

No. Factors Effects

1

Increase in the value of the demand for each 

node

Increase in base-stock levels, and 

total cost

2

Increase in the Capacity Utilization for each 

node

Increase in base-stock levels, and 

total cost

3

Increase in the Capacity Utilization for each 

node Increase in Safety Stock Costs

4 Increase in the Service Level for each node

Increase in base-stock levels, and 

total cost

4

Increase in demand CV (coefficient of 

variation) for each node  X  increase in service 

level for each node

Increase in the base-stock level, 

safety stock cost, and total cost 

increases

5

Increase in capacity CV  for each node  X  

increase in service level  for each node

Increase in  base-stock level, 

safety stock cost, and total cost 

increases

6

Increase in lead time for each node X  constant 

demand CV for each node X  constant Service 

Level for each node

Increase in  the base-stock level, 

safety stock cost, and total cost 

increases

7

Increase in lead time for each node  X  

increase Demand CV  for each node X  

constant service level for each node

Increase in  the base-stock level, 

safety stock cost, and total cost 

increases

8

Increase in lead time for each node X  increase 

demand CV for each node X  increase service 

level for each node

Increase in  the base-stock level, 

safety stock cost, and total cost 

increases

9

Increase in number of components for each 

node X constant demand CV for each node

Increase in  the base-stock level, 

and total cost increases

 

1.5.7 Inventory Allocation Policies 

The four inventory allocation policies are used in the three-echelon assembly system, 

five-echelon assembly system, and the larger networks. The detailed description of the 

allocation policy and the numerical results can be found in chapter 8, this sub-section 

provides he names of the allocation policies and its inferences based of several numerical 

cases.  
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Lexicographic Allocation (Priority to Intermediate Product Demand)(LAPI): The 

Lexicographic allocation policy ranks the retailers in some manner independent of their 

order size, and based on the ranking the retailer receives the amount of supplier capacity. 

By assigning priority to intermediate products the following are observed: 

• Decrease in the total cost when the upstream nodes have a greater proportion 

of demand when compared to the downstream nodes. 

• Decrease in total safety-stock cost when the upstream nodes have a greater 

proportion of demand when compared to the downstream nodes. 

Lexicographic Allocation (Priority to Downstream Demand) (LAPD): By assigning 

priority to downstream products the following are observed: 

• Decrease in the total cost when the downstream nodes have a greater 

proportion of demand when compared to the upstream nodes. 

• Decrease in total safety-stock cost when the downstream nodes have a greater 

proportion of demand when compared to the upstream nodes. 

• Decrease in the total cost and safety-stock cost when there is a high demand 

CV for all the demands (intermediate and final products) and high capacity 

CV. 

Predetermined Proportional Allocation (PPA): In a predetermined proportional 

allocation if the supplier’s capacity is less than the sum of all the demand, then the 

supplier could use a predetermined proportional allocation mechanism. Each retailer 

receives not more than the pre-determined ratio of the available inventory on-hand. By 

using a PPA inventory policy with a fixed ratio of 0.5 (50%) we observe the following: 
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• In most cases using this inventory allocation policy leads to higher total cost 

compared to when other (LAPI, LAPD, and PA) inventory allocation policies 

are used.  

Proportional Allocation (PA): In a proportional allocation, when upstream capacity is 

insufficient, each retailer receives an equal proportion of his current order. By using 

proportional inventory allocation we observe: 

• Decrease in the total cost and safety-stock cost when there is a high demand 

CV for all the demands (intermediate and final products).   

The update equations and numerical analysis of three and five-echelon assembly 

system based of all four inventory allocation policies are discussed in chapter 8.    

1.5.8 Hypothesis Testing 

Statistical analysis and hypothesis testing is done to derive a few implications based 

on the results from a five-echelon assembly model. In order to determine which inventory 

allocation policy would help in minimizing the total cost and safety-stock cost across the 

entire multi-echelon network, four instances, each consisting of several scenarios is 

solved to optimality. The instances are described in table 8.7, which shows the name of 

the instance and coefficient of variance for the demand and capacity. The capacity is 

denoted as “average” capacity when the mean capacity utilization is between 65% and 

75%, and the capacity is defined as “tight” capacity when the mean capacity utilization is 

between 85% and 95%. The demand is categorized as “high” and “low” demand. If the 

value of the mean demand is between 8 and 10 it is referred as high demand, whereas low 

demand is defined between 3.5 and 5. The variance for the demand and capacity is 

defined as high and low if the coefficient of variance is 0.3 and 0.1 respectively. 
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Table 1.2: Instances for Five-echelon Assembly System  

  

The formal hypothesis statements and the statistical tests are described in chapter 8. 

The important implications based of the five-echelon assembly system are described 

below: 

• Statement 1. If only one type of inventory allocation policy is used across the 

entire supply chain (five-echelon assembly system), using LAPI inventory 

allocation policy results in the lowest safety-stock cost compared to models 

which use other inventory allocation polices under average capacity instance 

(instance 1) 

• Statement 2. If a combination of inventory allocation policies are used across 

the entire supply chain (five-echelon assembly system), using LAPI & LAPD 

inventory allocation policy in combination will results in the lowest safety-

stock cost, compared to models which use other combinations of inventory 

allocation polices under average capacity instance (instance 1) 

• Statement 3. LAPD inventory allocation policy results in the lowest safety-

stock cost across the supply chain (five-echelon assembly system) under tight 

capacity instance (instance 2). 

• Statement 4. If only one type of inventory allocation policy is used under high 

demand average capacity instance (instance 3) across the entire supply chain 



34 

 

(five-echelon assembly system), using PA inventory allocation policy results 

in the lowest safety-stock cost compared to models which use only one type of 

inventory allocation policy 

• Statement 5. If a combination of inventory allocation policies are used across 

the entire supply chain (five-echelon assembly system), using LAPD & PA 

inventory allocation policy in combination will results in the lowest safety-

stock cost, compared to models which use other combinations of inventory 

allocation polices under high demand variance average capacity instance 

(instance 3) 

• Statement 6. LAPD inventory allocation policy results in the lowest safety-

stock cost across the supply chain (five-echelon assembly system) under high 

demand variance tight capacity instance (instance 4). 

1.5.9 Multi­echelon Networks 

Two contemporary network models were evaluated in order to show that the multi-

echelon inventory model developed in this research is applicable on a wide range of 

multi-echelon network models. The two networks studied were: 

• Network 1: Multiple suppliers – representing a manufacturing industry with 

demand for spare parts (figure 1.10) 

• Network 2: Representing a system with multiple manufacturers/suppliers – 

warehouse - distribution center – retailer interactions (figure 1.11) 
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Figure 1.10: Multiple Suppliers-Manufacturing Industry Setup 

 

Figure 1.11: Manufacturers – Warehouse - Distribution Center – Retailer 

Chapter 9 discusses the update equations, and detailed numerical results and analysis 

of the two large multi-echelon networks. 

1.5.10 Heuristic Starting Points 

Two heuristic approaches that determine the starting points for an IPA based search 

are developed. The following are the two approaches: 

• Rule based approach : Determining good initial points/starting points for the 

search based on a set of rules 
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• Decomposition approach : Determine the initial base-stock levels for each 

node based on a decomposition approach 

Chapter 10 describes the two heuristic approaches in much detail. The two heuristic 

approaches are applied to three-echelon, five-echelon and larger multi-echelon network 

models. The numerical results from the two approaches are compared with traditional 

approaches on a time and Percentage Relative Error (PRE). A few insights are provided 

on the bases of the analysis. 

1.7 Summary of Contributions  

This dissertation describes a mathematical model for a three-echelon, and m-echelon 

assembly systems with random capacity and random, intermediate demand. The model 

features include assembly operations in the upstream nodes, product demands in one or 

more of the upstream nodes, and a final product demand. The model incorporates both 

assembly and serial systems. Based on the mathematical model of inventory dynamics a 

simulation based inventory optimization is carried out in two frameworks, 1) OptQuest, 

and 2) Infinitesimal Perturbation Analysis (IPA). The frameworks are used to obtain the 

best found base-stock levels for the nodes in the network.  

The OptQuest framework uses OptQuest as a black box optimization engine and 

ARENA as a simulation tool. The IPA framework consists of a combination of ARENA, 

Visual Basic, and Xpress. Visual basic is used for developing the details of the 

optimization algorithm, whereas Xpress is used to solve an ancillary linear program. The 

results for the best found base stock levels for different scenarios show how variation in 

capacity and demand parameters effects the distribution of inventory in the network. An 
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inventory optimization approach would help planners in effectively managing the total 

cost of inventory and the level of customer service, especially when demand and capacity 

are varying.  Four allocation policies have been used in the multi-echelon inventory 

systems, which are used at the appropriate nodes to assign priorities between intermediate 

product demand (local demands) and the downstream demand (final product). Initially 

the update equations for the three-echelon and m-echelon assembly systems are based on 

the inventory allocation policy that assigns priority to intermediate product demand, and 

later to all the inventory allocation policies. Two simple heuristic approaches, 1) based on 

a set of rules, 2) based on a decomposition approach are used to obtain better starting 

points that reduces the search time significantly.  

The rest of the document is organized as follows: chapter 2 reviews the relevant 

literature, chapter 3 presents the completed multi-echelon inventory model, chapter 4 

discusses the completed simulation optimization framework using OptQuest, chapter 5 

discusses the completed gradient estimation analysis for the IPA framework and proves 

Lipschitz continuity for the multi-echelon inventory system, chapter 6 discusses the 

completed simulation optimization framework using IPA, chapter 7 discusses the 

completed computational results from OptQuest and IPA, Chapter 8 describes the 1) four 

different inventory allocation polices used, 2) the change in the update equations for the 

three-echelon and five-echelon assembly systems, 3) numerical results and inferences 

based of several cases, 4) statements based of hypothesis testing. Chapter 9 discusses, 1) 

the contemporary issues the multi-echelon inventory models addresses, 2) update 

equations for the two large multi-echelon network models, 3) analysis of numerical 

results based of several cases considered. Chapter 10 describes the two heuristic 
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approaches used for generating good starting points for the IPA based search, using a 1) 

rule based approach, and a 2) decomposition approach. Chapter 11 provides the 

conclusion of this research, future research directions, and additional results are provided 

in the appendix. 
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2. LITERATURE REVIEW 

Some of the prominent works involving single-stage and multi-stage inventory on lot 

sizing decisions that include supply uncertainty and/or capacity restrictions have been 

summarized in this section. The review is broadly categorized into six sub-sections: 

single-stage models with deterministic/random demand, multi-echelon problems with 

single/multiple products, multi-echelon problems with multiple-products, multi-echelon 

problems with spare products, information sharing, and simulation based optimization.   

2.1 Single­Stage Models   

Consider a single stage system as illustrated in figure 2.1, where a circle denotes a 

production facility, η denotes capacity, and the square box denotes a warehouse/storage 

location. The line between the circle and the square box indicates lead time. The demand, 

capacity, and lead time could be deterministic / random in nature. The inventory control 

theory has its origin in very simple systems, like the single-stage systems with holding 

costs for positive inventory and backorder costs for negative inventory. The earliest 

inventory model dates back to 1913 by Harris, known popularly as the economic order 

quantity model (EOQ). It was made popular by Wilson in 1934 (Moreira, 1999). This 

policy considers a single stage of production of a single product with a deterministic and 

constant demand. 

 

                                                                l 

Figure 2.1: Single Stage System 

 

η
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The models like news vendor, base-stock, (Q, r) etc. have also been commonly used 

in practice. Based on the underlying assumptions the appropriate model is chosen. 

Similar to the EOQ model, the base-stock model also constitutes one of the the basic 

building blocks of inventory theory. Arrow et al. in 1951 show that the optimal policy is 

of base-stock type for a multi-stage inventory system (Moreira, 1999). More complex 

models of inventory control developed after the advent of dynamic programming by 

Bellman in 1957. One of the earliest papers in a single-stage setting based on EOQ with 

deterministic demand and supply uncertainty was written by Silver (1976). In this model, 

randomness in the number of non-defective units is a source of uncertainty affecting the 

quantity received. This model allows the quantity received to be larger than the quantity 

ordered. Two specific cases are considered; in either case the optimal lot size is found to 

be a slight modification of EOQ. 

Groenevelt, Pintelon, and Siedmann (1992) studied the problem of selecting an 

economic lot size for an unreliable manufacturing facility with constant failure rate and 

randomly distributed repair times. Safety stocks were introduced in order to maintain the 

required customer service level (represented as fraction of lost sales). A policy was 

developed using an analogy between the safety stock dynamics and the renewal process 

of workload for a special single server queuing system. This analogy is used to derive 

exact and approximate expressions for the safety stock  and holding costs. A clear 

tradeoff is shown to exist between the overall investment in increasing the maintenance 

level and the resulting savings in safety stocks and repair costs. A subsequent paper by 

Groenevelt et al. (1992a) focused on similar effects of machine failure and repair on 

optimal sizing decisions, but assuming exponential distributed time between failures and 



41 

 

instantaneous time to repair of the machine. Groenevelt showed that the optimal lot size 

was always larger than that given by the classical EMQ model without machine failures 

and that optimal lot size increases with failure rate. 

 Chang, Yushin, and Soo-Young (1997) developed a model on similar lines, but the 

model was more general so that Groenevelt et al. (1992a) model was a special case. The 

model developed by Chang, Yushin, and Soo-Young (1997) derived an average cost 

function for arbitrarily distributed time between failures and constant time to repair. For 

exponentially distributed time to failure an optimal lot size was derived. Three different 

inventory paths were described when the machine failure occurs, and based on these 

paths the cost function was derived. A unique assumption was made which states that if 

on-hand inventory exists after the completion of repair, a new production cycle is not 

started until the entire on-hand inventory is depleted. Some special properties were 

derived for this model, several numerical experiments and sensitivity analysis were 

carried out to examine the effects of machine parameters as well as cost parameters on 

optimal lot size.  

Many deterministic and stochastic inventory models assume lead time as a given 

parameter, but in fact most practical situations lead time is an unknown or uncertain 

parameter. Many modern production management efforts involve significant effort 

controlling lead time. Among these one of the most successful is JIT (Just-In-Time). One 

of the reasons for the success of JIT is the efforts in handling the lead time.  A mixed 

inventory policy is developed by Kun-Shan Wu (2001) for variable lead time when the 

supplier capacity is assumed to be random. The optimal operating policies for two kinds 

of lead times are studied. Initially, a normally distributed lead time is studied and a 
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distribution free lead time is studied. They derive an optimal bound (bound on the policy) 

for order quantity, reorder point and lead-time that minimizes the total cost. Optimal 

bounds were developed for a distribution free lead time model, and normally distributed 

lead time. The cost function derived for the distribution free model is unimodal and 

quasi-convex in nature. Irrespective of the distribution function, an optimal solution for 

the lead time was shown to exist.  

There has been relatively little research done on the continuous time models with 

random demand and random yield, or random demand in combination with random 

capacity in a single-stage setting. For the case of random demand with backlogging, the 

model is tractable if there exists at most one replenishment order outstanding all times, 

and when the backlog costs are a function of the units short. Noori and Keller (1986) 

consider the standard reorder point (Q, r) model, where Q represents the order quantity, 

and r represents the reorder level. The approach used was similar to the one used by 

Silver. The optimal r and Q values are obtained using an iterative approach. Gerchack 

(1992) analyzes the same model, and a variant with lost sales. He shows that in the case 

of stochastically proportional yields, only Q is affected by the yield variance, whereas r is 

affected only by the mean yield rate. In the case of binomial yields, Gerchack show that 

the value of Q is affected only by the mean yield rate, and the value of r is not affected by 

the yield parameters. 

There has been extensive research done in periodic-review inventory models with 

deterministic capacity and random demand, Federgruen and Zipkin (1986) consider a 

single-item, periodic-review inventory model with uncertain demands. A finite 

production capacity is assumed in each period. With stationary data, a convex one period 
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cost function and a continuous demand distribution, Federgruen and Zipkin show that a 

modified base-stock policy is optimal under a set of discounted criterion for both finite 

and infinite planning horizons.  Karlin (1960a, b) considers an infinite-horizon inventory 

problem with stochastic demands where the data vary periodically. The data is assumed 

to be nonstationary but they repeat for every “cycle” of K periods. The discounted 

version of this problem is considered, assuming costs are stationary but allowing 

demands to vary. Karlin shows that a periodic critical number policy is optimal. There 

may be different critical numbers each period but the critical numbers repeat for every 

cycle. Zipkin (1989) further extends the problem for the average cost case, where the 

demand as well as costs is cyclic. Zipkin shows that the best policy is optimal in much 

stronger sense than that considered in Karlin (1960a, b).  

Gerchack, Vickson and Parlar (1988) investigate a model with variable yield and 

uncertain demand. A complete analysis of a general profit maximizing single period 

model with variable yield and uncertain demand is provided. A continuous demand, 

yield, and cost proportional to net yield is assumed. The expected profit function is 

proved to be concave in initial stock and lot size. When the initial stock is above a critical 

level, an order is not placed, and this level remains unchanged even for the certain yield 

case. However, when the initial stock is below the critical level, the expected yield 

corresponding to the amount ordered will in general not simply equal to the difference, 

i.e. the policy is not order-up-to type, as in case of most of the models with certain yield. 

The problem is further investigated for a two period case, and it is shown that the critical 

level for the first period is higher than for the last period. 
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There has been recent interest shown in periodic-review inventory models with 

random capacity and random demand. Obtaining a tractable solution is difficult for such 

models. With development of increasingly sophisticated products and complex 

environments theses models seem to be more applicable. Ciarallo et al. (1994) were first 

to present inventory models for a single product with random demand and random 

capacity in a single-stage setting. Different cases of the problem with single and multiple 

periods in finite and infinite horizon settings were explored. They showed that 

randomized capacity does not affect the order policy for a single period case. In other 

words, the derived optimal policy is identical to the one of the newsvendor model. 

Moreover, the random capacity resulted in unimodal, nonconvex cost function in both the 

single- and multi- period models with finite horizon. They further showed that the order-

up-to policy structure is optimal for the infinite horizon model. Jain and Silver (1995) 

extended the single period model of Ciarallo et al. (1994) by adding the option of 

reserving ahead of time a dedicated capacity level. This option ensures that any order size 

up to the dedicated capacity will be delivered after paying a premium charge to the 

supplier. They found that the optimal order size was independent of the random capacity 

and showed that the optimal dedicated capacity, which was difficult to obtain for general 

demand and capacity distribution, is bounded by zero and the optimal ordering quantity.    

It is known that near myopic policies are close to optimal in their performance for 

inventory problems without production capacity, where the term ‘near myopic policies’ 

refer to policies derived by considering information for only the short term ahead. 

However, it has not been known whether near myopic policies are still close to optimality 

for problems with a production capacity. Tetsuo (2002) shows that a similar kind of result 
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holds for the problems with production capacity, i.e. information from a few periods is 

sufficient to obtain a policy with results close to optimality. Tetsuo considers a single 

stage nonstationary production inventory model with uncertain production capacity and 

uncertain demand. The objective of the model is to minimize the total discounted 

expected costs which include production, inventory holding costs, and penalty costs. The 

production, inventory holding and penalty costs are assumed to be linear. Upper and 

lower bounds on the optimal policy for the infinite horizon problems were derived by 

considering some finite horizon problems. Further, Tetsuo show that, lower and upper 

bounds converge as the length of the planning horizon considered becomes longer, and 

under mild conditions differences between the upper and lower bounds converge to zero.  

All the single-stage models discussed consider the lead time as known, but it is not 

always possible to know the exact lead time in reality. Random lead time has been 

studied extensively in literature. Arrow, Karlin and Scarf were one of the first to consider 

lead time as a stochastic process which is similar to a queuing problem (Kaplan, 1970).  

Kaplan (1970) illustrate that if there were no crossover of orders, and if the probability of 

delivery of outstanding orders are independent of the number and size of the outstanding 

orders, the sequential multi-dimensional minimization problem can be reduced to a 

sequence of single-stage minimizations.  Random lead time for inventory systems in the 

past has been handled under the key assumptions that, the orders are received in the same 

sequence as they are placed (Bashyam, 1998). Bashyam et al. (1998) allowed the orders 

to cross in time, and moreover considered a constrained optimization problem unlike the 

unconstrained optimization that was previously considered in the literature. The optimal 

results were found using perturbation analysis, and a feasible directions procedure using 
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simulation. In many standard models, the order lead time is a fixed constant or a random 

variable (Song, 1996). In many situations managers try to obtain dynamic information on 

their sources of supply. The model considered by Song and Zipkin (1996) generalized the 

stochastic lead time model developed by Kaplan (1970), and includes specific 

information related to lead time. Song and Zipkin developed an inventory-control model 

which involves a Markovian model of supply system, where the optimal policy has the 

same structure but its parameters change dynamically to reflect supply conditions.   

2.2 Multi­Echelon Models with Single Final Product 

Over the last three decades there has been extensive progress on developing inventory 

theory for multi-echelon systems (Graves, 1996). Multi-echelon inventory models are one 

of the many significantly investigated fields in the mathematical inventory theory 

(Kochel, 2005), but solving an analytical multi-echelon model is a difficult task. Most 

analytically solved multi-echelon models suffer from various restrictive assumptions. 

Multi-echelon problems are studied under assumptions which are generally a 

combination of the following: deterministic or random demand or/and capacity, 

deterministic or random lead time, constant or varying customer service level in each 

stage, constant or varying purchase/manufacturing/procurement costs in each stage, and 

component demand in upper echelons. This sub-section will review papers that are 

related to multi-echelon problems with a single final product.   

A requirement for successful coordination of the supply chain is found to be the 

measurement of operational performance in terms of due date reliability, stock 

availability and other customer service measures (Diks, 1996). One of the major 

difficulties of cost-efficient and effective supply chain management is to determine the 
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internal target service levels so that the desired external service level is achieved with 

minimum cost (Diks, 1996).  There are five common types of control policies for multi-

echelon inventory systems, installation stock (decentralized), echelon stock (centralized), 

kanban, order-up-to-S, and MRP (Axsater, 1994). The installation stock is the on-hand 

inventory plus the outstanding orders minus the backlog.  Installation stock is also often 

referred to as the inventory position. The echelon stock is obtained from the inventory 

positions by adding the installation inventory positions at the current installation and also 

at all the downstream installations (Axsater, 1993). Decentralized inventory policies, i.e. 

installation stock have obvious advantage that they do not require any information from 

other installations. The disadvantage of installation stock is the limited cost effectiveness 

due to the lack of information about the entire system. The echelon stock concept was 

first introduced by Clark and Scarf (1960). And later also discussed by Federgruen and 

Zipkin (1984), and Bodt and Graves (1985) and many others. Badinelli (1992), Lee and 

Moinzadeh (1987), Svoronos and Zipkin (1988) and Axsater (1993) suggest using 

installation stock based policies in controlling inventory. Sherbrooke (1968), Axsater 

(1990) and Graves (1985) considered installation and echelon stock (Axsater, 1993).  

A kanban policy indicates that the replenishment at installation n is in lots of nQ  

units, where each lot is put into a container to which a kanban (ID card or tag) is used as 

a production order for new lot (Axsater, 1994). In an order-up-to-S policy, an order is 

released when the inventory position drops below S. The size of the order is chosen in a 

way that the inventory position reaches S after the order is placed. In Material 

Requirement Planning (MRP) a production plan for a total of n periods ahead is produced 

periodically but only implemented for the first period.  
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Clark and Scarf (1960) was one of the first to study multi-echelon problems with 

stochastic demand. Dynamic programming was used as the primary analytical tool to 

solve the multi-echelon problem. The base-stock policy structure is shown to be optimal 

in terms of multi-echelon inventory. That is, the multi-echelon inventory of a given node 

is defined as the sum of inventory from that node to the last node at the end of the system 

(end product inventory). An order-up to level is determined for each of these echelon 

inventories. The nodes considered do not have any capacity constraints. An optimal 

purchasing quantity for a finite horizon two-installation model is determined, and it could 

be very well used for the multi-installation model. The results from Clark and Scarf 

(1960) were generalized to assembly systems (Rosling, 1989). The model developed by 

Rosling (1989) demonstrated that assembly systems can be modeled equivalently as a 

series system. Optimal policies for general assembly systems under a restriction on the 

initial stock level are developed. Under the assumed conditions the assembly system is 

interpreted as a series system and solved using the Clark and Scarf’s (1960) approach.      

Bodt and Graves (1985) presents an approximate cost model for a continuous review 

inventory control policy. Their model is an extension to Clark and Scarf’s (1960) serial 

system with periodic review. The approximation provided by Bodt and Graves (1985) is 

comparable to that of single item, continuous review inventory model that assumes a 

reorder point, reorder quantity policy.  An approximate model for a two-stage system is 

developed and the analysis is further extended to an M-stage serial system. One of the 

key assumptions is that each stage has a reorder point that corresponds to the stage’s 

echelon inventory, moreover only nested policies are considered, i.e. whenever a stage 

reorders all the downstream stages also reorder. For the policy to be stationary the order 
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quantity has to be an integral multiple of order quantity at the immediate downstream 

stage. In case of a two-stage system the order quantity and reorder points are found easily 

by finding the best choice of order multiplier using a line search. Whereas in the case of 

an M-stage system finding an optimal solution becomes difficult, this opens the scope for 

using heuristic procedures. Two heuristic procedures are used to find the appropriate 

order quantity multiplier. The heuristic is tested over 5000 test problems and found to 

provide good results. Badinelli (1992) considered a model of steady-state values of on-

hand inventory and backorders for each facility of a serial inventory system, where each 

facility follows a (Q, r) policy based on installation stock. The lead time considered in 

this model is stochastic in nature.  The stochastic lead time is a result of stockout delays. 

The inventory model by Badinelli (1992) models stockout delays exactly. Once the 

stockout occurs the lead time is the nominal lead time plus the delay until the next 

replenishment arrives at the supplier facility. Optimal lot sizes and reorder points at each 

facility are obtained by taking into account the holding costs, setup costs, and stockout 

costs.   

Lee and Yano (1988) consider a single-period problem for a serial system with 

stochastic yield at each stage, deterministic demand and no set-up costs considered. 

Under specific conditions on shortage costs, holding costs, and processing it is shown 

that the single critical number policy is optimal representing the optimal target input at 

each stage. Bassok and Akella (1991) consider a two-stage production and inventory 

problem, for a single product, with uncertain demand, and a supply constraint in the form 

of service level. The production and component ordering decisions are jointly optimized 

using an integrated model. Gurnani et al. (1996) considers an assembly problem where 
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two critical components are required for the assembly into a final product, the demand for 

the final product is stochastic. The supply process of the components is a case of “all-or-

nothing”, i.e. with a probability of ߚ the supplier provides 100% of the order and with a 

probability of ሺ1 െ  ሻ the supplier provides nothing. The optimal policy structure of theߚ

assembly problem for a single-period is shown to be a single critical number (base-stock 

policy), and under certain conditions for cost and delivery parameters the optimal policy 

for a multi-period is shown to be a base-stock policy.  In a variant of the above paper 

Gurnani et al. (2000) consider the same assembly system, where the components that are 

procured from the suppliers are random due to the production yield losses. An exact cost 

function is formulated, which is analytically complex in nature. So a modified cost 

function is introduced, using combined ordering and assembly decisions.  Gurnani et al. 

(2000) discusses both a single-period and a multi-period case, and show that the order-

up-to structure is the optimal ordering structure.  

The base-stock/single critical number policy is shown to be an optimal policy for a 

single-item, periodic-review problems with no fixed ordering/production costs and a 

capacity constraint (Federgruen, 1986). The base-stock policy is also shown to be optimal 

policy for multi-echelon systems in which the fixed costs are ignored (Erkip, 1990). 

Glasserman and Tayur (1995) obtain the optimal base-stock levels for a capacitated 

multi-echelon serial system. Simulation based optimization methods are used by 

Glasserman and Tayur for estimating sensitivities of inventory costs with respect to the 

policy parameters. Simulation-based derivative estimates help steer the search to an 

improved policy and at the same time allowing for complex features that are usually 

difficult to handle by analytical models (Glasserman, 1995). A feasible direction search 
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algorithm is used to obtain the optimal base-stock levels, which is based on the derivative 

estimates computed from the simulation.  In a capacitated multi-echelon production-

inventory system it is shown by Glasserman and Tayur (1995) that for various cost and 

performance measures derivatives with respect to base-stock levels can be consistently 

estimated from simulation or real data.   

Bollapragada et al. (2004a) considers a system similar to Glasserman et al. (1995). A 

two-echelon serial system with demand and supply uncertainty is considered. A non-zero 

lead time for component and end product assembly exists. Two-supply models are 

considered, one allowing unlimited backordering and the other allowing backordering 

only for one period. Assuming an installation base-stock policy with quasi-concave 

demand distribution, Bollapragada et al. (2004a) determine the optimal base-stock levels 

which minimizes the total inventory investment subject to the specific service level. 

Under both demand and supply uncertainties Bollapragada et al. (2004a) show the 

optimal component stock level is a convex-decreasing function of the stock level of 

finished products. A simple illustration of the optimal internal-service level used to 

decompose and coordinate component end product replenishment is established. In a 

different paper Bollapragada et al. (2004) considers a multi-echelon assembly system that 

utilizes simulation-based inventory optimization to obtain the optimal base-stock levels. 

The assembly system considered by Bollapragada et al. (2004) employs  installation 

base-stock policies with random capacity and random end product demand. Infinitesimal 

Perturbation Analysis (IPA) is used to estimate the gradient and further obtain the 

optimal stocking levels. A decomposition heuristic approach that uses an internal service 

level to independently determine near-optimal stock levels for each component is 
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proposed. The multi-echelon system is converted into an equivalent two-echelon 

assembly system analytically. Several important managerial insights are illustrated from 

the numerical analysis.  

The most frequently used approach (both in the literature and in practice) has been 

decomposition, which treats each stage as an independent separate entity with certain pre-

assigned parameters and constraints. (Bollapragada, 2004; Inderfurth, 1998; Shang, 

2006). The decomposition approach clearly provides an advantage computationally. 

Instead of solving a multi-dimensional problem only a one-dimensional problem needs to 

be solved. Moreover only local information is required for a manager to make a decision 

rather than information from the entire system. The literature addresses two seemingly 

contradictory views for setting internal fill rates; some researchers and practitioners 

assume upstream locations should achieve higher fill rates to guarantee a desired system 

fill rate, whereas some other show that it is not necessarily accurate (Shang, 2006). Most 

of these contradictory views are based on empirical observations. There are only a few 

studies that address this problem theoretically, due to the complexity of the problem. 

Boyaci and Gallego (2001), Sobel (2004), Shang and Song (2006) address the problem 

theoretically.    

Boyaci and Gallego (2001) develop a service level constrained formulation to 

minimize the total cost of a two stage serial system. Boyaci and Gallego present exact 

and approximate algorithms for minimizing costs subject to service level constraints.  A 

base-stock policy is used to minimize the total inventory costs. They develop a unique 

method of determining the optimum bounds for the base-stock level. Initially the optimal 

base-stock level of downstream stage is found by making the base-stock level of the 
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upstream a constant. Later Boyaci and Gallego determine the bounds for the downstream 

base-stock variable followed by the upstream base-stock variable. With the help of the 

bounds they confine/limit their search space to find the optimal base-stock level. The 

downstream bounds are further refined by including cost considerations. Due to the 

connection between the stages, a limit exists on number of units that can be sent 

downstream. Utilizing this factor Boyaci and Gallego find that, the lower bound of the 

downstream base-stock variable is used as an upper bound for the upstream base-stock 

variable. A bottom-up approach is used to obtain the optimal base-stock levels. Once the 

bounds are found a simple search can be used to find the optimal base-stock values.  

Sobel (2004) presents exact and approximate formulas for the fill rate of periodic 

review supply systems that use base-stock policy. In the first part fill rate formula is 

presented for a single-stage system and with general distributions of demand. When 

demand is normally distributed with only standard normal distribution and density 

functions an exact expression is derived. In the second part, the probability distribution of 

finished goods inventory level in a serial inventory system with buffer inventory between 

stages is derived. This distribution leads to formulas for the fill rate. Based on the 

numerical computation, Sobel (2004) states that shorter supply chains have higher fill 

rates. Shang and Song (2006) develop analytical guidelines for managing service-

constrained systems, with attention on the linkage between stages. A serial base-stock 

inventory model with Poisson demand and a fill rate constraint is considered. Closed 

form approximations for the optimal base-stock levels are developed. Two key steps are 

considered in the process of developing closed form approximations: 1) convert the 

service-constrained model to a backorder cost model by assigning an appropriate 
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backorder cost rate, and 2) use a logistical distribution to approximate the lead time 

demand distribution in the single-stage approximation obtained earlier. These closed 

form expressions are used to conduct sensitivity analysis and establish qualitative 

properties on the system design issues, total optimal system cost, stock positioning, and 

internal fill rates. Shang and Song (2006) find that all the internal fill rates are lower than 

the target system fill rates as long as the latter is sufficiently high, high internal fill rates 

can lead to significant overstocking. Shang and Song (2006) have a few interesting 

observations: 1) moving a high value-adding stage to a downstream location may 

increase the optimal system stock but reduce the optimal system cost, 2) the optimal 

system stock is larger when the upstream stage has a longer lead time, and 3) the optimal 

base-stock level decreases as we move upstream.  

There are only a few approaches where multi-echelon safety stock optimization along 

with service level constraints and inventory holding costs which would allow for varied 

holding costs at different echelons as it is typical in production environments (Inderfurth, 

1998). These few approach mentioned by Inderfurth, 1998 has a serious shortcoming in 

the sense that it is assumed that any safety stock insufficiency would result in order delay 

downstream and moreover would propagate over the entire multi-echelon system. In 

manufacturing systems this does not always describe what exactly happens when there is 

an internal shortage. The demand uncertainties and fluctuations that occur internally are 

up to certain extent reduced by using the slack capability (rescheduling priorities, internal 

order expediting, initiating express deliveries from outside) of the system (Inderfurth, 

1998). Under this supposed no-delay assumption, safety stock determination is 

decomposed into a multi-echelon buffer allocation and single-stage buffer sizing problem 
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at all echelons, and the optimal safety-stock is found by Simpson (1958). Inderfurth 

(1993) extended Simpson’s approach to divergent systems. Inderfurth et al. (1998) 

provided a further extension of this approach by considering the fill-rate related measures 

to size and duration of stockout, using this model it is found that service levels 

representing duration and size of stockout need less protection. A considerably simplified 

solution property is shown by Inderfurth et al. (1998) by solving a non-linear 

optimization problem of allocating safety stocks in multi-echelon inventory problems 

(serial, divergent, and convergent).    

Optimal base-stock at each store (the stocking location for each part or end product) 

for a supply network model which considers the bill of materials, the nominal lead times, 

the demand and cost data, and the required customer service levels is obtained by Ettle et 

al. (2000). The base-stock levels minimize the overall inventory capital throughout the 

network and provide the required customer service level. The base-stock policy assumes 

a one-for-one replenishment mechanism. The essential ingredient of the model is an 

approximate analysis of the actual lead times at each store and the associated demand 

over such lead times, along with the classification of the operation at each store via an 

inventory-queue model. A constrained nonlinear optimization problem which minimizes 

the total average dollar value of inventory in the network is formulated. Unlike in 

Glasserman and Tayur (1995) where simulation-based inventory optimization 

(Perturbation analysis) is developed to obtain gradient estimation, Ettle et al. (2000) 

derive approximate gradient formulas that are analytically computed.  The approximate 

gradient obtained is used to carry out the search for the optimal answer.  
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Allocation policies are important in a divergent multi-echelon system, especially in a 

warehouse-retail environment when a decision has to be made on distribution of available 

inventory to several retail outlets from a warehouse.  McGavin et al. (1993) discuss three 

allocation policies that have been extensively used in the literature: a “ship-all” policy in 

which the central warehouse does not hold any inventory but transships to all the retail 

sites upon receipt of a bulk shipment from the supplier; an equal-interval policy in which 

the central warehouse ships equally the available inventory to all its retail outlets; a two-

interval policy in which the warehouse makes an initial shipment to its retail sites upon 

receipt of its shipment from the supplier, and makes a final shipment just prior to the next 

replenishment. McGavin et al. (1993) review the major findings, and show the relative 

effectiveness of allocating quantities when a two-interval policy is used. Graves (1996) 

introduces a new allocation scheme for a warehouse-retail multi-echelon problem, which 

is known as virtual allocation. Under this new allocation policy each site in the supply 

chain commits or reserves a unit of its upstream inventory (if available), i.e. warehouse, 

to replenish its downstream stages (retail outlets). However the actual shipment of this 

reserved inventory does not occur until next order occasion. Graves provides an analogy 

of a waiting truck which is gradually filled, but will depart only after the entire truck is 

loaded.  Consequently, the central warehouse has a high probability of stock out. 

Moreover, Graves (1996) show that the virtual allocation policy is near optimal for a set 

of test problems.   

An assemble-to-order (ATO) system is an important business model, since it is used 

in a wide-ranging class of supply chains (Song, 2002).  Managing the component 

inventory in ATO systems is of critical importance to the business. a stockout of any 
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component will delay order fulfillment, and on the other hand having excess inventory 

can severely reduce the firms profit margin. Song and Yao (2002) study a single-product 

assembly system in which the final product is assembled to order, whereas the 

components are built to stock. Optimal trade-off between inventory and service in an 

ATO with several components and one final product is addressed by Song and Yao 

(2002). The replenishment lead times for components are random in nature. An 

independent base-stock policy is used to control each component’s inventory. Two 

optimization problems are studied to determine the base-stock levels of the components. 

i) minimize the expected number of backorders subject to the total upper limit on the 

investment for component inventory, ii) minimize the average component inventory 

subject to the fill rate requirement for the customer. Song and Yao (2002) show it is 

desirable to keep higher base-stock levels for components with longer mean lead times 

(and lower unit costs). In order to overcome the computational difficulty evaluating 

performance measures such as back-order and the fill rates Song and Yao (2002) develop 

upper and lower bounds. These bounds are used as surrogates in the optimization 

problems, which are used to developed effective solution. Gallien and Wein (2001) 

consider a problem similar to Song and Yao (2002), however they assume 

synchronization, i.e. replenishment of all components triggered by the same customer 

demand are later assembled into same product. So there is only one lead time, which 

corresponds to the longest component lead time. A simple approximate solution to the 

problem is derived.  

  Different customers often have a different willingness to pay for the speed with 

which their orders are fulfilled (order expediting). A build-to-order company could 
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improve its profits by responding to customers who are willing to pay higher prices for 

shorter lead times (Hariharian, 1995). There is a growing consensus that the 

manufacturers can benefit from having a portfolio of customers with different lead times 

(Gallego, G. 2001). Customers with positive demand lead times usually place their orders 

in advance of their requirements, resulting in what is known as advance demand 

information.  Gallego and Ozer (2001) analyze a discrete-time, single-item, single-stage, 

periodic review inventory problem under advance demand information. They show that 

an (s, S) policy is optimal under a positive set-up cost scenario for an infinite-horizon 

case, and a base-stock policy is optimal under a zero setup cost. In a follow up paper 

Gallego and Ozer (2003) develop optimal replenishment policies for a multi-echelon 

inventory problem (serial system) under advance demand information. Gallego and Ozer 

(2003) prove optimality of state-dependent, echelon base-stock policies for both finite 

and infinite horizon problems with advance demand information, to show this the 

problem is decomposed into single location periodic review problems. Gallego and Ozer 

(2003) also show that myopic base-stock policies are optimal for finite and infinite 

horizon problems when the demand and cost parameters are stationary. 

Tree/network structure is a class of supply chains which has been studied in 

detail. Two distinct models arise when tree/network structure is considered: stochastic-

service model and the guaranteed-service model. In the stochastic service model, each 

stage in the supply chain has orders which are subject to stochastic delays. These delays 

are due to stockout at upstream stages. In the case of the guaranteed-service model, it is 

assumed that each stage has an external source, so that if a stockout occurs at any stage 

then the additional demand is fulfilled by the external source. In the guaranteed-service 
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model the service time is always guaranteed. Lee and Billington (1993) developed a 

multi-stage inventory model for the Hewlett-Packard DeskJet printer supply chain under 

the stochastic service assumption. The objective was to provide managers with tools to 

evaluate various stock positioning strategies. Each stage is assumed to control its 

inventory by an installation periodic review base-stock policy. Approximations were 

developed by Lee and Billington for replenishment lead times at all stages. Ettl et al. 

(2000)  analyzed supply chins under the same assumption, i.e. stochastic service model, 

in which each stage controls its inventory with a continuous-time base-stock policy. Ettl 

et al. (2000)  differentiated the nominal lead time from actual lead time at each stage. The 

actual lead time will exceed the nominal lead time when there is a supplier stockout. The 

authors analyzed the assembly system by assuming that at most one supplier can stockout 

at any given time. Approximations and bounds were derived on the expected backorder 

delays to downstream customers by modeling the replenishment process at each stage as 

M/G/∞  queue. Ettl et al. (2000) optimized the total inventory investment, i.e. pipeline 

inventory and finished goods inventory, in the supply chain subject to meeting the 

required service level of the external customers. Safety factors were used as the decision 

variables to develop analytical expressions for gradients, and further were used to solve 

the constrained nonlinear optimization problem. Graves and Willems (2000) applied the 

guaranteed-service model approach to tree-structure supply chains. Instead of using the 

base-stock levels or service levels, planned lead time at all stages were used as the 

decision variable. The planned lead time is assumed to be 100% guaranteed to the 

downstream stages, thus the lead time between two stages is deterministic. A fast 

algorithm based on dynamic programming is developed by Graves and Willems (2000) to 
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optimize the safety stock placement. Simchi-Levi and Zhao (2005) study the safety stock 

positioning problem in single-product multi-stage supply chains with a tree network 

under the stochastic service model assumption. An independent Poisson process is used 

to model external demands, and unsatisfied demand is fully backordered.  An installation, 

continuous-time, base-stock policy is used to control inventory at each stage. The lead 

time is considered to be stochastic, sequential, and exogenously determined. Based on 

these assumptions the recursive equations are derived by Simchi-Levi and Zhao (2005) 

are used to develop insights into the impact of safety stock, approximations and 

algorithms to coordinate the base-stock levels in theses supply chains, so as to minimize 

system-wide inventory cost subject to service level requirements.  

2.3 Multi­Echelon Problems with Multiple­Products 

Competitive pressures in today’s emerging marketplace are forcing companies to 

offer quicker response to customer needs.  This is increasingly difficult for firms when 

they produce more than one product. As a result, managers need to pay close attention to 

various performance measures that reflect the system responsiveness. For example, 

manufacturer and distributors may manage huge stocks of several items. A customer 

order typically consists of several different items of varied order size, and it is the firm’s 

challenge to satisfy the orders placed by customers in a stipulated period of time. The 

order fill rate, probability of filling an entire customer order from the available stock, or 

in general a pre-specified order time is an important measure of service in models with 

multi-echelons and multi-products. There are two important approaches that need to be 

discussed before models of multi-echelon, multi-product systems are considered: 1) 

order-based approach, and 2) item-based approach. In an order-based approach 
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connection between the items are considered, whereas an item-based approach considers 

the demand between the items as independent. This issue has been crucial to many big 

firms like AT&T, IBM and Phillips which practice “assemble-to-order”, since the 

component procurement lead times are often longer than the products shelf-life (Song, J. 

1998). In order avoid the costly pile of unsold products and to compete in the fast-

changing market, new products are usually designed around the interchangeable modules 

(Song, 1998). Thus companies can assemble products to order while producing modules 

to stock. 

Srinivasan et al. (1992) study a multi-period, multi-component requirement planning 

problem in which each component can be common to several products whose demand is 

uncertain. A stochastic programming formulation of the problem is developed along with 

heuristic solution approaches. The component procurement lead times is not considered 

in the formulation. Hausman et al. (1998) study the evaluation and optimization of the 

order fill rate in a discrete-time, multi-item, base-stock system. Customer orders arrive in 

each period, and the total demand for that item is the sum of all the orders that arrive for 

that item in that period. Demands are correlated over the items in a period but they are 

independent across the periods. Since a discrete-time formulation is used in which the 

demands of a period are aggregated, it is impossible to identify the individual customer 

orders, so only bounds could be computed on the order fill rate. The computation also 

involves evaluation of multivariate normal distributions, which is computationally 

complex. Anupindi and Tayur (1998) consider both item-based and order-based 

performance measures in a multi-product cyclic production system. A simulation 

procedure is used to obtain good base-stock policies for each kind of performance 
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measure. The numerical results in Anupindi and Tayur (1998) indicate that the item fill 

rates are not good indicators for order fill rates. Song (1998) considered a multi-item 

inventory system consisting of several items in different amounts. A base-stock system is 

considered in which the demand process forms a compound multivariate Poisson process 

and the replenishment lead times are constant. Song (1998) show that the order fill rate 

can be computed through a series of convolutions of one-dimensional compound Poisson 

distributions. Simpler bounds were formulated to estimate the order fill rate.  

Erkip et al. (1990) considers a single-depot multi-warehouse system, and show that 

the S-type policy or the base-stock policy was optimal. The demands were considered to 

be correlated for different items in a given time period. Erkip et al. (1990) computed the 

optimal stocking policies as explicit functions of the correlation coefficients. Langenhoff 

and Zijm (1990) developed an analytical framework for a multi-echelon production 

system to determine optimal control policies for such systems under an average cost 

criterion. Exact decomposition of a complex multi-dimensional (serial and assembly) 

system to a series of one-dimensional problems is achieved. Later Houtum and Zijm 

(1991) developed numerical procedures for the analytical decomposition in Langenhoff 

and Zijm (1990). The numerical procedures enabled obtaining the optimal order-up-to 

levels for all the stages.    

Numerous researchers have proposed power-of-two lot-sizing rules for stationary, 

continuous-time, infinite-horizon multi-stage production/inventory systems (Roundy, 

1986). A power-of-two policy is a sequence of positive numbers ( ):nT T n N= ∈  with the 

following three properties. First, orders for product n are placed once every 0
n

T > units 
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of time beginning at zero. Second, 2 nk

nT β= for all products and for1 2n β≤ ≤ , where 
n

K

is an integer. Finally, the zero-inventory property, i.e. an order is placed only when the 

inventory of that product is zero. Roundy (1986) study a multi-product, multi-stage 

production inventory system in a continuous time. External demand occurs for any or all 

products at a constant, product-dependent rate. Power-of-two policy policies are used in 

which each product employs a stationary interval of time between successive orders, and 

the ratio of order intervals of any two products is an integer of power of two. Roundy 

(1986) show that there is always a policy in this class that is within 2% of optimal 

answer.  

Capacity or inventory allocation plays an important role when there is a shortage of 

capacity or inventory at the supplier end. Hausman et al. (1998) consider a multi-product 

assembly model where the product structure and demand processes are random and 

correlated within any period but stationary across the review periods. Replenishment lead 

times (from external suppliers) for orders of components are considered to be 

deterministic. A base-stock policy is used to manage the component stockpiles. Within a 

given period, demands are assumed to occur in some unknown sequence and the 

allocation of stock is done in the sequence in which these orders are received. Since the 

sequence of orders is unknown Hausman et al. (1998) focus only on the service level 

provided to the last order within a given period. Hausman et al. (1998) obtain optimal 

base-stock levels for the components and the final products under the assumptions 

discussed above. Zhang (1998) considers a similar problem as Hausman et al. (1998), the 

only major difference is the allocation policy; a “periodic” allocation policy is used. 

Moreover it is assumed that allocation of components is done according to a 
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predetermined list. Thus, the finished products with higher priority always receive 

components before the products with lower priority. Agrawal and Cohen (2001) also 

consider a problem similar to Hausman et al. (1998) where the allocation policy is based 

on “fare-shares / proportional allocation”, in which the quantity of component allocated 

to a particular product is determined by the ratio of the realized demand due to the 

product order to total demand based on all orders. Under these assumptions, Agrawal and 

Cohen (2001) derive an expression that links component inventory levels to inventory 

cost and measures for finished product delivery service, such as order completion rates 

and response times to customer orders.  These results are then later used to determine the 

optimal base-stock levels that use the fare-shares allocation policy. In another multi-

product setting, Bish et al. (2005) consider a two-plant two-product capacitated 

manufacturing problem, and show that the performance of a system heavily depends on 

the allocation mechanism used to assign products to available capacity.   

Similar to capacity allocation, optimal procurement policy in a multi-component 

assembly system plays an important role. Kim et al. (2006) consider an assembly system 

where a firm produces a single-product which is assembled using two types of 

components (component 1 and component 2). The components are provided by two 

individual suppliers (supplier 1 and supplier 2). Kim et al. (2006) assume that the firm 

makes different procurement contracts with supplier 1 and supplier 2. To supplier 1 the 

firm specifies a maximum inventory level of component 1 and makes a commitment to 

purchase the component as long as inventory is below this target level. Whereas to 

supplier 2, the firm has an option of purchasing or rejecting component 2 at each instant 

supplier 2 provides it. A Markov decision problem is formulated, leading to a component 
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2 purchasing policy which maximizes the firms profit subject to costs of rejecting 

component 1, holding component 2, and purchasing component 2. The optimal purchase 

policy is obtained only under certain states, and these states are used to investigate how 

the change in sale price and cost parameters affects the optimal purchasing policy.    

Order fulfillment is increasingly important for companies if they need to adapt 

quickly to market and technology changes and thus move toward assemble-to-order as 

opposed to traditional make-to-stock (Song, J. 1999). Adapting assemble-to-order raises 

the following two questions: For a given safety-stock level of each item, what is the 

probability of a demand being immediately satisfied (order fill rate)? What is the 

probability a customer order can be met within a time window (order response time)? 

Song et al. (1999) study a multi-component, multi-product production inventory system 

in which the individual items are made to stock but the final item is assembled to 

customer’s orders.  An exact analysis on a wide range of performance measures in the 

assemble-to-order systems with sequential, capacitated stochastic production process is 

carried out. The demand is modeled as a multivariate Poisson process. That is, the overall 

demand arrives according to a Poisson process, but there is a fixed probability that the 

demand requests a particular kit of different items. Demands for items that cannot be 

filled are backordered in a capacitated queue (capacity varies from zero to infinite). For a 

given base-stock policy and backlog queue capacity, a procedure to evaluate the item-

based, order-based, and system-based performance measures, such as fill-rate, service 

level (probability that an order will be backlogged and eventually filled) is found. The 

procedure relies on the computation of steady-state joint distribution of the outstanding 

orders. In a similar setup Song (2002) shows how to evaluate the order-based backorders 
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in a continuous review, base-stock inventory system with constant lead times and 

multiple type orders. Instead of using the joint-distribution of item-backorder, a new 

approach to the exact analysis that leads to the closed form expression was employed. 

The approach consists of two steps, the first step deals with the equal lead times across 

the items. The important aspect here was to relate the customer waiting time distribution 

with immediate order fill rate. The second step of the analysis deals with the general case 

of unequal lead times. Lu et al. (2005) also considered a multi-product assemble-to-order 

system, but the lead time for component replenishment is stochastic in nature. The 

components are built to stock with inventory controlled by base-stock rules, but the final 

products are assembled to order. The customer orders follow a Poisson process. An 

optimal allocation of the given budget among component inventories so as to minimize 

the total backorders over the product type is studied. Bounds and approximations for the 

expected number of backorders are found to formulate surrogate optimization problems.  

Rao et al. (2004) consider a single period multi-product inventory problem with 

stochastic demand, setup cost for production, and one-way product substitution in 

downward direction. Rao et al. (2004) present some important properties and an effective 

solution methodology that exploits the problem structure and utilizes a combination of 

optimization techniques that include network flows, dynamic programming and 

infinitesimal perturbation analysis. The problem is also extended to a multi-period 

problem in which product set selection can be made one at the beginning of the period 

and cannot be revised later. New and efficient solutions are obtained with the help of 

heuristic methods which combine dynamic programming and simulation based 

optimization while exploring the network flow structure of the allocation problem. 
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Numerical study indicates that the heuristic method employed is very effective in terms 

of accuracy.   

2.4 Multi­Echelon Problems with Spare Parts 

Spare parts are members of what is also known as MRO (maintenance, repair, and 

purchasing), which represent an important portion of all purchasing activities and have 

been the recent object of an explosion of e-market sites to reduce the purchasing costs 

(Diaz, 2003). Spare parts optimization requires an integrated approach that starts with the 

removal of factors that create noise: bad coding, resulting in parts proliferation; lack of 

classification; poor network practices (uncoupled warehouses, poor relations with key 

suppliers); and poor data integrity (non-centralized, non-real time data) (Diaz, 2003).  

An important decision-making problem associated with multi-echelon inventory 

systems is determining stocking policies at various stock sites in the system (Moinzadeh, 

1986). A key component in the design of multi-echelon systems for recoverable items is 

the determination of appropriate stock levels of spare inventory at each echelon (Graves, 

1985). METRIC (A Multi-Echelon Technique for Recoverable Item Control) is a 

mathematical model of base-depot supply system developed by Sherbrooke (1967).  The 

demand considered is a compound Poisson with a mean value estimated through a 

Bayesian procedure. When a unit fails at the base level there is a probability associated 

with it to either repair it at the base or send it to a depot. In the later case the base sends in 

a request for a resupply, and if no lateral resupply exits then Sherbrooke has shown that 

an (s-1, s) policy is appropriate. This policy would be valid only if the items in 

consideration are high-cost and low-demand.  The problem is shown to have a simple 
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analytical solution which is function of repair times, minimizing expected backorders for 

any system investment. A common approach to solve a multi-echelon inventory system 

with recoverable items has two components (Graves, 1985). The first component is to 

characterize the service performance of multi-echelon system for a given inventory stock 

levels. This can be done either using an exact model or an approximate model. The 

second component is to search methodically to find the appropriate inventory stock that 

satisfies both inventory costs and service performance. Along the similar lines as 

METRIC, Graves (1985) determines the inventory stock level for a multi-echelon 

inventory problem with recoverable items. The approximation used in the Graves (1985) 

model dominates the results of the approximate results of METRIC   

The repairable products of high value with infrequent failures have been shown in 

past studies to require a one-for-one, (s-1, s,) inventory ordering policy. For multi-

echelon reparable inventory systems with high set-up costs for order and high demand 

rate, the batch ordering was shown to more cost effective than (s-1, s) policy (Moinzadeh, 

1986). Moinzadeh and Lee (1986) show that when the set-up cost for ordering a shipment 

is high relative to the holding cost of the product the (s-1, s) policy might not be optimal.  

Moinzadeh and Lee (1986) determine the optimal batch size by minimizing the total 

expected costs of ordering, holding, inventory, and backorder costs. The optimal batch 

size is found using a power approximation scheme; given a batch size an upper bound on 

stocking level is found. With the help of the upper bound the depot stocking level is 

obtained using a “one-pass” search.   

The METRIC model with minor variations has been studied by several authors. 

Svoronos and Zipkin (1988) studied a similar two-echelon problem with the same 



69 

 

purpose of estimating the performance measures, the long-run average backorders at 

retailers, and average inventory at each location. The approach used is a decomposition 

technique, where each facility is approximated as a single location inventory system. 

However the parameters describing these single-locations are dependent on the policies 

and performance of other locations. The important aspect of the problem is that the model 

uses variance information in the approximations. A variant of the METRIC model was 

developed by Axsater (1990) which consists of one warehouse and N retailers. A one-for-

one replenishment policy is employed and shown to be optimal, due to the low ordering 

cost involved. The approach employed by Axsater (1990) uses the inventory cost 

function that reflects costs incurred on an average unit. The approach is found to be more 

efficient and direct at finding the optimal inventory policy compared to METRIC. Later 

Axsater (1993) extended his previous results to derive general policies when both 

retailers and the warehouse order in batches compared to one-for-one replenishment. One 

of the major assumptions of the problem is that of identical retailers. The same problem 

considered by Svoronos and Zipkin (1988) are solved by different approximate methods 

and the results are compared and found to outperform Svoronos and Zipkin (1988) for 

large problems.   

Most of the multi-echelon inventory models assume the demand that is not satisfied 

immediately can be backordered (Andersson, 2001), which may not be a realistic 

assumption is some cases. Andersson and Melchiors (2001) consider an inventory model 

which consists of warehouse and several retailers, where unsatisfied demand faced by 

retailer is replenished from an outside supplier. The METRIC- approximation framework 

which was discussed earlier is used to develop a heuristic for finding cost-effective base-
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stock policies.  Approximate warehouse and retailer costs are used to obtain the overall 

solution, and the solution obtained using the heuristic on average performed 0.40% better 

than the ( 1, )s s− policy.  

 Most of the inventory models dealing with spare parts considered until now 

assume independent part failures and hence one-at-a-time failure. In, practice usually 

more than one part is required when a failure occurs. Cheung and Hausman (1995) 

consider a situation of multiple failures, where the multiple failures are represented in a 

continuous, infinite horizon, order-for-order spares replenishment inventory model. Exact 

expressions for the distribution function and the expectations of the number of 

backlogged jobs are presented. These results are used to optimize the spares inventories, 

and to evaluate the effects of correlated failures, and to model the impact of parts 

commonality.  

2.5 Information Sharing  

Information sharing plays a key role in cost reduction and increasing the target 

customer service level. Information sharing can be defined as sharing of demand and 

inventory data between the key supply chain players, such as suppliers and retailers. It 

plays an important role in evaluating supply chain efficiency. Greater information sharing 

about actual demand between stages of the supply chain is an intuitive step towards 

reduction of the bullwhip effect. Gavirneni et al. (1999) described the role of information 

sharing in a two stage supply chain with a capacitated supplier and a single retailer. The 

three types of information sharing listed below are most often discussed in the literature: 

• Classical information sharing / no information sharing 
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• Partial information sharing 

• Full information sharing 

The basic difference between these three types of information sharing is the extent of 

information that the supplier is willing to share with retailer and vice-versa. 

Classical information sharing / no information sharing: In the classical information 

sharing the only information a supplier is aware of are the retailer’s orders. In these 

situations if the supplier is short of material to deliver to his retail locations, the supplier 

uses the past history to determine the quantity that each retailer would receive.  

Partial information sharing: In case of partial information sharing the supplier has 

information about the retailer’s specific order, as well as the policy used and the end item 

demand distribution. Since the end item demand distribution is known the supplier can 

estimate the incoming order in advance. The literature on this type of information sharing 

shows that there is a high possibility of gaming behavior in these situations.  

Full information sharing: With full information sharing the supplier has access to 

retailer’s order, day-to-day inventory levels, and end product demand. This improves the 

efficiency with which the supplier allocates the available stock to retailers in response to 

actual customer demand and also improves the ordering decisions.  

Sharing information, i.e. demand information is often not enough to mitigate the 

problems caused with supply chain coordination (e.g. bullwhip effect) (Cachon and 

Terwiesch, 2006). Demand can also be influenced by retailer actions on pricing, 

merchandise, promotion, advertisement etc. The process of sharing all the information 

that can directly/indirectly affect the demand is known as Collaborative Planning, 

Forecasting, and Replenishment, or CPFR for short. 
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2.6 Simulation Based Optimization  

The rapid developments in the optimization and computation field allow optimization 

packages to easily solve models that involve thousands of variables. In parallel, 

simulation modeling and analysis of complex real systems has been used increasingly as 

both a descriptive tool and as a decision support tool. The developments in the field of 

simulation optimization have also moved forward significantly in recent years, primarily 

due the advances in the optimization field, and in the use of heuristic search methods.  

Simulation based optimization (SBO) is the process of finding the best input variable 

values from among all possibilities without explicitly evaluating each possibility and 

using simulation as the evaluation mechanism (Carson and Maria, 1997). Finding an 

optimum solution traditionally requires identifying all possible alternatives, evaluating 

each possible alternative accurately, comparing each alternative fairly, and coming up 

with a best solution (Kunter, 1996). This process is the best way to find an accurate 

answer when the search space is relatively small and the problem is fairly complex. 

When the problem gets more complex and the search space is multi-modal in nature, it is 

very difficult to proceed by the traditional methods, primarily due to time constraints, and 

resource constraints. Using the SBO approach the amount of time taken to solve a 

relatively complex problem is reduced. Depending on the effectiveness of the SBO an 

optimal solution is not guaranteed, but a good solution is obtained most of the time. This 

establishes a trade-off between the quality of the final solution required and the 

computational time expended in finding that solution. Figure 1.6 represents a typical SBO 

framework, whereas figure 1.7 represents a commercial version of the SBO. Commercial 

software that implements general purpose SBO has been available for several years.  
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Many of these commercial products use some type of heuristic search technique as a part 

of their optimization subroutine. 

 

Figure 2.2: Optimization for Simulation (Fu, 1994) 

 The basic optimization problem for an SBO is shown in 2.1, where the goal is to 

maximize or minimize an objective function H(X), as a function of decision variables X. 

 H(X) = E[L(X, )]ε  is the performance measure for the system (Eylem and Ihsan, 2004). 

 (or ) ( )    Maximize Minimize H X X ∈Θ                               (2.1) 

The quantity  L(X, )ε is the sample performance, ε  represents the stochastic effect in 

the system, X is a p-vector of controllable factors, and Θ is the constraint set on X. H(X) 

could be a single objective function or a multi-objective function (Eylem and Ihsan, 

2004). Simulation optimization problems can be broadly classified into two types, local 

optimization and global optimization. Most of the traditional procedures fall into the local 

optimization category, whereas most new heuristic procedures fall into the global 

optimization category. Global optimization procedures provide a means of escaping from 

a local optimum). The classification is summarized in Figure 2.3. Local optimization is 

further classified into discrete decision spaces and continuous decision spaces. Under 

each of these categories there are many approaches as shown in Figure 2.3 (Eylem and 

Ihsan, 2004).  
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Figure 2.3: Classification of simulation optimization (Fu, 1994)  

2.6.1 Meta­modeling methods  

A meta-model provides a relationship between performance measure and parameters 

of interest (Fu, 1994). The meta-model approach to SBO divides the optimization task 

into two sub-problems, estimation and optimization. Simulation is used to fit a global 

response curve which is also referred to as the meta-model (Fu, 1994). Some type of 

search procedure is then used to explore that response curve. The meta-modeling 

methods can be broadly classified as: 

• Gradient based. 

• Stochastic approximation (StA) 

• Response surface methodology (RSM)  

• Statistical methods. 

The gradient based approach could be further subdivided as follows: 

• Finite difference estimates (FDE) 
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• Perturbation analysis (PA) 

• Frequency Domain analysis (FDA) 

• Likelihood ratio estimates (LRE) 

In this sub-section we limit our discussion to Perturbation Analysis. 

 Perturbation analysis (PA): Perturbation analysis has two types, the finite 

perturbation analysis (FPA) and the infinitesimal perturbation analysis (IPA). FPA is 

especially used when the problem parameters are discrete in nature. “FPA is a heuristic 

which approximates the difference in a performance measure when a discrete parameter 

is changed by one unit” (Eylem and Ihsan, 2004). The primary aim of any PA would be 

avoiding additional simulation runs to evaluate the performance measure at the perturbed 

value. When PA is applied properly the estimates of the gradient can be obtained in just a 

single run when certain conditions are satisfied. IPA is used to obtain the derivatives of 

continuous parameters by estimating the partial derivative during a single simulation run, 

in turn keeping all the related statistics of certain events (Eylem and Ihsan, 2004). 

Estimates in IPA result from causing small changes in the input parameters that do not 

cause any event order changes in the simulation of the subject system (Fu, 1994).  

,

k i

i k k i

T TL L

X T T X

∂ ∂∂ ∂
=

∂ ∂ ∂ ∂∑                                        (2.2) 

Here  iT X∂ ∂ represents the change in the value of the system parameter X as the 

timing of the events change, k iT T∂ ∂  represents the change in timing of event iT  as the 

other event kT  change, kL T∂ ∂  represents the how the timing of event  kT  change with 

respect the system performance. The difficulty with the application of PA is that the 
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modeler must have deep knowledge of the simulation model and the system it represents, 

and in some situations must build the model right from start (Eylem and Ihsan, 2004, 

Carson and Maria, 1997).  PA helps reduce the number of simulations runs required to 

get derivative estimates, but it is not feasible for all systems and problems. When the 

system is sufficiently complex the analysis is too difficult and the PA approach is not 

possible.  

Stochastic approximation (StA) 

Stochastic approximation is a procedure for finding the minimum or maximum of a 

function.  It was first introduced by Robbins and Monro in 1951 and Kiefer and 

Wolfowitz in 1952 (Eylem and Ihsan, 2004). The assumption underlying the problem is 

given as, minimization of H(X) can be solved using ( ) 0H X∇ = . This method uses a 

recursive formula which is shown in (2.3). 

( )1
ˆ

n n n nX X a H+ Θ
= − ∇∏                                           (2.3) 

where na is a series of real valued step sizes that must satisfy
2,n na a< ∞ < ∞∑ ∑ . The 

quantity nX is the estimated value of the minimum at the start of the iteration n, ˆ
nH∇  is 

an estimate of the gradient ( )nH X∇  from iteration n, and 
Θ∏ is projection onto Θ

(Eylem and Ihsan, 2004). As the number of iterations approaches infinity, nX  approaches 

a value such that the theoretical regression function of the stochastic response is 

minimized.  
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Response surface methodology (RSM) 

RSM is a class of procedures that fits regression models to the output responses of a 

simulation model evaluated at several points, and optimizing the fit of the resulting 

response function (Eylem and Ihsan, 2004). The process could also be accomplished 

using neural networks in place of the regression. Sequential RSM is one of the popular 

forms of simulation optimization found in the research literature. The goal of RSM is to 

obtain an approximate functional relationship between the input variables and the output 

response function (Fu, 2002) (Fu, 2001).  The basic algorithm is divided into two phases: 

In phase I, the first-order model is fit to the response surface. Then the steepest decent is 

computed and the process is repeated until there is no further improvements. In phase II, 

a quadratic response surface is fitted using a second-order experimental designs, and then 

the optimum is derived from the fit (Eylem and Ihsan, 2004). 

“RSM provides a general methodology for optimization via simulation” (Eylem and 

Ihsan, 2004). The greatest advantage of this method is that it employs well-known 

statistical tools. In general RSM requires fewer simulation experiments compared to other 

gradient type methods (Carson and Maria, 1997). 

Statistical Methods  

The statistical methods could be classified into ranking and selection, multiple 

comparisons, and importance sampling. In case of ranking and selection two different 

approaches are employed. The first approach is called the indifference-zone, where the 

performance measure value selected differs from the optimum solution by a small value 

with at least certain a probability. The second approach is known as the subset selection 
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where the optimum solution is most likely to be present in a set of best performance 

measures with a certain probability.  

In case of multiple comparison procedures, a number of replications are run and the 

conclusion on performance measure is made by constructing confidence interval (Eylem 

and Ihsan, 2004). 

  The basic idea of the importance sampling is to simulate the system with different 

underlying probability measures so as to increase the probability of typical sample paths 

of interest. For each observation the estimated value is multiplied by a correction factor 

in order to obtain the unbiased estimate of the measure of the original system (Eylem and 

Ihsan, 2004). 

All the above methods discussed above act as a means of providing the local 

optimum. The probability of convergence is higher when these methods are used, though 

the convergence time is long. The global optimization methods do not assure of best 

optimal solution, but in many cases they provide good solutions. They converge 

relatively faster compared to the traditional methods. The meta-modal methods were used 

in manufacturing problems, queuing networks etc. and are still being used in solving 

many problems. IPA is used in obtaining optimum inventory levels, intelligent traffic 

signaling system at the intersections, and ramp meter control. These meta-models still 

serve as a backbone for many real-world problems because they assure optimal answers 

for appropriately structured problems.  
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2.6.2 Nested Partitions for Global Optimization  

There are many popular and effective methods to perform global optimization, some 

of them have been listed in the figure 2.3. The earliest and the most robust method 

involve the pure random search (PRS) (Shi and Olafsson, 2000). Under this method 

points in feasible search space are selected at random but uniformly, and their cardinal 

values are compared. The PRS is slow since it does not have a learning curve. Since then 

there have been many methods like simulated annealing algorithm, pure adaptive search 

(PAS), tabu search, multi-start algorithm etc. 

Shi and Olafsson (2000) proposed a new randomized method for solving the global 

optimization problems. The new randomized search known as the nested partitions (NP) 

method is similar to that of the clustering methods. Unlike in clustering methods where 

an attempt is made to cluster together sample points that are “close”, in NP method the 

feasible region is systematically partitioned into several sub-regions, assessment of a sub-

region is performed and the entire computational effort is concentrated on one particular 

region. Let us consider the problems of the following form (Shi and Olafsson, 2000): 

( )* arg min f
θ

θ θ
∈Θ

∈         (2.4) 

Where Θ is the finite solution set and : Rf Θ→ is the performance function to be 

optimized. In each iteration of the algorithm the most promising region is assumed, 

which would be a subset of the region Θ , and is further partitioned into M sub-regions 

and aggregate the entire surrounding region into one region. So there are M+1 regions. At 

each iteration M+1 disjoint sub-sets of the feasible region are analyzed. Using a random 

sampling method the performance function values are selected, and a promising index 

(PI) of each region is calculated. The regions for the next iteration are based on the PI of 
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the region. The sub-regions found to be best is partitioned and the surrounding regions 

are aggregated into one region. If the surrounding region is later found as the best, the 

algorithm backtracks to the larger region that contains the older most promising region. 

The new most promising region is similarly partitioned and sampled as performed earlier.   

2.6.3 Simulation Based Inventory Optimization 

Min and Zhou (2002) categorized supply chain models that involve inventory and 

simulation as hybrids, since they involve components that are deterministic and stochastic 

in nature. The table 2.1 and 2.2 below shows various papers which use simulation and 

simulation optimization for inventory based models. Table 2.1 provides a short summary 

of the research conducted in studying the performance of supply chain using simulation.  

Unfortunately it is often not enough to only study the performance of the supply chain, 

but rather a need exists to optimize the supply chain parameters. So, table 2.2 show the 

research conducted in order to optimize the performance of supply chains using 

simulation-based approaches.  
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Table 2.1 Performance of Supply Chain Using Simulation* 

No # Authors, Year Short Summary

1 Towill et al. (1992)
Simulation is used as a means to study the impact of 

various inventory policies

2 Lee and Billington (1993)

Developed a supply chain  model for HP to manage their 

1) material flows in their supply chains 2) assess inventory 

investment 3) evaulate alternatives

3 Strader et al. (2000)

A multi-agent simulation as a tool to study the impact of 

information sharing on order fullfilment  in divergent 

assembly supply-chains

4 Souza et al. (2000)
The impact of causal factors on the dynamic performance 

of the supply chain

5 Beamon and Chen (2001)
The performance of conjoined supply chains is studied 

through experimental design and simulation

6 Holweg and Bicheno (2002)

Described how a participative simulation model is used to 

demonstrate the supply chain dynamics and provde 

improvements to the entire supply chain

*(Daniel and Rajendran, 2005) 

Table 2.2 Optimized Performance of Supply Chain Using Simulation 

No # Authors, Year Short Summary

1 Glasserman and Tayur (1995)

Investigated multi-echelon systems working under a base 

stock policy with capacity constraints, and found the 

optimal solution using an (IPA) framework 

2 Disney et al. (1997)

Demonstrated the use of a model with decision support 

system along with simulation facility and genetic algorithm 

(GA) optimization procedure

3 Bashyam and Fu  (1998)

 A constrained optimization problem is considerd,  for 

which the optimal (S,s) inventory levels are found using a 

feasible direction algorithm in simulation, which also uses 

an IPA framework

4 Petrovic et al. (1998)

Used a fuzzy modeling and simulation of a supply chain in 

a stochastic environment to detrmine the stock levels and 

order quantities

5 Rao et al. (2000)

Developed an integrated model to analyze different models 

of Caterpiller's new line of compact construction 

equipment

6 Ettl Et al. (2000)

Developed supply network that took as input data (BOM, 

lead time, etc.) to come up with base-stock levels at each 

stocking location

7 Bollapragada et al. (2004)

Studied the supply performance in assembly systems with 

uncertain supply and demand in a multi-echelon system 

environment using an IPA framework

8 Daniel and Rajendran (2005)
The optimal base-stock levels for a single-product serial 

supply chain is found using GA  
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3. MODEL 

In this chapter we will look at the multi-echelon systems considered, review the 

notations, discuss the sequence of activities, base-stock policy, and conduct a 

comprehensive analytical review of relationships among different stages and key 

performance measures.  

3.1 Inventory system  
The research describes multi-echelon inventory systems with an intermediate, 

external product demand in one or more upper echelons. Components are procured from 

external suppliers, are assembled into an intermediate product and a final product, and 

sold to respective customers. A lead time is associated with each stage, which 

corresponds to the ordering lead time and manufacturing lead time. Uncertainty is 

involved in both the demand and supply of components, intermediate product and final 

product. Let us initially consider a single-echelon model for brevity and continue with the 

three-echelon assembly system and followed by m-echelon assembly system.  

3.1.1 Single­echelon Assembly System 

In a single-echelon model an unlimited supply of components is considered, the 

components are modified and final products are sold to the customers. The single-echelon 

model is shown in figure 3.1. There is an l period ordering lead time, i.e. the components 

are obtained after l periods from the time the order is placed. The demand and the 

capacity are random in nature. A base-stock policy is used to replenish inventory of the 

final product. 
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Figure 3.1: Single-echelon Model 

3.1.2 Three­echelon Assembly System  

A three-echelon assembly system is shown in figure 3.2.  The three-echelon assembly 

system is represented by different nodes as shown in figure 3.2.  Let 0,1, , 1i N= −K

where 0 denotes the last/end node (downstream), and 1N −  denotes the first node 

(upstream). In a three-echelon assembly system the individual components (component 1 

and 2) are purchased from external suppliers and processed at node 3 and node 2, 

assembled into an intermediate product at node 1 and further processed to obtain a final 

product at node 0. There is a l period ordering lead time, i.e. the components are obtained 

after k periods from the time the order is placed. There is also a k period manufacturing 

lead time associated between the echelons, i.e. the processed components at node 3 and 

node 2 will be available for further processing at node 1 only after l periods.  

 

Figure 3.2: Three-echelon assembly system  

 

Node  3

Node 2

Node 1 Node 0

Supplier 1
Component 1

Supplier 2
Component 2

Final Product,
Demand 2

Intermediate 
Product,

Demand 1



84 

 

3.1.3 m­echelon Assembly System  
Similarly an m-echelon assembly system with several intermediate and final product 

demands is generalized and shown in Figure 3.3. An m-echelon assembly system follows 

the similar structure of three-echelon assembly system.  

 

Figure 3.3: m-echelon assembly system  

3.2 Notation  

The lists of notations used are described below: 

j

n
ξ : Product demand j in period n  

i
l :   Resupply/manufacturing lead time for component i 

i

n
η : Realized capacity at stage i in period n 

i
s : Base-stock level for item i 

i
c : Cost per unit of item i 

α : Required type-I service level 

i

n
Y : Outstanding orders of item i in period n that have not been delivered due to limited 

capacity (shortfall of item i) 

i

nI : On-hand inventory level of item i in period n before the demand is realized 

i

n
IP : It is the on-hand inventory plus the pipeline inventory for component i in period n 

Node  m

Node m‐1

Node m‐2 Node 1 Node 0……….

Supplier 1
Component 1

Supplier 2
Component 2

Final Product
Demand  j

Intermediate 
Product

Demand  j‐1 

Intermediate 
Product

Demand 1 (j‐m+2)



85 

 

i

nNI : The net inventory for component i in period n 

i

n
DS  : It is the downstream shortage at node i in period n 

3.3 Sequence of Activities and Base­Stock Policy 

All the events occur at the beginning of each period in the following sequence i) the 

outstanding orders are updated, i.e. items that have not been delivered in the previous 

period due to limited capacity ii) the on-hand inventory is updated, i.e. the physical 

inventory iii) demand is realized iv) capacity is realized. An order is placed with the 

supplier in response to demand j

n
ξ . The order can be received either in full or could be 

constrained by the node’s capacity. Thus the amount received is ( )min ,i j i

n n n
Y ξ η+ , where 

i

n
η the realized capacity, and j

n
ξ is the demand facing that stage. The inventory allocation 

is determined when the outstanding orders are updated. 

Since a base-stock policy is followed for each component, at the beginning of period 

n we have  

0 , for alli i i

n n n
I Y Y s i+ − =         (3.1)  

Where i

n
I is the on-hand inventory level for component i at the beginning of period n 

before the demand is realized. So the base stock level for component i is defined as the 

sum of on-hand inventory and the outstanding orders of component i in period n, i

nY

minus the backlog at downstream node (in this case let us consider the downstream node 

as 0, it can change depending on the type of assembly model), 0

n
Y . The on-hand 

inventory of component i in period n is 0i i i

n n nI s Y Y= − + . Equation 3.1 does not take into 



86 

 

account lead time of any type. If lead time is considered, the equation 3.1 is modified and 

is shown as equation 3.2. 

0 , for alli i i

i i i

n l n l n l
IP Y Y s i

− − −
+ − =         (3.2) 

In equation 3.2 i

i

n l
IP

−
represents component i's on-hand inventory plus the pipeline 

inventory from the upstream node/supplier, and i
l represents lead time for component i. 

Because all in-transit inventory of component i in period 
i

n l− will be delivered by period 

n, i

n
I equals all the i

i

n l
IP

−
minus all the demand for the product that occurs during the lead 

time, i.e. from period 
i

n l− to n-1. The total consumption can be written as similarly in 

Bollapragada et al., (2004):
0

1 ... i in n l n l
Yξ ξ− − −

+ + + . Thus the on-hand inventory level of 

component i in period n for a single source of demand, a single-stage: 

0

1

1

...

...

i i i

i i

i i

n nn l n l n l

i i

nn l n l

I IP Y

s Y

ξ ξ

ξ ξ
−− − −

−− −

= − − − −

= − − − −
       (3.2a) 

3.4 Update Equations  

Update equations for single-echelon, three-echelon, and multi-echelon inventory 

models are developed in this sub-section. Outstanding orders, on-hand inventory, net 

inventory (on-hand plus pipeline inventory) equations for single-echelon, three-echelon 

and m-echelon models are developed. The evolution of inventory over time is studied 

when a base-stock policy is used. As discussed in the earlier sections we characterize the 

relationship between the base stock level, outstanding orders, and on-hand inventory 

corresponding to a single-echelon, three-echelon and m-echelon assembly system. For 
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brevity we start with a single-echelon (single-stage) system, and followed by the multi-

echelon analytical review. These update equations describe the relation and interaction 

between various nodes, and these equations are updated every period using a simulation 

framework which we discuss in the later chapters.  

3.4.1 Single­echelon Analytical Review 

A single-echelon is a simplified version of the multi-echelon model, for brevity let us 

start with single-stage. The outstanding orders at the beginning of period n+1 for 

component i can be written as: 

{ } { }1 min , 0i i i i

n n n n n n
Y Y Y where iξ ξ η+ = + − + ∈

     (3.3) 

The outstanding order is either zero or could be constrained by the node’s capacity, 

i

n
η  . 1

n
ξ ,  is the demand 1 (there is only one demand in single-echelon problem) in period 

n.  Equation 3.3 can be also written as shown below  

( ) { }1 max 0, 0i i i

n n n n
Y Y where iξ η+ = + − ∈

      (3.4) 

The net inventory for component i in period n, i

nNI equals i

i

n l
IP

−
minus the total 

consumption of component from period i
n l− to period n-1. The total consumption is 

shown in equation (3.5) and the on-hand inventory is shown in equation (3.6). Since this 

is a single-echelon problem, 0i∈ . 

0

1TotalConsumption ...... where 0i in n l n l
Y iξ ξ− − −

= + + + ∈                               (3.5) 

0

1 ...... where 0i i i

i i

n nn l n l n l
NI IP Y iξ ξ−− − −

= − − − − ∈          (3.6) 

Substituting i=0 in equation 3.2 we get: i

i i

n l
IP s

−
= , substituting this result in equation 

3.6 we get the net inventory as shown in equation (3.7) 
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0

1 ...... Where 0i i

i i

n n n l n l
NI s Y iξ ξ− − −

= − − − − ∈      (3.7) 

The on-hand inventory or the physical inventory is a slightly modified form of the 

net-inventory equation (3.7) and is written as shown in equation (3.8). Since the physical 

inventory can never be less than zero, a max of zero and the net inventory is performed to 

obtain the on-hand inventory. 

0

2 1 2max 0, , 0i i

n n n n
I s Y where iξ ξ− − −⎡ ⎤= − − − ∈⎣ ⎦        (3.8) 

The single-stage problem can be formulated as shown in (3.9): 

0

0

min 0

. 0

i

i i

s

n

c s where i

s t P NI α
≥

∈

⎡ ⎤≥ >⎣ ⎦
         (3.9) 

3.4.2 Three­echelon Analytical Review 

Figure 3.2 shows the three-echelon assembly model, the two components (component 

1 and component 2) have a constant delivery lead time from the suppliers. The supplier 

capacity is assumed to be unlimited, but the manufacturing capacity at the nodes limits 

the number of component that can be processed at a node. The availability of processed 

component inventory constrains the number of units that can be sent downstream for 

assembly. There is also a constant delivery lead time between the echelons. The 

manufacturing capacity constraints in node 1 and node 0 restrict the number of units that 

can be supplied downstream and satisfy intermediate and external demands. As shown in 

figure 3.2 some units are sold to an intermediate customer in addition to those sold as a 

final product at node 0. The multi-echelon system operates under a periodic review base-

stock policy. Using this policy, at the start of each period a check on inventory position 

(on-hand inventory + orders – backorders) is performed and if it falls below the base-

stock level an order is placed to bring the inventory position back to the base-stock level. 



89 

 

The mathematical equations developed in the three-echelon assume that intermediate 

product demand receives priority. The intermediate product demand in period n is 

denoted as, 1

nξ and similarly the final product demand in period n is denoted as 2

nξ . 

The net inventory in period n for node i (node 3,2 and 1) i

nNI  equals i

i

n l
IP

−
minus the 

total consumption of from period i
n l− to period n-1. The total consumption for nodes 3 

and 2 is shown in equation (3.10). 

1 1

1 1 2

2 1 1

1

... ...
TotalConsumption for Node 2and 3= where 2,3

n i n
n l

i
i

n l
n n l

i
DS Y

ξ ξ ξ

ξ
− −−

−
− −

⎧ + + + +⎪ ∈⎨
+ − +⎪⎩

 (3.10) 

The net inventory for node 2 and 3 is shown in equation (3.11) 

1 1

1

2 2 1 1

1 1

...
, 2,3

...

i i

i i

i

nn l n li

n

n nn l n l

IP
NI wherei

DS Y

ξ ξ

ξ ξ
−− −

− −− −

⎧ − − −⎪= ∈⎨
− − − + −⎪⎩

     (3.11) 

1

nξ , is the demand 1, and 2

nξ  is demand 2 in period n. 1

1nDS −  is the downstream 

shortage, which occurs due to constrained manufacturing capacity. It is defined as shown 

in equation (3.12) 

{ }1 1 2 1

1 1 1 1,0n n n nDS max ξ ξ η− − − −= + −        (3.12) 

We know that equation 3.2 represents the base-stock policy for a general multi-

echelon system. Modifying (3.2) for node 2 and 3 in three-echelon model we get equation 

(3.13).  

{ }1 , where 2,3i i i

i i i

n l n l n l
IP Y Y s i

− − −
+ − = ∈

      (3.13) 

1
in l

Y
−

represents outstanding orders/backlog at downstream node 1, the node 1 is 

considered as the backlog instead of node 0 because node 1 is the last downstream node 

that accounts for the two demands.
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Substituting equation (3.13) in (3.11), the net inventory for node 2 and 3 is obtained 

as shown below in equation (3.13)  

1 1

1

2 2 1

1 1

...
, 2,3

...

i i

i

i i

nn l n li

n

n nn l

s Y
NI wherei

DS

ξ ξ

ξ ξ
−− −

− −−

⎧ − − − −⎪= ∈⎨
− − − +⎪⎩

     (3.13) 

The on-hand inventory ( )2,3

nI for node 2 and 3, which is the modified form of 

equation (3.13) can be written as shown in (3.14) 

( )1 1 2 2 1

1 1 10 , ... ... , 2,3i i i

i i i

n n n nn l n l n l
I max s Y DS where iξ ξ ξ ξ− − −− − −
= − − − − − − − + ∈   (3.14) 

Similar to node 2 and 3 the net inventory and the on-hand inventory equations for 

node 1 can be deduced. The total consumption for nodes 1, i.e. from period i
n l− to 

period n-1 is shown in equation (3.15). 

1 1

1 1 2

2 0 0

1

... ...
TotalConsumption for Node1= where 1

n i n
n l

i
i

n l
n n l

i
DS Y

ξ ξ ξ

ξ
− −−

−
− −

⎧ + + + +⎪ ∈⎨
+ − +⎪⎩

   (3.15) 

The net inventory for node 1 is shown in equation (3.16) 

1 1

1

2 2 0 0

1 1

...
, 1

...

i i

i i

i

nn l n li

n

n nn l n l

IP
NI wherei

DS Y

ξ ξ

ξ ξ
−− −

− −− −

⎧ − − −⎪= ∈⎨
− − − + −⎪⎩

     (3.16) 

0

1nDS −  is the downstream shortage, which occurs due to constrained manufacturing 

capacity in node 0. It is defined as shown in equation (3.17) 

{ }0 2 0

1 1 1, 0n n nDS max ξ η− − −= −         (3.17) 

We know that equation 3.2 represents the base-stock policy for a general multi-

echelon system. Modifying (3.2) for node 1 in a three-echelon model we get equation 

(3.18).  

{ }0 , where 1i i i

i i i

n l n l n l
IP Y Y s i

− − −
+ − = ∈

       (3.18) 
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0
in l

Y
−

, represents outstanding orders/backlog at downstream node 0. 

Substituting equation (3.18) in (3.16), the net inventory for node 2 and 3 is obtained as 

shown below in equation (3.19)  

1 1

1

2 2 0

1 1

...
, where 1

...

i i

i

i i

nn l n li

n

n nn l

s Y
NI i

DS

ξ ξ

ξ ξ
−− −

− −−

⎧ − − − −⎪= ∈⎨
− − − +⎪⎩

      (3.19) 

The on-hand inventory ( )1

nI for node 1, which is the modified form of equation (3.19) 

can be written as shown in (3.20) 

( )1 1 2 2 0

1 1 10 , ... ... , where 1i i i

i i i

n n n nn l n l n l
I max s Y DS iξ ξ ξ ξ− − −− − −
= − − − − − − − + ∈    (3.20) 

Similarly the net inventory and the on-hand inventory equations for node 0 can be 

written as shown in (3.21) and (3.22) respectively. 

{ 2 2

1 ... , where 0i i

i i i

n nn l n l
NI s Y iξ ξ−− −

= − − − − ∈       (3.21) 

( )2 2

10 , ... , where 0i i

i i i

n nn l n l
I max s Y iξ ξ−− −
= − − − − ∈      (3.22) 

Note that there is only demand 2 ( 2ξ ) in the last node, i.e. the final demand, and since 

node 0 is the last node, so the downstream shortage is not applicable to the node 0.  

The outstanding orders at the beginning of period n+1 for component i where { }2,3i∈

can be developed iteratively as follows: 

{ } { }1 2 1 1 2 1

1 min , 2,3i i i i

n n n n n n n n n nY Y DS Y DS where iξ ξ ξ ξ η+ = + + − − + + − ∈
  (3.23) 

The outstanding order is either zero or could be constrained by the nodes (i.e. node 2 

and node 3) manufacturing capacity, i

nη  . 1

nξ , is the demand 1, and 2

nξ  is demand 2.  

Equation (3.10) can be also written as shown below  

( )1 2 1

1 max 0,  where 2,3i i i

n n n n n nY Y DS iξ ξ η+ = + + − − ∈
     (3.24) 
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The iterative relationship for the outstanding orders of components 1 and 2 in equation 

(3.24) is similar to the inventory shortfall in a single-echelon system, similar to the 

shortfall defined in Glasserman and Tayur (1995). Similarly the outstanding orders at the 

beginning of period n+1 for intermediate product (numbered item 1 at node 1) and final 

product (numbered item 0 at node 0) in Figure 3.2 can be defined iteratively, as in 

equations (3.25) and (3.26): 

1 1 2 0 3 3 1 1

1 2 11

1 1 1 2 0 2 2 2 2 1 1

1 1 1 2 11 1

2 2 1

11

, ..

min .. , ..

.. ,

i

i i

i

n n n n n nn l

n n n n n n n nn l n l

n nn l

Y DS s Y

Y Y DS s Y

ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ

ξ ξ η

− − −− +

+ − − − −− + − +

−− +

⎛ ⎞+ + − − − − −
⎜ ⎟

= + + − − − − − − − − −⎜ ⎟
⎜ ⎟⎜ ⎟− − −⎝ ⎠

 
(3.25) 

0 2 1 1 1 1

2 10 0 2

1 2 2 0

11

, ...
min

... ,

i

i

n n n nn l

n n n

n nn l

Y s Y
Y Y

ξ ξ ξ
ξ

ξ ξ η
− −−

+

−− +

⎛ ⎞+ − − − −
⎜ ⎟= + −
⎜ ⎟− − −⎝ ⎠     (3.26) 

The outstanding orders in (3.25) are determined on the basis of the manufacturing 

capacity of item 1 at node 1 ( )1

nη , available inventory of item 3 in previous period

( )3 3 1 1 2 2

2 1 11 1
.. ..i in n nn l n l

s Y ξ ξ ξ ξ− − −− − − −
− − − − − − − , and on-hand inventory of item 2 in previous 

period ( )2 2 1 1 2 2

2 1 11 1
.. ..i in n nn l n l

s Y ξ ξ ξ ξ− − −− − − −
− − − − − − − . Similarly (3.26) the outstanding 

orders are determined on the basis of the manufacturing capacity of item 0 ( )0

nη , and 

available inventory of item 1 in previous period

( )1 1 1 1 2 2

2 1 11
... ...i in n nn l n l

s Y ξ ξ ξ ξ− − −− − −
− − − − − − − . Note that since priority is given to 

intermediate product demand, equation 3.26 has an additional intermediate demand term 

(i.e., demand 1starts from
1

in l
ξ

−
).   

The three-echelon problem can be formulated as shown in (3.27): 
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{ }
3

0
0

min . 0 , 0,1,2,3
i

i i i i

n
s

i

c s s t P NI whereiα
≥ =

⎡ ⎤≥ ≥ ∈⎣ ⎦∑
     (3.27)  

We assume the following conditions hold to ensure the existence of a rational 

problem: 

1 2 3,2,1

n n nE Eξ ξ η⎡ ⎤ ⎡ ⎤+ ≤⎣ ⎦ ⎣ ⎦ , 
3 0

n nE Eξ η⎡ ⎤ ⎡ ⎤≤⎣ ⎦ ⎣ ⎦       (3.28) 

The objective function in (3.27) indirectly penalizes holding inventory at each 

location, since higher i
s  corresponds to more inventory of item i (Bollapragada, R. 2004). 

The constraints are formulated on the basis of a type-I service level. The constraints 

ensure that sufficient inventory is held to meet demands with a high level of certainty.  

3.4.3 m­echelon Analytical Review 

The outstanding orders at the beginning of period n+1 for component i where 

{ }, 1i m m∈ − can be developed as follows. 

( )( 2) 2

1 max 0, .... , 1i i j m j m i

n n n n n nY Y DS wherei m mξ ξ η− − −
+ = + + + − − ∈ −

   (3.29) 

Throughout the equations it is assumed that there are 2j m= −  number of demands 

for an m-echelon model. 

The outstanding orders for node m-2 can be developed iteratively as shown in 

equation (3.30)  

( 2) 1 1 1 ( 2)

1 2 1

( 2) 1 ( 2) ( 2)

1 1 1 1 21 1

( 2)

1 11

... ,

... min .. .. .... ,

.... ... ....

i

i i

i

i j m j i m m j m

n n n n n n l

i i j m j i j m j j m m j m

n n n n n n n nn l n l

j m j

n nn l

Y DS s Y

Y Y DS s Y

ξ ξ ξ

ξ ξ ξ ξ ξ ξ

ξ ξ ξ

− − − − − − −
− − − +

− − − − − − −
+ − − − −− + − +

− −
− −− +

+ + + − − − −

= + + + − − − − − − − − −

− − − − − − ,

2

j i

n

wherei m

η

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

∈ −
           (3.30) 

The outstanding orders for node m-3, m-4….1,0 have similar structure, except the 

number of demands considered reduces or stay the same as we go further downstream, 
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which depends on the number of intermediate demands considered. The outstanding 

order for m-3, m-4…m-k is shown in equations (3.31), (3.32), and (3.33) respectively.  

( 3) 1 1 2

1

( 3) 1 1 2 ( 2) ( 2)

1 1 2 11

1 1

11

... ,

... min ... .....

... ,

3

i

i

i j m j i m

n n n n

i i j m i m j m j m

n n n n n n nn l

j j i

n nn l

Y DS s

Y Y DS Y

wherei m

ξ ξ

ξ ξ ξ ξ

ξ ξ η

− − − − −
−

− − − − − − − −
+ − − −− +

− −
−− +

⎛ ⎞+ + + −
⎜ ⎟

= + + + − − − − − −⎜ ⎟
⎜ ⎟⎜ ⎟− −⎝ ⎠

∈ −
 (3.31) 

( 4) 1 3

1

( 4) 1 3 ( 3) ( 3)

1 1 2 11

11

... ,

... min ... .....

... ,

4

i

i

i j m j i m

n n n n

i i j m j i m j m j m

n n n n n n nn l

j j i

n nn l

Y DS s

Y Y DS Y

wherei m

ξ ξ

ξ ξ ξ ξ

ξ ξ η

− − − −
−

− − − − − − − −
+ − − −− +

−− +

⎛ ⎞+ + + −
⎜ ⎟

= + + + − − − − − − −⎜ ⎟
⎜ ⎟⎜ ⎟− −⎝ ⎠

∈ −

 (3.32) 

( ) 1 1

1

( ) 1 1 ( 1) ( 1)

1 1 2 11

1 1

11

... ,

... min ... ...

.. ,

i

i

i j m k j i m k

n n n n

i i j m k j i m k j m k j m k

n n n n n n nn l

i

n nn l

Y DS s

Y Y DS Y

wherei m k

ξ ξ

ξ ξ ξ ξ

ξ ξ η

− − − − −
−

− − − − − − − − − − −
+ − − −− +

−− +

⎛ ⎞+ + + −
⎜ ⎟

= + + + − − − − − − −⎜ ⎟
⎜ ⎟⎜ ⎟− −⎝ ⎠

∈ −

 (3.33) 

The relationships for outstanding orders can be written in a similar fashion for other 

stages downstream. The outstanding order for stage 0 is same as a three-echelon. The 

relationships for on-hand inventory can be written as shown in (3.34), (3.35), (3.36). 

( 2)

2 1 1

( 2) 2

1

0, ..... ..
max , , 1

.. .....i i

i i j m j

n n ni

n j m j m

nn l n l

s Y
I wherei m m

DS

ξ ξ

ξ ξ

− −
− − −

− − −
−− −

⎡ ⎤− − − −
= ∈ −⎢ ⎥

− − +⎢ ⎥⎣ ⎦    (3.34) 

( 2)

2 1 1

( 2) 3

1

0, .....
max , 2

.....i i

i i j m j

n n ni

n j m j m

nn l n l

s Y
I wherei m

DS

ξ ξ

ξ ξ

− −
− − −

− − −
−− −

⎡ ⎤− − −
= ∈ −⎢ ⎥

− − +⎢ ⎥⎣ ⎦
    (3.35) 

( )

2 1 1

( ) 1

1

0, .....
max ,

.....i i

i i j m k j

n n ni

n j m k j m k

nn l n l

s Y
I wherei m k

DS

ξ ξ

ξ ξ

− −
− − −

− − − −
−− −

⎡ ⎤− − −
= ∈ −⎢ ⎥

− − +⎢ ⎥⎣ ⎦
    (3.36) 
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Where, 2

1

m

nDS
−
− , 3

1

m

nDS
−
−  and 1

1

m k

nDS
− −
−  are shown in equations (3.37), (3.38), and (3.39) 

{ }2 ( 2) 2

1 1 1 1.... , 0m j m j m

n n n nDS max ξ ξ η− − − −
− − − −= + + −       (3.37) 

{ }3 ( 3) 3

1 1 1 1.... ,0m j m j m

n n n nDS max ξ ξ η− − − −
− − − −= + + −       (3.38) 

{ }1 ( 1) 1

1 1 1 1.... ,0m k j m k j m k

n n n nDS max ξ ξ η− − − − − − −
− − − −= + + −      (3.39) 

The m-echelon problem can be formulated as shown in (3.27): 

{ }
0

0

min . 0 , 0....
i

m
i i i i

n
s

i

c s s t P NI wherei mα
≥ =

⎡ ⎤≥ ≥ ∈⎣ ⎦∑
     (3.40)  

We assume the following conditions hold to ensure the existence of a rational 

problem: 

{ }
0

, 2, 1,....0j i i

n n

i

E E where i m mξ η−⎡ ⎤ ⎡ ⎤≤ ∈ − −⎢ ⎥ ⎣ ⎦⎣ ⎦
∑

     (3.41)  
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4. SIMULATION OPTIMIZATION USING Opt Quest 

In an earlier chapter we studied the evolution of inventory over time when a base-

stock policy is used. As discussed in the chapter 3 we characterize the relationship 

between the base stock level, outstanding orders, and on-hand inventory corresponding to 

a single-echelon, three-echelon and m-echelon assembly system. We consider only two 

components in either systems, i.e. three-echelon or m-echelon assembly system. A 

constant lead time of l periods between echelons and supply of components to initial 

nodes (i.e. to node 2 and 3 in case of a three-echelon system, node m and m-1 in case of a 

m-echelon system). ARENA (simulation software) is used to update the variables in the 

update equations (outstanding orders, on-hand inventory etc.)  periodically.  

In this chapter we examine how best found base-stock levels are obtained using 

simulation-based inventory optimization carried out in OptQuest (a tool in the ARENA 

simulation software) for several scenarios. The following sub-sections will discuss how 

simulation optimization is used in conjunction with OptQuest to find best found base-

stock levels for three-echelon model, four-echelon model, five-echelon model using 

OptQuest, and finally discuss the simulation optimization results.  

4.1 Optimization with OptQuest 

A simulation based inventory optimization is carried out using the combination of 

OptQuest and ARENA. OptQuest is a stand-alone optimization software routine that is 

used along with a number of commercial simulation environments like ARENA and 

Crystal Ball (Fu, 2001). The OptQuest Callable Library (OCL) is the optimization engine 

of the OptQuest system, which is based on a heuristic known as scatter search (Laguna 
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and Marti, 2002). Like many other stand alone optimization software routines OptQuest 

also follows a “black box” approach, figure 4.1 represents a complex system as a black 

box (April et al., 2001). A potential disadvantage of this approach would be that, the 

optimization procedure is generic and it does not know anything about the process that 

goes inside the box. A clear advantage of such approach would be the use of the 

optimization software for many complex systems.  

 

Figure 4.1: Complex System as a black box 

OptQuest allows the user to input the problem structure through its graphical user 

interface. The objective function is specified along with the constraints. Upper and lower 

bounds of variables have to be specified, and some of them can be restricted to a discrete 

value with arbitrary step size. The OCL uses this information to determine the search 

area. OCL is designed to search for the following class of problems (Glover et al., 2000) 

shown in equation 4.1. The structure of the inventory problem considered in this research 

is also similar to the one shown in the equation below. 

( )
( ) ( )

( )

Max or Min ( )

Subject to Constraints

Requirements

Bounds

l u

F x

Ax b

g G x g

l x u

≤

≤ ≤

≤ ≤

   (4.1) 

The coefficient matrix A and the right-hand side value b must be known. The 

requirement, i.e. the simple upper and/or lower bounds imposed on the function can be 

either linear or non-linear. The values of the bounds 
l

g  and 
u

g must be known constants. 

When OptQuest is used as an optimization procedure in coordination with a system 
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evaluator (it could be a model in simulation package, ARENA in our case), the output 

from the system evaluator is fed as input to the optimization procedure, and vice-versa. 

The update equations (outstanding orders and on-hand inventory equations for different 

nodes) are written in the simulation software ARENA, and OptQuest which is an 

optimization package sends in the base-stock values for each node to the simulation 

software ARENA. The value of base-stock is based on the upper and lower bounds 

provided in the OptQuest interface, this concept would be clearer after the subsequent 

sub-section which discusses the steps that OCL follows in performing its search. 

 

Figure 4.2: Coordination between Optimization and System Evaluator 

The optimization procedure of OCL is designed to carry out a special “non-

monotonic search”, where the successively generated input values produce varying 

evaluations. All of the evaluations are not necessarily improving, but over time they 

provide good solution. It is done to maintain diversity in the search process. The user 

written application interacts with the OCL and defines complete optimization problem, 

and starts a search for best found values of the decision variables. Figure 4.3 provides the 

concept of how OCL can be used to search for best found solutions to complex 

optimization problems (Laguna and Marti, 2002). 
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Figure 4.3: OCL linked to user-written application  

4.1.1 Steps Used for Search by OCL (Laguna and Marti, 2002) 

As stated earlier the optimization technology embedded in OCL is a metaheuristic 

known as scatter search. Scatter search has some common features of the popular genetic 

algorithm (GA). Both search methods are population based metaheuristic’s. Unlike GA, 

scatter search operates on fewer sets of points, these sets of points are called as reference 

points. These reference points contain good starting solutions, are determined on the basis 

of user specification called “most likely”, or based on previous solution efforts. The 

approach systematically generates combinations of reference points to create new 

reference which are mapped into feasible points. Scatter search in OCL employs the 

following steps in search: 

Step 1: Applying a diversification generation method to build a starting set of solutions. 

Define the best points as a reference set (determined based on quality and diversity). This 

is accomplished by dividing the range of each variable into four sub-ranges of equal size. 

Then the solution is found in two steps:  

• A sub-range is randomly picked among the four. The selection probability of a 

sub-range is inversely proportional to the frequency count (which keeps track of 

how many times the sub-range has been selected).  
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• After a sub-range has been selected the value is randomly chosen from the 

selected sub-range. The starting set of points might also include the following: 

o All variables are set to the lower bound 

o All variables are set to upper bound 

o All variables are set to the midpoint ( ) / 2x l u l= + −  

o Other solutions that are user suggested 

The variables here refer to the base-stock value of different nodes, number of 

echelons considered determine the number of nodes.  

Step 2: While the stopping criteria has not yet occurred combination of subsets of 

reference points are used to generate new points. The combination is done so as to 

produce points both inside and outside the convex region. Once the reference set is 

created, the combinations of new solutions are based following three types: 

( )

where,
2

is a random number in range 0,1

x x d

x x
x x d d r

x x d r

′= −
′′ ′−′= + =

′′= −

    (4.2) 

When best of two reference solutions are combined up to five new solutions are 

generated, when the worst of the two solutions are combined only one new solution is 

generated. OCL uses Euclidean distance measure to determine how close a potential 

point is from the existing set of reference points, so as to be included or discarded from 

the reference set.  

The points are further modified by mapping process to yield feasible points based on 

the constraints in the problem, both due to linearity and integrality constraints. OCL 
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solves an LP or a mixed-integer problem with a goal of finding a feasible solution x* that 

minimizes the deviation between x (infeasible point) and x*.   

Step 3: The reference set is continuously updated with points that improve the 

quality/diversity of the set until the termination condition occurs. 

Step 4:  if no new combinations are being explored then the collection of best solutions 

are used as a starting points for a new diversification generation method.  

So far it was assumed that the feasibility check for new solutions is being performed 

outside the black box, but there are cases where the feasibility can be done only inside the 

black box. In such cases the feasibility test results are communicated as one of the output, 

figure 4.4 depicts the situation. One of the measures which is used as objective function 

value F(X*) will be able to provide differentiation between good and bad solutions. 

G(X*) is associated with the performance of the system and is defined by the 

requirements. Based on the bounds for the requirements the solution is termed as feasible 

or infeasible. OCL does not discard the requirement infeasible terms but instead uses a 

penalty function P(X*) that penalizes requirement violations. The penalty is not static but 

is determined on the basis of the degree of violation. 

 

Figure 4.4: Solution Evaluation 

These four steps describe above provide an overview of the underlying mechanisms 

involved in the working of the OptQuest optimization engine. In many business and 
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engineering problems OptQuest can be used to find solutions close to best found very 

early in the search.  

4.2  Simulation  Optimization  of  m­Echelon  Assembly  Using  Opt 
Quest 

The simulation tool ARENA is used to update the equations of a m-echelon assembly 

system periodically, and an infinite horizon case is considered. Figure 4.5 show the block 

diagram of various activities that takes place every period, and each simulation run in 

ARENA.  

 

Figure 4.5: Simulation in ARENA within OptQuest Framework 

The following activities take place every period: 

• Demand and capacity values of earlier periods for all nodes are stored 
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• Demand and capacity values for all nodes are derived from probability 

distribution (the distribution might be specific to each node)  

• The values of demand and capacity for all nodes are written to a file 

• Outstanding orders (shortages of inventory in previous period), on-hand 

inventory, net inventory of previous periods for all nodes are stored 

• Outstanding orders/shortage equations for all nodes are updated  

• On-hand inventory, and net inventory equations for all nodes updated 

• Based on the updated equations service level for all nodes is obtained 

• The outstanding orders, net inventory, on-hand inventory for the current 

period for all the nodes are written to a file 

The following activities take place during each simulation run: 

• Base-stock values for all the nodes are assigned from OptQuest 

• Initial values (On-hand inventory etc.) are assigned by ARENA 

• The final service level for all nodes is sent to OptQuest 

Each simulation run consists of a pre-specified number of periods, during which the 

equations (i.e. on-hand inventory, outstanding order, etc.) are updated, and service level 

is determined for each period. A new base-stock value is sent to ARENA from OptQuest 

at the beginning of a new simulation run. At the end of each simulation run the service 

level value is sent to OptQuest. Based on the service level constraints in OptQuest the 

feasibility of the solution (base-stock value) is determined, i.e. if the required service 

level is achieved for the base-stock value assigned at the start of the simulation run by 

OptQuest. All the activities described under each period and every simulation run takes 

place continuously till the termination condition is reached. Number of simulations 
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required to obtain an best found base-stock level is determined on the termination 

condition. The termination condition can be either subjective (pre-specifying the number 

of simulation runs in OptQuest) or could be based on the specified tolerance/sensitivity of 

the solution (base-stock value) achieved. In figure 4.5 all the blocks except the first two 

blocks from the left side are updated every period, whereas the first two blocks on the left 

side (i.e. base-stock values assigned, and initial values assigned) are updated at the start 

of a new simulation run.  

The description of each block in figure 4.5 is provided below: 

Base-stock Values Assigned: At the start of every simulation run the base-stock 

values of each node are sent to ARENA from OptQuest. The base-stock values of each 

node that are sent to ARENA depends on the upper and lower bounds of the base-stock 

value specified in OptQuest as discussed in the earlier section 4.1. 

Initial Values Assigned: All the variables that are used in update equations are 

assigned an initial each time at the start of the simulation run. These variables include: 

• On-hand inventory variables for each node  

• Net Inventory variables for each node 

• Outstanding orders/ shortages for each node 

• Demand values, which depends on the number of demands (intermediate, and 

final products demand) for an echelon-system  

• Manufacturing Capacity for each node 

• Cost of each item  

Demand and Capacity Values of Past Periods: Once the base-stock values and the 

initial values are assigned the demand and capacity values in the past periods are stored. 
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The number of periods in the past that has to be stored is determined on the basis of 

supply and manufacturing lead time. As the lead time increases the amount of data 

(demand and capacity for each node in past) that needs to be stored also increases.   

Demand and Capacity is Realized: The value of demands for the current period is 

determined based on the probability distribution function specified. Similarly each node’s 

manufacturing capacity for current period is determined from a probability distribution 

function. The demand and capacity values of the current period are written to a file, i.e. 

spreadsheet or a notepad.  

Past outstanding orders/shortages and Inventory Stored: Due to the complex 

relations among the variables previous period’s values for outstanding orders, on-hand 

inventory, and net inventory are stored. For example, in order to compute the current net 

inventory equation needs information of outstanding order from three periods earlier.  

Outstanding orders/shortages and Inventory Stored: Now that there is information 

regarding the demands, capacity of each node, base-stock values, and initial values. The 

outstanding orders, net inventory, and the on-hand inventory are updated respectively in 

the same sequence for each node. 

Service Level is Computed: After the outstanding orders, and inventory updated the 

service level for each node is computed. Since the service level computed is a type-II 

service level, current period also accounts for earlier periods. At the end of simulation run 

the final service value which reflects all the periods is sent to OptQuest.  

All the update variables, i.e.  On-hand inventory, net inventory, service level, and 

outstanding orders/shortages for each node are written to a file, i.e. spreadsheet or 
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notepad. The entire process is repeated over for number of simulation runs to find the 

optimum base-stock level.    

The objective function and constraints are written in OptQuest. Figure 4.6 show the 

snapshot of OptQuest solution window for a three-echelon assembly problem. The lower 

portion of the window shows the graphical representation of the objective function value 

improving as the number of simulation runs increase. The upper portion of the window 

has three tables. The first table from top (minimize) shows the best objective found till 

the current simulation run, and also shows the objective value of the current simulation 

run. The second table from the top (controls) shows the best base-stock value for each 

node (S0, S1, S2, and S3; since it is a three-echelon there are only four nodes) found till 

the current simulation, and the current base-stock used for the simulation run. The third 

table (constraints) shows the status (feasible or infeasible) of the constraint in the current 

simulation run.  
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Figure 4.6: Snapshot of OptQuest Solution Window 

4.3 Three­Echelon Assembly Model 

Let us recall the assembly structure, and the update equations of the three-echelon 

model. Figure 4.7 shows the three-echelon assembly structure. 

 

Figure 4.7: Three-echelon Assembly Structure 

The on-hand inventory equations for three-echelon assembly system are listed below: 

( )1 1 2 2 1

1 1 10 , ... ... , 2,3i i i

i i i

n n n nn l n l n l
I max s Y DS where iξ ξ ξ ξ− − −− − −
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( )1 1 2 2 0

1 1 10 , ... ... , where 1i i i

i i i

n n n nn l n l n l
I max s Y DS iξ ξ ξ ξ− − −− − −
= − − − − − − − + ∈

  (4.2)
 

( )2 2

10 , ... , where 0i i

i i i

n nn l n l
I max s Y iξ ξ−− −
= − − − − ∈

     (4.3) 

The outstanding order equations for three-echelon assembly system are listed below: 

( )1 2 1

1 max 0,  where 2,3i i i

n n n n n nY Y DS iξ ξ η+ = + + − − ∈      (4.4) 

1 1 2 0 3 3 1 1

1 2 11

1 1 1 2 0 2 2 2 2 1 1

1 1 1 2 11 1

2 2 1

11

, ..

min .. , ..

.. ,

i

i i

i

n n n n n nn l

n n n n n n n nn l n l

n nn l

Y DS s Y

Y Y DS s Y

ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ

ξ ξ η

− − −− +

+ − − − −− + − +

−− +

⎛ ⎞+ + − − − − −
⎜ ⎟

= + + − − − − − − − − −⎜ ⎟
⎜ ⎟⎜ ⎟− − −⎝ ⎠

 
(4.5) 

( )0 0 2 0 2 1 1 1 1 2 2 0

1 2 1 11
min , ... ... ,i in n n n n n n n nn l n l

Y Y Y s Yξ ξ ξ ξ ξ ξ η+ − − −− − +
= + − + − − − − − − −

 (4.6) 

A simulation-based inventory optimization was carried out in OptQuest for eight 

different scenarios. Each scenario is simulated for a length 20 periods for an appropriate 

number of simulation runs (usually 300 to 500), where the number of simulation runs 

depends on how quickly the best found base-stock value is found for a given scenario. 

Fewer simulation runs are sufficient when the search bounds are tight. The cost per unit 

item is held constant, equal to 1. A 90% customer service level is used for all nodes, i.e. 

the value of 0.9α = . A lead time of 2 periods is used in the model, i.e. the supply lead 

time for node 2 and 3, and manufacturing lead time between nodes. Of the eight scenarios 

considered, the first four consist of deterministic values for demand and capacity, 

whereas the values in last four scenarios are derived from a normal distribution. Table 4.1 

provides the demand and capacity values used in the different simulation scenarios.  
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Table 4.1: Demand and Capacity Values of Three-echelon Used in Simulation* 

 

*Norm (Value1, Value2) represents Normal Distribution (Mean, Standard Deviation) 

Table 4.2: Best Found Base-stock Levels and Capacity Utilization of Three-

echelon** 

 

** S0, S1, S2, and S3 represent 0 1 2 3, , ,s s s s  of three-echelon respectively 

From Table 4.1 we can observe that scenarios 1 through 4 are deterministic, and 

scenarios 5 through 8 are probabilistic. In scenarios 1 and 3 the demands require 90% of 

the total capacity in each node. In scenarios 2 and 4 the demands require 70% of the total 

capacity in each node. The demand of the final product in scenarios 3 and 4 is exactly 

twice of scenarios 1 and 2. A similar approach is used for determining the average values 

of demand and capacity in scenarios 5 through 8, where the values of demand and 

capacity come from a normal distribution. Table 4.2 provides the optimal base-stock 

levels and capacity utilization for each node and scenario. From table 2 we can clearly 

 

S0 S1 S2 S3

Objective 

Function Node 0 Node 1 Node 2 Node 3

Scenario 1 10 19 23 23 75 0.8 0.89 0.89 0.89

Scenario 2 11 21 23 23 78 0.67 0.72 0.72 0.72

Scenario 3 12 35 35 35 117 0.89 0.92 0.92 0.92

Scenario 4 12 35 35 35 117 0.73 0.71 0.71 0.71

Scenario 5 10 25 24 24 83 0.86 0.98 0.93 0.94

Scenario 6 11 25 25 24 85 0.72 0.8 0.77 0.77

Scenario 7 15 35 35 35 120 0.92 0.98 0.95 0.96

Scenario 8 13 26 26 27 92 0.75 0.75 0.73 0.73

Utilization of capacityOptimal Base-Stock Levels**

Deterministic 

Case

Probabilistic 

case
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observe a higher objective function value (OBV) for scenarios 3 and 4 when compared to 

scenarios 1 and 2. An increase in the value of the demand results in a higher base-stock 

levels and thus higher objective cost. For the same reason the OBV of scenarios 7 and 8 

is higher than 5 and 6. Figure 4.8 and 4.9 show the graphical representation of the best 

found base-stock levels and the capacity utilization for scenarios 1,3,5 and 7 for better 

understanding.  

 

Figure 4.8: Best Found Base-stock Level for Scenarios 1, 3, 5, and 7 

 

 

Figure 4.9: Capacity Utilization for Scenarios 1, 3, 5, and 7 
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4.4 Four­Echelon Assembly Model  

Figure 4.10 shows the four-echelon assembly system.  

 

Figure 4.10: Four-echelon Assembly System  

The on-hand inventory equations for the four-echelon assembly system are stated 

below: 

1 1 2

1 1

2 3 3 2

1 1

... ...
0 , , 4,3

...

i i

i i

i i

n nn l n li

n

n nn l n l

s Y
I max where i

DS

ξ ξ ξ

ξ ξ ξ
− −− −

− −− −

⎛ ⎞⎡ ⎤− − − − − −
⎜ ⎟= ∈⎢ ⎥
⎜ ⎟− − − − +⎢ ⎥⎣ ⎦⎝ ⎠

   (4.7) 

1 1 2

1 1

2 3 3 1

1 1

... ...
0 , , where 2

...

i i

i i

i i

n nn l n li

n

n nn l n l

s Y
I max i

DS

ξ ξ ξ

ξ ξ ξ
− −− −

− −− −

⎛ ⎞⎡ ⎤− − − − − −
⎜ ⎟= ∈⎢ ⎥
⎜ ⎟− − − − +⎢ ⎥⎣ ⎦⎝ ⎠

   (4.8)
 

( )2 2 3 3 0

1 1 10 , ... ... , where 1i i i

i i i

n n n nn l n l n l
I max s Y DS iξ ξ ξ ξ− − −− − −
= − − − − − − − + ∈

  (4.9) 

( )3 3

10 , ... , where 0i i

i i i

n nn l n l
I max s Y iξ ξ−− −
= − − − − ∈

     (4.10) 

The outstanding order equations for the four-echelon assembly system with two 

period lead time are stated below:
 

( )1 2 3 2

1 max 0,  where 4,3i i i

n n n n n n nY Y DS iξ ξ ξ η+ = + + + − − ∈     (4.11) 

2 1 2 3 1 3 3 1

1 2 12 2 1 2 3 1

1 1 2 3 4 4 1 2 3 2

1 1 2 1 1 1

,
min

, ,

n n n n n n n

n n n n n n

n n n n n n n

Y DS s Y
Y Y DS

s Y

ξ ξ ξ ξ
ξ ξ ξ

ξ ξ ξ ξ ξ η
− − −

+ −

− − − − − −

⎛ ⎞+ + + − − −
= + + + − − ⎜ ⎟⎜ ⎟− − − − − −⎝ ⎠  (4.12) 
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1 2 3 0 2 2 1

1 2 11 1 2 3 0

1 1 2 3 1 1

1 1 2

,
min

,

n n n n n n

n n n n n

n n n n

Y DS s Y
Y Y DS

ξ ξ ξ
ξ ξ

ξ ξ ξ η
− − −

+ −

− − −

⎛ ⎞+ + − − −
= + + − − ⎜ ⎟⎜ ⎟− − −⎝ ⎠

  (4.13) 

( )0 0 3 0 3 1 1 2 3 2 0

1 2 1 1 2min , ,n n n n n n n n n nY Y Y s Yξ ξ ξ ξ ξ η+ − − − −= + − + − − − −     (4.14) 

A total of twelve scenarios are considered for the four-echelon assembly system. 

Scenarios 9 thru 14 consider deterministic values of demand and capacity at each node. 

The values of demand and capacity for Scenarios 15 thru 20 are based on a normal 

distribution. The parameters of demand and capacity for both deterministic and 

probabilistic scenarios are shown in Table 3. 

Table 4.3: Demand and Capacity Values of Four-echelon used in Simulation 

 

Table 4.4: Best Found Base-stock Levels and Capacity Utilization of Four-echelon 

 

Intermediate 

Product Demand 1

Intermediate 

Product Demand 2

Final Product 

Demand

Capacity At 

Node 4

Capacity 

At Node 3

Capacity 

At Node 2

Capacity 

At Node 1

Capacity 

At Node 0

Scenario 9 4 4 4 13 13 13 9 5

Scenario 10 4 4 4 15 15 15 11 6

Scenario 11 8 8 4 22 22 22 13 5

Scenario 12 8 8 4 25 25 25 15 6

Scenario 13 8 4 4 18 18 18 9 5

Scenario 14 8 4 4 20 20 20 11 6

Scenario 15 Norm(4,1) Norm(4,1) Norm(4,1) Norm(13,1) Norm(13,1) Norm(13,1) Norm(9,1) Norm(5,1)

Scenario 16 Norm(4,1) Norm(4,1) Norm(4,1) Norm(15,1) Norm(15,1) Norm(15,1) Norm(11,1) Norm(6,1)

Scenario 17 Norm(8,1) Norm(8,1) Norm(4,1) Norm(22,1) Norm(22,1) Norm(22,1) Norm(13,1) Norm(5,1)

Scenario 18 Norm(8,1) Norm(8,1) Norm(4,1) Norm(25,1) Norm(25,1) Norm(25,1) Norm(15,1) Norm(6,1)

Scenario 19 Norm(8,1) Norm(4,1) Norm(4,1) Norm(18,1) Norm(18,1) Norm(18,1) Norm(9,1) Norm(5,1)

Scenario 20 Norm(8,1) Norm(4,1) Norm(4,1) Norm(20,1) Norm(20,1) Norm(20,1) Norm(11,1) Norm(6,1)

 

S0 S1 S2 S3 S4

Objective 

Function Node 0 Node 1 Node 2 Node 3 Node 4

Scenario 9 8 16 24 24 24 72 0.8 0.89 0.92 0.92 0.92

Scenario 10 8 16 24 24 24 96 0.67 0.73 0.8 0.8 0.8

Scenario 11 8 24 40 40 40 152 0.8 0.92 0.9 0.9 0.9

Scenario 12 8 24 40 40 40 152 0.67 0.8 0.8 0.8 0.8

Scenario 13 8 16 32 32 32 120 0.8 0.89 0.89 0.89 0.89

Scenario 14 8 16 32 32 32 120 0.67 0.73 0.8 0.8 0.8

Scenario 15 10 21 38 33 33 135 0.8 0.89 0.92 0.92 0.92

Scenario 16 10 21 37 34 34 136 0.67 0.73 0.8 0.8 0.8

Scenario 17 10 29 54 58 58 209 0.8 0.92 0.9 0.9 0.9

Scenario 18 10 29 54 58 58 209 0.67 0.8 0.8 0.8 0.8

Scenario 19 10 21 42 47 47 167 0.8 0.89 0.89 0.89 0.89

Scenario 20 10 21 43 47 47 168 0.67 0.73 0.8 0.8 0.8

Optimal Base-Stock Levels Utilization of capacity

Deterministic 

Case

Probabilistic 

case



113 

 

From table 4.3 observe that first six scenarios (9-14) are deterministic, and last six 

scenarios (15-20) are probabilistic. In scenarios 9, 11 and 13 the demands on node 1 thru 

4 require 90% of the total capacity in each node, where as the demand on node 0 is 80% 

of the total capacity at node 0. In scenarios 10, 12 and 14 the demands on node 1 thru 4 

require 80% of the total capacity in each node, where as demand on node 0 requires 70% 

of the total capacity at node 0. A similar approach is used for determining the average 

values of demand and capacity in scenarios 15 through 20, where the values of demand 

and capacity in each period come from a normal distribution. Table 4 provides the best 

found base-stock levels and capacity utilization for each node and scenario. From Table 4 

we can notice clearly that there is a higher objective function value (OBV) for scenarios 

11 and 12 when compared to scenarios 9 and 10. Similarly we can also observe that the 

OBV for scenarios 11 and 12 is higher when compared to scenarios 13 and 14. An 

increase in the value of the demand results in a higher base-stock levels and thus higher 

objective cost. For the same reason the OBV of scenarios 17, 18, 19 and 20 is higher than 

15 and 16.   

There is no uncertainty or other variability in the demands or capacity for scenarios 1 

thru 4 and 9 thru 14, which implies that safety-stock, is not required for these scenarios. 

In scenarios 5 thru 8 and 15 thru 20 there is uncertainty in the demands and capacities, 

and some nodes have a high utilization of capacity. This suggests that significant safety-

stock must be included in the base-stock levels in order to meet the service level 

constraints. The behavior could be well understood from the results in Figure3.  Figure 3 

shows the safety stocks for various scenarios at each node in the four-echelon system 

when a 90% customer service level is required at each node. We can also observe that, as 
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the demand at a given node increases the amount of safety stock at the node seems to 

increase proportionally.  

 

Figure 4.11: Safety-Stock for Four-echelon Assembly System  

(SS0-SS4 denotes safety stock at node 0-4) 

4.5 Five­echelon Assembly Model  

Figure 4.12 shows a five-echelon model with three intermediate product demands and 

a final product demand. 

 

Figure 4.12: Five-echelon Assembly System 

The on-hand inventory equations for the five-echelon assembly system are stated 

below: 
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( )3 3 4 4 0

1 1 10 , ... ... , where 1i i i

i i i

n n n nn l n l n l
I max s Y DS iξ ξ ξ ξ− − −− − −
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( )4 4

10 , ... , where 0i i
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n nn l n l
I max s Y iξ ξ−− −
= − − − − ∈

     (4.19) 

The outstanding order equations for the five-echelon assembly system are stated 

below: 

( )1 2 3 4 3

1 max 0,  where 5, 4i i i

n n n n n n n nY Y DS iξ ξ ξ ξ η+ = + + + + − − ∈    (4.20) 
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( )0 0 4 0 4 1 1 3 4 3 0

1 2 1 1 2min , ,n n n n n n n n n nY Y Y s Yξ ξ ξ ξ ξ η+ − − − −= + − + − − − −    (4.24) 

A total of sixteen scenarios are considered for the five-echelon assembly system. 

Scenarios 21 thru 28 consider deterministic values of demand and capacity at each node. 

The values of demand and capacity for Scenarios 29 thru 36 are based on a normal 
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distribution. The parameters of demand and capacity for both deterministic and 

probabilistic scenarios are shown in table 4.5. The best found base-stock values and the 

capacity utilization are shown in table 4.6 

Table 4.5: Demand and Capacity Values of Five-echelon used in Simulation 

 

Table 4.6: Best Found Base-stock level and Capacity Utilization for Five-echelon 

System 

 

From the above discussions and results in table 4.1-4.6 the following statements can 

be made i) Costs increase when best found base-stock levels must be increased due to 

uncertainty and high capacity utilization ii) The total best found system inventory level 

increases when capacity is tight and there is uncertainty; iii) In the multi-echelon 

environment, individual base-stock levels may increase or decrease in response to 

Demand 1 Demand 2 Demand 3 Demand 4 Capacity 5 Capacity 4 Capacity 3 Capacity 2 Capacity 1 Capacity 0

Scenario 21 4 4 4 4 18 18 18 13 9 5

Scenario 22 4 4 4 4 20 20 20 15 10 6

Scenario 23 8 8 8 4 31 31 31 22 13 5

Scenario 24 8 8 8 4 35 35 35 25 15 6

Scenario 25 8 8 4 4 27 27 27 18 9 5

Scenario 26 8 8 4 4 30 30 30 20 10 6

Scenario 27 8 4 4 4 22 22 22 13 9 5

Scenario 28 8 4 4 4 25 25 25 15 10 6

Scenario 29 Norm(4,1) Norm(4,1) Norm(4,1) Norm(4,1) Norm(18,1) Norm(18,1) Norm(18,1) Norm(13,1) Norm(9,1) Norm(5,1)

Scenario 30 Norm(4,1) Norm(4,1) Norm(4,1) Norm(4,1) Norm(20,1) Norm(20,1) Norm(20,1) Norm(15,1) Norm(10,1) Norm(6,1)

Scenario 31 Norm(8,1) Norm(8,1) Norm(8,1) Norm(4,1) Norm(31,1) Norm(31,1) Norm(31,1) Norm(22,1) Norm(13,1) Norm(5,1)

Scenario 32 Norm(8,1) Norm(8,1) Norm(8,1) Norm(4,1) Norm(35,1) Norm(35,1) Norm(35,1) Norm(25,1) Norm(15,1) Norm(6,1)

Scenario 33 Norm(8,1) Norm(8,1) Norm(4,1) Norm(4,1) Norm(27,1) Norm(27,1) Norm(27,1) Norm(18,1) Norm(9,1) Norm(5,1)

Scenario 34 Norm(8,1) Norm(8,1) Norm(4,1) Norm(4,1) Norm(30,1) Norm(30,1) Norm(30,1) Norm(20,1) Norm(10,1) Norm(6,1)

Scenario 35 Norm(8,1) Norm(4,1) Norm(4,1) Norm(4,1) Norm(22,1) Norm(22,1) Norm(22,1) Norm(13,1) Norm(9,1) Norm(5,1)

Scenario 36 Norm(8,1) Norm(4,1) Norm(4,1) Norm(4,1) Norm(25,1) Norm(25,1) Norm(25,1) Norm(15,1) Norm(10,1) Norm(6,1)

 

S0 S1 S2 S3 S4 S5

Objective 

Function Node 0 Node 1 Node 2 Node 3 Node 4 Node 5

Scenario 21 8 16 24 32 32 32 144 0.80 0.89 0.92 0.89 0.89 0.89

Scenario 22 8 16 24 32 32 32 144 0.67 0.80 0.80 0.80 0.80 0.80

Scenario 23 8 24 40 56 56 56 240 0.80 0.92 0.91 0.90 0.90 0.90

Scenario 24 8 24 40 56 56 56 240 0.67 0.80 0.80 0.80 0.80 0.80

Scenario 25 8 16 32 48 48 48 200 0.80 0.89 0.89 0.89 0.89 0.89

Scenario 26 8 16 32 48 48 48 200 0.67 0.80 0.80 0.80 0.80 0.80

Scenario 27 8 16 24 40 40 40 168 0.80 0.89 0.92 0.91 0.91 0.91

Scenario 28 8 16 24 40 40 40 168 0.67 0.80 0.80 0.80 0.80 0.80

Scenario 29 11 23 29 36 36 36 171 0.80 0.89 0.92 0.89 0.89 0.89

Scenario 30 10 23 27 39 36 36 171 0.67 0.80 0.80 0.80 0.80 0.80

Scenario 31 14 31 44 63 59 59 270 0.80 0.92 0.91 0.90 0.90 0.90

Scenario 32 11 28 47 62 62 62 272 0.67 0.80 0.80 0.80 0.80 0.80

Scenario 33 10 24 37 53 52 54 230 0.80 0.89 0.89 0.89 0.89 0.89

Scenario 34 12 21 36 54 54 54 231 0.67 0.80 0.80 0.80 0.80 0.80

Scenario 35 10 24 28 46 43 43 194 0.80 0.89 0.92 0.91 0.91 0.91

Scenario 36 12 21 28 45 45 45 196 0.67 0.80 0.80 0.80 0.80 0.80

Optimal Base-Stock Levels Utilization of capacity

Deterministic 

Case

Probabilistic 

case
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uncertainty and high capacity utilization. iv) When uncertainty and capacity utilization 

increase a best found allocation of inventory moves safety stock closer to the nodes 

where demand occurs. 
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5. GRADIENT ESTIMATION FOR IPA 

In this chapter gradient estimation technique of perturbation analysis is used to derive 

the sample path estimators for ,
i i

n n
i i

dY dI

ds ds
, where { }i node∈ . These estimators will be 

used to provide estimates for i
dL

ds
, where L is a Lagrange function. For brevity the 

gradient estimation of a single-echelon model is shown initially, followed by three-

echelon model and m-echelon model. 

5.1 Gradient Estimation of a Single­echelon Model 

The outstanding orders at the beginning of period n+1 for component i can be 

developed iteratively as follows: 

( ) { }1 max 0, 0i i i

n n n nY Y where iξ η+ = + − ∈
      (5.1) 

The relationships for on-hand inventory can be written as shown in (2) 

0

2 1max 0, .. , 0i i

n n n n lI s Y where iξ ξ− − −⎡ ⎤= − − − − ∈⎣ ⎦       (5.2) 

The inventory position is defined as shown in (3) 

0

2 1... , 0i i

n n n n lNI s Y where iξ ξ− − −= − − − ∈                                    (5.3)        

The single-stage problem can be formulated as shown in (4): 

0

0

min 0

. 0

i

i i

s

i

n

c s where i

s t P NI α
≥

∈

⎡ ⎤≥ >⎣ ⎦
                                     (5.4) 

A simulation optimization algorithm, which is discussed in the chapter 6, is used to 

obtain the best found base-stock level. A Lagrangian approach is used to handle the 

constraint.   
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Let the constraint in equation (4) be denoted using v. Equation (5) is obtained by 

substituting (3) in the constraint. 

[ ] { }1 0 0

1 2

1

1 ...
N

i

N n n l n

n

v E V E N s Yξ ξ α−
− − −

=

⎡ ⎤= = + + ≤ − >⎢ ⎥⎣ ⎦
∑         (5.5) 

Where 
N

V  is the service level attained at the end of N periods.  

Let 
n

f be the density of demand ( )1 2n nξ ξ− −+ on ( )0,∞ , corresponding cumulative 

distribution function, ܨ௡ is 

( ) ( )
0

x

n n
F x f t dt= ∫          (5.6) 

Equation (5.5) can also be represented as shown in (5.7) 

( )1 0 0

2

1

N

N n n

n

V N F s Y α−
−

=

= − >∑%           (5.7) 

The Lagrange function 0( , )L s u  can be written as shown in equation (5.8), where u is 

a Lagrange multiplier. 

( )0 0 0 1 0 0

2

1

( , ) *
N

n n

n

L s u c s u N F s Y α−
−

=

⎡ ⎤
= − − −⎢ ⎥

⎣ ⎦
∑        (5.8) 

We ignore the slack variable and consider it to be zero. 

The gradient estimation technique of perturbation analysis is used to derive sample 

path estimators for 0
dL

ds
, and dL

du
.  The sample path estimators are shown in equation 

(5.9) and (5.10) 

{ } ( )( )0 0 0 0 0 0 0

2 2 20
1

1 0
N

n n n n

n

dL u
c s Y f s Y s Y

ds N
− − −

=

′= − + > + +∑                (5.9) 
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( )1 0 0

2

1

0
N

i

n n

n

dL
N F s Y

du
α−

−
=

=− − − =∑        (5.10) 

The second term in Equation (5.9) is obtained as a result of ( )NV
′% . The first order 

derivation equation of 0 0

1 ,n nY I+ is given as shown in equation (5.11) and (5.12) 

respectively. 

0

10

1 0
0 0 0 0

1 10

0 0n

n

n
n n n n

if Y
dY

dY
ds if Y Y

ds
ξ η

+
+

+ +

⎧ =
⎪=⎨

= + −⎪⎩

       (5.11) 

0

0

00
2

0

0 if 0

1 otherwise

n

n

n

NI
dI

Yds
ds

−

⎧ ≤
⎪= ⎨
+⎪⎩

       (5.12) 

5.2 Gradient Estimation of a Three­echelon Model 

For the gradient estimation of a three-echelon assembly model let us recall the 

objective function and constraints of the model. Based on the objective function and 

constraints, a Lagrange function is framed. The objective function of a three-echelon 

model can be stated as shown in equation (5.13), the service level constraints are shown 

in equations (5.14) – (5.17), one for each node. 

Objective function:- 

{ }0 0 1 1 2 2 3 3

0
min 0,1,2,3

is
c s c s c s c s where i

≥
+ + + ∈

     (5.13)

 

Constraints:- 

{ }0

1 2 2 0 0 0

1 2

1

1 ...
N

n nn l
n

N s Yξ ξ α−
− −−

=

+ + ≤ − ≥∑       (5.14) 
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{ }1 1

1 2 2 1 1 1 1 0 1

1 1 2 1

1

1 ... ...
N

n n n nn l n l
n

N s Y DSξ ξ ξ ξ α−
− − − −− −

=

+ + + + + ≤ − + ≥∑    (5.15) 

{ }2 2

1 2 2 1 1 2 2 1 2

1 1 2 1

1

1 ... ...
N

n n n nn l n l
n

N s Y DSξ ξ ξ ξ α−
− − − −− −

=

+ + + + + ≤ − + ≥∑   (5.17) 

{ }3 3

1 2 2 1 1 3 3 1 3

1 1 2 1

1

1 ... ...
N

n n n nn l n l
n

N s Y DSξ ξ ξ ξ α−
− − − −− −

=

+ + + + + ≤ − + ≥∑   (5.18) 

Let 
n

f be the density of demand ( ) ( )0 1,2,3 1,2,3

1 1 1 1 2 2

1 1 1... , ... ...n n nn l n l n l
ξ ξ ξ ξ ξ ξ− − −− − −

+ + + + + + +

on ( )0,∞ , corresponding cumulative distribution function, ܨ௡. Based on this, equations 

(5.14) - (5.18) can be rewritten as (5.19) – (5.22). 

( )1 0 0 0

2

1

N

n n

n

N F s Y α−
−

=

− ≥∑         (5.19) 

( )1 1 1 0 1

2 1

1

N

n n n

n

N F s Y DS α−
− −

=

− − ≥∑        (5.20) 

( )1 2 2 1 2

2 1

1

N

n n n

n

N F s Y DS α−
− −

=

− − ≥∑        (5.21) 

( )1 3 3 1 3

2 1

1

N

n n n

n

N F s Y DS α−
− −

=

− − ≥∑        (5.22) 

The Lagrange function ( , )i i
L s u
r r

 can be written as shown in equation (5.23), where

{ }0 1 2 3, , ,is s s s s=
r

, { }0 1 2 3, , ,iu u u u u=
r

. 
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( )

( )

( )

( )

0 1 0 0 0

2

1

1 1 1 1 0 1

2 1
3

1

0
2 1 2 2 1 2

2 1

1

3 1 3 3 1 3

2 1

1

*

*

( , )

*

*

N

n n

n

N

n n n

n
i i i i

N
i

n n n

n

N

n n n

n

u N F s Y

u N F s Y DS

L s u c s

u N F s Y DS

u N F s Y DS

α

α

α

α

−
−

=

−
− −

=

= −
− −

=

−
− −

=

⎧ ⎫⎡ ⎤
− −⎪ ⎪⎢ ⎥

⎣ ⎦⎪ ⎪
⎪ ⎪⎡ ⎤⎪ ⎪+ − + −⎢ ⎥⎪ ⎪⎪ ⎣ ⎦ ⎪= −⎨ ⎬

⎡ ⎤⎪ ⎪+ − + −⎢ ⎥⎪ ⎪
⎣ ⎦⎪ ⎪

⎪ ⎪⎡ ⎤
⎪ ⎪+ − + −⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

∑

∑
∑

∑

∑

r r

 (5.23)

 

We ignore the slack variable and consider it to be zero. The first-order equations of 

the Lagrange function with respect to the base-stock levels, and Lagrange multiplier are 

stated in equations (5.24) – (5.31). 

{ } ( )( )
0

0 0 0 0 0 0 0

2 2 20
1

1 0
N

n n n n

n

dL u
c s Y f s Y s Y

ds N
− − −

=

′= − − > − −∑
    (5.24) 

{ } ( )( )

{ } ( )

1
1 1 0 1 1 0 1 1 0

2 1 2 1 2 1

11

1 0 0
0 0 0 0 2

12 2

1

1 0

1 0

N

n n n n n n n

n

N

n
n n n

n

u
s Y DS f s Y DS s Y DS

NdL
c

ds u dY
s Y f s Y

dsN

− − − − − −
=

−
− −

=

⎡ ⎤′− + > − + − +⎢ ⎥
⎢ ⎥= −
⎢ ⎥⎧ ⎫+ − > − −⎢ ⎥⎨ ⎬

⎩ ⎭⎢ ⎥⎣ ⎦

∑

∑
 (5.25)

 

{ } ( )( )

{ } ( )

{ } ( )

2
2 2 1 2 2 1 2 2 1

2 1 2 1 2 1

1

1 1
2 1 1 0 1 1 0 2

22 1 2 12
1

0 0
0 0 0 0 2

22 2

1

1 0

1 0

1 0

N

n n n n n n n

n

N

n
n n n n n

n

N

n
n n n

n

u
s Y DS f s Y DS s Y DS

N

dL u dY
c s Y DS f s Y DS

dsds N

u dY
s Y f s Y

dsN

− − − − − −
=

−
− − − −

=

−
− −

=

⎡ ⎤′− + > − + − +⎢ ⎥
⎢ ⎥
⎢ ⎥⎧ ⎫⎢ ⎥= − + − + > − + −⎨ ⎬

⎩ ⎭⎢ ⎥
⎢ ⎥

⎧ ⎫⎢ ⎥+ − > − −⎨ ⎬⎢ ⎥⎩ ⎭⎣ ⎦

∑

∑

∑
 (5.26)
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{ } ( )( )

{ } ( )

{ } ( )

3
3 3 1 3 3 1 3 3 1

2 1 2 1 2 1

1

1 1
3 1 1 0 1 1 0 2

22 1 2 13
1

0 0
0 0 0 0 2

22 2

1

1 0

1 0

1 0

N

n n n n n n n

n

N

n
n n n n n

n

N

n
n n n

n

u
s Y DS f s Y DS s Y DS

N

dL u dY
c s Y DS f s Y DS

dsds N

u dY
s Y f s Y

dsN

− − − − − −
=

−
− − − −

=

−
− −

=

⎡ ⎤′− + > − + − +⎢ ⎥
⎢ ⎥
⎢ ⎥⎧ ⎫⎢ ⎥= − + − + > − + −⎨ ⎬

⎩ ⎭⎢ ⎥
⎢ ⎥

⎧ ⎫⎢ ⎥+ − > − −⎨ ⎬⎢ ⎥⎩ ⎭⎣ ⎦

∑

∑

∑
 (5.27)

 

( )1 0 0 0

20
1

0
N

n n

n

dL
N F s Y

du
α−

−
=

=− − − =∑
       (5.28) 

( )1 1 1 0 1

2 11
1

0
N

n n n

n

dL
N F s Y DS

du
α−

− −
=

=− − + − =∑
      (5.29) 

( )1 2 2 1 2

2 12
1

0
N

n n n

n

dL
N F s Y DS

du
α−

− −
=

=− − + − =∑
      (5.30) 

( )1 3 3 1 3

2 13
1

0
N

n n n

n

dL
N F s Y DS

du
α−

− −
=

=− − + − =∑
      (5.31) 

5.2.1 Mean and Standard Deviation for Density of Demand  

Let us suppose that a normal distribution for demand is considered for the three-

echelon assembly system. Node 0 considers only one demand i.e. final product demand 

(demand 2), whereas all the other nodes (1,2,3) consider two demands, final and 

intermediate product (demand 1 and demand 2). 

Node 0 

Let us consider the density of demand for node 0, i.e. ( )0 0

2n nf s Y −−  as stated in 

equation (5.24). The probability density function ( )0 0

2n nf s Y −− can be expanded and 

written for normal distribution as shown below in equation (5.32): 

( ) ( )
0 0 2

2
2

( )
0 0 2

2
1

2

ns Y

n n
f s Y e

μ
σ

πσ

−− −−

−− =       (5.32) 
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The value of the mean ( )μ and standard deviation ( )σ in the normal density function 

are dependent on the lead time. For instance let us consider that the supply/manufacturing 

lead time between nodes is two periods. The mean of the normal distribution in equation 

(5.32) for a two period lead time is shown in equation (5.33):  

( )2 2 2

1 2 2*n nμ ξ ξ ξ− −= + =         (5.33) 

Whereas, the standard deviation of a normal distribution for a two period lead time 

can be determined as follows: 

( ) ( ) ( ) ( )2 2 2 2 2 2

1 2 1 2 1 2,n n n n n nVar Var Var covξ ξ ξ ξ ξ ξ− − − − − −+ = + −     (5.34) 

Since covariance in equation (5.33) is zero the equation can be written as show in 

equation (5.35) 

( ) ( )2 2 2

1 2 2*n nVar Varξ ξ ξ− −+ =         (5.35) 

So the standard deviation of the normal distribution in equation (5.32) for a two 

period lead time can be written as shown in (5.36) 

( ) ( )2 2 2 2

1 2
2* 2 * ( )

n n
SD Var Var SDσ ξ ξ ξ ξ− −= = + = =     (5.36) 

From equation (5.33) and (5.36) for a 0
l period lead time the mean and the standard 

deviation of a normally distributed demand can be written as shown in equation (5.37) 

and (5.38) respectively: 

( )0

2 2 0 2

1 ... *n n l
lμ ξ ξ ξ− −

= + + =          (5.37) 

( ) ( )0

2 2 0 2 0 2

1
... * * ( )

n n l
SD Var l Var l SDσ ξ ξ ξ ξ− −

= = + + = =    (5.38) 
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Node 1,2, and 3 

let us consider the density of demand for node 1,2,3 all of which have a similar 

structure, and all the three nodes consider two demands (intermediate and final product 

demand) i.e. ( ) { }0,1

2 1 , 1, 2,3i i

n n nf s Y DS where i− −− + ∈  as stated in equation (5.25) – (5.27). 

The probability density function ( ) { }0,1

2 1 , 1, 2,3i i

n n nf s Y DS wherei− −− + ∈ can  be expanded 

and written for normal distribution as shown below in equation (5.39): 

( ) ( )
0,1 2

2 1
2

( )
0,1 2

2 1
1

2

i i
n ns Y DS

i i

n n n
f s Y DS e

μ
σ

πσ

− −− + −−

− −− + =     (5.39) 

 let us consider that the supply/manufacturing lead time and the between nodes is two 

periods. The mean of the normal distribution in equation (5.39) for a two period lead time 

is shown in equation (5.40):  

( )1 1 2 2 1 2

1 2 1 2 2* 2*n n n nμ ξ ξ ξ ξ ξ ξ− − − −= + + + = +      (5.40) 

Whereas, the standard deviation of a normal distribution for a two period lead time 

can be determined as follows: 

( ) ( ) ( ) ( ) ( )1 1 2 2 1 1 2 2

1 2 1 2 1 2 1 2n n n n n n n nVar Var Var Var Varξ ξ ξ ξ ξ ξ ξ ξ− − − − − − − −+ + + = + + +  (5.41) 

All the covariance terms in equation (5.41) has been ignored since all the demand 

variables are independent. Equation (5.41) can be written as show in equation (5.42) 

( ) ( ) ( )1 1 2 2 1 2

1 2 1 2 2* 2*n n n nVar Var Varξ ξ ξ ξ ξ ξ− − − −+ + + = +     (5.42) 

So the standard deviation of the normal distribution in equation (5.39) for a two 

period lead time can be written as shown in (5.43) 



126 

 

( ) ( ) ( )1 1 2 2 1 2

1 2 1 2

1 2

2* 2*

2 * ( ) 2 * ( )

n n n nSD Var Var Var

SD SD

σ ξ ξ ξ ξ ξ ξ

ξ ξ

− − − −= = + + + = + =

+
  (5.43) 

From equation (5.40) and (5.43) for a 0
l period lead time the mean and the standard 

deviation of a normally distributed demand can be written as shown in equation (5.44) 

and (5.45) respectively: 

( )
{ }

1 1 2 2 1 2

1 1... ... * *

1, 2,3

i i

i i

n nn l n l
l l

wherei

μ ξ ξ ξ ξ ξ ξ− −− −
= + + + + + = +

∈
    (5.44) 

( ) ( ) ( )
{ }

1 1 2 2 1 2

1 1

1 2

... ... * *

1,2,3 * ( ) * ( )

i i

i i

n nn l n l

i i

SD Var l Var l Var

wherei l SD l SD

σ ξ ξ ξ ξ ξ ξ

ξ ξ

− −− −
= = + + + + + = +

∈ = +
 (5.45) 

5.2.2 First Order Update Equations  

First order on-hand inventory and outstanding orders for Node 3 

The on-hand inventory equation for node 3 is stated ion equation (5.46) below 

( )1 1 2 2 1

1 1 10 , ... ... , 3i i i

i i i

n n n nn l n l n l
I max s Y DS whereiξ ξ ξ ξ− − −− − −
= − − − − − − − + ∈

  (5.46) 

Differentiating equation (5.46) with respect to the base-stock level for node 3, is 

shown in equation (5.47), and (5.48).  

3

3

3
3 2

3

0 if 0

1 otherwise

n

n

n

NI
dI

dY
ds

ds

−

⎧ ≤
⎪= ⎨
−⎪⎩

         (5.47) 

3

3

1 3
3 1

3

0 if 0

1 otherwise

n

n

n

NI
dI

dY
ds

ds

+

−

⎧ ≤
⎪= ⎨
−⎪⎩

        (5.48)

  

Similarly equation (5.49) and (5.50) show the first order equation of on-hand 

inventory for node 3 with respect to base-stock level of node 0,1,2
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{ }
3

3

3

2

0 if 0

2,1,0
otherwise

n

n

i n

i

NI
dI

whereidY
ds

ds

−

⎧ ≤
⎪= ∈⎨
−⎪⎩

     (5.49) 

{ }
3

3

1 3

1

0 if 0

2,1,0
otherwise

n

n

i n

i

NI
dI

whereidY
ds

ds

+

−

⎧ ≤
⎪= ∈⎨
−⎪⎩

     (5.50) 

Equation (5.51) is a generalized form of first order on-hand inventory equation for 

node 3, i.e. differentiation of on-hand inventory for node 3 with respect to base-stock 

levels. This is obtained by considering (5.47) – (5.50) 

{ }
3

13

1 3 3 3

2 1

0 if 0

0,1,2,3
otherwise

n

n

i n n n

i i i

NI
dI

whereidI dY dY
ds

ds ds ds

+
+

− −

⎧ ≤
⎪= ∈⎨

+ −⎪⎩
   (5.51)

 

The outstanding order equation for node 3 is stated below in equation (5.52) 

( )1 2 1

1 max 0,  where 3i i i

n n n n n nY Y DS iξ ξ η+ = + + − − ∈
     (5.52)

 

Differentiating equation (5.52) with respect to base-stock level for node 3, 2, 1, and 0 

i.e. i
s , where { }0,1,2,3i∈ results in equation (5.53) shown below. 

3

13

1 3

0 if 0

otherwise

n

n

i n

i

Y
dY

dY
ds

ds

+
+

⎧ ≤
⎪= ⎨
⎪⎩

         (5.53) 
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First order on-hand inventory and outstanding orders for Node 2 

The on-hand inventory equation for node 2 is stated in equation (5.54) below 

( )1 1 2 2 1

1 1 10 , ... ... , 2i i i

i i i

n n n nn l n l n l
I max s Y DS where iξ ξ ξ ξ− − −− − −
= − − − − − − − + ∈

  (5.54) 

Differentiating equation (5.54) with respect to the base-stock level for node 2 is 

shown in equation (5.55), and (5.56).  

2

2

2
2 2

2

0 if 0

1 otherwise

n

n

n

NI
dI

dY
ds

ds

−

⎧ ≤
⎪= ⎨
−⎪⎩

         (5.55) 

2

2

1 2
2 1

2

0 if 0

1 otherwise

n

n

n

NI
dI

dY
ds

ds

+

−

⎧ ≤
⎪= ⎨
−⎪⎩

        (5.56)

  

Similarly equation (5.55) and (5.56) show the first order equation of on-hand 

inventory for node 3 with respect to base-stock level of node 3, 1, 0
 

{ }
2

2

2

2

0 if 0

3,1,0
otherwise

n

n

i n

i

NI
dI

whereidY
ds

ds

−

⎧ ≤
⎪= ∈⎨
−⎪⎩

     (5.57) 

{ }
2

2

1 2

1

0 if 0

3,1,0
otherwise

n

n

i n

i

NI
dI

whereidY
ds

ds

+

−

⎧ ≤
⎪= ∈⎨
−⎪⎩

     (5.58) 

Equation (5.59) is a generalized form of first order on-hand inventory equation for 

node 2, i.e. differentiation of on-hand inventory for node 2 with respect to base-stock 

levels. This is obtained by considering (5.55) – (5.58) 
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{ }
3

13

1 3 3 3

2 1

0 if 0

0,1,2,3
otherwise

n

n

i n n n

i i i

NI
dI

whereidI dY dY
ds

ds ds ds

+
+

− −

⎧ ≤
⎪= ∈⎨

+ −⎪⎩

    (5.59) 

The outstanding order equation for node 2 is stated below in equation (5.60) 

( )1 2 1

1 max 0,  where 2i i i

n n n n n nY Y DS iξ ξ η+ = + + − − ∈
     (5.60)

 

Differentiating equation (5.60) with respect to base-stock level for node 3, 2, 1, and 0 

i.e. i
s , where { }0,1,2,3i∈ results in equation (5.61) shown below. 

3

12

1 2

0 if 0

otherwise

n

n

i n

i

Y
dY

dY
ds

ds

+
+

⎧ ≤
⎪= ⎨
⎪⎩

         (5.61) 

First order on-hand inventory and outstanding orders for Node 1 

The on-hand inventory equation for node 1 is stated in equation (5.62) below 

( )1 1 2 2 0

1 1 10 , ... ... , where 1i i i

i i i

n n n nn l n l n l
I max s Y DS iξ ξ ξ ξ− − −− − −
= − − − − − − − + ∈

  (5.62) 

Differentiating equation (5.62) with respect to the base-stock level for node 1 is 

shown in equation (5.63), and (5.64).  

1

1

1
1 2

1

0 if 0

1 otherwise

n

n

n

NI
dI

dY
ds

ds

−

⎧ ≤
⎪= ⎨
−⎪⎩

         (5.63) 

1

1

1 1
1 1

1

0 if 0

1 otherwise

n

n

n

NI
dI

dY
ds

ds

+

−

⎧ ≤
⎪= ⎨
−⎪⎩

         (5.64)

  

Similarly equation (5.65) and (5.66) show the first order equation of on-hand 

inventory for node 3 with respect to base-stock level of node 3, 2, 0
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{ }
1

1

1

2

0 if 0

3,2,0
otherwise

n

n

i n

i

NI
dI

whereidY
ds

ds

−

⎧ ≤
⎪= ∈⎨
−⎪⎩

     (5.65) 

{ }
1

1

1 1

1

0 if 0

3,2,0
otherwise

n

n

i n

i

NI
dI

whereidY
ds

ds

+

−

⎧ ≤
⎪= ∈⎨
−⎪⎩

     (5.66) 

Equation (5.67) is a generalized form of first order on-hand inventory equation for 

node 1, i.e. differentiation of on-hand inventory for node 1 with respect to base-stock 

levels. This is obtained by considering (5.63) – (5.66) 

Equation is written by considering  

{ }
1

11

1 1 1 1

2 1

0 if 0

0,1,2,3
otherwise

n

n

i n n n

i i i

NI
dI

whereidI dY dY
ds

ds ds ds

+
+

− −

⎧ ≤
⎪= ∈⎨

+ −⎪⎩

    (5.67) 

The outstanding order equation for node 1 is stated below in equation (5.68) 

1 1 2 0 3 3 1 2

2 1 11 1 1 2 0

1 2 2 1 2 1

2 1 1

, ,
min

,

n n n n n n n

n n n n n

n n n n

Y DS s Y
Y Y DS

s Y

ξ ξ ξ ξ
ξ ξ

ξ ξ η
− − −

+

− − −

⎛ ⎞+ + − − − −
= + + − − ⎜ ⎟⎜ ⎟− − −⎝ ⎠   (5.68)

 

Differentiating equation (5.68) with respect to base-stock level for node 3 i.e. 3
s , 

which results in equation (5.69) shown below. 

1

1

1 1 2 31 3
12

13 3 3 2 1

2 1 11

1
1 1 2 21 2

3
12

13 3 2 2 1

2 1 1

1
1 1 1 2 1

13

0 if 0

1 if

if

if 

n

n n nn n
n

n n n

n

n n nn n
n

n n n

n
n n n n n

Y

Y sdY dY
Y

ds ds Y
dY

Y sdY dYds Y
ds ds Y

dY
Y Y

ds

ξ ξ

ξ ξ

ξ ξ

ξ ξ

ξ ξ η

+

−
+

− − −
+

−
+

− − −

+

⎧ =
⎪

⎡ ⎤+ + −⎪
+ − = ⎢ ⎥⎪ + + +⎢ ⎥⎣ ⎦⎪⎪= ⎨ ⎡ ⎤+ + −

⎪ + = ⎢ ⎥
+ + +⎪ ⎢ ⎥⎣ ⎦

⎪
⎪ = + + −⎪⎩

     (5.69) 
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Differentiating equation (5.68) with respect to base-stock level for node 2 i.e. 2
s , 

which results in equation (5.70) shown below. 

1

1

1 1 2 31 3
12

12 2 3 2 1

2 1 11

1
1 1 2 21 2

2
12

12 2 2 2 1

2 1 1

1
1 1 1 2 1

12

0 if 0

if

1 if

if 

n

n n nn n
n

n n n

n

n n nn n
n

n n n

n
n n n n n

Y

Y sdY dY
Y

ds ds Y
dY

Y sdY dYds Y
ds ds Y

dY
Y Y

ds

ξ ξ

ξ ξ

ξ ξ

ξ ξ

ξ ξ η

+

−
+

− − −
+

−
+

− − −

+

⎧ =
⎪

⎡ ⎤+ + −⎪
+ = ⎢ ⎥⎪ + + +⎢ ⎥⎣ ⎦⎪⎪= ⎨ ⎡ ⎤+ + −

⎪ + − = ⎢ ⎥
+ + +⎪ ⎢ ⎥⎣ ⎦

⎪
⎪ = + + −⎪⎩

     (5.70) 

Differentiating equation (5.68) with respect to base-stock level for node 1, and 0 i.e.

i
s , { }0,1i∈ which results in equation (5.71) shown below. 

1

1

1 1 2 31 3
12

1 3 2 1

2 1 11

1
1 1 2 21 2

12
1 2 2 1

2 1 1

1
1 1 1 2 1

1

0 if 0

if

if

if 

n

n n nn n
ni i

n n n

n

i
n n nn n

ni i

n n n

n
n n n n ni

Y

Y sdY dY
Y

ds ds Y
dY

Y sdY dYds Y
ds ds Y

dY
Y Y

ds

ξ ξ

ξ ξ

ξ ξ

ξ ξ

ξ ξ η

+

−
+

− − −
+

−
+

− − −

+

⎧ =
⎪

⎡ ⎤+ + −⎪
+ = ⎢ ⎥⎪ + + +⎢ ⎥⎣ ⎦⎪⎪= ⎨ ⎡ ⎤+ + −

⎪ + = ⎢ ⎥
+ + +⎪ ⎢ ⎥⎣ ⎦

⎪
⎪ = + + −⎪⎩

     (5.71) 

First order on-hand inventory and outstanding orders for Node 0 

The on-hand inventory equation for node 0 is stated ion equation (5.72) below 

( )2 2

10 , ... , where 0i i

i i i

n nn l n l
I max s Y iξ ξ−− −
= − − − − ∈

      (5.72) 

Differentiating equation (5.72) with respect to the base-stock level for node 0 is 

shown in equation (5.73), and (5.74).  
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0

0

0
0 2

0

0 if 0

1 otherwise

n

n

n

NI
dI

dY
ds

ds

−

⎧ ≤
⎪= ⎨
−⎪⎩

         (5.73) 

0

0

1 0
0 1

0

0 if 0

1 otherwise

n

n

n

NI
dI

dY
ds

ds

+

−

⎧ ≤
⎪= ⎨
−⎪⎩

        (5.74)

  

Similarly equation (5.75) and (5.76) show the first order equation of on-hand 

inventory for node 3 with respect to base-stock level of node 3, 2, 1
 

{ }
0

0

0

2

0 if 0

3,2,1
otherwise

n

n

i n

i

NI
dI

whereidY
ds

ds

−

⎧ ≤
⎪= ∈⎨
−⎪⎩

     (5.75) 

{ }
0

0

1 0

1

0 if 0

3,2,1
otherwise

n

n

i n

i

NI
dI

whereidY
ds

ds

+

−

⎧ ≤
⎪= ∈⎨
−⎪⎩

     (5.76) 

Equation (5.77) is a generalized form of first order on-hand inventory equation for 

node 0, i.e. differentiation of on-hand inventory for node 0 with respect to base-stock 

levels. This is obtained by considering (5.73) – (5.76) 

{ }
0

10

1 0 0 0

2 1

0 if 0

0,1,2,3
otherwise

n

n

i n n n

i i i

NI
dI

whereidI dY dY
ds

ds ds ds

+
+

− −

⎧ ≤
⎪= ∈⎨

+ −⎪⎩

    (5.77) 

The outstanding order equation for node 0 is stated below in equation (5.78) 

( )0 0 2 0 2 1 1 1 1 2 0

1 2 1 2 1min , ,n n n n n n n n n nY Y Y s Yξ ξ ξ ξ ξ η+ − − − −= + − + − − − −
    (5.78)

 

Differentiating equation (5.78) with respect to base-stock level for node 1 i.e. 1
s , 

which results in equation (5.79) shown below. 
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0

1

1 1 10 0 1
2 101 2

11 1 1 1 2

2 1

0
0 0 2 0

11

0 if 0

1 if

if 

n

n nn n n
n

n n

n
n n n n

Y

s YdY dY dY
Y

ds ds ds

dY
Y Y

ds

ξ

ξ ξ

ξ η

+

− −+ −
+

− −

+

⎧
⎪ ≤
⎪
⎪ ⎡ ⎤− −⎪= + − = ⎢ ⎥⎨

− −⎢ ⎥⎪ ⎣ ⎦
⎪
⎪ = + −
⎪⎩

      (5.79) 

Differentiating equation (5.78) with respect to base-stock level for node 0, 2, and 3 

i.e. i
s , { }0,2,3i∈ which results in equation (5.80) shown below. 

0

1

1 1 10 0 1
2 101 2

1 1 2

2 1

0
0 0 2 0

1

0 if 0

if

if 

n

n nn n n
ni i i

n n

n
n n n ni

Y

s YdY dY dY
Y

ds ds ds

dY
Y Y

ds

ξ

ξ ξ

ξ η

+

− −+ −
+

− −

+

⎧
⎪ ≤
⎪
⎪ ⎡ ⎤− −⎪= + = ⎢ ⎥⎨

− −⎢ ⎥⎪ ⎣ ⎦
⎪
⎪ = + −
⎪⎩

     (5.80) 

5.3 m­echelon First Order Update Equations 

The objective function of an m-echelon model can be stated as shown in equation 

(5.81). There are m constraints, one for each node. Since all the nodes have a similar 

structure, only four constraints are shown in equations (5.82) – (5.85), i.e. nodes 0. m-k, 

m-1, m.   

Objective function:- 

{ }
0

min 0,1,2,... 1,
i

i i

s
c s where i m m

≥
∈ −

      (5.81)

 

Constraints:- 

{ }0

1 0 0 0

1 2

1

1 ...
N

j j

n nn l
n

N s Yξ ξ α−
− −−

=

+ + ≤ − ≥∑       (5.82) 
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{ }1 ( ) ( ) 1

1 1 2 1

1

1 .. .. ..m k m k

N
j m k j j m k j m k m k m k m k

n n n nn l n l
n

N s Y DSξ ξ ξ ξ α− −
− − − − − − − − − −

− − − −− −
=

+ + + + + + ≤ − + ≥∑
(5.83)

 

{ }1 1

1 ( 2) ( 2) 1 1 2 1

1 1 2 1

1

1 ... .. ...m m

N
j m j j m j m m m m

n n n nn l n l
n

N s Y DSξ ξ ξ ξ α− −
− − − − − − − − −

− − − −− −
=

+ + + + + + ≤ − + ≥∑
 

(5.84) 

{ }1 ( 2) ( 2) 2

1 1 2 1

1

1 ... ... ...m m

N
j m j j m j m m m m

n n n nn l n l
n

N s Y DSξ ξ ξ ξ α− − − − − −
− − − −− −

=

+ + + + + + ≤ − + ≥∑  (5.85) 

Let 
n

f be the density of demand, i.e. ( )01 ... , andj j

n n l
ξ ξ− −

+ +

( )( ) ( )

1 1..... ... .....i i

j m k j j m k j

n n n l n l
ξ ξ ξ ξ− − − −

− − − −
+ + + + on ( )0,∞ , where { }1... 1,i m m∈ − corresponding 

cumulative distribution function, ܨ௡. Based on this, equations (5.82) - (5.85) can be 

rewritten as (5.86) – (5.89). 

( )1 0 0 0

2

1

N

n n

n

N F s Y α−
−

=

− ≥∑         (5.86) 

( )1 1

2 1

1

N
m k m k m k m k

n n n

n

N F s Y DS α− − − − − −
− −

=

− + ≥∑       (5.87) 

( )1 1 1 2 1

2 1

1

N
m m m m

n n n

n

N F s Y DS α− − − − −
− −

=

− + ≥∑       (5.88) 

( )1 2

2 1

1

N
m m m m

n n n

n

N F s Y DS α− −
− −

=

− + ≥∑        (5.89) 

The Lagrange function ( , )i i
L s u
r r

 can be written as shown in equation (5.90), where

{ }0 ,....,i m
s s s=
r

, { }0 ,...,i m
u u u=
r

. 
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( )

( )

( )

( )

0 1 0 0 0

2

1

1 1

2 1
3

1

0
1 1 1 1 2 1

2 1

1

3 1 3 3 1 3

2 1

1

* ...........

*

( , )

..... *

*

N

n n

n

N
m k m k m k m k m k

n n n

n
i i i i

N
n

m m m m m

n n n

n

N

n n n

n

u N F s Y

u N F s Y DS

L s u c s

u N F s Y DS

u N F s Y DS

α

α

α

α

−
−

=

− − − − − − −
− −

=

= − − − − − −
− −

=

−
− −

=

⎡ ⎤
− − + +⎢ ⎥

⎣ ⎦
⎡ ⎤

− + −⎢ ⎥
⎣ ⎦= −

⎡ ⎤
+ + − + −⎢ ⎥

⎣ ⎦
⎡

+ − + −

∑

∑
∑

∑

∑

r r

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎤
⎪ ⎪⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

 (5.90)

 

We ignore the slack variable and consider it to be zero. The first-order equations of 

the Lagrange function with respect to the base-stock levels, and Lagrange multiplier are 

stated in equations (5.91) – (5.98). 

{ } ( )( )
0

0 0 0 0 0 0 0

2 2 20
1

1 0
N

n n n n

n

dL u
c s Y f s Y s Y

ds N
− − −

=

′= − − > − −∑
    (5.91) 

: 

: 

: 

{ }

( )( )

{ } ( )

1

2 1

1

1 1

2 1 2 1

0 0
0 0 0 0 2

2 2

1

1 0

...

...... 1 0

m k N
m k m k m k

n n

n

m k m k m k m k m k m k m k

n n n n nm k

N

n
m kn n n

n

u
s Y DS

N

dL
c f s Y DS s Y DS

ds
u dY

s Y f s Y
dsN

−
− − − −

− −
=

− − − − − − − − −
− − − −−

−
−− −

=

⎡ ⎤
− + >⎢ ⎥

⎢ ⎥
⎢ ⎥′= − − + − + +⎢ ⎥
⎢ ⎥

⎧ ⎫⎢ ⎥+ − > − −⎨ ⎬⎢ ⎥⎩ ⎭⎣ ⎦

∑

∑   (5.92) 

: 

: 
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{ }

( )( )

{ } ( )

1
1 1 2

2 1

1

1 1 1 2 1 1 2

2 1 2 11

0 0
0 0 0 0 2

12 2

1

1 0

....

... 1 0

m N
m m m

n n

n

m m m m m m m

n n n n nm

N

n
mn n n

n

u
s Y DS

N

dL
c f s Y DS s Y DS

ds
u dY

s Y f s Y
dsN

−
− − −

− −
=

− − − − − − −
− − − −−

−
−− −

=

⎡ ⎤
− + >⎢ ⎥

⎢ ⎥
⎢ ⎥′= − − + − + +⎢ ⎥
⎢ ⎥

⎧ ⎫⎢ ⎥+ − > − −⎨ ⎬⎢ ⎥⎩ ⎭⎣ ⎦

∑

∑
   (5.93) 

  

 

{ }

( )( )

{ } ( )

2

2 1

1

2 2

2 1 2 1

0 0
0 0 0 0 2

2 2

1

1 0

....

... 1 0

m N
m m m

n n

n

m m m m m m m

n n n n nm

N

n
mn n n

n

u
s Y DS

N

dL
c f s Y DS s Y DS

ds
u dY

s Y f s Y
dsN

−
− −

=

− −
− − − −

−
− −

=

⎡ ⎤
− + >⎢ ⎥

⎢ ⎥
⎢ ⎥′= − − + − + +⎢ ⎥
⎢ ⎥

⎧ ⎫⎢ ⎥+ − > − −⎨ ⎬⎢ ⎥⎩ ⎭⎣ ⎦

∑

∑
    (5.94) 

( )1 0 0 0

20
1

0
N

n n

n

dL
N F s Y

du
α−

−
=

=− − − =∑
       (5.95) 

( )1 1

2 1

1

0
N

m k m k m k m k

n n nm k
n

dL
N F s Y DS

du
α− − − − − −

− −−
=

=− − + − =∑
    (5.96) 

( )1 1 1 2 1

2 11
1

0
N

m m m m

n n nm
n

dL
N F s Y DS

du
α− − − − −

− −−
=

=− − + − =∑
     (5.97) 

( )1 2

2 1

1

0
N

m m m m

n n nm
n

dL
N F s Y DS

du
α− −

− −
=

=− − + − =∑
     (5.98) 

The first order update equations for m-echelon assembly system are similar to the 

three-echelon system.  
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5.4 Variations in Lagrange Function 

In order to get a better convergence on the best found base-stock level some 

variations were made to the original Lagrange function, for brevity let us consider 

Lagrange function for single-stage, equation (5.8). Three variations are made to the 

Lagrange function: 

• Squared Lagrange Function 

• Squared & Multiplied Function 

• Discontinuous Lagrange Function 

5.4.1 Squared Lagrange function  

The constraint in the Lagrange function is squared, by doing so the objective function 

is penalized more when the base-stock ( )0
s  is far from the best found base-stock ( )0

ŝ , as 

the base-stock gets closer to the best found answer the penalty reduces. The squared 

Lagrange function is shown in equation (5.99) 

 ( )
2

0 0 0 1 0 0

2

1

( , ) *
N

n n

n

L s u c s u N F s Y α−
−

=

⎡ ⎤
= − + −⎢ ⎥

⎣ ⎦
∑

     (5.99) 

5.4.2 Squared & Multiplied Lagrange function  

The constraint in the Lagrange function is squared and also multiplied with a large 

constant ( )Q , along with the Lagrange multiplier, which is shown in equation (5.100). By 

doing so the objective function is penalized on a greater magnitude than compared to the 

previous case.  When the base-stock ( )0
s  is far from the best found base-stock ( )0

ŝ  there 

is a larger penalty, whereas, as the base-stock gets closer to the best found answer the 
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penalty decreases. The squared & multiplied Lagrange function is shown in equation 

(5.100) 

( )
2

0 0 0 1 0 0

2

1

( , ) * *
N

n n

n

L s u c s u Q N F s Y α−
−

=

⎡ ⎤
= − + −⎢ ⎥

⎣ ⎦
∑

     (5.100)

 

5.4.3 Discontinuous Lagrange Function  

The objective function is penalized heavily when the base-stock level provides a 

service level lower than the desired service level ( )α  and penalized lightly when the 

base-stock level provides a service level higher than the desired service level. The 

Lagrange function is discontinuous at the desired service level. The function is shown in 

equation (5.101) below. 

( ) ( )

( )

0 0 1 0 0 1 0 0

2 2

1 1
0

0 0 1 0 0

2

1

* *

( , )

*

N N

n n n n

n n

N

n n

n

c s u Q N F s Y if N F s Y

L s u

c s u N F s Y otherwise

α α

α

− −
− −

= =

−
−

=

⎧ ⎡ ⎤
− + − + <⎪ ⎢ ⎥

⎪ ⎣ ⎦=⎨
⎡ ⎤⎪ − + −⎢ ⎥⎪
⎣ ⎦⎩

∑ ∑

∑
 (5.101) 

Q is a large constant. 
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5.5 Justification of Derivatives 

In this section, all the equations discussed in section 5.2.2 are shown as valid and that 

the sample-path derivatives they generate are unbiased estimators of derivative of 

expectations. To accomplish this we show that the conditions in proposition 1 and 

proposition 2 that ensure the following properties are satisfied: 

• The outstanding orders, on-hand inventory, and the net inventory are 

differentiable with probability one, with respect to all base-stock levels  

• The expectation and derivatives are interchangeable for outstanding orders, on-

hand inventory, and net-inventory 

• Show that the Lagrange function is Lipchitz continuous 

In order to show that the Lagrange function is Lipchitz continuous we initially prove 

that all the components of the function are continuous, which include the demand, 

capacity, outstanding orders, on-hand inventory, and net inventory (Glasserman et al., 

1995). Since the demand and capacity are derived from the probability distributions, it is 

known that they are continuous. The outstanding orders, on-hand inventory and the net-

inventory are also relations which are based on the demand and capacity for period 0.  

The important step in verifying that the derivative estimates based on the Lagrange 

function are unbiased is showing that the on-hand inventory, outstanding orders, and net 

inventory, with probability one are Lipchitz functions and have integrable moduli. This 

requires according to generalized mean value theorem, and dominated convergence 

theorem to show that expectation and derivatives are interchangeable. 

 We assume that for period-n and demand j, j

nξ has a density on ( )0,∞ , i.e. 

( )j
nx P xξ→ ≤ is absolutely continuous on all 0x > . Similarly we assume that for period-n 
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and capacity for node i, i

nη has a density on ( )0,∞ , i.e. ( )i
ny P yη→ ≤ for all 0y > . We also 

consider the possibility of demand and capacity being equal to zero, i.e. ( )0 0j
nP ξ = > , 

and ( )0 0i
nP η = > respectively.  

Proposition 1 

If { }, 1,2,... ; 1,2,..., 2j

n n N j mξ = = − , { }, 1,2,... ; 1,2,...,i

n n N i mη = = are independent, and  each

j

nξ , i

nη  has a density on ( )0,∞ , and then the following hold: 

iii) For 1,....,i m= and 1,2,...n N=  each , ,i i i

n n nY I NI are differentiable, with probability 

one, at i
s with respect to i

s , 1,2,...,i m=  

iv) If 
2

1

m
j

n

j

ξ
−

=

⎡ ⎤
< ∞⎢ ⎥

⎣ ⎦
∑ , and i

nη < ∞ for all n, then , ,andi i i

n n nE Y E NI E I
′ ′ ′⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ exist and 

equal ( ) ( ), ,i i

n nE Y E NI
⎡ ⎤ ⎡ ⎤′ ′
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

( )and i

nE I
⎡ ⎤′
⎢ ⎥⎣ ⎦

 

Proof of part (i):- The state variables are differentiable for any sequence of demands up 

to period N if the minimax in (5.102) and (5.103) is uniquely attained in all N periods.  

The outstanding orders at the beginning of period n+1 for component i where 

{ }, 1i m m∈ − can be developed as follows. 

( )( 2) 2

1 max 0, .... , 1i i j m j m i

n n n n n nY Y DS wherei m mξ ξ η− − −
+ = + + + − − ∈ −

   (5.102) 

For the m-echelon analytical review it is assumed that there are 2j m= −  demands. 

The outstanding orders for node m-2 can be developed iteratively as shown in (3.30)  
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( 2) 1 1 1 ( 2)

1 2 1

( 2) 1 ( 2) ( 2)

1 1 1 1 21 1

( 2)

1 11

... ,

... min .. .. .... ,

.... ... ....

i

i i

i

i j m j i m m j m

n n n n n n l

i i j m j i j m j j m m j m

n n n n n n n nn l n l

j m j

n nn l

Y DS s Y

Y Y DS s Y

ξ ξ ξ

ξ ξ ξ ξ ξ ξ

ξ ξ ξ

− − − − − − −
− − − +

− − − − − − −
+ − − − −− + − +

− −
− −− +

+ + + − − − −

= + + + − − − − − − − − −

− − − − − − ,

2

j i

n

wherei m

η

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

∈ −
            

           (5.103) 

We assume that the values of the demand and capacity are between[ )0,∞ . Since the 

values of the demand are obtained from the probability distribution, they are continuous, 

ties have almost zero probability except when the available inventory from the two 

upstream nodes (node m and m-1) in (5.103) have a tie. This would only be possible, in 

particular if both have the same base-stock levels and outstanding orders. The possibility 

of both having the same outstanding orders depends on the capacity and demand, which 

is based of probability distributions, and we know that they are continuous. So, ties for 

(5.103) have almost zero probability.  

Similarly the values of , andi i

n nNI I  are dependent on the demand, outstanding orders, 

and downstream shortages. We know that the outstanding orders and the demand are 

continuous. The values of the downstream shortages depend on the capacity and demand, 

which we know are continuous. Thus, with probability one, differentiability is preserved 

in each period. The result for proposition 1 - part (ii), (i.e., the expectation and derivatives 

are interchangeable) is based of the result from proposition 2 and is shown after the proof 

for proposition 2.      ▄ 

Proposition 2  

Let ( ){ }, , ,L s u s S u U∈ ∈
r r r r

be a random function with ,  S U ⊆ ฀ . If ( ),E L s u⎡ ⎤ < ∞⎣ ⎦
r r

for all

,s S u U∈ ∈
r r

. Assume that L is differentiable at i
s S∈ and i

u U∈ with probability one, and 
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that L defined on set S, and U is almost surely Lipschitz continuous with modulus LM

satisfying [ ]LE M < ∞ . Then ( ),E L s u ′⎡ ⎤⎣ ⎦
r r

exists and equals ( ),E L s u′⎡ ⎤⎣ ⎦
r r

. 

Proof:-  let us start the with the definition of Lipschitz continuous  

Definition: A function L defined on a set ,S U ⊆ ฀ is said to be Lipschitz continuous on S, 

U if there exists an M so that 

( ) ( ), ,L s u L s u
M

δ δ
δ

+ + −
≤

r r r r

        (5.104) 

For all s
r

in S and u
r

in U such that 0δ ≥  (Reed, 1998) 

The proof is provided by contradiction. Suppose that L is not Lipschitz continuous. 

Then, there exists a 0M so that we cannot choose any 0δ ≥ with the property as stated in 

the definition. 

Set ( ),s u xδ δ+ + =
r r

and ( ),s u c=
r r

for brevity of the proof 

Let us consider 2 n

nδ
−= . If we consider [ ), 0,S U ∈ ∞ (base-stock values, and Lagrange 

multipliers are considered positive) then for each n there are points nx and nc in [ )0,∞ so 

that 

( ) ( )
0

n n

n n

L x L c
M

x c

−
≥

−
         (5.105)

 

Since [ )0,∞ is a finite interval, the Bolzano-Weiestrass theorem guarantees that there 

exists a subsequence { }
knx that converges to a point d in [ )0,∞ (Reed, 1998). Furthermore, 

2

k k k k

k

k

n n n n

n

n

c d c x x d

x d
−

− ≤ − + −

≤ + −         (5.106)
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So 
knc d→ also as k →∞ . Since f is continuous, ( ) ( )

kn
L x L d→ and  ( ) ( )

kn
L c L d→ as 

k →∞ . This is impossible since ( ) ( ) 0k kn nL x L c M− ≥ for each k. Thus L is uniformly 

continuous on [ ]0,∞ .  

The composition of Lipschitz functions with moduli 0M and 1M is Lipschitz with 

modulus 0 1M M . A random function is Lipschitz with probability one if there exists a 

random variable M that serves the path-wise modulus (Glasserman, 1995). 

The right side of (5.104) is integrable, by proof provided earlier. From the dominated 

convergence theorem and generalized mean value theorem (Glasserman, 1991), we have  

( )
( ) ( )

( )

( ) ( )
( )

( )

0

0

, ,
, lim

,

, ,
lim

,

,

L s u L s u
E L s u E

L s u L s u
E

E L s u

δ

δ

δ δ
δ δ

δ δ
δ δ

→

→

⎡ ⎤+ + −
′⎡ ⎤ = ⎢ ⎥⎣ ⎦

⎢ ⎥⎣ ⎦
⎡ ⎤+ + −

= ⎢ ⎥
⎢ ⎥⎣ ⎦

′= ⎡ ⎤⎣ ⎦

r r r r
r r

r r r r

r r

      (5.107) 

                ▄ 

Proof for part (ii) of proposition 1:- if the 
2

1

m
j

n

j

ξ
−

=

⎡ ⎤
< ∞⎢ ⎥

⎣ ⎦
∑ for all n, then the outstanding 

orders ( )i

nY , on-hand inventory ( )i

nI , and net inventory ( )i

nNI have finite expectation as 

well. At time ( )0n = , each of the state variables (update equations) are linear, hence are 

considered as Lipschitz continuous with modulus M. The operations min, max, and 

addition are Lipschitz so each of , ,andi i i

n n nY I NI is a composition of Lipschitz functions and 

therefore Lipschitz continuous.  
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From the dominated convergence theorem, and generalized mean value theorem, we 

know that for uniform integrability the interchange of derivative and expectation is 

possible (Glasserman, 1991).  

( ) ( ) ( ) ( ) ( ) ( )i i i i i i

n n n n n nE Y E Y E I E I E NI E NI
⎡ ⎤ ′ ⎡ ⎤ ⎡ ⎤′ ′ ′⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

   (5.108) 

A sufficiently small change of δ  in base-stock level ( )i
s will not change outstanding 

orders, on-hand inventory, and net inventory by more thanδ , for { }1,2,...,i m= . The result 

in (5.108) follows proposition 2.   

         ▄ 
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6. SIMULATION OPTIMIZATION FRAMEWORK USING IPA 

In the previous chapter we derived the first order equations that would be used in 

gradient estimation. All the equations derived in chapter 5 are used to obtain the best 

found base-stock level in the current chapter using the simulation optimization. In this 

chapter we will discuss the simulation optimization framework using Infinitesimal 

Perturbation Analysis (IPA) used to obtain the best found base-stock levels. The 

simulation optimization is carried out in conjunction of ARENA (simulation software), 

Visual Basic, and Xpress (optimization software). In the following sub-sections will 

review the simulation optimization framework using IPA, role of ARENA in IPA, role of 

Visual Basic in IPA, role of Xpress in IPA, and initial results.  

6.1 Simulation Optimization Framework for IPA 

As mentioned earlier the simulation optimization framework uses a combination of 

ARENA, Visual Basic (VB), and Xpress. ARENA is used to update the equations (on-hand 

inventory, outstanding orders etc.), first-order equations, and service level equations. VB 

is used for the feasible direction algorithm and line search. A modified Zoutendijk’s 

feasible direction algorithm is used, and a golden section algorithm is used for line 

search. The feasible direction algorithm and the line search will be discussed in detail in 

subsequent sub-sections. Figure 6.1 show the flowchart of the simulation based Inventory 

optimization framework (SIO) for IPA.    
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Figure 6.1 Flowchart of SOF for IPA 

From the flowchart shown in figure 6.1 we can observe six primary steps that the 

simulation optimization framework takes to obtain the best found base-stock levels. Each 

step is discussed briefly below: 

• Step 1: The feasible direction search is initialized by providing a starting 

point. The starting point mentioned in both ARENA and also in VB. The 

starting points are the base-stock levels and Lagrange multipliers, i.e. in case 

of a three-echelon model they would be 0 1 2 3, , , ands s s s . 

• Step 2: Once the starting points are assigned the update equations, first-order 

equations, and the service level equations in ARENA are updated, i.e. the 

simulation is run for a pre-specified number of periods.  

• Step 3: Based on the simulation run earlier the service levels for the base-

stock levels are obtained. Theses service levels are used in termination 
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condition to determine if the best found answer is achieved. Usually the 

process will not stop without a single cycle is finished (i.e. step 1 - step 6). 

• Step 4: If the termination condition is not satisfied the process continues to 

step 4. A linear program (LP) is solved to obtain the direction vectors. LP is 

written in Xpress. A class is written in VB which runs the Xpress and returns 

the values back to VB. This process is part of the Zoutendijk’s feasible 

direction algorithm  

• Step 5: Once the direction is known, the line search (golden section algorithm) 

determines distance that needs to be travelled in the direction. Several 

iterations of line search are allowed to occur. The line search takes several 

iterations to determine the distance.  

• Step 6: Based on the direction, and line search new values of base-stock and 

Lagrange multipliers are determined. These new values are used in simulation. 

The process continues until the termination condition is satisfied. 

6.2 Role of ARENA in IPA Framework 

As stated earlier, ARENA is used for updating the on-hand inventory equations, 

outstanding order equations, net inventory equations, first order equations and service 

level equations every period. Figure 6.2 show the block diagram of simulation in ARENA 

within IPA framework, the block diagram show the various activities that are performed 

every period.  
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Figure 6.2 Block Diagram of Simulation in ARENA within IPA framework 

The block diagram shown in figure 6.2 is almost similar to the simulation in ARENA 

with OptQuest framework. The base-stock and the Lagrange multiplier values are 

initially obtained from VB and ARENA. Initial values which are used in the update 

equations, first order equations, service level equations are assigned. Once the initial 

values are assigned, the simulation runs for a pre-defined number of periods.  

The following activities take place each period: 

• Demand and capacity values of the past are stored in ARENA as past 

variables 

• Demand and capacity values are realized from a probability distribution 

• Past outstanding orders/shortages, on-hand inventory, net inventory  

equations are stored in ARENA as past variables 
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• Update equations are updated, i.e. outstanding orders and on-hand inventory 

equations 

• Based on the updated equations (i.e. outstanding orders, on-hand inventory 

etc.) the first-order equations are determined 

• The service levels for each node are computed 

• Lagrange function and first order Lagrange function (i.e. differentiation of 

Lagrange function with-respect-to base-stock levels and Lagrange 

multipliers) are computed 

• These values are stored in a text file or an Excel sheet 

The process continuous till the pre-defined number of periods is completed. At the 

end of the simulation run the estimates of the derivatives, i.e. Lagrange function and the 

first-order Lagrange equations are sent to VB. A snapshot of ARENA is shown in figure 

6.3. In Figure 6.3 we can see three rows of blocks which are used to assign base-stock 

values, assign initial values, store demand and capacity values from past periods, and 

assign new demand and capacity values to variables in current period based of a 

probability distribution. The white colored block with a little arrow mark symbol 

represents a sub-system which further consists of several blocks.   
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Figure 6.3 Snapshot of Simulation in ARENA 

6.2 Role of VB in IPA Framework 

As stated in the earlier sub-section, VB plays an important role in the simulation 

optimization framework using IPA. Figure 6.4 explicitly shows how the VB block is 

connected with the other blocks used in the IPA framework. The information regarding 

the update equations, first order equations, service-level of all nodes, and Lagrange 

function is sent to the VB block from ARENA. The code for the feasible direction 

algorithm is written in VB, i.e. a modified Zoutendijk’s feasible direction algorithm along 

with the line search which uses a Golden Section Algorithm (GSA). A linear program 

(LP) is written in Xpress (which is discussed in the next sub-section) for obtaining the 
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direction vectors.  The base-stock values are updated in VB and sent to ARENA, which is 

used to update the equations (on-hand inventory, outstanding orders etc.), and first order 

equations etc.   

 

Figure 6.4 VB and Adjoining Blocks 

6.2.1 Modified Zoutendijk’s Feasible Direction Algorithm 

In this sub-section we will look initially at the modified Zoutendijk’s feasible-

direction algorithm and will also visit the original Zoutendijk’s feasible direction 

algorithm. The feasible direction method is modified since the Lagrange function, 

equation (5.23) is minimized instead of directly using the objective function, equation 

(3.27). Since the original problem converts to an unconstrained one, the limits for the line 

search are subjective. A three-echelon problem is considered to describe the steps of the 

algorithm.    

Steps in the modified Zoutendijk’s feasible direction algorithm: 

Initialization Step: Choose a starting point, i.e. a base-stock level, and Lagrange 

multipliers for each node. In a three-echelon model we have four nodes, so we initialize 

System 
Evaluator

(Arena)

Solve LP to 
obtain direction 
vectors(Xpress)

Feasible 
Direction

Algorithm

Line 
Search 
(GSA)

Update 
Base‐stock 
Values

Inside VB Block



152 

 

four base-stock levels, and Lagrange multipliers, ( ) ( )0 1 2 3 0 1 2 3, , , , ; , , ,t ts u s s s s u u u u=
r r

. Let 

t = 1 and start with step 1 

Step 1: Solve the following problem 

{ }

Minimize Z

. ( , ) 0;

1 1; 0, 1,2,...8

t t

j j

s t L s u d Z

d d where j

∇ − ≤

− ≤ ≤ ≥ ∈

r r r

     (6.1)

 

( , )t tL s u∇
r r r

is the gradient of the Lagrange function (the new objective function) at

( , )
t t

s u
r r

, i.e. base-stock level and Lagrange multiplier.  The values of ( , )t tL s u∇
r r r

are 

obtained from simulation and IPA. Whereas 
t

d is an improving feasible direction which 

is found by solving the linear program (discussed in next section 6.3), { }1,2,...8j∈  since 

we have four base-stock levels and four Lagrange multipliers, one for each node.  let 

( ),t tZ d be the best found solution. If 0
t

Z = , stop; ( , )
t t

s u
r r

is a Fritz John point (Bazaraa et 

al., 2004). If 0
t

Z < , go to step 2. 

Step 2: 
t
λ be the best found solution to the following line search problem: 

[ ]Minimize ( , )

.

t t t
f s u d

s t min max

λ
λ λ λ

+

≤ ≤

r r

       (6.2) 

Where ,min maxλ λ = are arbitrary values, usually between (-0.5, 0.5) and (-2, 2). The 

value is picked depending on how far the best found answer might be from the starting 

point. Let [ ]1 1( , ) ( , )t t t t t ts u s u dλ+ + = +
r r r r

replace t with t +1, and return to step 1. 

Steps in the Zoutendijk’s feasible direction algorithm: 



153 

 

Consider a problem to minimize f(x) shown in equation (6.3) subject to ( ) 0ig x ≤ for 

1,...,i m= . Let x be a feasible solution. 

Initialization Step: Choose a starting point, 1x  such that ( ) 0ig x ≤ . Let k = 1 and start 

with step 1. t stands for transpose here, but it does not indicate the iteration.  

Step 1: Let ( ){ }: 0i kI i g x= = and solve the following problem 

{ }

Minimize Z

. ( ) 0;

( ) 0

1 1; 0, 1,2,...,

t

k

t

i k

j j

s t f x d Z

g x d Z for i I

d d where j n

∇ − ≤

∇ − ≤ ∈

− ≤ ≤ ≥ ∈
     (6.3)

 

 Let 
,( )

k k
Z d  be an best found solution. If 0

k
Z = , stop; 

k
x  is a Fritz John point 

(Bazaraa et al., 2004). If 0
k

Z < , go to step 2. 

Step 2: 
t
λ be the best found solution to the following line search (discussed next) 

problem: 

[ ]Minimize

. 0

k k
f x d

s t max

λ
λ λ
+

≤ ≤
        (6.4) 

Where ( ){ }sup : 0for 1,...,i k kmax g x d i mλ λ λ= + ≤ = Let [ ]1k k k kx x dλ+ = + replace t 

with t +1, and return to step 1. 

6.2.2 Golden Section Algorithm (Line Search) 

This sub-section describes the summary of golden section algorithm, a method of 

minimizing a quasi convex function over an interval. Let us assume the interval is

[ ]1 1,min maxλ λ . From equation (6.2) we have: 
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[ ]Minimize ( , )

.

t t t
f s u d

s t min max

λ
λ λ λ

+

≤ ≤

r r

         

Initialization Step: A length is chosen between[ ]1 1,min maxλ λ , let the length of 

uncertainty be equal to 0l > , and let ( )( )1 1 1 11min max minτ λ α λ λ= + − −  and 

( )( )1 1 1 1min max minω λ α λ λ= + − , where 0.618α = . Evaluate [ ]1f τ  and [ ]1f ω , let k =1, 

and go to step 1 

Step 1: If 
k k

max min lλ λ− < , stop; the best found solution lies in the interval 

[ ],k kmin maxλ λ . Otherwise, if  [ ]kf τ > [ ]kf ω , go to step 2, and if [ ]kf τ ≤ [ ]kf ω , go 

to step 3. 

Step 2:  Let 1k
minλ + = 

k
τ  and 1k

maxλ + = 
k

maxλ . Furthermore, let 1k
τ + =

k
ω , and let 

( )1 1 1 1k k k kmin max minω λ α λ λ+ + + += + − . Evaluate [ ]1kf ω + and go to step 4 . 

Step 3: Let 1k
minλ + = 

k
minλ  and 1k

maxλ + = 
k

ω . Furthermore, let 1k
ω + =

k
τ , and let 

( ) ( )1 1 1 11k k k kmin max minτ λ α λ λ+ + + += + − − . Evaluate [ ]1kf τ + and go to step 4.  

Step 4: Replace k by k+1 and go to step 1. 

The value of [ ]kf τ and [ ]kf ω are estimated using simulation in ARENA.  

6.2.3 Termination Condition 

The termination condition is straight forward, and can be easily understood from the 

section which discusses the Zoutendijk’s feasible direction algorithm. As per the 

Zoutendijk’s feasible direction algorithm, the termination occurs when the value of 0Z ≤

, but it is quite difficult to achieve, or to put it in other words it would require several 

thousand additional simulations runs to obtain the value of 0Z ≤ in the feasible direction 
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algorithm. So the termination condition that is used in this research is slightly relaxed, 

and the simulation stops when  5Z ≤ occurs. It is also ensured at the same time that the 

desired service level is achieved for each node. If the desired service level is not 

achieved, then we allow the algorithm to keep running for  another complete cycle (a 

complete cycle would be to determine the direction vectors, run the feasible direction 

algorithm, run the line search, and obtain the new base-stock values) and so on till the 

desired service level is achieved.  The termination condition would be sensitive to the 

structure of Lagrange function used (discussed in chapter 5). This kind of termination 

condition is used when a squared & multiplied Lagrange function is used, where the 

multiplier (Q) is equal to a constant value of 10.  

6.2.4 Pseudo Code in VB   

The pseudo code would help in understanding the basic flow of the algorithm 

(Zoutendijk’s feasible direction, and line search). 

/* Declare Global Variables 

{ 

Declare Lagrange multipliers, and base-stock variables; 

Declare Iteration, count variables, termination condition variables; 

Declare variables for line search; 

Declare direction vectors (obtains the values from LP); 

} 

/* Create a class for updating variables before the simulation starts (also known as 

RunBeginSimulation ( ) class in VB) 

Start the class 
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Declare variables that can make connection between ARENA and VB; 

Declare initial values of base-stock, and Lagrange multipliers; 

Declare initial variables for line search; 

Declare Step Number = 0 (the entire cycle is divided into number of steps for 

programming convenience); 

Send the initial values (Lagrange multipliers, base-stock values etc. from VB to 

ARENA; 

End class 

/* Create a class for updating variables when an entity passes through VB block in 

ARENA (also known as fire ( ) class in VB) 

Start the class 

Declare variables that can make connection between ARENA and VB; 

Declare variables for that are used for first-order Lagrange equations, (i.e. 

derivation of Lagrange function with-respect to all the decision variables); 

Declare variables that perform read-write operation to a notepad file; 

/* End of declarations  

************************Start Main Program********************** 

Update the step number = step number + 1; 

 

If (step number = 2 and Z > 5) Then 

{ 

 Declare variables that can make connection between ARENA and VB; 

 Obtain the value of first order estimates from simulation in ARENA; 
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Initialize the upper, lower bound, interval of uncertainty values used in 

line search; 

reduce the interval of uncertainty by 10% every time a new cycle 

(Iteration) starts; 

Continue to reduce for 20 Iterations, after which the interval of uncertainty 

is no longer reduced; 

Write all the values of first-order Lagrange variables to a text file, each 

value is written to a separate text file;  

************Run LP from Xpress by Integrating Mosel************ 

Call the class that Mosel module; 

Call the supporting modules that are required for Mosel to run through 

VB; 

************************End of LP************************ 

Read the direction vectors from text file (obtained after the LP is solved); 

Read the all direction vectors into variables in VB; 

} 

End If; 

 

If (Step Number = = 2) Then 

{ 

Declare variables that can make connection between ARENA and VB; 

Compute the value of 
k
τ ; 

Obtain the base-stocks values, and Lagrange multipliers from ARENA; 
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/ * Update the base-stock variables based on the direction vectors and 
k
τ   

New base-stock value = old base-stock value + (direction vector for the 

base-stock *  
k
τ ) ; 

/ * Repeat the process for base-stock values, and Lagrange multipliers of 

all the nodes  

} 

End If 

If (Step Number = = 3) Then 

{ 

Declare variables that can make connection between ARENA and VB; 

Obtain the value of ( )kf τ from ARENA; 

Compute the value of 
k

ω ; 

Obtain the base-stocks values, and Lagrange multipliers from ARENA; 

/ * Update the base-stock variables based on the direction vectors and 
k

ω   

New base-stock value = old base-stock value + (direction vector for the 

base-stock *  
k

ω ) ; 

/ * Repeat the process for base-stock values, and Lagrange multipliers of 

all the nodes  

} 

If (Step Number = = 4) Then 

{ 

Declare variables that can make connection between ARENA and VB; 
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Obtain the value of ( )kf ω from ARENA; 

Obtain the base-stocks values, and Lagrange multipliers from ARENA; 

If (Step 2 described in section 6.2.2 (line search) is selected) Then 

 { 

/ * Update the base-stock variables based on the direction vectors 

and 
k
τ    

New base-stock value = old base-stock value + (direction vector 

for the base-stock *  
k
τ ) ; 

/ * Repeat the process for base-stock values, and Lagrange 

multipliers of all the nodes  

} 

  End if; 

If (Step 3 described in section 6.2.2 (line search) is selected) Then 

 { 

/ * Update the base-stock variables based on the direction vectors 

and 
k

ω    

New base-stock value = old base-stock value + (direction vector 

for the base-stock *  
k

ω ) ; 

/ * Repeat the process for base-stock values, and Lagrange 

multipliers of all the nodes  

} 

  End if; 

} 
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End if 

If (Step Number > 4 and intervalof uncertainty
k k

max minλ λ− >  ) Then 

{ 

Declare variables that can make connection between ARENA and VB; 

Obtain/ update the value of ( )kf τ , and ( )kf ω from ARENA; 

Obtain the base-stocks values, and Lagrange multipliers from ARENA; 

If (Step 2 described in section 6.2.2 (line search) is selected) Then 

 { 

/ * Update the base-stock variables based on the direction vectors 

and 
k
τ    

New base-stock value = old base-stock value + (direction vector 

for the base-stock *  
k
τ ) ; 

/ * Repeat the process for base-stock values, and Lagrange 

multipliers of all the nodes  

} 

  End if; 

If (Step 3 described in section 6.2.2 (line search) is selected) Then 

 { 

/ * Update the base-stock variables based on the direction vectors 

and 
k

ω    

New base-stock value = old base-stock value + (direction vector 

for the base-stock *  
k

ω ) ; 
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/ * Repeat the process for base-stock values, and Lagrange 

multipliers of all the nodes  

} 

} 

End if 

/ * Get the service levels from ARENA 

Declare variables that can make connection between ARENA and VB; 

Obtain the service level values for all the nodes; 

/ * Increase the number of simulation runs (periods) to obtain an estimate from 

simulation as the service level of one of the nodes reaches the  desired service level 

/ * Check the termination condition 

If (Z < = 5) Then 

{ 

 Check the service level variables for desired service-level; 

/ * If satisfied terminate the process 

 Else  

 / * Assign an arbitrary large Z value, and override the terminating condition that 

uses Z value during the next cycle (iteration), and terminate only on the basis of service 

level constraint from subsequent iterations 

Z = large value; 

} 

End if 

If ( intervalof uncertainty
k k

max minλ λ− ≤ ) Then 
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{ 

 Set all the line variables to initial values, step value; 

 Declare variables that can make connection between ARENA and VB; 

 Obtain the values of , and
k k

max minλ λ from ARENA 

 Optimal length =
( )

2
k k

max minλ λ+
; 

Update all the base-stock variables and Lagrange multipliers based on the best 

found solution obtained from line search; 

} 

End of Class 

6.3 Role of Xpress in IPA Framework 

As mentioned in earlier sub-sections the role of Xpress is to solve a linear program 

(LP). The linear program is used to obtain the direction vectors by solving equation (6.3) 

(a part of feasible direction method). The solution from the LP will provide the search 

direction for the base-stock levels and Lagrange multipliers. The pseudo code for solving 

the LP in Xpress is shown in sub-section below. 

6.3.1 Pseudo Code in Xpress   

Start-Model 

/* Define Parameters 

Get first order Lagrange Variables (Lagrange with-respect-to base-stock level and 

multipliers) from the files; 

Define the path for storing the direction variables (obtained after solving LP); 



163 

 

/* End-Parameters 

/* Decelerations  

 Define direction variables; 

 Define objective function variables (Z, first order Lagrange variables); 

/* End-Decelerations 

/* Read all the eight files file’s (since there are eight first-order variables, one for each 

variable) 

Fopen (first order variable) 

 Read (into variable declared in Xpress) 

Fclose (command) 

/* continue the process for all eight files 

/* Define the objective 

Objective : = (First order variable 1 * direction vector 1+…….+ First order variable 8 * 

Direction vector) < = Z 

/* Define constraints 

Direction vector 1 > = -1 

Direction vector 1 < = 1 

/* Continue for all the eight direction vectors 

Minimize (Z); 

/* Write the direction vectors to a text file 

Fopen (file name, path) 

 write (to text file) 

Fclose (command) 
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/* Continue for all eight directions 

End Model; 
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7. COMPUTATIONAL RESULTS FOR THREE­ECHELON 

ASSEMBLY SYSTEM 

In this chapter we will discuss the results from two simulation-optimization 

frameworks discussed in the earlier chapters, although more emphasis will be given to 

results obtained using the IPA framework. A comparison between the results obtained 

from the two frameworks is discussed. The computational results and initial implications 

from seven different cases using the IPA framework are discussed in this chapter. All the 

results in this chapter pertain to the three-echelon assembly system shown in chapter 3. 

7.1 Results from OptQuest Framework 

A total of 14 scenarios are run using OptQuest as a part of initial study. The scenarios 

are shown in table 7.1. The first six scenarios have deterministic capacity and random 

demand, whereas the last eight scenarios have random demand and capacity.  A two- 

period supply lead time and a two period lead time between the nodes is assumed. The 

normal distribution is used for random demand and capacity. 
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Table 7.1 Demand and Capacity Values for OptQuest Framework 

 

*Norm (Value1, Value2) represents Normal Distribution (Mean, Standard Deviation) 

Each scenario listed in table 7.1 is run for a length of 20 periods, for a customer 

service level of 90% for each node. The best found base-stock levels, objective function 

value and the utilization of capacity are listed in table 7.2.  

Table 7.2 Best Found Base-stock Levels for OptQuest Framework 

 
** S0, S1, S2, and S3 represent 0 1 2 3, , , ands s s s  of three-echelon respectively 

Intermediate 

product, 

Demand 1

Final 

Product, 

Demand 2

Capacity At 

Node 3

Capacity At 

Node 2

Capacity At 

Node 1

Capacity 

At Node 0

Scenario 1 Norm(8,1) Norm(4,1) 18 18 18 9

Scenario 2 Norm(8,2) Norm(4,2) 18 18 18 9

Scenario 3 Norm(8,3) Norm(4,3) 18 18 18 9

Scenario 4 Norm(8,4) Norm(4,4) 18 18 18 9

Scenario 5 Norm(8,1) Norm(4,1) 14 14 14 6

Scenario 6 Norm(8,2) Norm(4,2) 14 14 14 6

Scenario 7 Norm(8,1) Norm(4,1) Norm(18,1) Norm(18,1) Norm(18,1) Norm(9,1)

Scenario 8 Norm(8,1) Norm(4,1) Norm(18,3) Norm(18,3) Norm(18,3) Norm(9,3)

Scenario 9 Norm(8,2) Norm(4,2) Norm(18,1) Norm(18,1) Norm(18,1) Norm(9,1)

Scenario 10 Norm(8,2) Norm(4,2) Norm(18,3) Norm(18,3) Norm(18,3) Norm(9,3)

Scenario 11 Norm(8,1) Norm(4,1) Norm(14,1) Norm(14,1) Norm(14,1) Norm(6,1)

Scenario 12 Norm(8,2) Norm(4,2) Norm(14,2) Norm(14,2) Norm(14,2) Norm(6,2)

Scenario 13 Norm(12,1) Norm(8,1) Norm(24,1) Norm(24,1) Norm(24,1) Norm(12,1)

Scenario 14 Norm(12,2) Norm(8,2) Norm(24,2) Norm(24,2) Norm(24,2) Norm(12,2)
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From the best found base-stock levels in table 7.2 we can see that as the standard 

deviation of demand increases the best found base-stock level also increases at each node, 

i.e. for scenarios 1- 4 we can see that as the standard deviation of demand increases the 

base-stock level at each node also increases, this is shown in figure 7.1. We can also 

observe from table 7.2 that as the capacity becomes tighter the base-stock values at each 

node also increase, and this is shown in figure 7.2  

 

Figure 7.1: Best Found Base-stock Levels for Scenarios 1-4 

From figure 7.1 we can observe that there is a clear increase in the base-stock levels 

as the standard deviation of demand increases for scenarios 1 to 4 from Normal (4, 1) to 

Normal (4, 4) for final product demand, and Normal (8, 1) to Normal (8,4) for 

intermediate product demand.  
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Figure 7.2 Best Found Base-stock Levels for Scenarios 9 and 12 

In figure 7.2 a comparison is made between scenarios 9 and 12. We can observe an 

increase in base-stock values across the nodes as the capacity gets tighter, i.e. a reduction 

of 4 units from Normal (18, 1) to Normal (14, 2) for node 3 to 1, and Normal (9, 1) to 

Normal (6, 2). 

7.2 Results from IPA Framework 

A total of 14 scenarios, similar to OptQuest framework are run in IPA framework as a 

part of initial study. The scenarios are shown in table 7.3, they are same as table 7.1 but 

the scenario numbers are changed. The first six scenarios have deterministic capacity and 

random demand, whereas the last eight scenarios have random demand and capacity.  A 

two period supply lead time and a two period lead time between the nodes is assumed. 

Normal distribution is used for random demand and capacity. 
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Table 7.3 Demand and Capacity Values for IPA Framework 

 

The best found base-stock levels for scenarios 15-28 obtained using the IPA 

framework, and the utilization for each node is shown in table 7.4. A service level of 90% 

is used for each node. The simulation is run for 500 periods, i.e. to obtain one estimate, 

and the simulation is run for 3000 periods when the service level estimate for one of the 

nodes is close to the required service level of 90%. This process carries on till the 

termination condition is satisfied.  
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Table 7.4 Best Found Base-stock Levels for IPA Framework 

 

The results shown in table 7.4 have a similar trend to that of table 7.2. We can see 

that as the standard deviation of demand increases the best found base-stock level also 

increases at each node, i.e. for scenarios 15 and 18 we can see that as the standard 

deviation of demand increases the base-stock level at each node also increases, this is 

shown in figure 7.3. We can also observe from table 7.2 that as the capacity becomes 

tighter the base-stock values at each node also increase, and this is shown in figure 7.4  
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Figure 7.3: Best Found Base-stock Levels for Scenarios 15 and 18 

From figure 7.3 we can observe that there is a clear increase in the base-stock levels 

for scenario 18 compared to 15.  As the standard deviation of demand increases form 

from Normal (4, 1) to Normal (4, 4) for final product demand, and Normal (8, 1) to 

Normal (8,4) for intermediate product demand we can observe an increase in the base-

stock level.  

 

Figure 7.4: Best Found Base-stock Levels for Scenarios 22 and 26 
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In figure 7.4 a comparison is made between scenarios 22 and 26. We can observe an 

increase in base-stock values across the nodes as the capacity gets tighter, i.e. a reduction 

of 4 units from Normal (18, 1) to Normal (14, 2) for node 3 to 1, and Normal (9, 1) to 

Normal (6, 2). 

7.3 Comparison between Results from IPA and OptQuest 

A comparison of performance between the two frameworks used, i.e. OptQuest and 

IPA is studied. The study involves the comparison of the quality of solution and time 

taken to obtain the best found answer. Table 7.5 and 7.6 show the results from 14 

different cases.  

Table 7.5: Comparison of Computational Time and Base-Stock Values Using Two 

Frameworks (Case’s 1- 8) 
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Table 7.6: Comparison of Computational Time and Base-Stock Values Using Two 

Frameworks (Case’s 9-14) 

 

From tables 7.5 and 7.6 we can see that in almost all the cases the quality of the 

solution obtained using IPA framework is much better than the OptQuest framework. In 

case 1, 5, and 6 the OptQuest solution is fractionally better than the IPA, but if we ignore 

the fraction and round the number to the nearest integer the solution of IPA and OptQuest 

are same. All the other cases except 1, 5, and 6 IPA performs a lot better when compared 

to the OptQuest. If we compare the amount of time taken by the two frameworks to get to 

the solution, IPA outperforms OptQuest by several minutes. IPA in not only provides a 

better solution quality, but also provides the answer quicker.  



174 

 

The starting points for the IPA framework are twice the mean demand for each node. 

The base-stock level for each node start from twice mean demand since the lead time 

considered for all the case’s is two periods. The capacity for each node is made large 

enough so that the node is not constrained from capacity. In case of OptQuest the lower 

bound for the base-stock level is twice the mean demand for the node, and the upper 

bound considered is 95
th

 percentile of the demand.     

7.4 Detailed Computational Results  

In this sub-section we will discuss the computational results of three-echelon 

assembly system in much detail. The study involves four cases, the inferences from each 

case is discussed. The hypothesis statements made in this sub-section are not statistically 

proven; they are only based of numerical observations. 

7.4.1 Case 1 

Description of Case 1: Study the impact on total cost & safety-stock cost under 

varying demand CV (coefficient of variation) and service levels. 

Hypothesis 1a: As the demand CV increases the base-stock level and safety stock for 

each node, and hence the total cost increases.   

Hypothesis 1b: As the service level for each node increases the base-stock level, and 

safety-stock for the respective nodes increases, and hence the total cost increases.   

The mean demand, and capacity values used for computation is shown in table 7.7. 

Normal distribution is used for demand and capacity. Mean capacity is kept constant, and 

the standard deviation of the capacity depends on the CV. 
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Table 7.7: Mean Demand and Capacity Values for Case 1 

 

The impact of demand CV and service level on the value of total cost & safety-stock 

costs for a one, two, three period lead time is shown in table 7.8, 7.9 and 7.10. 

Table 7.8: Impact of Demand CV on Total Cost and Safety Stock Costs  

(1 Period Supply/Manufacturing Lead Time) 

 

Table 7.9: Impact of Demand CV on Total Cost and Safety Stock Costs  

(2 Period Supply/Manufacturing Lead Time) 

 

 

Service 

Level 0.2 0.6 1

Service 

Level 0.2 0.6 1

95%

51.79 

(100%)

85.28 

(100%)

127.52 

(100%) 95%

11.79 

(100%)

45.28 

(100%)

87.52   

(100%)

90%

51.32 

(99%)

72.16 

(84.61)

123.72 

(97%) 90%

11.32 

(96%)

32.16 

(71.02)

83.72    

(95%)

85%

49.08 

(94%)

69.48 

(81%)

109.2 

(85%) 85%

9.08 

(77%)

29.48 

(65%)

69.2      

(79%)

80%

47.28 

(91%)

68.16 

(79%)

105.2 

(82%) 80%

7.28 

(61%)

28.16 

(62%)

65.2      

(74%)

Demand CV Demand CV

Impact of Demand CV on Total Costs

Impact of Demand CV on Safety Stock 

Costs

Service 

Level 0.2 0.6 1

Service 

Level 0.2 0.6 1

95%

97.04 

(100%)

140.8 

(100%)

208.84 

(100%) 95%

17.04 

(100%)

60.8 

(100%)

128.84 

(100%)

90%

94.04 

(96%)

131.64 

(93%)

200.6  

(96%) 90%

14.04 

(82%)

51.64 

(84%)

120.6 

(93%)

85%

92.52 

(95%)

126.12 

(89%)

152.44 

(73%) 85%

12.52 

(73%)

46.12 

(75%)

72.44 

(56%)

80%

90.84 

(93%)

122.36 

(86%)

145.6  

(69%) 80%

10.84 

(63%)

42.36 

(69%)

65.6   

(50%)

Impact of Demand CV on Safety-Stock 

Costs

Demand CVDemand CV

Impact of Demand CV on Total Costs
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Table 7.10: Impact of Demand CV on Total Cost and Safety Stock Costs  

(3 Period Supply/Manufacturing Lead Time) 

 

By observing table 7.8, 7.9, and 7.10 the following inferences can be made:  

• As the demand CV increases from 0.2 to 1  the total cost increases greatly 

• As the service level increases the total cost within a specific demand CV, and 

across demand CV’s  increases 

• The rate of change (percentage) increase in total cost is greater when the 

demand CV = 1 than compared to demand CV = 0.2 

• Similar statements also hold true for the safety-stock costs   

From the above statements and the computational results shown in tables provided 

above we can state that the Hypothesis 1a and 1b hold true (based of only observations).  

7.4.1 Case 2 

Description of Case 2: Study the impact on total cost & safety-stock cost under 

varying capacity CV (coefficient of variation) and service levels. 

Hypothesis 2a: As the capacity CV increases the base-stock level and safety stock for 

each node, and hence the total cost increases.   

Service 

Level 0.2 0.6 1

Service 

Level 0.2 0.6 1

95%

140.24 

(100%)

192.72 

(100%)

265.04 

(100%) 95%

20.24 

(100%)

72.72 

(100%)

145.04 

(100%)

90%

138.02 

(98%)

190.56 

(98%)

258.12 

(97%) 90%

18.02 

(89%)

70.56 

(97%)

138.12 

(95%)

85%

135.11 

(96%) 180 (93%)

250.64 

(94%) 85%

15.11 

(74%) 60 (82%)

130.64 

(90%)

80%

134.08 

(95%)

176.68 

(91%)

240.8 

(90%) 80%

14.08 

(69%)

56.68 

(77%)

120.8 

(83%)

Impact of Demand CV on Total Costs

Impact of Demand CV on Safety Stock 

Costs

Demand CV Demand CV
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Hypothesis 2b: As the service level for each node increases the base-stock level, and 

safety-stock for the respective nodes increases, and hence the total cost increases.   

The demand, and mean capacity values used for computation is shown in table 7.11. 

Normal distribution is used for demand. The mean capacity is kept constant, and normal 

distribution is used for capacity. The standard deviation of the capacity depends on the 

coefficient of variation (CV). 

Table 7.11: Demand and Mean Capacity Values for Case 2 

 

The impact of capacity CV and service level on the value of total cost & safety-stock 

costs for a one, two, three period lead time is shown in table 7.12, 7.13 and 7.14. 

Table 7.12: Impact of Capacity CV on Total Cost and Safety Stock Costs  

(1 period lead time) 

 

 

 

 

 

 

 

 

Service 

Level 0.1 0.3 0.6

Service 

Level 0.1 0.3 0.6

95%

49.68 

(100%)

76.16 

(100%)

119.2 

(100%) 95%

9.68 

(100%)

39.72 

(100%)

79.2  

(100%)

90%

48.72   

(98%)

74.21 

(98%)

113.2 

(94%) 90%

8.72 

(90%)

38.88 

(97%)

73.2 

(92%)

85%

48.24 

(97%)

71.20   

(91%)

108.8 

(91%) 85%

8.24       

(85%)

33.32 

(83%)

68.8 

(86%)

80%

46.84 

(94%)

68.4 

(86%)

96.96 

(81%) 80%

6.84       

(70%)

28.4 

(71%)

56.96 

(71%)

Capacity CV Capacity CV

Impact of Capacity CV on Total Costs

Impact of Capacity CV on Safety 

Stock Costs
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Table 7.13: Impact of Capacity CV on Total Cost and Safety Stock Costs  

(2 period lead time) 

 

Table 7.14: Impact of Capacity CV on Total Cost and Safety Stock Costs  

(3 period lead time) 

 

The impact of capacity CV and service level on the value of total cost & safety-stock 

costs is shown in tables 7.12, 7.13, and 7.14. By observing tables the following can be 

inferred:  

• As the capacity CV increases from 0.1 to 0.3 we can see an increase in the total 

cost  

• As the service level increases the total cost within a specific capacity CV, and 

across capacity CV’s  increases 

Service 

Level 0.1 0.3 0.6

Service 

Level 0.1 0.3 0.6

95%

93.64 

(100%)

117.12 

(100%)

168.16 

(100%) 95%

13.64 

(100%)

37.12 

(100%)

88.16 

(100%)

90%

91.96 

(98%)

114.28 

(97%)

162.28 

(96%) 90%

11.96 

(87%)

34.28 

(92%)

82.28 

(93%)

85%

91.48 

(97%)

111.2 

(94%)

153.2 

(91%) 85%

11.48 

(84%)

31.2 

(84%)

73.2 

(83%)

80%

88.4 

(94%)

109.36 

(93%)

147.2 

(87%) 80%

8.4 

(61%)

29.36 

(79%)

67.2 

(76%)

Impact of Capacity CV on Safety 

Stock CostsImpact of Capacity CV on Total Costs

Capacity CV Capacity CV

Service 

Level 0.1 0.3 0.6

Service 

Level 0.1 0.3 0.6

95%

148.64 

(100%)

160.16 

(100%)

235.56 

(100%) 95%

28.64 

(100%)

40.16 

(100%)

115.56 

(100%)

90%

136.2 

(91%)

155.28 

(96%)

226.16 

(96%) 90%

16.2 

(56%)

35.28 

(87%)

106.16 

(91%)

85%

133.04 

(89%)

153.12 

(95%)

218.16 

(92%) 85%

13.04 

(45%)

33.12 

(82%)

98.16 

(84%)

80%

131.2 

(88%)

151.2 

(94%)

209.6 

(88%) 80%

11.2 

(39%)

31.2 

(77%)

89.6 

(77%)

Capacity CV Capacity CV

Impact of Capacity CV on Total Costs

Impact of Capacity CV on Safety Stock 

Costs
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• The rate of change (percentage) increase in total cost is greater when the capacity 

CV = 0.3 than compared to demand CV = 0.1 

• Similar statements also hold true for the safety-stock costs   

From the above statements and the computational results shown in tables above we 

can state that the Hypothesis 2a and 2b hold true.  

7.4.3 Case 3 

Description of Case 3: Study the impact on safety-stock cost under varying lead time 

(supply/manufacturing lead times), demand CV, and service levels. 

Hypothesis 3a: As the lead time increases the safety stock cost for each node also 

increases, and hence the total safety stock cost also increases.   

Hypothesis 3b: As the service levels and demand CV increases the safety stock costs 

increase significantly.  

Table 7.15, and 7.16 shows the impact of service level, and lead time on the safety-

stock costs for two different demand CV’s. The demand follows a normal distribution, 

whereas capacity is deterministic. The demand and capacity values used for computation 

are same as table 7.7.     

Table 7.15 Impact of Lead Time on Safety Stock Costs for Demand CV = 0.2 

 

 

Lead Time (#  

of Periods)

80% 85% 90% 95%

1 7.28 9.08 11.32 11.79

2 10.84 12.52 14.04 17.04

3 14.08 15.11 18.02 20.24

Service Level

Effect of Lead Time on Safety Stock Costs for Different 

Service Levels,  Demand CV = 0.2
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Table 7.16 Impact of Lead Time on Safety Stock Costs for Demand CV = 1 

 

The following inferences can be made from tables 7.15 and 7.16: 

• The safety-stock costs increases as the lead time increases irrespective of the 

service level considered 

• As the service level increases the rate of increase in safety stock costs within a 

specific service level for two different lead time’s increases greatly. For instance 

in table 7.16 the difference between safety-stock costs for one period and two 

period lead time within 85 % service  level is 3.24, whereas difference between 

safety-stock costs for one period and two period lead time within 95 % service  

level is 41.32.  

• The rate of change for safety stock cost increases as the demand CV increases. It 

can be seen by observing the last column in table 7.15 and 7.16. 

  From the above statements and the computational results in tables provided above 

we can state that the Hypothesis 3a and 3b hold true.  

7.4.4 Case 4 

Lead Times (# 

of Periods)

80% 85% 90% 95%

1 65.2 69.2 83.72 87.52

2 65.6 72.44 120.6 128.84

3 120.8 130.64 138.12 145.04

Effect of Lead Time on Safety Stock Costs for Different 

Service Levels, Demand CV = 1

Service Level
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Description of Case 4: Study the impact on safety-stock cost under varying lead time 

(supply/manufacturing lead times), capacity CV, and service levels. 

Hypothesis 4: As the service levels and capacity CV increases the safety stock costs 

increases significantly.  

Table 7.17, and 7.18 show the impact of service level, and lead time on the safety-

stock costs for two different capacity CV’s. The capacity and demand follow a normal 

distribution. The demand and mean capacity values used for computation are same as 

table 7.11.     

Table 7.17 Impact of Lead Time on Safety Stock Costs for Capacity CV = 0.3 

 

Table 7.18 Impact of Lead Time on Safety Stock Costs for Capacity CV = 0.6 

 

Similar inferences as that of case 3 can also be made from the tables 7.17 and 7.18 

respectively.  

The following inferences can be made from table 7.17 and 7.18: 

Lead Time (# 

of Periods)

80% 85% 90% 95%

1 28.4 31.2 34.21 36.6

2 29.36 31.2 34.28 37.12

3 31.2 33.12 35.28 40.16

Effect of Lead Time on Safety Stock Costs for Different 

Service Levels, Capacity CV = 0.3

Service Level

Lead Time (# 

of Periods)

80% 85% 90% 95%

1 56.96 68.8 73.2 79.2

2 67.2 73.2 82.28 88.16

3 89.6 98.16 106.16 115.56

Effect of Lead Time on Safety Stock Costs for Different 

Service Levels, Capacity CV = 0.6

Service Level
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• The rate of change for safety stock cost increases as the capacity CV increases. It 

can be seen by observing the last column in table 7.15 and 7.16. 

• The safety-stock costs increases as the lead time increases irrespective of the 

service level considered 

• As the service level increases the rate of increase in safety stock costs within a 

specific service level for two different lead time’s increases greatly. 

  From the above statements and the computational results in tables provided above 

we can state that the Hypothesis 4 holds true.  

Additional computational results can be found in appendix A5. 
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8. INVENTORY ALLOCATION POLICIES 

In this chapter we discuss some alternative inventory allocation policies to use in the 

multi-echelon inventory systems. Specifically the allocation policies studied here 

demonstrate how inventory optimization in a supply chain requires attention to base-

stock levels as well as the allocation policy. The update equations for four different 

inventory allocations polices used in the three and five-echelon assembly models is 

discussed, followed by numerical results for the three and five-echelon assembly models. 

Statistical inferences and hypothesis testing is done to derive some implications based on 

the five-echelon assembly model.   

The inventory allocation policy decides how the inventory is allocated between 

different sources of demand. For instance in a three-echelon assembly system it would be 

between downstream demand and the intermediate demand. We discussed several 

inventory allocation policies in chapter 2 which have been used in the recent literature. 

For the multi-echelon problem we use four inventory allocation policies. Three of the 

four inventory allocation polices are used in practice (Cachon and Lariviere, 1999). 

The update equations for the multi-echelon problems discussed in earlier chapters are 

based on the inventory allocation policy where the priority is given to the intermediate 

product demand, in other words lexicographic allocation with priority to intermediate 

product demand.  Let us discuss the allocation policy currently used, and a few other 

inventory allocation policies that are used in this chapter in detail. The following are the 

inventory allocation policies: 

• Lexicographic  Allocation (Priority to Intermediate Product Demand) 
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• Lexicographic  Allocation (Priority to Downstream Demand) 

• Predetermined Proportional Allocation   

• Proportional Allocation  

The four inventory allocation policies are used in the three-echelon assembly system, 

five-echelon assembly system, and the larger networks. This chapter discusses results for 

the three and the five-echelon assembly system, whereas the larger multi-echelon 

networks are discussed in chapter 9. 

8.1 Description of Inventory Allocation Policies 

8.1.1  Lexicographic  Allocation  (Priority  to  Intermediate  Product  Demand) 
(LAPI) 

The Lexicographic allocation policy ranks the sources of demand in some manner 

independent of their order size, and based on the ranking the each source receives the 

amount of supplier capacity. In the three-echelon problem we consider that there are two 

sources of demand, 1) intermediate product demand and 2) downstream demand, and we 

assign the priority to the intermediate product demand. The available supplier (upstream) 

capacity is first used to satisfy the entire intermediate product’s demand, and the 

remaining capacity (if any) is used to serve downstream product demand. The update 

equations developed for the three-echelon assembly system reflect this allocation policy. 

This allocation policy is used for the problems pertaining to three and five-echelon 

assembly models. By assigning priority to intermediate products the following are 

observed: 

• Decrease in the total cost when the upstream nodes have a greater proportion 

of demand when compared to the downstream nodes. 
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• Decrease in total safety-stock cost when the upstream nodes have a greater 

proportion of demand when compared to the downstream nodes. 

Detailed insights are provided later in the chapter.   

8.1.2  Lexicographic  Allocation  (Priority  to  Downstream  Product  Demand) 
(LAPD) 

In this lexicographic allocation policy the priority is assigned to the downstream 

product demand.  The available supplier (upstream) capacity is used to satisfy the entire 

downstream product’s demand, and the remaining capacity is used to serve intermediate 

product demand. The update equations need to be modified to reflect this change in the 

allocation policy. This allocation policy is used for the problems pertaining to three and 

five-echelon assembly models. By assigning priority to downstream products the 

following are observed: 

• Decrease in the total cost when the downstream nodes have a greater 

proportion of demand when compared to the upstream nodes. 

• Decrease in total safety-stock cost when the downstream nodes have a greater 

proportion of demand when compared to the upstream nodes. 

• Decrease in the total cost and safety-stock cost when there is a high demand 

CV for all the demands (intermediate and final products) and high capacity 

CV. 

Detailed insights are provided later in the chapter.   

8.1.3 Predetermined Proportional Allocation (PPA)  

In a predetermined proportional allocation if the supplier’s capacity is less than the 

sum of all the demand, then the supplier could use a predetermined proportional 

allocation mechanism. Each source of demand receives not more than the pre-determined 
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ratio of the available inventory on-hand. In the three-echelon problem we consider that 

there are two sources of demands, 1) intermediate product demand and 2) downstream 

demand, and we assign a predetermined ratio, say for instance 0.5, which means each 

source of demand obtains 50% of the available on-hand inventory. We use this allocation 

policy in the three and five-echelon problems and gain additional insights. By using a 

PPA inventory policy we observe the following: 

• In most cases using this inventory allocation policy leads to higher total cost 

compared to when other (LAPI, LAPD, and PA) inventory allocation policies 

are used.  

Detailed insights are provided later in the chapter. 

8.1.4 Proportional Allocation (PA) 

In a proportional allocation, when upstream capacity is insufficient, each sources of 

demand receives an equal proportion of his current order. Unlike in the PPA where the 

ratio is fixed for each period here the ratio dynamically changes according to the demand 

in each period. We use this allocation policy for the three and five-echelon problems and 

gain additional insights. By using proportional inventory allocation we observe: 

• Decrease in the total cost and safety-stock cost when there is a high demand 

CV for all the demands (intermediate and final products).   

Detailed insights are provided later in the chapter. 
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8.2 Inventory Allocation Policies for Three­echelon Assembly 
System  

The update equations discussed in the earlier chapters for the three-echelon assembly system 

have been based of the default inventory allocation policy, i.e. the LAPI. Let us recall all the 

update equations for the outstanding orders and on-hand inventory using LAPI.  

8.2.1 Lexicographic Allocation (priority to intermediate demand) (LAPI) 

The update equations for outstanding orders at the beginning of period n+1 for node 3 

& 2, 1, and 0 are as stated in equations (8.1) – (8.3), whereas the update equations for on-

hand inventory at the beginning of period n for node 2 & 3, 1, and 0 are as stated in 

equation (8.4) – (8.6).  

( )1 2 1

1 max 0,  where 2,3i i i

n n n n n nY Y DS iξ ξ η+ = + + − − ∈      (8.1) 

1 1 2 0 3 3 1 1 2

1 2 11 11 1 1 2 0

1 1 2 2 2 1 1 2 2 1

1 2 1 11 1

, .. .
min

. , .. .. ,

i i

i i

n n n n n nn l n l

n n n n n

n n n n nn l n l

Y DS s Y
Y Y DS

s Y

ξ ξ ξ ξ ξ
ξ ξ

ξ ξ ξ ξ ξ η
− − −− + − +

+ −

− − − −− + − +

⎛ ⎞+ + − − − − − − −
⎜ ⎟= + + − −
⎜ ⎟− − − − − − − −⎝ ⎠

 

           (8.2) 

( )0 0 2 0 2 1 1 1 1 2 2 0

1 2 1 11
min , ... ... ,i in n n n n n n n nn l n l

Y Y Y s Yξ ξ ξ ξ ξ ξ η+ − − −− − +
= + − + − − − − − − −   (8.3) 

( )1 1 2 2 1

1 1 1max 0 , ... ... , where 2,3i i i

i i i

n n n nn l n l n l
I s Y DS iξ ξ ξ ξ− − −− − −
= − − − − − − − + ∈   (8.4) 

( )1 1 2 2 0

1 1 1max 0 , ... ... , where 1i i i

i i i

n n n nn l n l n l
I s Y DS iξ ξ ξ ξ− − −− − −
= − − − − − − − + ∈   (8.5) 

( )2 2

1max 0 , ... ,where 0i i

i i i

n nn l n l
I s Y iξ ξ−− −
= − − − − ∈      (8.6) 

The outstanding orders in (8.2) are determined on the basis of the realized capacity of 

item 1, available inventory of item 2, and on-hand inventory of item 3. Similarly in 

equation 4 the outstanding orders are determined on the basis of realized capacity of item 

0, and on-hand inventory of item 1. This allocation policy would be used when demand 
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from component parts is given more importance compared to the final product. The 

possible reasons for using this allocation might be that component parts sales are more 

lucrative than final product sales, or if the component consumer market significantly 

bigger than the final product.  

8.2.2 Lexicographic Allocation (priority to downstream demand) (LAPD) 

The update equations must be modified to reflect the LAPD inventory allocation 

policy. The equation for outstanding orders and on-hand inventory for node 0 and 1 

shown in equations (8.7) and (8.9) are modified, respectively. The new update equation 

that represents the outstanding orders due to intermediate demand ( 1

1

In

nY + ) is stated as 

equation (8.8).  

( )0 0 2 0 2 1 1 1 1 2 2 0

1 2 1 11 1
min , ... ... ,i in n n n n n n n nn l n l

Y Y Y s Yξ ξ ξ ξ ξ ξ η+ − − −− + − +
= + − + − − − − − − −

                     (8.7) 

 
( )1 0 1 0 1 1 1 1 1 2 2

1 2 1 11
min , ... ...i i

In

n n n n n n n nn l n l
Y Y Y s Yξ ξ ξ ξ ξ ξ+ − − −− + −

= + − + − − − − − − −
            

     (8.8) 

( )1 1 2 2 0

1 1 1max 0 , ... ... ,where 1i i i i

i i i iIn

n n n nn l n l n l n l
I s Y Y DS iξ ξ ξ ξ− − −− − − −
= − − − − − − − − + ∈     (8.9) 

Equation (8.8) i.e. 1

1

In

nY +   is used to reflect the priority to downstream demand, i.e. the 

demand for downstream product is realized initially followed by the intermediate 

product. The allocation policy prioritizes the final product compared to the component 

parts. A competitive market with stringent delivery commitments for the final product is 

usually the reason for implementation of this allocation policy.  

8.2.3 Predetermined Proportional Allocation (PPA) 

In a predetermined proportional allocation policy each source of demand cannot 

receive more than the predetermined proportion of the available inventory. All the 
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equations for the outstanding orders and on-hand inventory remain the same as in section 

8.2.1, except outstanding order for node 0 and on-hand inventory for node 1.  In equation 

(8.10) and (8.11) γ  denotes the predetermined proportion, the value of γ is always 

between 0 and 1, 1

1

In

nY + represents the outstanding orders due to intermediate product.  

( )( )0 0 2 0 2 1 1 1 1 2 2 0

1 2 1 11 1
min , * ... ... ,i in n n n n n n n nn l n l

Y Y Y s Yξ ξ γ ξ ξ ξ ξ η+ − − −− + − +
= + − + − − − − − − −  (8.10) 

( ) ( )( )1 0 1 0 1 1 1 1 1 2 2

1 2 1 11 1
min , 1 * ... ...i i

In

n n n n n n n nn l n l
Y Y Y s Yξ ξ γ ξ ξ ξ ξ+ − − −− + − +

= + − + − − − − − − − −  (8.11) 

( )1 1 2 2 0

1 1 1max 0 , ... ... ,where 1i i i i

i i i iIn

n n n nn l n l n l n l
I s Y Y DS iξ ξ ξ ξ− − −− − − −
= − − − − − − − − + ∈  (8.12) 

8.2.4 Proportional Allocation (PA) 

In proportional allocation each source of demand receives an equal proportion of the 

order. In this policy, the proportion ( )1 2

i

n

n n

ξ
ξ ξ

⎛ ⎞
⎜ ⎟⎜ ⎟+⎝ ⎠

 represents the proportion 

corresponding to demand source i. All the update equations stay the same except the 

outstanding order equation, and the on-hand inventory for node 0 and 1 respectively. 

( ) ( )
2

0 0 2 0 2 1 1 1 1 2 2 0

1 2 1 11 2 1 1
min , * ... ... ,i i

n
n n n n n n n n nn l n l

n n

Y Y Y s Y
ξξ ξ ξ ξ ξ ξ η

ξ ξ+ − − −− + − +

⎛ ⎞⎛ ⎞
⎜ ⎟= + − + − − − − − − −⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠  

           

(8.13) 
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⎜ ⎟= + − + − − − − − − − −⎢ ⎥⎜ ⎟⎜ ⎟+⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠

           

(8.14) 

( )1 1 2 2 0

1 1 1max 0 , ... ... ,where 1i i i i

i i i iIn

n n n nn l n l n l n l
I s Y Y DS iξ ξ ξ ξ− − −− − − −
= − − − − − − − − + ∈  (8.15) 



190 

 

8.3 Computational Results for Three­echelon Inventory Allocation 
Policy 

The results for the four allocation policies are based on the following input 

parameters shown in table 1. A two period supply and manufacturing lead time is used 

between the nodes. γ  of 0.5 is used for PPA. Based on the input values in table 8.1 best 

found base-stock levels were found for each allocation policy. There are two cases used 

for PPA and PA policy which are listed below: 

• Case A: The PA and PPA policy is used in every period, i.e. even when there is 

sufficient on-hand inventory to satisfy all the sources of demand. 

• Case B: The PA and PPA policy is employed only for periods when there is 

insufficient on-hand inventory, whereas in the event of sufficient on-hand 

inventory all demands for the period are met.  

Table 8.2 provides the total system cost, which is a direct measure of the best found 

base-stock level. These costs are the result of using best found base-stock levels, as 

determined by the IPA based search.  

Table 8.1: Demand and Capacity Values Used in Simulation* 

 

Intermediate 

product, Demand 

1

Final 

Product, 

Demand 2

Capacity At 

Node 3

Capacity At 

Node 2

Capacity At 

Node 1

Capacity At 

Node 0

Scenario 1 Norm(8,1) Norm(4,1) 18 18 18 8

Scenario 2 Norm(4,1) Norm(8,1) 18 18 18 15

Scenario 3 Norm(8,4) Norm(4,4) 18 18 18 8

Scenario 4 Norm(4,4) Norm(8,4) 18 18 18 15

Scenario 5 Norm(8,2) Norm(4,2) 14 14 14 6

Scenario 6 Norm(4,2) Norm(8,2) 14 14 14 12

Scenario 7 Norm(8,1) Norm(4,1) Norm(18,3) Norm(18,3) Norm(18,3) Norm(8,3)

Scenario 8 Norm(4,1) Norm(8,1) Norm(18,3) Norm(18,3) Norm(18,3) Norm(15,3)

Scenario 9 Norm(8,2) Norm(4,2) Norm(14,2) Norm(14,2) Norm(14,2) Norm(6,2)

Scenario 10 Norm(4,2) Norm(8,2) Norm(14,2) Norm(14,2) Norm(14,2) Norm(12,2)

Scenario 11 Norm(12,2) Norm(8,2) Norm(24,2) Norm(24,2) Norm(24,2) Norm(12,2)

Scenario 12 Norm(8,2) Norm(12,2) Norm(24,2) Norm(24,2) Norm(24,2) Norm(18,2)
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*Norm (8, 1) refers to Normal (mean, standard deviation) 

Table 8.2: Total System Cost for Four Allocation Policies Based on Case A  

 

 The results for PPA and PA policy in table 8.2, and 8.3 are based on case A defined 

earlier at the start of 8.3, and figures 8.1, 8.2, and 8.3 are based on table 8.3.  The 

following observations can be made from table 8.2, 8.3:  

• We can observe that scenarios with increased mean demand for intermediate 

product (i.e., scenario’s 1, 3, 5... 11), a lower total system cost and total safety-

stock cost is obtained when LAPI policy is employed in most scenarios when 

compared to other inventory allocation policies. Figure 8.1 depicts this result. 

• Similarly we can observe that scenarios with increased mean demand for final 

product (i.e., scenario’s 2, 4, 6... 12), a lower total system cost and total safety-

stock cost is obtained when LAPD policy is employed when compared to other 

inventory allocation policies. Figure 8.2 depicts this result. 

• From table 3 we can observe that for all scenarios where the mean demand for the 

final product is higher than the mean demand for the intermediate product (even 
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numbered scenarios), a significant increase in the total safety stock when 

compared to other scenarios, this holds true for all allocation policies studied in 

this chapter. When the downstream demand forms the significant portion of the 

total demand, we see an significant increase in the total safety-stock cost 

compared to vice-versa. This significant increase is due to the lead time, since it 

takes more periods to satisfy the final product demand when compared to 

intermediate product’s demand. Figure 8.3 depicts this result. 

• The total system cost does not behave rationally when a PA is used, i.e. the total 

system costs of PA are more often greater than LAPI and LAPD. This is because 

the proportional allocation is run every period despite in some periods the 

available on-hand inventory might be sufficient to satisfy both the intermediate 

and final product demand. This result shows that it is difficult to interpret the 

behavior of optimized inventory for poor allocation policies. 

• When PPA is employed for all the scenarios we can observe an increased total 

system compared to all the other allocation polices. That would be because only a 

50% of the on-hand inventory is available to satisfy intermediate and final product 

each period, despite the mean demand for intermediate product is double the final 

product in six scenarios and vice-versa. 
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Table 8.3: Total System Safety Stock Cost Based on Case A**

 

**does not include safety stock cost of node 0 

 

Figure 8.1: Scenarios with Higher Demand for Intermediate Product (Case A) 
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Figure 8.2: Scenarios with Higher Demand for Final Product (Case A) 

Figure 8.3 shows a graph which compares the average safety-stock cost (averaged 

over all inventory allocation policies) for all the scenarios with increased intermediate 

product demand (odd numbered scenarios in table 8.2) with scenarios which have 

increased final product demand (even numbered scenarios in table 8.2).  

 

Figure 8.3: Comparison Between Even and Odd Scenarios (Case A)  
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Table 8.4: Total System Cost for Four Allocation Policies Based on Case B  

 

Table 8.4 and 8.5 provides the total system cost, and safety-stock cost for case B, the 

values for LAPI and LAPD policy are essentially same. The figures 8.4 and 8.5 are based 

of table 8.5.  The following observations can be made from table 8.4 and 8.5: 

• We can observe that scenarios with increased mean demand for intermediate 

product (i.e., scenario’s 1, 3, 5... 11), a lower total system cost and total safety-

stock cost is obtained when LAPI policy is employed in three out of six scenarios. 

In the other three scenarios where there is an increased demand variance PA 

policy results in lower cost. Figure 8.4 depicts this result. Since PA policy has a 

chance of working better when there is insufficient on-hand inventory at the node 

by allocating the higher proportion of inventory to the source with high demand. 

• Similarly we can observe that scenarios with increased mean demand for final 

product (i.e., scenario’s 2, 4, 6... 12), a lower total system cost and total safety-

stock cost is obtained when a PA policy is used as compared to other inventory 

allocation policies. Figure 8.5 depicts this result.  
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• The total system cost behaves rationally when a PA policy is used, i.e. the total 

system costs of PA are marginally equal or lower than LAPI and LAPD in most 

scenarios. This is because the proportional allocation is run only in periods when 

the available on-hand inventory is less than the demand.  

• PA is most effective because it reduces the effective variance of supply for 

downstream nodes. Sometimes with LAPI, LAPD, the downstream nodes can 

receive very little when supply is short. 

Table 8.5: Total System Safety Stock Cost Based on Case B** 

 

**does not include safety stock cost of node 0 
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Figure 8.4: Scenarios with Higher Demand for Intermediate Product (Case B) 

 

Figure 8.5: Scenarios with Higher Demand for Final Product (Case B) 

Additional results for the inventory allocation of the three-echelon assembly system 

are provided in the appendix A6.  

8.4 Inventory Allocation Policies for Five­echelon Assembly System  

Let us consider a five-echelon assembly system as shown in figure 8.6, similar to the 

three-echelon assembly system the five-echelon assembly consists of an assembly 
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process in the upstream portion, followed by a serial system, intermediate sources of 

demand, and a final product demand. Instead of two sources of demand, we now have 

four sources of demand.  

 

Figure 8.6: Five-echelon Assembly System 

Three nodes (node 3, 2, and 1) in the five-echelon assembly model have multiple 

sources of demand. A decision on inventory allocation has to be made at nodes where 

more than one demand occurs. The decision is based on the four allocation policies that 

have been already discussed in the previous section. Ten different models, each model 

having a different set of inventory allocation policies are used for the numerical analysis. 

Table 8.6 shows the allocation policies used in nodes 3, 2, and 1 of the five-echelon 

assembly model. Before the numerical results are discussed, the update (on-hand 

inventory and outstanding order) equations for the first four models are described in the 

following sub-sections, and the update equations for the other models are provided in the 

appendix. A two period lead time is assumed for the equations. 

 

 

 

 

Node  5

Node 4

Node 3 Node 0

Supplier 1
Component 1

Supplier 2
Component 2

Final Product,
Demand  4

Intermediate 
Product,

Demand  1 

Node 2

Intermediate 
Product,

Demand  2 

Node 1

Intermediate 
Product,

Demand  3 
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Table 8.6: Inventory Allocation Polices Used in Models   

 

8.4.1Update Equations for Model #1 (LAPI)  

Model 1 uses lexicographic allocation with priority to the intermediate product (local 

demand) to all the nodes with multiple sources of demand. The on-hand inventory 

equations for this model are similar to the m-echelon assembly model, are listed below: 

{ }1 1 4 4 3

2 1 2 1 2 1max 0, ... where 4,5i i i

n n n n n n nI s Y DS iξ ξ ξ ξ− − − − − −⎡ ⎤= − − − − − − + ∈⎣ ⎦   (8.16) 

3 3 3 1 1 4 4 2

2 1 2 1 2 1max 0, ...n n n n n n nI s Y DSξ ξ ξ ξ− − − − − −⎡ ⎤= − − − − − − +⎣ ⎦     (8.17) 

2 2 2 2 2 4 4 1

2 1 2 1 2 1max 0, ...n n n n n n nI s Y DSξ ξ ξ ξ− − − − − −⎡ ⎤= − − − − − − +⎣ ⎦     (8.18) 

1 1 1 3 3 4 4 0

2 1 2 1 2 1max 0,n n n n n n nI s Y DSξ ξ ξ ξ− − − − − −⎡ ⎤= − − − − − +⎣ ⎦     (8.19) 

0 0 0 4 4

2 1 2max 0,n n n nI s Y ξ ξ− − −⎡ ⎤= − − −⎣ ⎦        (8.20) 

The downstream shortage equations for model #1 are listed below: 

3 1 2 3 4 3

1 1 1 1 1 1max ,0n n n n n nDS ξ ξ ξ ξ η− − − − − −⎡ ⎤= + + + −⎣ ⎦      (8.21) 

2 2 3 4 2

1 1 1 1 1max ,0n n n n nDS ξ ξ ξ η− − − − −⎡ ⎤= + + −⎣ ⎦       (8.22) 

1 3 4 1

1 1 1 1max ,0n n n nDS ξ ξ η− − − −⎡ ⎤= + −⎣ ⎦        (8.23) 

Model #
3 2 1

1 LAPI LAPI LAPI

2 LAPD LAPD LAPD

3 PPA PPA PPA

4 PA PA PA

5 PPA LAPD PA

6 LAPD LAPI PA

7 LAPD LAPI LAPI

8 LAPI LAPD LAPD

9 LAPD PA PA

10 PA LAPI LAPI

Nodes
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0 4 0

1 1 1max ,0n n nDS ξ η− − −⎡ ⎤= −⎣ ⎦         (8.24) 

The outstanding order equations for model #1are listed below: 

{ }1 2 3 4 5 3

1 1max 0, where 4,5i i

n n n n n n n nY Y DS iξ ξ ξ ξ η+ −⎡ ⎤= + + + + − − ∈⎣ ⎦    (8.25) 

3 1 2 3 4 2

1

3 3 1 2 3 4 2 5 5 1 4

1 1 2 1 1

4 4 1 4 3

2 1 1

,

min ... ,

... ,

n n n n n n

n n n n n n n n n n

n n n n

Y DS

Y Y DS s Y

s Y

ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ

ξ ξ η

−

+ − − − −

− − −

⎡ ⎤+ + + + −
⎢ ⎥

= + + + + − − − − − −⎢ ⎥
⎢ ⎥− − − −⎣ ⎦

  (8.26) 

2 2 3 4 1 3 3

1 22 2 2 3 4 1

1 1 1 4 1 2

1 1 2

,
min

... ,

n n n n n n

n n n n n n

n n n n

Y DS s Y
Y Y DS

ξ ξ ξ
ξ ξ ξ

ξ ξ ξ η
− −

+ −
− − −

⎡ ⎤+ + + − −
= + + + − − ⎢ ⎥

− − −⎢ ⎥⎣ ⎦
  (8.27) 

1 3 4 0 2 2

1 21 1 3 4 0

1 1 2 4 2 1

1 1 2

,
min

... ,

n n n n n

n n n n n

n n n n

Y DS s Y
Y Y DS

ξ ξ
ξ ξ

ξ ξ ξ η
− −

+ −
− − −

⎡ ⎤+ + − −
= + + − − ⎢ ⎥

− − −⎢ ⎥⎣ ⎦
   (8.28) 

0 4 1 1

20 0 4

1 3 4 3 0

1 1 2

,
min

,

n n n

n n n

n n n n

Y s Y
Y Y

ξ
ξ

ξ ξ ξ η
−

+
− − −

⎡ ⎤+ −
= + − ⎢ ⎥

− − −⎢ ⎥⎣ ⎦
      (8.29) 

8.4.2Update Equations for Model #2 (LAPD)  

Model 2 uses lexicographic allocation with priority to the final product (downstream 

demand) to all the nodes with multiple sources of demand. Some of the update equations 

for LAPD are the same as specified in the earlier sub-section; only the equations which 

have a change are specified here. There are three new terms introduced 

( )3 2 1

1 1 1, , and,i i i

n n nY Y Y+ + + which denote the outstanding orders of the intermediate product 

(local demand) at nodes 3, 2 and 1 respectively. The modified outstanding orders and the 

new outstanding order equations are listed below: 

3 3 1 3 1 3 3 1 4 2 3 4

1 2 1 1 2 2 2min , ...i i i

n n n n n n n n n n nY Y Y s Yξ ξ ξ ξ ξ ξ ξ+ − − − − − −⎡ ⎤= + − + − − − − − − −⎣ ⎦   (8.30) 

2 2 3 4 1 3 3

1 22 2 2 3 4 1

1 1 1 4 2

1 1

,
min

... ,

n n n n n n

n n n n n n

n n n

Y DS s Y
Y Y DS

ξ ξ ξ
ξ ξ ξ

ξ ξ η
− −

+ −
− −

⎡ ⎤+ + + − −
= + + + − − ⎢ ⎥

− −⎢ ⎥⎣ ⎦
  (8.31) 
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2 2 2 2 2 2 2 2 4 3 4

1 2 1 1 2 2min , ...i i i

n n n n n n n n n nY Y Y s Yξ ξ ξ ξ ξ ξ+ − − − − −⎡ ⎤= + − + − − − − − −⎣ ⎦   (8.32) 

1 3 4 0 2 2

1 21 1 3 4 0

1 1 2 4 1

1 1

,
min

... ,

n n n n n

n n n n n

n n n

Y DS s Y
Y Y DS

ξ ξ
ξ ξ

ξ ξ η
− −

+ −
− −

⎡ ⎤+ + − −
= + + − − ⎢ ⎥

− −⎢ ⎥⎣ ⎦
   (8.33) 

1 1 3 1 3 1 1 3 4 4

1 2 1 1 2min ,i i i

n n n n n n n n nY Y Y s Yξ ξ ξ ξ ξ+ − − − −⎡ ⎤= + − + − − − −⎣ ⎦     (8.34) 

0 0 4 0 4 1 1 3 4 0

1 2 1 1min , ,n n n n n n n n nY Y Y s Yξ ξ ξ ξ η+ − − −⎡ ⎤= + − + − − −⎣ ⎦     (8.35) 

The modified on-hand inventory equations are listed below: 

3 3 3 3 1 1 4 4 2

2 2 1 2 1 2 1max 0, ...i

n n n n n n n nI s Y Y DSξ ξ ξ ξ− − − − − − −⎡ ⎤= − − − − − − − +⎣ ⎦    (8.36) 

2 2 2 2 2 2 4 4 1

2 2 1 2 1 2 1max 0, ...i

n n n n n n n nI s Y Y DSξ ξ ξ ξ− − − − − − −⎡ ⎤= − − − − − − − +⎣ ⎦    (8.37) 

1 1 1 1 3 3 4 4 0

2 2 1 2 1 2 1max 0, i

n n n n n n n nI s Y Y DSξ ξ ξ ξ− − − − − − −⎡ ⎤= − − − − − − +⎣ ⎦    (8.38) 

8.4.3Update Equations for Model #3 (PPA) 

Model 3 uses the predetermined proportional allocation at all the nodes with multiple 

sources of demand. The changes in the update equations according to the PPA policy are 

listed below: 

( )3 3 1 3 1 3 3 1 4

1 2 1 1min , 3* ...i i i

n n n n n n n n
Y Y Y ratio s Yξ ξ ξ ξ+ − − −

⎡ ⎤= + − + − − − −⎣ ⎦    (8.39) 

( )
( )

2 2 3 4 1

12 2 2 3 4 1

1 1 3 3 1 4 2

2 1 1

, 1 3 *
min

... ,

n n n n n

n n n n n n

n n n n

Y DS ratio
Y Y DS

s Y

ξ ξ ξ
ξ ξ ξ

ξ ξ η
−

+ −
− − −

⎡ ⎤+ + + − −
⎢ ⎥= + + + − −

− − −⎢ ⎥⎣ ⎦
 (8.40) 

( )2 2 2 2 2 2 2 2 4

1 2 1 1min , 2* ...i i i

n n n n n n n n
Y Y Y ratio s Yξ ξ ξ ξ+ − − −

⎡ ⎤= + − + − − − −⎣ ⎦    (8.41) 

( )
( )

1 3 4 0

11 1 3 4 0

1 1 2 2 2 4 1

2 1 1

, 1 2 *
min

... ,

n n n n

n n n n n

n n n n

Y DS ratio
Y Y DS

s Y

ξ ξ
ξ ξ

ξ ξ η
−

+ −
− − −

⎡ ⎤+ + − −
⎢ ⎥= + + − −

− − −⎢ ⎥⎣ ⎦
  (8.42) 

( )1 1 3 1 3 1 1 3 4

1 2 1 1min , 1*i i i

n n n n n n n n
Y Y Y ratio s Yξ ξ ξ ξ+ − − −

⎡ ⎤= + − + − − −⎣ ⎦    (8.43) 
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( )
( )

0 4

0 0 4

1 1 1 3 4 0

2 1 1

, 1 1 *
min

,

n n

n n n

n n n n

Y ratio
Y Y

s Y

ξ
ξ

ξ ξ η+
− − −

⎡ ⎤+ −
⎢ ⎥= + −

− − −⎢ ⎥⎣ ⎦
     (8.44) 

{ }0 1where 1,2,3ratio i i≤ ≤ ∈        (8.45) 

The on-hand inventory equations are as described in model 2. 

8.4.4Update Equations for Model #4 (PA) 

Model 4 uses the proportional allocation at all the nodes with multiple sources of 

demand. The outstanding order and on-hand inventory equations are same as described in 

model 3, but the ratio varies according to the demand. The equations for the ratios are 

listed below: 

( ) ( ) ( )
1 2 3

1 2 3 4 2 3 4 3 4
3 ; 2 ; 1n n n

n n n n n n n n n

ratio ratio ratio
ξ ξ ξ

ξ ξ ξ ξ ξ ξ ξ ξ ξ
= = =

+ + + + + +
 (8.46) 

The update equations for models 5-10 are described in appendix A7. 

8.5  Computational  Results  for  Five­echelon  Inventory  Allocation 
Policies 

This section presents the computational results based on the inventory allocation 

policies discussed in earlier sub-section. In order to gain a deeper understanding of the 

allocation policies we consider a five-echelon assembly system as opposed to the three-

echelon assembly system that we have been discussing in previous chapters. The five-

echelon assembly system is shown in figure 8.6. As the five-echelon assembly system has 

three nodes with more than one demand, i.e. in the form of intermediate product and 

downstream demand, the five-echelon assembly system requires three inventory 

allocation policies, one at each node where multiple sources of demands are present.  
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In order to determine which inventory allocation policy would help in minimizing the 

total cost and safety-stock cost across the entire multi-echelon network, four instances; 

each consisting of several scenarios are solved to optimality. The values of the demand 

and capacity for all the scenarios are provided in the appendix A8. The instances are 

described in the table 8.7, which show the name of the instance and coefficient of 

variance for the demand and capacity. The capacity is denoted as “average” capacity 

when the mean capacity utilization is between 65% and 75%, and the capacity is defined 

as “tight” capacity when the mean capacity utilization is between 85% and 95%. The 

demand is categorized as “high” and “low” demand. If the values of the mean demand is 

between 8 and 10 it is referred as high demand, whereas low demand is defined between 

3.5 and 5. The variance for the demand and capacity is defined as high and low if the 

coefficient of variance is 0.3 and 0.1 respectively.  

Table 8.7: Instances for Five-echelon Assembly System  

  

As mentioned earlier each instance consists of several scenarios (shown in appendix) 

that are solved to optimality. The scenarios are developed on the basis of three criteria 

which are mentioned in table 8.8. Each criterion is specifically used to study the effect of 

the inventory allocation policy on the total cost and safety-stock cost. Criteria 1 is 

designed to study the effect of the inventory allocation policies when a great percentage 

of mean demand occurs upstream. Criteria 2 is designed to study the effect of inventory 
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allocation policies when a larger fraction of total mean demand occurs for the final 

product. Criteria 3 is designed to study the effect of inventory allocation policies when a 

majority fraction of mean demand occurs at two sources, i.e. 70% of the total mean 

demand is shared between demand 3 and 4. The values for each scenario are randomly 

picked.    

Table 8.8: Criteria for Developing Scenarios 

 

Ten different models are initially analyzed to gain insight. Each model has a 

combination of different inventory allocation policies. Table 8.9 show the inventory 

allocation policies associated with each model. Note that only nodes 1, 2, and 3 require 

inventory allocation. Each model is run under all four instances, and scenarios satisfying 

all three criteria. The first four models have the same allocation policy for all the three 

nodes, whereas other models have a combination of different inventory allocation 

policies across the five-echelon assembly system. As stated earlier all ten models are 

solved to optimality for four instances, with each instance consisting of several scenarios. 

Initial insights are described on the basis of numerical results from these ten models. 

Additional insights and hypothesis are stated and investigated in the next section.   
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Table 8.9: Inventory Allocation Polices Used in Models   

 

8.5.1 Average Best Found Safety­stock Cost 

Table 8.10 show the best found safety-stock cost averaged over all scenarios in each 

instance for the ten models shown in table 8.9. Each instance consists of at least one 

scenario that satisfies the criteria stated in table 8.8. Table 8.10 also shows the percentage 

increase of an average best found safety-stock cost from the lowest average best found 

safety-stock cost in a given instance.  

Instance 1 (AC). From the numerical results for instance 1 listed in table 8.10 we can 

observe that, model 8 results in the lowest average best found safety-stock cost, closely 

followed by model 1 and model 10. In all three models a LAPI policy is prominently 

used, except model 8 where LAPI policy is used in only node 3. We can also observe that 

the model 2 and 4 which use only LAPD and PA policy has an average best found safety-

stock cost greater by 4.46% and 14.67%. If only one allocation policy is to be used across 

the entire supply chain network, LAPI policy works as the best inventory allocation in 

case of average capacity (instance 1) closely followed by LAPD policy. Specifically 

except PPA policy all the other three allocation policies provide an average best found 

safety-stock cost closer to the lowest average best found safety-stock cost. 

Model #
3 2 1

1 LAPI LAPI LAPI

2 LAPD LAPD LAPD

3 PPA PPA PPA

4 PA PA PA

5 PPA LAPD PA

6 LAPD LAPI PA

7 LAPD LAPI LAPI

8 LAPI LAPD LAPD

9 LAPD PA PA

10 PA LAPI LAPI

Nodes
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Table 8.10: Average Best Found Safety-stock Cost for All Scenarios 

 

Instance 2 (TC). From the numerical results for instance 2 listed in table 8.10 we can 

observe that, model 2 provides the lowest average best found safety-stock cost, from 

table 8.9 we know that model 2 has LAPD policy applied to its nodes. Model 6 provides 

the second lowest average best found safety-stock cost, which is about 5.5% greater than 

model 2. If only one allocation policy is to be used across the entire supply chain, LAPD 

allocation works as the best inventory allocation policy in reducing the safety-stock cost 

in case of tight capacity instance.  

Instance 3 (HDVAC). From the numerical results for instance 3 listed in table 8.10 we 

can observe that, model 9 provides the lowest average best found safety-stock cost, very 

closely followed by model 4. From table 8.9 we know that model 9 and model 4 uses PA 

policy significantly. Model 4 has an average best found safety-stock about 0.37% greater 

than model 9. If only one allocation policy is to be used across the entire supply chain, 

PA allocation works as the best inventory allocation policy in reducing the safety-stock 

cost in case of a high demand variance average capacity instance. 

Instance 4 (HDVTC). From the numerical results for instance 4 listed in table 8.10 we 

can observe that, model 2 provides the lowest average best found safety-stock cost, from 

table 8.9 we know that model 2 has LAPD policy applied to its nodes. Model 8 provides 

the second lowest average best found safety-stock cost, which is about 6.26% greater 

than model 2. If only one allocation policy is to be used across the entire supply chain, 
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LAPD allocation works as the best inventory allocation policy in reducing the safety-

stock cost in case of high demand variance tight capacity instance.  

8.5.2 Safety­stock Cost for Increased Downstream Demand 

Table 8.11 show the best found safety-stock cost averaged over scenarios which 

satisfy criteria 2, i.e. having increased downstream demand. The observation from table 

8.11 specifically addresses the situation with increased downstream demand.  

 In case of instance 1 most of the models provide an average best found safety-stock 

cost close to the lowest average best found safety-stock cost. Model 10 has the lowest 

safety-stock cost, closely followed by model 9, 1, and 4, which suggests that LAPI policy 

in combination with PA policy will help in reduction of the safety-stock cost. The models 

that involve nodes having PPA policy as the allocation results in largest average best 

found safety-stock cost, i.e. 35%-39% higher than the lowest safety-stock cost.  

LAPD policy provides the lowest average best found safety-stock in case of instance 

2 and instance 4. Model 2 provides the safety-stock cost in either case. This suggests that 

LAPD policy if used across the entire supply chain will significantly reduce the safety-

stock cost compared to the other inventory allocation policies. In case of instance 3, 

model 9 provides the lowest average best found safety-stock cost. Model 9 has a 

combination of PA policy and LAPD, with two of the three nodes having a PA policy. 

Assigning PA policy to the nodes downstream, with LAPD policy for the upstream nodes 

will help in reducing the safety-stock cost in case of instance 3, HDVAC. If the supply 

chain would use only one inventory allocation policy, using the PA policy for all the 

nodes will reduce the safety-stock cost.  
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Table 8.11: Average Safety-stock Cost for Scenarios Satisfying Criteria 2  

 

8.5.3 Safety­stock Cost for Increased Local/Intermediate Product Demand 

Table 8.12 show the best found safety-stock cost averaged over scenarios which 

satisfy criteria 1, i.e. having increased local (intermediate product) demand. The 

observations from table 8.12 specifically address the situation with increased local 

demand.  

Under instance 1, model 8 provides the lowest average best found safety stock cost 

closely followed by model 7 and model 1. Model 8 has a LAPI policy for node 3 and 

LAPD policy for other nodes. Model 7 and 1 is 1.46% and 2.37% greater than the lowest 

average best found safety stock cost, both models 7 and 1 have LAPI policy for majority 

of the nodes. Model 2 which has LAPD policy has an average best found safety-stock 

cost almost 10% greater than lowest average best found safety-stock cost, i.e. model 8. 

Based on these observations we can determine that either LAPI policy will help in 

reducing the safety-stock cost under instance 1, average capacity. LAPD policy can also 

be used in combination with LAPI over the supply chain to minimize the safety-stock 

cost. For instance 2, model 6 provides the lowest average safety-stock cost. Model 6 uses 

three different inventory allocation policies. In case of instance 3 and 4 from table 8.12 

we can observe that model 4 and model 2 reduces the average best found safety-stock 

cost, i.e.  PA policy and LAPD policy help in reducing the safety-stock cost.  
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Table 8.12: Average Safety-stock Cost for Scenarios Satisfying Criteria 1 

 

8.5.4 Safety­stock Cost analysis for Criteria 3 

Table 8.13 shows the average best found safety-stock cost for two special cases, i.e. 

IUDD (increase in upstream and downstream demand) and IDIN (increase in demand for 

intermediate product), and the two special cases follow criteria 3. The scenarios are 

averaged for all instances across all the ten models shown in table 8.9. In case of IUDD, 

the sum of demand 1 and 4 combine to form 62% to 75% of the total demand, with one of 

them having at least 27% of total demand. Similarly in case of IDIN, the sum of demand 

2 and 3 combine to form 62% to 75% of the total demand, with one of them having at 

least 27% of total demand.  The two special cases were created to gain insight associated 

to inventory allocation on special situations where there might be more local demand in 

only some nodes as opposed to all nodes. From the numerical results in table 8.13 we can 

see that model 2 provides the lowest average best found safety-stock cost in either special 

case, i.e. LAPD policy will help maintaining the required service level across all the 

nodes with minimum safety-stock cost.  

Table 8.13: Average Safety-stock Cost for Scenarios Satisfying Criteria 3 
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Additional information on the numerical results for the five-echelon model is 

provided in the appendix. 

8.6 Hypothesis Testing  

In this section we state some important implications based of the numerical results 

derived from the five-echelon assembly system. The statements are supported with a 

hypothesis, and are proven statistically using a student t-test: paired two sample for 

mean. Microsoft Excel 2007 is used to perform the student t-test. The following formula 

is used to determine the test statistic value t. 

0
0 ( stat)

2
x y

x y
t t

S
m

− − Δ
=          (8.47) 

Where x the sample is mean for the first population, y is the sample mean for the 

second population. 0Δ is the hypothesized mean difference, a value of zero indicates 

sample means hypothesized to be equal. x yS is the pooled standard deviation. m represent 

number of observations. The formula used to calculate the pooled standard deviation is 

shown in (8.48). The degrees of freedom used for the calculation is m-1. 

2 2( )

2 2

x y

x y

m S S
S

m

+
=

−
         (8.48) 

Statement 1. If only one type of inventory allocation policy is used across the entire 

supply chain (five-echelon assembly system), using LAPI inventory allocation policy 

results in the lowest safety-stock cost compared to models which use other inventory 

allocation polices under average capacity instance (instance 1)      
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Null Hypothesis (H0): For all scenarios that occur under instance 1 in a five-echelon 

assembly system, the best found safety-stock cost for models using only LAPI inventory 

allocation policy is not significantly different from the best found safety-stock cost for 

models which use only one type of inventory allocation policy  

Alternate Hypothesis (H1): For all scenarios that occur under instance 1 in a five-

echelon assembly system, the best found safety-stock cost for models using only LAPI 

inventory allocation policy is significantly different from the best found safety-stock cost 

for models which use only one type of inventory allocation policy  

1 20 :H μ μ= ; 1 21:H μ μ≠         (8.49) 

The hypothesis can also be stated as in equation (8.49). For the statistical test we 

compare means of the best found safety-stock for model 1 ( )
1

μ  and model’s 2, 3, and 4 

averaged ( )
2

μ for all scenarios that come under instance 1. From table 8.9 we know that 

model 1 uses LAPI inventory allocation policy, whereas model’s 2-4 use other inventory 

allocation policies. Models 1-4 use only one type of inventory allocation policy across 

their supply chain.  

Table 8.14: Statistical Results for Statement 1 

 

Table 8.14 shows the statistical results based on the t-test. From the table 8.14 we can 

observe that 0 (t Stat) = -2.6619< - (t Critical two-tail) -2.015ct t = . Based on alpha = 0.1 we 

reject the null hypothesis. So we state that, when only one type of inventory allocation 

policy is used across the five-echelon assembly system LAPI inventory allocation policy 

results in the lowest safety-stock cost for instance 1 when compared to models 2-4 which 

t Stat t Critical two‐tail alpha P‐value two‐tail
‐2.662 2.015 0.100 0.045



212 

 

use only LAPD or PPA or PA inventory allocation policies across the five-echelon 

assembly system. 

Statement 2. If a combination of inventory allocation policies are used across the 

entire supply chain (five-echelon assembly system), using LAPI & LAPD inventory 

allocation policy in combination will results in the lowest safety-stock cost, compared to 

models which use other combinations of inventory allocation polices under average 

capacity instance (instance 1)      

Null Hypothesis (H0): For all scenarios that occur under instance 1 in a five-echelon 

assembly system, the best found safety-stock cost for models using a combination of 

LAPI & LAPD inventory allocation policy is not significantly different from the  best 

found safety-stock cost for models which use a different combination of inventory 

allocation policy (i.e. other than LAPI & LAPD)  

Alternate Hypothesis (H1): For all scenarios that occur under instance 1 in a five-

echelon assembly system, the best found safety-stock cost for models using a 

combination of LAPI & LAPD inventory allocation policy is significantly different from 

the best found safety-stock cost for models which use a different combination of 

inventory allocation policy  

A similar hypothesis statement as described in 6.1 can be stated, where the statistical 

test is conducted by comparing means of the best found safety-stock for model’s 7, and 8 

averaged ( )
1

μ  and model’s 5, 6, 9, and 10 averaged ( )
2

μ for all scenarios that come 

under instance 1. From table 8.6 we know that model’s 7 and 8 uses a combination of 

LAPI & LAPD inventory allocation policies, whereas model’s 5, 6, 9, and 10 use 

combination of other inventory allocation policies.  
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Table 8.15: Statistical Results for Statement 2 

 

Table 8.15 shows the statistical results based on the t-test. From the table 8.15 we can 

observe that 0 (t Stat) = -2.419< - (t Critical two-tail) -2.015ct t = . Based on alpha = 0.1 we reject 

the null hypothesis. So we can state that, when a combination of inventory allocation 

policies is used across the five-echelon assembly system LAPI in combination with 

LAPD inventory allocation policy results in the lowest safety-stock cost for instance 1 

when compared to models 5, 6, 9, and 10 which use different combinations (other than 

LAPD and LAPI) of inventory allocation policies across the five-echelon assembly 

system.  

Statement 3. LAPD inventory allocation policy results in the lowest safety-stock cost 

across the supply chain (five-echelon assembly system) under tight capacity instance 

(instance 2). 

Null Hypothesis (H0): For all scenarios that occur under instance 2 in a five-echelon 

assembly system, the best found safety-stock cost for models using LAPD inventory 

allocation policy is not significantly different from the best found safety-stock cost from 

all the other models  

Alternate Hypothesis (H1): For all scenarios that occur under instance 2 in a five-

echelon assembly system, the best found safety-stock cost for models using LAPD 

inventory allocation policy is significantly different from the best found safety-stock cost 

form all the other models  

Two statistical tests are performed to provide evidence for the hypothesis test. The 

first test is conducted by comparing means of the best found safety-stock for model 2 

t Stat t Critical two‐tail alpha P‐value two‐tail
‐2.419 2.015 0.100 0.060
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( )
1

μ  and model’s 1, 3, and 4 averaged ( )
2

μ for all scenarios that come under instance 2. 

The second test is conducted by comparing means of the best found safety-stock for 

model 2 ( )
1

μ  and model’s 5 to 10 averaged ( )
2

μ for all scenarios that come under 

instance 2. The first test is used to determine the best policy statistically when only one 

type of inventory allocation policy is used across the supply chain. The second test is 

used to determine statistically if only one type or a combination of inventory allocation 

policies should be used across the supply chain.   

Table 8.16: Statistical Results for Statement 3  

 

Table 8.16 shows the statistical results based on the t-test. From the table 8.16 we can 

observe that for test 1, 0 (t Stat) = -3.39< - (t Critical two-tail) -2.015ct t = . Similarly for test 2, 

we can observe that 0 (t Stat) = -2.89< - (t Critical two-tail) -2.015ct t = . For alpha = 0.1, based 

of the two test conducted we reject the null hypothesis. On the basis of this statistical test 

we can infer that using LAPD policy in a tight capacity instance results in lowest safety-

stock cost. Also, using only LAPD policy across the entire supply chain is suggestible 

rather than using a combination of different inventory allocation policies.  

Statement 4. If only one type of inventory allocation policy is used under high 

demand average capacity instance (instance 3) across the entire supply chain (five-

echelon assembly system), using PA inventory allocation policy results in the lowest 

safety-stock cost compared to models which use only one type of inventory allocation 

policy      

Test # t Stat t Critical two‐tail alpha P‐value two‐tail
1 ‐3.390 2.015 0.100 0.019

2 ‐2.89 2.015 0.100 0.034
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Null Hypothesis (H0): For all scenarios that occur under instance 3 in a five-echelon 

assembly system, the best found safety-stock cost for models using only PA inventory 

allocation policy is not significantly different from the best found safety-stock cost for 

models which use only one type of inventory allocation policy  

Alternate Hypothesis (H1): For all scenarios that occur under instance 3 in a five-

echelon assembly system, the best found safety-stock cost for models using only PA 

inventory allocation policy is  significantly different from the best found safety-stock cost 

for models which use only one type of inventory allocation policy  

For the statistical test we compare means of the best found safety-stock for model 4 

( )
1

μ  and model’s 1, 2, and 3 averaged ( )
2

μ for all scenarios that come under instance 3. 

From table 8.6 we know that model 4 uses PA inventory allocation policy, whereas 

model’s 2-4 use other inventory allocation policies. 

Table 8.17: Statistical Results for Statement 4  

 

Table 8.17 shows the statistical results based on the t-test. From table 8.17 we can 

observe that 0 (t Stat) = -6.13< - (t Critical two-tail) -2.015ct t = . Based on a alpha = 0.1 we 

reject the null hypothesis. So we state that, when only one type of inventory allocation 

policy is used across the five-echelon assembly system PA inventory allocation policy 

results in the lowest safety-stock cost for instance 3 when compared to models 1-3 which 

use only LAPI or LAPD or PPA inventory allocation policies across the five-echelon 

assembly system. 

t Stat t Critical two‐tail alpha P‐value two‐tail
‐6.138 2.015 0.100 0.002
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Statement 5. If a combination of inventory allocation policies are used across the 

entire supply chain (five-echelon assembly system), using LAPD & PA inventory 

allocation policy in combination will results in the lowest safety-stock cost, compared to 

models which use other combinations of inventory allocation polices under high demand 

variance average capacity instance (instance 3)      

Null Hypothesis (H0): For all scenarios that occur under instance 3 in a five-echelon 

assembly system, the best found safety-stock cost for models using a combination of 

LAPD & PA inventory allocation policy is not significantly different from the  best found 

safety-stock cost for models which use a different combination of inventory allocation 

policy (i.e. other than LAPD & PA)  

Alternate Hypothesis (H1): For all scenarios that occur under instance 3 in a five-

echelon assembly system, the best found safety-stock cost for models using a 

combination of LAPD & PA inventory allocation policy is significantly different from 

the  best found safety-stock cost for models which use a different combination of 

inventory allocation policy (i.e. other than LAPD & PA)  

The statistical test is conducted by comparing means of the best found safety-stock 

for model 9 ( )
1

μ  and model’s 5 - 8 and 10 averaged ( )
2

μ for all scenarios that come 

under instance 3. From table 8.6 we know that model 9 uses a combination of LAPD & 

PA inventory allocation policies, whereas model’s 5-8 and 10 use combination of other 

inventory allocation policies. 

Table 8.18: Statistical Results for Statement 5  

 

t Stat t Critical two‐tail alpha P‐value two‐tail
‐2.644 2.015 0.100 0.046
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Table 8.18 shows the statistical results based on the t-test. From the table 8.18 we can 

observe that 0 (t Stat) = -2.650< - (t Critical two-tail) -2.015ct t = . Based on alpha = 0.1 we 

reject the null hypothesis. So it can be stated that, when a combination of inventory 

allocation policies is used across the five-echelon assembly system LAPD in combination 

with PA inventory allocation policy results in the lowest safety-stock cost for instance 3 

when compared to models 5-8, and 10.  

Statement 6. LAPD inventory allocation policy results in the lowest safety-stock cost 

across the supply chain (five-echelon assembly system) under high demand variance tight 

capacity instance (instance 4). 

Null Hypothesis (H0): For all scenarios that occur under instance 4 in a five-echelon 

assembly system, the best found safety-stock cost for models using LAPD inventory 

allocation policy is not significantly different from the best found safety-stock cost from 

all the other models  

Alternate Hypothesis (H1): For all scenarios that occur under instance 4 in a five-

echelon assembly system, the best found safety-stock cost for models using LAPD 

inventory allocation policy is significantly different from the best found safety-stock cost 

from all the other models 

Table 8.19: Statistical Results for Statement 6  

 

Similar to statement 3 two statistical tests are performed to provide evidence for the 

hypothesis test. The models for comparison are same as the ones used for statement 3. 

Table 8.16 shows the statistical results based on the t-test. From the table 8.19 we can 

Test # t Stat t Critical two‐tail alpha P‐value two‐tail
1 ‐4.046 2.015 0.100 0.010

2 ‐4.76129567 2.015 0.100 0.005
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observe that for test 1, 0 (t Stat) = -4.046< - (t Critical two-tail) -2.015ct t = . Similarly for test 2, 

we can observe that 0 (t Stat) = -4.76< - (t Critical two-tail) -2.015ct t = . For alpha = 0.1, based 

of the two test conducted we reject the null hypothesis. On the basis of this statistical test 

we can infer that using LAPD policy in a high demand variance tight capacity instance 

results in lowest safety-stock cost. Also, using only LAPD policy across the entire supply 

chain is suggestible rather than using a combination of different inventory allocation 

policies.  
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9. MULTI­ECHELON NETWORKS 

Two contemporary network models were evaluated in order to show that the multi-

echelon inventory model developed in this research is applicable on a wide range of 

multi-echelon network models. This investigation shows the robustness, and practicality 

of the multi-echelon inventory analysis discussed in earlier chapters. A numerical 

analysis is performed using the two networks. Based on these numerical results a few 

implications are deduced. The two networks also demonstrate the ability to apply the 

products of this research to larger models with complex interactions. The two networks 

studied were: 

• Network 1: Multiple suppliers – representing a manufacturing industry with 

demand for spare parts  

• Network 2: Representing a system with multiple manufacturers/suppliers – 

warehouse - distribution center – retailer interactions 

In this chapter we discuss each network, its update equations and its first order 

differential equation equations, followed by some numerical results.  

9.1 Network 1 

Figure 9.1 shows a network structure with three suppliers, and a manufacturer. In a 

real world scenario a supplier can be procuring raw material from an external supplier 

(not shown in the figure), process the raw material and send components to more than 

one manufacturer. The manufacturer might assemble different products based on the 

components procured from different suppliers and sell the result as a final product.   
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Let us consider an illustrative example of multiple suppliers - manufacturing industry 

for the network structure shown in figure 9.1. Suppose the manufacturing firm is an 

automotive firm, and consider the three suppliers who supply different parts to the 

automotive assembly line. The assembly of the parts takes place at the manufacturer’s 

location, and the automobile is further processed and sold to the end customer. Each 

supplier might not just satisfy the manufacturing firm’s demand but can also be supplying 

spare parts to a distributor or an automotive dealer.  

 

Figure 9.1: Multiple Suppliers-Manufacturing Industry Setup 

The network model shown in figure 9.1 attempts to capture a real world scenario, and 

show that the multi-echelon inventory model discussed in this research can be extended 

to more general models. One question that often arises is why is it necessary to study the 

entire network instead of just focusing on supplier or manufacturer. From the Toyota 

Production System and lean manufacturing principles it is well known that in order to 

have accurate stock levels and reduced manufacturing costs the entire system needs to be 

accounted, i.e. Tier 1- Tier 3 suppliers, and the manufacturer itself. In the network shown 

in figure 10.1 only tier 1 suppliers and the manufacturing process are considered, but can 
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certainly be expanded to a much larger network. In figure 9.1 The numbers in the bracket 

represent the node number, and are used for the update equations in the following sub-

sections. 

9.1.1 Update Equations for Network 1 

A two-period lead time is considered for all the update equations. The default 

inventory allocation policy is considered for nodes 2, 3, and 4 (LAPI). The on-hand 

inventory equations are listed below: 

7 7 7 1 1 4 4 4

2 1 2 1 2 1max 0,n n n n n n nI s Y DSξ ξ ξ ξ− − − − − −⎡ ⎤= − − − − − +⎣ ⎦     (9.1) 

6 6 6 2 2 4 4 3

2 1 2 1 2 1max 0,n n n n n n nI s Y DSξ ξ ξ ξ− − − − − −⎡ ⎤= − − − − − +⎣ ⎦     (9.2) 

5 5 5 3 3 4 4 2

2 1 2 1 2 1max 0,n n n n n n nI s Y DSξ ξ ξ ξ− − − − − −⎡ ⎤= − − − − − +⎣ ⎦     (9.3) 

4 4 4 1 1 4 4 1

2 1 2 1 2 1max 0,n n n n n n nI s Y DSξ ξ ξ ξ− − − − − −⎡ ⎤= − − − − − +⎣ ⎦     (9.4) 

3 3 3 2 2 4 4 1

2 1 2 1 2 1max 0,n n n n n n nI s Y DSξ ξ ξ ξ− − − − − −⎡ ⎤= − − − − − +⎣ ⎦     (9.5) 

2 2 2 3 3 4 4 1

2 1 2 1 2 1max 0,n n n n n n nI s Y DSξ ξ ξ ξ− − − − − −⎡ ⎤= − − − − − +⎣ ⎦     (9.6) 

1 1 1 4 4 0

2 1 2 1max 0,n n n n nI s Y DSξ ξ− − − −⎡ ⎤= − − − +⎣ ⎦       (9.7) 

0 0 0 4 4

2 1 2max 0,n n n nI s Y ξ ξ− − −⎡ ⎤= − − −⎣ ⎦        (9.8) 

The equations for the downstream shortages are listed below: 

4 1 4 4

1 1 1 1max 0,n n n nDS ξ ξ η− − − −⎡ ⎤= + −⎣ ⎦        (9.9) 

3 2 4 3

1 1 1 1max 0,n n n nDS ξ ξ η− − − −⎡ ⎤= + −⎣ ⎦        (9.10) 

2 3 4 2

1 1 1 1max 0,n n n nDS ξ ξ η− − − −⎡ ⎤= + −⎣ ⎦        (9.11) 

1 4 1

1 1 1max 0,n n nDS ξ η− − −⎡ ⎤= −⎣ ⎦         (9.12) 
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0 4 0

1 1 1max 0,n n nDS ξ η− − −⎡ ⎤= −⎣ ⎦         (9.13) 

The outstanding orders are listed below: 

{ }7 7 1 4 7 4

1 1max 0,n n n n n nY Y DSξ ξ η+ −= + + − −        (9.14) 

{ }6 6 2 4 6 3

1 1max 0,n n n n n nY Y DSξ ξ η+ −= + + − −        (9.15) 

{ }5 5 3 4 5 2

1 1max 0,n n n n n nY Y DSξ ξ η+ −= + + − −        (9.16) 

{ }5 5 3 4 5 2

1 1max 0,n n n n n nY Y DSξ ξ η+ −= + + − −        (9.17) 

{ }4 4 1 4 1 4 1 4 1 7 7 1 4 4

1 1 1 2 1 1min , ,n n n n n n n n n n n n nY Y DS Y DS s Yξ ξ ξ ξ ξ ξ η+ − − − − −= + + − − + + − − − −  (9.18) 

{ }3 3 2 4 1 3 2 4 1 6 6 2 4 3

1 1 1 2 1 1min , ,n n n n n n n n n n n n nY Y DS Y DS s Yξ ξ ξ ξ ξ ξ η+ − − − − −= + + − − + + − − − −  (9.19) 

{ }2 2 3 4 1 2 3 4 1 5 5 3 4 2

1 1 1 2 1 1min , ,n n n n n n n n n n n n nY Y DS Y DS s Yξ ξ ξ ξ ξ ξ η+ − − − − −= + + − − + + − − − −  (9.20) 

The outstanding order equation (9.21) for node 1 is slightly different from the other 

outstanding order equations in network 1. It is an assembly of three different products, 

product from node 4, 3 and 2. The shortages in the node can occur due to unavailability 

of inventory at nodes 2, 3 and 4, or shortages can occur due to the manufacturing capacity 

of the node itself. The available inventory from nodes 2, 3 and 4 represented in equation 

(9.21) inside the min term also takes the default inventory allocation policy into account 

(LAPI).   

1 4 0 4 4 1 4 1 3 3

1 2 1 1 2 21 1 4 0

1 1 2 4 2 2 2 3 4 3 1

1 1 2 2 1 1 2

, ,
min

, ,

n n n n n n n n

n n n n

n n n n n n n n

Y DS s Y s Y
Y Y DS

s Y

ξ ξ ξ ξ
ξ

ξ ξ ξ ξ ξ ξ η
− − − − − −

+ −
− − − − − − −

⎧ ⎫+ − − − − − −⎪ ⎪= + − − ⎨ ⎬
− − − − − − −⎪ ⎪⎩ ⎭

 (9.21) 

{ }0 0 4 0 4 1 1 4 0

1 2 1min , ,n n n n n n n nY Y Y s Yξ ξ ξ η+ − −= + − + − −      (9.22) 
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The Lagrange equation, first-order Lagrange equations with respect to all the decision 

variables (Lagrange multipliers, and base-stock levels), and the first-order outstanding 

orders are provided in appendix, sections A9.1 - A9.3. 

9.2 Network 2 

The second multi-echelon network considered is shown in figure 10.2, this network 

focuses on manufacturing - retail industry as opposed to the pure manufacturing industry 

accounted for in the earlier section. The network comprises of manufacturers/supplier, 

warehouse, distribution center, and retailers. The manufacturers store the finished goods 

in the warehouse, from the warehouse the product is sent to the distribution center, and to 

retail outlets.  

 

Figure 9.2: Manufacturers – Warehouse - Distribution Center – Retailer 

Let us consider an illustrative example of the network structure shown in figure 10.2. 

The network structure considered here resembles a typical Wal-Mart or any other retail 

store.  Demand occurs at the retail store is satisfied by the manufacturers (P & G etc.), the 
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product is sent through a warehouse (usually a part of manufacturer) and distribution 

center (usually a part of retailer).  

9.2.1 Update Equations for Network 2 

A two-period lead time is considered for all the update equations. Lexicographic 

inventory allocation policy with a priority to node 5 (DC 1) is used at node 6 

(warehouse). The proportional allocation (PA) policy is used at node 5 and 4 (DC 1 and 

DC 2). The on-hand inventory equations are listed below: 
{ }1 1 4 4 6

2 1 2 1 2 1max 0, .... where i 9,8,7i i i

n n n n n n nI s Y DSξ ξ ξ ξ− − − − − −⎡ ⎤= − − − − − − + ∈⎣ ⎦  (9.23) 

6 6 6 1 1 4 4 5 4

2 1 2 1 2 1 1max 0, ....n n n n n n n nI s Y DS DSξ ξ ξ ξ− − − − − − −⎡ ⎤= − − − − − − + +⎣ ⎦   (9.24) 

5 5 5 1 1 2 2 3 2

2 1 2 1 2 1 1max 0,n n n n n n n nI s Y DS DSξ ξ ξ ξ− − − − − − −⎡ ⎤= − − − − − + +⎣ ⎦    (9.25) 

4 4 4 3 3 4 4 1 0

2 1 2 1 2 1 1max 0,n n n n n n n nI s Y DS DSξ ξ ξ ξ− − − − − − −⎡ ⎤= − − − − − + +⎣ ⎦    (9.26) 

3 3 3 1 1

2 1 2max 0,n n n nI s Y ξ ξ− − −⎡ ⎤= − − −⎣ ⎦        (9.27) 

2 2 2 2 2

2 1 2max 0,n n n nI s Y ξ ξ− − −⎡ ⎤= − − −⎣ ⎦        (9.28) 

1 1 1 3 3

2 1 2max 0,n n n nI s Y ξ ξ− − −⎡ ⎤= − − −⎣ ⎦        (9.29) 

0 0 0 4 4

2 1 2max 0,n n n nI s Y ξ ξ− − −⎡ ⎤= − − −⎣ ⎦        (9.30) 

The downstream shortage equations are listed below: 

6 1 2 3 4 6

1 1 1 1 1max ,0n n n n n nDS ξ ξ ξ ξ η− − − − −⎡ ⎤= + + + −⎣ ⎦       (9.31) 

5 1 2 5

1 1 1max ,0n n n nDS ξ ξ η− − −⎡ ⎤= + −⎣ ⎦        (9.32) 

4 3 4 4

1 1 1max ,0n n n nDS ξ ξ η− − −⎡ ⎤= + −⎣ ⎦        (9.33) 

3 1 3 2 2 2

1 1 1 1max ,0 ; max ,0n n n n n nDS DSξ η ξ η− − − −⎡ ⎤ ⎡ ⎤= − = −⎣ ⎦ ⎣ ⎦     (9.34) 
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1 3 1 0 4 0

1 1 1 1max ,0 ; max ,0n n n n n nDS DSξ η ξ η− − − −⎡ ⎤ ⎡ ⎤= − = −⎣ ⎦ ⎣ ⎦     (9.35) 

The outstanding order equations for network 2 are listed below: 

{ } { }1 2 3 4 6

1 1max 0, 9,8,7i i i

n n n n n n n nY Y DS whereiξ ξ ξ ξ η+ −= + + + + − − ∈   (9.36) 

Similar to node 1 in network 1, node 6 in network 2 consists of an assembly of three 

products from nodes 9, 8, and 7; also consists of two sources of demand from nodes 5 

and 4.  

4 4
6 5 4 9 9

1 1 2 1
4

1 16 6 5 4

1 1 1 4 4
1 8 8 7 7 6

2 1 2 1

1 1

, ,

min

, ,

j j

n n n n n n

j jj

n n n n n

j j j

n n n n n

j j

Y DS DS s Y

Y Y DS DS

s Y s Y

ξ ξ
ξ

ξ ξ η

− − − −
= =

+ − −
=

− − − −
= =

⎧ ⎫
+ − − − −⎪ ⎪

⎪ ⎪= + − − − ⎨ ⎬
⎪ ⎪− − − −
⎪ ⎪⎩ ⎭

∑ ∑
∑

∑ ∑
 

           (9.37) 

5 1 2 3 2

1 1

5 5 1 2 3 2 4
1 1 1 6 6 5

2 1

1

,

min
,

n n n n n

n n n n n n j

n n n

j

Y DS DS

Y Y DS DS
s Y

ξ ξ
ξ ξ

ξ η

− −

+ − −
− −

=

⎧ ⎫+ + − −
⎪ ⎪= + + − − − ⎨ ⎬− −⎪ ⎪
⎩ ⎭

∑
  (9.38) 

4 3 4 1 0

1 1

4 4 3 4 1 0 4
1 1 1 6 6 1 2 4

2 1 2 2

1

,

min
,

n n n n n

n n n n n n j

n n n n n

j

Y DS DS

Y Y DS DS
s Y

ξ ξ
ξ ξ

ξ ξ ξ η

− −

+ − −
− − − −

=

⎧ ⎫+ + − −
⎪ ⎪= + + − − − ⎨ ⎬− − − −⎪ ⎪
⎩ ⎭

∑
 (9.39) 

Node 5 consists of two sources of demand (two retailers); a proportional allocation is 

used to split the available inventory to nodes 3 and 2. Similarly proportional allocation is 

used at node 4 to split the available inventory to nodes 1 and 0. 

( ){ }3 3 1 3 1 5 5 1 2 3

1 2 1 1min , 1* ,
n n n n n n n n n

Y Y Y ratio s Yξ ξ ξ ξ η+ − − −= + − + − − −    (9.40) 

( ) ( ){ }2 2 2 2 2 5 5 1 2 2

1 2 1 1min , 1 1 * ,
n n n n n n n n n

Y Y Y ratio s Yξ ξ ξ ξ η+ − − −= + − + − − − −   (9.41) 

( ){ }1 1 3 1 3 4 4 3 4 1

1 2 1 1min , 2* ,
n n n n n n n n n

Y Y Y ratio s Yξ ξ ξ ξ η+ − − −= + − + − − −    (9.42) 
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( ) ( ){ }0 0 4 0 4 4 4 3 4 0

1 2 1 1min , 1 2 * ,
n n n n n n n n n

Y Y Y ratio s Yξ ξ ξ ξ η+ − − −= + − + − − − −   (9.43) 

1 3

1 2 3 4
1 ; 2n n

n n n n

ratio ratio
ξ ξ

ξ ξ ξ ξ
= =

+ +
              (9.44) 

The objective function and constraints, Lagrange function, first-order Lagrange 

equations, and the first order outstanding orders for network 2 are provided in the 

appendix, sections A9.4-A9.6 
9.3 Computational Results  

The computational results for both the networks are discussed here. Similar to the 

five-echelon computational results, we look at four instances and each instance consists 

of two to three scenarios of random demand and capacity values. The demand and 

capacity are classified into two types as defined in the table 9.1 and 9.2 respectively. In 

each scenario the demands have a combination of high and low demands. For instance in 

scenario #1 from table 9.4, demands 1-3 have high demand and demand 4 has a low 

demand value, but both the values are randomly picked by Microsoft excel from the 

classification table 9.1.   

Table 9.1: Classification of Demand  

 

Table 9.2: Classification of Capacity 

  

The instances created for the both the networks are listed below in table 9.3. 
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Table 9.3: Instances for Network 1 and Network 2  

 

9.3.1 Computational Results from Network 1 

Initially let us look at the results from network 1. The demand and capacity values for 

the four scenarios are provided below in table 9.4 and 9.5 respectively. The scenario 

numbers and the demand pattern numbers are limited only to this sub-section, i.e. to 

network 1.  A two period lead time is used to compute the results, and a LAPI policy is 

used at nodes 4,3, and 2. All the demand and capacity values are from a normal 

distribution, and the CV is provided in table 9.3. Scenarios # { }1,  3,  5,  7 (demand 

pattern 1) and { }2,  4,  6,  8 (demand pattern 2) have same demand patterns, i.e. high and 

low demand values for specific demand. 

Table 9.4: Demand and Capacity Values for Instance 1 and 2 Network 1 

 
 

 

 

Instance # Name of Instance
CV  for 
Capacity

CV for 
Demand

1 Average Capacity (AC) 0.1 0.1

2 Tight Capacity (TC) 0.1 0.1

3 High Demand Variance with Average Capacity (HDVAC) 0.3 0.3

4 High Demand Variance with Tight Capacity (HDVTC) 0.3 0.3
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Table 9.5: Demand and Capacity Values for Instance 3 and 4 Network 1 

 
Table 9.6: Total Safety-stock for Network 1 Scenarios Under Four Instances  

 
Figure 9.3 and 9.4 are based on the results show in table 9.6. Figure 9.3 compares all 

the instances for demand pattern #1 (i.e. scenarios 1, 3, 5, and 7), and likewise figure 9.4 

compares all the instances for demand pattern #2 (i.e. scenarios 2, 4, 6, and 8). In both the 

figures 9.3 and 9.4 we can observe that the safety-stock is lowest for instance 1 and 

highest for instance 4. Since instance 1 has a lower CV and capacity utilization value 

compared to other three instances, we observe a lower safety-stock value for scenario 1 

and 2 in figures 9.3 and 9.4 respectively. Similarly instance 4 has the highest CV and 

utilization which results in the highest safety-stock assigned, i.e. scenarios 7 and 8 in 

figure 9.3 and 9.4 respectively.  
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Figure 9.3: Comparison Between Instances for Network 1 Demand Pattern 1  

 
Figure 9.4: Comparison Between Instances for Network 1 Demand Pattern 2 

 9.3.2 Computational Results from Network 2 

Let us look at the results from network 2. The demand and capacity values for the 

four scenarios are provided below in table 9.7 and 9.8 respectively. The scenario 

numbers and the demand pattern numbers are with respect only to this sub-section, i.e. 

to network 2.  A two period lead time is used to compute the results. Three inventory 
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allocation policies are used at node 6: 1) lexicographic allocation policy with priority to 

node 5 (PT5), 2) lexicographic allocation policy with priority to node 4 (PT4), 3) 

proportional allocation (PA). Nodes 5 and 4 always use proportional allocation (PA).  All 

the demand and capacity values are use a normal distribution, and the CV is provided in 

table 9.3. Scenarios # { }1,  4,  7,  10 (demand pattern 1), { }2,  5,  8,  11 (demand pattern 

2), { }3,  6,  9,  12 (demand pattern 3)and  have same demand patterns, i.e. high and low 

demand values for specific demand. 

Table 9.7: Demand and Capacity Values for Instance 1 and 2 Network 2 

 

Table 9.8: Demand and Capacity Values for Instance 3 and 4 Network 2 
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Table 9.9 show the total safety-stock values averaged across all scenarios under each 

instance. From the table 9.9 we can observe that PT5 allocation results in lower average 

total safety-stock cost under instance 1, PT4 under instance 2, PA under instance 3, and 

PT4 under instance 4. In order to understand the system better let us look at scenarios 

having same demand patterns.   

Table 9.9: Average Total Safety-Stock Values for Network 2 

 
Table 9.10 consists of safety-stock values from scenarios that come under demand 

pattern 1. We can observe that for scenarios 1 and 4 PT5 allocation policy provides the 

lowest safety-stock, and PA allocation policy provides the lowest safety-stock cost for 

scenarios 7 and 10. Under demand pattern 1 there is a higher demand at node 5 (demand 

1 and 2) as opposed to node 4 (demand 3 and 4), similar to the other multi-echelon 

systems we see that lower total safety-stock cost results when an allocation priority is 

assigned to node with greater demand. In case of instances where increased demand and 

capacity variance (instance 3 and 4) exists we see that proportional allocation works 

marginally better than PT5 allocation. 
Table 9.10: Safety-Stock Values for Network 2 Demand Pattern 1  
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Table 9.11 provides the safety-stock values for scenarios under demand pattern 2. 

From the table 9.11 we can observe that the PT4 provides the significantly lowest safety-

stock cost compared to other two allocation policy. Under demand pattern 2 there is a 

higher demand at node 4 (demand 3 and 4) as opposed to node 5 (demand 1 and 2), 

similar to the demand pattern 1 we observe that lower total safety-stock cost results when 

an allocation priority is assigned to node with greater demand. 

Table 9.11: Safety-Stock Values for Network 2 Demand Pattern 2  

 
Table 9.12 provides the safety-stock values for scenarios under demand pattern 3. 

Similarly we can observe from table 9.12 that the PT5 provides the lowest safety-stock 

cost compared to other two allocation policy. Under demand pattern 3 there is a higher 

demand at node 5 (demand 1 and 2) as opposed to node 4 (demand 3 and 4), similar to 

the other multi-echelon systems we see that lower total safety-stock cost results when an 

allocation priority is assigned to node with greater demand. Except for scenario 9, which 

belongs to instance 3 in all the other scenarios shown in table 9.12 PT5 provides a lower 

safety stock.  

In case of an increased demand variance (scenario 9 and 7, instance 3) we can 

observe from table 9.10 and 9.12 that PA works significantly better that PT5. 
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Table 9.12: Safety-Stock Values for Network 2 Demand Pattern 3  

 
Based on the results from the larger networks, we can infer that it is suggestible to 

assign priority to the node or source of demand which has higher proportion of the total 

demand, with an exception for instance 3 where the demand variance is large, PA policy 

should be used. Additional results for the two networks can be found in the appendix 

A10.         
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10. HEURISTIC STARTING POINTS 

In this chapter we develop two heuristic approaches that determine target base-stock 

levels for each component, intermediate products, and final products in the multi-echelon 

inventory system for a given service level. The approach will be based on the following: 

• Rule based approach : Determining good initial points/starting points for the 

search based on a set of rules 

• Decomposition approach : Determine the initial base-stock levels for each 

node based on a decomposition approach  

The basic idea is to develop heuristic starting points, and determine target base-stock 

levels for each node much quicker and closer to the traditional starting points (mean 

demand during lead time) used for the frameworks earlier. Each approach is discussed in 

detail following the analysis of computational results for the multi-echelon inventory 

systems. 

10.1 Rule Based Approach 

Determining good initial/starting points indicates providing the optimization 

framework with good starting base-stock values for each node which are close to the best 

found answer. The question arises how this can be achieved. Based on the numerical 

cases that have been presented in earlier sections using the IPA framework a unique set 

of rules for the various scenarios were developed and are stated below. All the scenarios 

determine an initial base-stock level for each node.  The best found base-stock level 

depends on , , and service level for a nodeξ η , so the determination of an initial point (base-

stock level) should account for all of these factors. 
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Scenario 1: Demand is stochastic and capacity is deterministic in nature 

Initial point for a node: = Mean demand during the lead time for the node + K1 * 

coefficient of variance (C.V) of demand+ K2 – K3 

Scenario 2: Demand is deterministic and capacity is stochastic in nature 

Initial point for a node: = Mean demand during the lead time for the node + K1 * 

coefficient of variance (C.V) of capacity+ K2 – K3  

Scenario 3: Demand is stochastic and capacity is stochastic in nature 

Initial point for a node: = Mean demand during the lead time for the node + K1 * 

coefficient of variance (C.V) of demand + K1 * coefficient of variance (C.V) of capacity 

+ K2 – K3 

Since the demand and capacity being deterministic or stochastic would affect the way 

the initial point for each node is determined, it is evident that we need three sets of rules, 

one for each scenario. Here K1, K2, K3 and K4 are constants. The definitions for K1, K2, 

K3 and K4 are described below: 

( ) ( ) ( )1 * *K Z value Discount factor Inflation factor= −  

2 * ' *K Echelon factor echelon s away mean demand During lead time=  

3 *K Nonlinear lead time factor Mean demand during lead time=  

Z value−  = The value is obtained from the standard normal tables for the given 

service level. For instance, the value of Z for a 0.9 (or in other words 90% service level) 

is 1.3.  

Discount factor = The discount factor is used to reduce the value of the starting point 

(initial base-stock level) on the basis of capacity utilization. Based on the past 
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observations it is found that at lower capacity utilizations the large demand variance has 

only a small effect on the base-stock level. 

( )

0.4 75%

0.6 75% 85%
   

0.8 85% 90%

1 90%

if capacity utilization

if capacity utilization is
Discount factor

if capacity utilization is

no discount if capacity utilization is

− ≤⎧
⎪ − −⎪= ⎨ − −⎪
⎪ − >⎩

 
Inflation factor = The inflation factor is used to increase the value of the starting 

point (initial base-stock level) on the basis of demand or capacity CV. There are two sets 

of inflation factors used, one for multi-echelon inventory system with fewer than 6 nodes 

and another for systems with more than 6 nodes and fewer than 12. 

Inflation factor for system with nodes less than 6:-  

If 0.1 1(noinflation)

1.5 65% 75%

If 0.1 0.3 1.7 75% 85%

2 85%

CV

if capacity utilization

CV if capacity utilization

if capacity utilization

≤ −

− −⎧
⎪< ≤ = − −⎨
⎪ − >⎩

 

Similarly Inflation factor for system with nodes greater than 6 and less than 12: 

If 0.1 1(noinflation)

1.8 65% 75%

If 0.1 0.3 2 75% 85%

2.2 85%

CV

if capacity utilization

CV if capacity utilization

if capacity utilization

≤ −

− −⎧
⎪< ≤ = − −⎨
⎪ − >⎩

 

Echelon factor = Depending on the structure of the node, i.e. multiple sources of 

demand or single source of demand a constant value is added to the starting point. 

: 0.03

: 0.01

Multiple sources of demand
Echelon factor

Single sources of demand

−⎧
= ⎨ −⎩

 

Echelons away = Depending on a node’s position in the supply chain, i.e. number of 

echelons away from the supplier, base-stock level at a node is slightly higher or lower. 



237 

 

The echelon factor is multiplied with the number of echelons away from the source 

(supplier’s node). 

{ }: 1,2,3....Echelons away m−  

Non-linear lead time factor: As lead time between echelons increases the safety-stock 

for a node increases in a non-linear fashion. In order to address this non-linear increase in 

safety-stock level the non-linear lead time factor is introduced. The starting point 

increases linearly, and in a significant way if this factor is not subtracted from the initial 

point as the lead time between echelons increases. 

:0.01
1 :

:0.02

:0.02
2 :

:0.04

3 :

Nodes with multiple sources
period lead time

Nodes with single source

Nodes with multiple sources
Non linear lead time factor period lead time

Nodes with single source

Nodes wi
period lead time

−⎡
⎢ −⎣

−⎡
− = ⎢ −⎣

:0.04

:0.06

th multiple sources

Nodes with single source

⎧
⎪
⎪
⎪⎪
⎨
⎪
⎪ −⎡⎪ ⎢ −⎪ ⎣⎩

 

10.2 Decomposition Approach 

In decomposition approach each node in a multi-echelon inventory system is 

considered as an individual node (single-echelon). From the computational results, it has 

been observed that the best found base-stock level for a node when considered as an 

individual node is, less than or equal to the best found base-stock level of a node when it 

is a part of a multi-echelon. This has prompted to look for a decomposition approach 

which provides heuristic starting points for the IPA based search. The best found base-

stock level for each node in an m-echelon problem is obtained by solving m or more 

single-echelon problems. This base-stock value for the single-echelon is used as a starting 

point for the node in the multi-echelon inventory system. By solving the single-echelon 
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problem we can obtain good starting points for the component, intermediate, final 

product nodes.  

10.3 Computational Results 

The computational results for the two approaches, 1) rule based approach 2) 

decomposition approach are studied for the three-echelon, five-echelon, and the two 

multi-echelon networks discussed in chapter 9. All the case numbers and instance 

numbers are with respect to chapter 10 only. Definitions of the terms used in the 

following sub-sections are described below: 

( ) Total HeuristicCost-TotalBestFound Cost
: *100%

TotalOptimalCost
Percentage Relative Error PRE

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

Total Heuristic Cost: It is the sum of all the target base-stock levels obtained from 

either using the rule based heuristic starting points or using the decomposition approach. 

Total Best found Cost: It is the sum of all the best found base-stock levels that are 

obtained using the traditional starting points (mean demand during lead time) for each 

node. 

Instances: Three instances used for the computational results are: 1) instance 1-: 

random demand and deterministic capacity, 2) instance 2-: deterministic demand and 

random capacity, 3) instance 3 -: random demand and random capacity 

Heuristic: - It refers to the total cost from either 1) rule based approach or 2) the 

decomposition approach. The base-stock levels obtained for each node by using the 

heuristic starting points are also referred to as target base-stock levels throughout the 

chapter and in the appendix.  
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A 90% service level is used for all the nodes, and all the units for the time are in 

minutes. A normal distribution is used for both the demand and capacity depending on 

instances. The starting points for the search using both the approaches are provided in the 

appendix A11.   

10.3.1 Heuristic Performance for Three­echelon Assembly System 

The demand, capacity, lead time, and CV values used for the three-echelon assembly 

system are provided in the table 10.1. The values in table 10.1 are used to develop the 

heuristic starting points for the rule based approach. The heuristic starting points (initial 

base-stock levels for each node) are based on the set of rules discussed in section 10.1.   

Table 10.1: Three-Echelon Assembly System Input Values Used For Performance 

Evaluation of Heuristic  

 

The performance results for instance 1 using the rule based approach are shown in 

table 10.2. All the demand and capacity values are based on table 10.1, in which the 

demand values are random and the capacity values are deterministic. From the results we 

can observe that the using a rule-based approach reduces the amount of time taken for 

search to terminate. Specifically for case 6 and 9 the time taken for the traditional 

approach is close to 15 min, whereas the time taken using the rule-base approach is less 
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than 5 sec. We can also observe that the PRE (percentage relative error) for 7 out of 9 

cases is less than 2%.  

 

Table 10.2: Performance of Rule Based Approach For Three-echelon Instance 1 

 

The performance results for instance 1 using the decomposition approach are shown 

in table 10.3. For the decomposition approach only two period lead times are considered. 

Though there is a noticeable reduction in time taken for the search to terminate, the PRE 

value is larger than the rule based approach. 

Table 10.3: Performance of Decomposition Approach For Three-echelon Instance 1 

 

The performance results for instance 2 using the rule based approach are shown in 

table 10.4. All the demand and capacity values are based on table 10.1, in which the 

demand values are deterministic and the capacity values are random. Except for case 3, 

we do observe a significant time difference taken for the search to terminate between the 
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traditional approach and the rule based approach. The PRE for 6 out of 9 cases is less 

than 2%.   

Table 10.4: Performance of Rule Based Approach For Three-echelon Instance 2  

 

The performance results for instance 2 using the decomposition approach are shown 

in table 10.5. Comparing the PRE in table 10.4 with 10.5, 1 out of 3 cases the 

decomposition approach provides lower PRE, but the rule based approach provides much 

lower search time compared to the decomposition approach.  

Table 10.5: Performance of Decomposition Approach For Three-echelon Instance 2 

 

The performance results for instance 3 using the rule based approach are shown in 

table 10.6. All the demand and capacity values are based of table 10.1, in which the 

demand and the capacity values are random. Except for case 3, we do observe a 

significant time difference taken for the search to terminate between the traditional 

approach and the rule based approach. The PRE for 6 out of 9 cases (except lead time of 

two periods) is less than 2%. 
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Table 10.6: Performance of Rule Based Approach For Three-echelon Instance 3 

 

The performance results for instance 3 using the decomposition approach are shown 

in table 10.7. Comparing the PRE in table 10.7 with 10.6, all the three cases the 

decomposition approach provides lower PRE, but the rule based approach provides much 

lower search time in 2 out of 3 cases compared to the decomposition approach. 

Table 10.7: Performance of Decomposition Approach For Three-echelon Instance 3 

 

10.3.2 Heuristic Performance for Five­echelon Assembly System 

The demand, lead time, and CV values used for the five-echelon assembly system are 

provided in the table 10.8. The capacity values used for the five-echelon assembly system 

are provided in the table 10.9. The values in table 10.8 and 10.9 are used to develop the 

heuristic starting points for the rule based approach using the rules discussed in section 

10.1. Only cases with two-period lead time and under instance 3 are considered.   
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Table 10.8 Demand, Lead Time and CV Values for Five-echelon Assembly System 

Used For Performance Evaluation of Heuristic  

 

Table 10.9 Capacity Values for Five-echelon Assembly System Used For 

Performance Evaluation of Heuristic 

 

The performance results for instance 3 using the rule based approach are shown in 

table 10.10. All the demand and capacity values are based on table 10.8 and 10.9, in 

which the demand and the capacity values are random. We do observe a significant time 

difference taken for the search to terminate between the traditional approach and the rule 

based approach. The PRE for all cases is less than 2.5%. 

Table 10.10: Performance of Rule Based Approach For Five-echelon Instance 3 

 

The performance results for instance 3 using the decomposition approach are shown 

in table 10.11. The amount of time taken to terminate and the PRE are relatively close in 

both the heuristic approaches for the five-echelon assembly system under instance 3. 
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Table 10.11: Performance of Decomposition Approach For Five-echelon Instance 3 

 

10.3.3 Heuristic Performance for Multi­echelon Networks 

The demand, lead time, and CV values used for network 1 and 2 are provided in the 

table 10.12 and 10.16 respectively. The capacity values used for network 1 and 2 are 

provided in the table 10.13 and 10.17 respectively. The values in table 10.12, 10.13, 

10.16 and 10.17 are used to develop the heuristic starting points for the rule based 

approach using the rules discussed in section 10.1. Only cases with two-period lead time 

and under instance 3 are considered.   

Table 10.12 Demand, Lead Time and CV Values for Network 1 Used For 

Performance Evaluation of Heuristic  

 

Table 10.13 Capacity Values for Network 1 Used For Performance Evaluation of 

Heuristic  

 

The performance results for instance 3 using the rule based approach are shown in 

table 10.14. All the demand and capacity values are based of table 10.12 and 10.13, in 

which the demand and the capacity values are random. We do observe a significant time 

difference taken for the search to terminate between the traditional approach and the rule 



245 

 

based approach. This is slightly higher than what we have seen in the earlier multi-

echelon systems.  

Table 10.14: Performance of Rule Based Approach For Network 1 Instance 3 

 

The performance results for instance 3 using the decomposition approach are shown 

in table 10.15. Comparing the PRE in table 10.15 with 10.14 we can observe that in all 

the cases decomposition approach performs better than the rule based approach. For cases 

with CV = 0.1 the amount of time taken to terminate is lower for the decomposition 

approach when compared to the rule based approach. At higher CV, i.e. CV = 0.3 the 

time taken by rule based approach (1.06 min) is significantly lower than the 

decomposition approach (21.1 min). 

Table 10.15: Performance of Decomposition Approach For Network 1 Instance 3 

 

Table 10.16 Demand, Lead Time and CV Values for Network 2 Used For 

Performance Evaluation of Heuristic  
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Table 10.17 Capacity Values for Network 2 Used For Performance Evaluation of 

Heuristic  

 

The performance results for instance 3 using the rule based approach are shown in 

table 10.18. All the demand and capacity values are based of table 10.16 and 10.17, in 

which the demand and the capacity values are random. The performance results for 

instance 3 using the decomposition approach are shown in table 10.19. Similar inference 

made to network 1 can be made for network 2. 

Table 10.18: Performance of Rule Based Approach For Network 2 Instance 3 

 

Table 10.19: Performance of Decomposition Approach For Network 2 Instance 3 

 

Additional results can be found in the appendix A11. 

10.4 Inferences Based of Heuristic Starting Points  

Based on the numerical results for heuristic starting points we can infer the following: 

• For a three-echelon assembly system 
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o Under instance 1- random demand and deterministic capacity and instance 

2 - deterministic demand and random capacity, rule based approach works 

better than the decomposition approach in terms of time taken to obtain 

total cost and PRE. 

o Under instance 3 – random demand and capacity, rule based approach 

works better than the decomposition approach in terms of time taken to 

obtain the total cost. But, decomposition approach provides much lower 

PRE compared to the rule based approach. 

o In most cases rule based approach works better than decomposition 

approach (time, PRE) for a three-echelon assembly system. 

• For a five-echelon assembly system and larger networks  

o The time taken to obtain the total cost using the decomposition approach is 

quicker than the rule based approach for lower demand and capacity 

variance.  

o The PRE for decomposition approach is lower than the rule based 

approach when for lower demand and capacity variance. 

o Under high demand and capacity variance rule based approach works 

better than the decomposition approach in terms of both time taken to 

obtain the total cost and PRE.  
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11. CONCLUSION AND FUTURE RESEARCH 

In this research we studied several multi-echelon inventory systems with stochastic 

capacity and intermediate product demand. Specifically we analyzed at how the system 

would behave when several intermediate product demands occur in a supply chain. The 

analysis was three fold i) developed update (relational) equations for the multi-echelon 

assembly systems, ii) develop two simulation optimization approaches to obtain the best 

found base-stock level for each node in the assembly system that satisfy the required 

amount of service level, iii) extensive analysis of the numerical results for the multi-

echelon inventory systems.  

The update equations are developed for three-echelon, five-echelon, m-echelon, and 

large multi-echelon network models under four different inventory allocation policies.  

Two frameworks were used as a part of the simulation optimization, 1) OptQuest and 2) 

IPA (Infinitesimal Perturbation Analysis). OptQuest which is a tool in ARENA was used 

as a part of the initial study (only for three-echelon) to obtain the base-stock levels for 

each node which satisfy the desired service level. Gradient estimation in the multi-

echelon inventory system supports simulation optimization using an IPA framework. The 

simulation optimization using IPA uses a combination of ARENA, Visual Basic, and 

Xpress. A detailed numerical analysis of the three-echelon, five-echelon, and large 

networks inventory system is conducted. A hypothesis testing experiment was conducted 

on the results from the five-echelon assembly system to gain additional insight. From the 

numerical results we identify what would lead to a lower total system cost and safety-

stock cost under specific cases and instances. In particular we noted that for some 

instances a combination of inventory allocation policies across the supply chain might 
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result in lower total system cost, whereas for other instances using one type inventory 

allocation policy across the supply chain will result in the lowest cost. We showed that 

adding multiple sources of demand to the traditional multi-echelon problem leads to an 

interesting allocation issue, complex mathematical equations, a different problem, and 

new inferences based of the numerical results.  

Heuristic starting points using two approaches 1) rule based 2) decomposition are 

implemented to obtain the near best found base-stock levels much quicker than using the 

traditional starting points for the search. The two heuristic approaches are tested on larger 

networks to demonstrate the robustness. From the performance evaluation of the heuristic 

approaches we also noted that there can be a significant reduction in the search time if 

one of the two approaches is used. 

The research done in this dissertation differs from earlier works, since it considers a 

complex (combination of serial and assembly systems) multi-period multi-echelon 

inventory system with several sources of demand (specifically intermediate product 

demands). We obtain the best found base-stock levels for each node in the system that 

satisfies the required customer service level. A SIO approach is used to obtain the best 

found base-stock level for the system under several inventory allocation policies. We 

consider a system which is closer to the actual world and can be used to solve 

contemporary issues like, 1) manufacturing firm that produces finished products as well 

as spare parts, 2) manufacturer – warehouse – distribution center – retail outlets etc. I am 

not aware of any work that studies the impact of inventory allocation polices for multi-

period in a multi-echelon inventory system, and obtains best found base stock level for 

each node using an IPA framework. Moreover the best found base-stock level for each 
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node is obtained under realistic conditions like stochastic demand, stochastic capacity, 

and lead time. 

There are several interesting directions for the future research, which include 

developing a novel heuristic approach (for instance using nested partitions) to obtain the 

near best found base-stock levels that does not use IPA based search. Another research 

direction would be to introduce the aspect of multiple final products, where each final 

product needs to maintain a desired service and obtain the best found base-stock level for 

all the final products. A further extension would be to develop a multi-echelon inventory 

system with random lead time, by relaxing some of the assumptions made for the current 

multi-echelon inventory systems. One more tough yet interesting aspect for the future 

research would be to prove that the multi-echelon inventory systems are quasi-convex in 

nature.  

 

 

 

 

 

 

 

 

 

 

 

 

 



251 

 

12. REFERENCES 

Agrawal, N., & Cohen, M. (2001). Optimal material control and performance evaluation 

in an assembly environment and component commonality. Naval Research 

Logistics, 48, 409-429.  

Andersson, J., & Melchiors, P. (2001). A two-echelon inventory model with lost sales. 

International Journal of Production Economics, 69, 307-315.  

Anupindi, R., & Akella, R. (1993). Diversification under supply uncertainty.39, 944-963.  

April, J., Glover, F., Kelly, J., & Laguna, M. (2001). Simulation/Optimization using real-

world applications. Winter Simulation Conference,  

Arora, J. S. (2004). Introduction to optimum design (2nd ed.)Academic Press.  

Arrow, K. J., Harris, T., & Marschak, J. (1951). Optimal inventory policy. Econometrica, 

19, 250-272.  

Axsäater, S. (1990). Simple solution procedures for a class of two-echelon inventory 

problems. Operations research, 38(1), 64-69.  

Axsater, S., & Rosling, K. (1993). Notes: Installation vs. echelon stock policies for 

multilevel inventory control. Management Science, 39(10), 1274-1280.  

Axsater, S., & Rosling, K. (1994). Multi-level production-inventory control: Material 

requirements planning or reorder point policies. European Journal of Operations 

Research, 75, 405-412.  



252 

 

Axsäter, S. (1993). Exact and approximate evaluation of batch-ordering policies for two-

level inventory systems. Operations research, 41(4), 777-785.  

Badinelli, R. D. (1992). A model for continuous-review pull policies in serial inventory 

systems. Operations research, 40(1), 142-156.  

Banks, J. (1998). Handbook of simulation: Principles, methodology, advances, 

applications, and practice (1st ed.)John Wiley & Sons, Inc.  

Bashyam, S., & Fu, M. C. (1998). Optimization of (s,S) inventory systems with random 

lead times and a sevice level constraint. Management Science, 44(12), 243-255.  

Bassok, Y., & Akella, R. (1991). Combined component ordering and production 

decisions in manufacturing systems with supply quality and demand uncertainty. 

Management Science, 37(12), 1556-1574.  

Bazaraa, M. S., Sherali, H. D., & Shetty, C. M. (2004). Nonlinear programming - theory 

and algorithms (2nd ed.)John Wiley & Sons, Inc.  

Beamon, B.M., & Chen, V.C.P. (2001). Performance analysis of conjoined supply chains. 

International Journal of Production Research, 39, 3195–3218. 

Bellman, R. (Ed.). (1957). Dynamic programming. Princeton, NJ: Princeton University 

Press.  

Bish, E. K., Muriel, A., & Biller, S. (2006). Managing flexible capacity in a make-to-

order environment. Management Science, 51(2), 167-180.  



253 

 

Bollapragada, R., Rao, U. S., & Zhang, J. (2004). Managing inventory and supply 

performance in assembly systems with random supply capacity and demand. 

Management Science, 50(12), 1729-1743.  

Bollapragada, R., Rao, U. S., & Zhang, J. (2004a). Managing two-stage serial inventory 

systems under demand and supply uncertainty and customer service level 

requirements. IIE Transactions, 36, 73-85.  

Box, G. E. P., & Draper, N. R. (1987). Empirical model-building and response surfaces 

(1st ed.)John Wiley & Sons, Inc.  

Cachon, G., & Terwiesch, C. (2005). Matching supply with demand: An introduction to 

operations management (1st ed.)McGraw-Hill/Irwin.  

Carr, S. M., & Karmarkar, U. S. (2005). Competition in multi-echelon assembly supply 

chains. Management Science, 51(1), 45-59.  

Carson, Y., & Maria, A. (1997). Simulation optimization: Methods and applications 

Paper presented at the Proceedings of the 1997 Winter Simulation Conference,  

Chang, H. K., Yushin, H., & Soo-Young, K. (1997). An extended optimal lot sizing 

model with an unreliable machine. Production Planning & Control, 8(6), 577-585.  

Chen, F., & Zheng, Y. S. (1994). Evaluating echelon stock (R, nQ) policies in serial 

Production/Inventory systems with stochastic demand. Management Science, 40, 

1262-1275.  



254 

 

Cheung, K. L., & Hausman, W. (1995). Multiple failures in a multi-item spares inventory 

model - IIE transactions. IIE Transactions, 27, 171-180. Retrieved 8/10/2007 from  

Ciarallo, F. W., Akella, R., & Morton, T. E. (1994). A periodic review, production 

planning model with uncertain capacity and uncertain demand- optimality of 

extended myopic policies. Management Science, 40(3), 320-332.  

Clark, A. J., & Scraf, H. (1960). Optimal policies for a multi-echelon inventory problem. 

Management Science, 50(12), 1782-1790.  

Daniel, J.S.R., & Rajendran, C. (2005). A simulation-based genetic algorithm for 

inventory optimization in a serial supply chain. International Transactions In 

Operational Research, 12, 101-127.  

De Bodt, M. A., & Graves, S. C. (1985). Continuous-review policies for a multi -echelon 

inventory problem with stochastic demand. Management Science, 31(10), 1286-

1299.  

Diaz, A. (2003). Modeling approaches to optimize spares in multi-echelon systems. 

International Journal of Logistics: Research and Applications, 6(1-2), 51-62.  

Diks, E. B., de Kok, A. G., & Lagodimos, A. G. (1996). Multi-echelon systems: A 

service measure perspective. European Journal of Operations Research, 95, 241-

263.  



255 

 

Disney, S.M, Naim, M.M., & Towill, D.R. (1997). Dynamic simulation modeling for 

lean logistics. International Journal of Physical Distribution and Logistics 

Management, 27, 174–196. 

Erkip, N., Hausman, W., & Nahmias, S. (1990). Optimal centralized ordering policies in 

multi-echelon inventory systems with correlated demands. Management Science, 36, 

381-392.  

Ettl, M., Feigin, G. E., Lin, G. Y., & Yao, D. (2000). A supply network model with base-

stock control and service requirements. Operations Research, (48), 216-232.  

Ettl, M., Feigin, G. E., Lin, G. Y., & Yao, D. D. (2000). A supply network model with 

base-stock control and service requirements. Operations research, 48(2), 216.  

Eylem, T., & Ihsan, S. (2004). Simulation optimization: A comprehensive review on the 

theory and applications. IIE Transactions, 11, 1067-1081.  

Federgruen, A., & Zipkin, P. (1986). An inventory model with limited production 

capacity and uncertain demand II- The discounted-cost criterion. Mathematics of 

Operations Research, 11(2), 208-215.  

Federgruen, A., & Zipkin, P. (1984). Computational issues in an infinite-horizon, multi-

echelon inventory model. Operations research, 32(4), 818-836.  

Fu, M. C. (1994). Optimization via simulation: A review. Annals of operation research, 

53, 199-247.  



256 

 

Fu, M. C. (2002). Optimization for simulation: Theory vs. practice. INFORMS journal on 

computing, 14(3), 192-215.  

Fu, M. C. (2001). Simulation optimization. Winter Simulation Conference,  

Gallego, G., & Ozer, O. (2001). Integrating replenishment decisions with advance 

demand information. Management Science, 47(10), 1344-1360.  

Gallego, G., & Ozer, O. (2003). Optimal replenishment policies for multi-echelon 

inventory problems under advance demand information. Manufacturing & Service 

Operations Management, 5(2), 157-175.  

Gallien, J., & Wein, L. M. (2001). A simple and effective component procurement policy 

for stochastic assembly systems. Queuing Systems, 38(2), 221-248.  

Gavirneni, S., Kapuscinski, R., & Tayur, S. (1999). Value of information in capacitated 

supply chains. Management Science, 45(1), 16-24.  

Gerchak, Y. (1992). Order Point/Order quantity models with random yield. International 

Journal of Production Economics, 26, 297-298.  

Gerchak, Y., Vickson, R. G., & Parlar, M. (1988). Periodic review production models 

with variables yield and uncertain demand. IIE Transactions, 2, 144-150.  

Glasserman, P. (1991). Gradient estimation via perturbation analysis (1st ed.) Kluwer 

Academic Publishers. 



257 

 

Glasserman, P., & Tayur, S. (1995). Sensitivity analysis for base-stock levels in multi-

echelon production-inventory systems. Management Science, 41(2), 263-281.  

Glover, F., & Laguna, M. (2000). Fundamentals of scatter search and path relinking. 

Control and Cybernetics, 29(4), 653-684.  

Graves, S. C. (1996). Multi-echelon inventory models with fixed replenishment intervals. 

Management Science, 42(1), 1-18.  

Graves, S. C., & Willems, S. P. (2000). Optimizing strategic safety stock placement in 

supply chains. Manufacturing & Service Operations Management, 2, 68-83.  

Graves, S. C. (1985). A multi-echelon inventory model for a repairable item with one-

for-one replenishment. Management Science, 31(10), 1247-1256.  

Graves, S. C., & Schwarz, L. B. (1977). Single Cycle Continuous Review Policies for 

Arborescent Production/ Inventory Systems. Management Science, 23, 529-540 

Groenevelt, H., Pintelon, L., & Seidemann, A. (1992). Production batching with machine 

breakdowns and safety stocks. Operations Research, 40(5), 959-971.  

Groenevelt, H., Pintelon, L., & Seidemann, A. (1992a). Production lot sizing with 

machine Breakdowns. Management Science, 38, 104-123.  

Gurnani, H., Akella, R., & Lehoczky, J. (1996). Optimal order policies in assembly 

systems with random demand and random supplier delivery. IIE Transactions, 28, 

865-878.  



258 

 

Gurnani, H., Akella, R., & Lehoczky, J. (2000). Supply management in assembly systems 

with random yield and random demand. IIE Transactions, 32, 701-714.  

Hariharian, R., & Zipkin, P. (1995). Customer order information, lead times, and 

inventories. Management Science, 41, 1599-1607.  

Hausman, W., Lee, H. L., & Zhang, A. X. (1998). Order response time reliability in 

multi-item inventory systems. European Journal of Operations Research, 109(3), 

646-659.  

Hopp, W., & Spearman, M. (2000). Factory physics (2nd ed.)McGraw-Hill/Irwin.  

Inderfurth, K. (1993). Valuation of lead-time reduction in multi-stage production 

systems. Operations Research in Production Planning ad Inventory Control, , 413-

427.  

Inderfurth, K., & Minner, S. (1998). Safety-stocks in multi-stage inventory systems under 

different service measures. European Journal of Operations Research, 106, 57-73.  

Jain, K., & Silver, E. A. (1995). The single period procurement problem where dedicated 

supplier capacity can be reserved. Naval Research Logistics, 42, 320-332.  

Kaplan, R. S. (1970). A dynamic inventory model with stochastic lead times. 

Management Science, 16(7), 491-507.  

Karlin, S. (1960a). Dynamic inventory policy with varying stochastic demand. 

Management Science, 6, 231-258.  



259 

 

Karlin, S. (1960b). Optimal policy for dynamic inventory process with stochastic 

demands subject to seasonal variations. SIAM, 8, 611-629.  

Kelton, W. D., Sandowski, R. P., & Sandowski, D. A. (2002). Simulation with ARENA 

(2nd ed.)McGraw-Hill.  

Kim, E., Lee, E., & Kang, S. (2006). Optimal purchasing policy in a two-component 

assembly system with different purchasing contracts for each component. Math. 

Meth. Oper. Res., 63, 301-327.  

Kleijnen, J. P. C. (Marcel Dekker, Inc.). Statistical tools for simulation practitioners (1st 

ed.)  

Kochel, P., & Nilander, U. (2005). Simulation-based optimization of multi-echelon 

inventory systems. International Journal of Production Economics, 93-94, 505-513.  

Laguna, M., & Martí, R. (2002). OptQuest callable libraries. Optimization Software, , 

193-218.  

Langenhoff, L. J. G., & Zijm, W. H. M. (1990). An analytical theory of multi-echelon 

Production/Distribution systems. Statistica Neerlandica, 44(3), 149-174.  

Lee, H.L., & Billington, C. (1992). Managing supply chain inventory: pitfalls and 

opportunities. Sloan Management Review, 33, 65–72. 

Lee, H. L., & Billington, C. (1993). Material management in decentralized supply chains. 

Operations Research, 7, 835-847.  



260 

 

Lee, H. L., & Yano, C. A. (1988). Production control in multi-stage systems with variable 

yield losses. Operations Research, 36(2), 269-278.  

Min, H., & Zhou, G. (2002). Supply chain modeling: past, present and future. Computers 

and Industrial Engineering, 43,231–249. 

 Moinzadeh, K., & Lee, H. L. (1986). Batch size and stocking levels in multi-echelon 

repairable systems. Management Science, 32(12), 1567-1581.  

Montgomery, D. C. (2000). Design and analysis of experiments John Wiley & Sons, Inc.  

Montgomery, D. C., & Runnger, G. C. (2003). Applied statistics and probability for 

engineers (3rd ed.)John Wiley & Sons, Inc.  

Moreira, J. A. A., & Bispo, C. F. G. (1999). An echelon inventory-based single stage cost 

function for a two-station tandem system. Production Planning & Control, 10(7), 

643-649.  

Noori, H., & Keller, G. (1986). The lot-size reorder point model with upstream-

downstream uncertainty. Decision Science, 17, 285-291.  

OptQuest for ARENA User’s guide, Rockwell Automation.  

Rao, U., Scheller-Wolf, A., & Tayur, S. (2000). Development of a rapid-response supply 

chain at caterpillar. Operations Research, 48, 189–204. 



261 

 

Rao, U. S., Swaminathan, J. M., & Zhang, J. (2004). Multi-product inventory planning 

with downward substitution, stochastic demand and setup costs. IIE Transactions, 

36, 59-71.  

Reed, M. C. (1998). Fundamental ideas of analysis (1st ed.) John Wiley & Sons, Inc.  

Rosling, K. (1989). Optimal inventory policies for assembly systems under random 

demands. Operations Research, 37(4), 565-579.  

Roundy, R. (1986). A 98%--effective lot--sizing rule for a multi--product, multi--stage 

production/ inventory system. Mathematics of Operations Research, 11(4), 699-727.  

Shang, K. H., & Song, J. (2006). A closed-form approximation for serial inventory 

systems and application to system design. Manufacturing & Service Operations 

Management, 8(4), 394-406.  

Sherbrooke, C. C. (1968). Metric: A multi-echelon technique for recoverable item 

control. Operations research, 16(1), 122-141.  

Silver, E. A. (1976). Establishing the reorder quantity when amount received is uncertain. 

INFOR, 14(1), 32-39.  

Simchi-Levi, D., & Zhao, Y. (2005). Safety stock positioning in supply chains with 

stochastic lead times. Manufacturing & Service Operations Management, 7(4), 295-

318.  

Simpson, K. F. (1958). In-process inventories. Operations Research, , 863-873.  



262 

 

Sobel, M. J. (2004). Fill rates of single-stage and multistage supply systems. 

Manufacturing & Service Operations Management, 6(1), 41-52.  

Song, J. (1998). On the order fill rate in a multi-item, base-stock inventory system. 

Operations research, 46(6), 831-845.  

Song, J. (2002). Order-based backorders and their implications in multi-item inventory 

systems. Management Science, 48(4), 499-516.  

Song, J., Xu, S., & Liu, B. (1999). Order-fulfillment performance measures in an 

assemble-to-order system with stochastic lead-times. Management Science, 47, 131-

149.  

Song, J., & Yao, D. (2002). Performance analysis and optimization of assemble-to-order 

systems with random lead times. Operations Research, 50, 889-903.  

Song, J., & Zipkin, P. (1996). Inventory control with information about supply 

conditions. Management Science, 42, 1409-1419.  

Souza, R.D., Zice, S., & Chaoyang, L. (2000). Supply chain dynamics and optimization. 

Integrated Manufacturing Systems, 11, 348–364. 

Strader, T.J., Lin, F., & Shaw, M.J. (1998). Simulation of order fulfillment in divergent 

assembly supply chains. Journal of Artificial Societies and Social Simulation, 1. 

Svoronos, A., & Zipkin, P. (1988). Estimating the performance of multi-level inventory 

systems. Operations research, 36(1), 57-72.  



263 

 

Tetsuo, I. (2002). A non-stationary periodic review production- inventory model with 

uncertain production capacity and uncertain demand. European Journal of 

Operations Research, 149, 670-683.  

Towill, D.R., Naim, M.M., & Winker, J. (1992). Industrial dynamics simulation models 

in the design of supply chains. International Journal of Physical Distribution and 

Logistics Management, 22, 3–13. 

van Houtum, G. J., & Zijm, W. H. M. (1991). Computational procedures for stochastic 

multi-echelon production systems. International Journal of Production Economics, 

23, 223-237.  

Wu, K. (2001). A mixed inventory model with variable lead time and random supplier 

capacity. Production Planning & Control, 12(4), 353-361.  

Zhang, A. X. (1998). Demand fulfillment rates in an assemble-to-order system with 

multiple products and dependent demands. Production and Operations Management 

Society, , 177-192.  

Zipkin, P. (1989). Critical numbers policies for inventory models with periodic data. 

Management Science, 35(1), 71-80.  

Zipkin, P., & Federgruen, A. (1986). An inventory model with limited production 

capacity and uncertain demands I. the average-cost criterion. Mathematics of 

Operations Research, 11, 193-207.  

 



264 

 

12. APPENDIX 

A.1 Best Found Base­stock Levels for Single­Echelon 

The best found base-stock levels for a single-echelon inventory model are shown in 

figure A1. The results from eight different cases are shown below. The demand is 

stochastic, and the capacity is deterministic in nature.   

Table A1: Best Found Base-stock Levels for Single-Echelon 

 

Single-echelon Base-stock Level vs. Service Level 

Case # Demand Capacity

Optimal Base-Stock 

for a Single-Echelon

1 Norm(4,2) 10 11.46

2 Norm(4,2) 5 12.26

3 Norm(4,4) 12 14.89

4 Norm(4,4) 8 15.71

5 Norm(6,2) 15 15.46

6 Norm(6,2) 7 16.26

7 Norm(6,4) 15 18.55

8 Norm(6,4) 9 19.15
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Figure A1: Single-echelon Base-stock Level vs. Service Level  

Figure A1 shown above represents the service levels for different base-stock values. 

From the figure A1 it is clear that as the base-stock level increases the service-level also 

increases till the service level of 1 (100%) is attained thereafter the service level remains 

constant at 1. From the figure we can also observe that there is a lot of variance in the 

service level values when the base-stock values are small and relatively less variance 

when the base-stock values are large. This is due to the stochastic distribution of demand. 
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A.2 Variance and Standard Deviation of Service Level and Lagrange 
Multipliers 

Table A2 shows the variance and standard deviation (SD) of the service level for all 

the four nodes in a three-echelon model. Each variance value is computed based on ten 

replications, where the number of periods for one replication is shown in the column of 

the table A2. We can see that as the number of periods for obtaining an estimate increases 

the variance also reduces. This would provide an idea on how many runs (periods in this 

case) would be sufficient for one estimate for the desired confidence interval.    

Table A2: Variance and Standard Deviation of Service Level 

 

A small analytical proof is shown, based of which we can find out the number of 

periods/runs that would be sufficient for an estimate based depending on the required 

confidence interval.  Let 
i

Y be the service level variable estimated through the simulation, 

and let 
i

X  be an indicator variable (i.e. the value of the variable is either 0 or 1), n be the 

number of periods or runs. The expression shown in equation A1 represents the equation 

used in simulation which is used compute the service level.  

1

n
i

i

i

X
Y

n=

=∑           (A1) 

Equation A1 can be rewritten as shown in A2. 

S0 S1 S2 S3 S0 S1 S2 S3

500 Periods 0.0031 0.001306 0.000515 0.000515 0.055 0.036145 0.02269 0.02269

1000 Periods 0.003175 0.000852 0.000327 0.000327 0.05635 0.029184 0.018086 0.018086

2000 Periods 0.001588 0.000681 0.000293 0.000293 0.039855 0.026095 0.017117 0.017117

3000 Periods 0.000912 0.000392 0.000176 0.000176 0.030203 0.019807 0.013281 0.013281

4000 Periods 0.000697 0.000215 9.82E-05 9.82E-05 0.026407 0.014679 0.009911 0.009911

5000 Periods 0.000347 0.000109 5.35E-05 5.35E-05 0.018622 0.010429 0.007316 0.007316

Variance of Sevice Level SD of Sevice Level
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1

n

i i

i

nY X
=

=∑           (A2) 

Computing the variance of the equation A2 we have 

( )
1

n

i i

i

Var nY Var X
=

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑          (A3) 

The indicator variable on the right-hand side of equation A3 can be represented using 

a binomial distribution. The variance of a binomial distribution is given as * *(1 )n p p− , 

where p is the probability, which would depend on the confidence interval required. 

Substituting the value of binomial distribution in equation A3, and further simplifying we 

have A4. 

( )2 (1 )in Var Y np p= −          (A4) 

Further simplifying to determine the number of simulation runs we get equation A5. 

( ) ( )
(1 )(1 )

i i

p pp p
n n

Var Y SD Y

−−
= ⇒ =                   (A5) 

Table A2 (a): Variance and Standard Deviation of Lagrange Multipliers*
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*LS0 denotes 0
dL

ds
, and LU0 denotes 0

dL
du

 

Table A2 (a) shows the variance and SD of the first order Lagrange function with 

respect to (w.r.t) base-stock levels, and Lagrange multipliers for all four nodes considered 

in a three-echelon inventory model. Each variance value is computed based on ten 

replications, where the number of periods for one replication is shown in the column of 

the table A2 (a). We can see that as the number of periods for obtaining an estimate 

increases the variance and SD also reduces, this is shown in figure A2 and A3 

respectively. 
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Figure A2: SD Estimate of First Order Lagrange Function w.r.t Base-stock 

Level 

 

Figure A3: SD Estimate of First Order Lagrange Function w.r.t Lagrange 

Multiplier 

 

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

50 
Periods

100 
Periods

150 
Periods

200 
Periods

350 
Periods

500 
Periods

1000 
Periods

S
ta

n
d

a
rd

 D
e

v
ia

ti
o

n

Number of Periods

SD Estimate of First Order Lagrange Function w.r.t 
Base-Stock Level as a Function of Number of Periods

LS0

LS1

LS2

LS3

0.00

50.00

100.00

150.00

200.00

250.00

50 
Periods

100 
Periods

150 
Periods

200 
Periods

350 
Periods

500 
Periods

1000 
Periods

N
u

m
b

e
r 

o
f 

P
e

ri
o

d
s

  
F

ir
s

t 
O

rd
e

r 
L

a
g

ra
n

g
e

 
F

u
n

c
ti

o
n

 w
.r

.t
 L

a
g

ra
n

g
e
 M

u
lt

ip
li
e
r

Number of Periods

SD Estimate of First Order Lagrange Function w.r.t 
Lagrange Multiplier as a Function of Number of Periods

LU0

LU1

LU2

LU3



270 

 

A.3 Three­Echelon Inventory System with One­Period Lead­Time 

The on-hand inventory equations for a three-echelon inventory system with one-

period lead time are stated below: 

( )1 2 1

1 1 10 , , 2,3i

i i i

n n n nn l
I max s Y DS where iξ ξ− − −−
= − − − + ∈

    (A.6) 

( )1 2 0

1 1 10 , , where 1i

i i i

n n n nn l
I max s Y DS iξ ξ− − −−
= − − − + ∈

    (A.7)
 

( )2

10 , , where 0i

i i i

n nn l
I max s Y iξ −−
= − − ∈

      (A.8) 

The outstanding order equations for a three-echelon inventory system with one-period 

lead time are stated below: 

( )1 2 1

1 max 0,  where 2,3i i i

n n n n n n
Y Y DS iξ ξ η+ = + + − − ∈      (A.9) 

1 1 2 0 3 3

1 21 1 1 2 0

1 1 2 2 1

2

, ,
min

,

n n n n n

n n n n n

n n

Y DS s Y
Y Y DS

s Y

ξ ξ
ξ ξ

η
− −

+ −

−

⎛ ⎞+ + − −
= + + − − ⎜ ⎟⎜ ⎟−⎝ ⎠

    (A.10) 

( )0 0 2 0 2 1 1 1 0

1 2 1min , ,
n n n n n n n n

Y Y Y s Yξ ξ ξ η+ − −= + − + − −      (A.11) 
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A.4 Three­Echelon Inventory System with Three­Period Lead­Time 

The on-hand inventory equations for a three-echelon inventory system with three-

period lead time are stated below: 

( )1 1 1 2 2 2 1

1 2 3 1 2 3 10 , , 2,3i

i i i

n n n n n n n nn l
I max s Y DS where iξ ξ ξ ξ ξ ξ− − − − − − −−
= − − − − − − − + ∈

 (A.12) 

( )1 1 1 2 2 2 0

1 2 3 1 2 3 10 , , where 1i

i i i

n n n n n n n nn l
I max s Y DS iξ ξ ξ ξ ξ ξ− − − − − − −−
= − − − − − − − + ∈

 (A.13)
 

( )2 2 2

1 2 30 , , where 0i

i i i

n n n nn l
I max s Y iξ ξ ξ− − −−
= − − − − ∈

    (A.14) 

The steady-state outstanding order inventory equations for three-echelon assembly 

system are listed below: 

( )1 2 1

1 max 0,  where 2,3i i i

n n n n n n
Y Y DS iξ ξ η+ = + + − − ∈      (A.15) 

1 1 2 0 3 3 1 2 1

2 1 1 21 1 1 2 0

1 2 2 2 1 2 1 2 1

2 2 1 1 2 2

,
min

, ,

n n n n n n n n

n n n n n

n n n n n n n

Y DS s Y
Y Y DS

s Y

ξ ξ ξ ξ ξ
ξ ξ

ξ ξ ξ ξ ξ η
− − − −

+

− − − − − −

⎛ ⎞+ + − − − − −
= + + − − ⎜ ⎟⎜ ⎟− − − − − −⎝ ⎠

  (A.16) 

( )0 0 2 0 2 1 1 1 1 1 2 2 0

1 2 1 2 3 1 2min , ,
n n n n n n n n n n n n

Y Y Y s Yξ ξ ξ ξ ξ ξ ξ η+ − − − − − −= + − + − − − − − −   (A.17) 
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A5. Additional Computational Results for Three­echelon Assembly 
System 

A5.1 One Period Supply/Manufacturing Lead Time (LT) 

Table A3: Best Found Base-Stock Levels for Different Demand CV’s (1 LT)* 

 

Demand

CV Node 0 Node 1 Node 2 Node 3 Total

0.2 5.82 13.82 13.82 13.82 47.28

0.6 11.04 19.04 19.04 19.04 68.16

1 20.3 28.3 28.3 28.3 105.20

CV Node 0 Node 1 Node 2 Node 3 Total

0.2 6.27 14.27 14.27 14.27 49.08

0.6 11.37 19.37 19.37 19.37 69.48

1 21.3 29.3 29.3 29.3 109.20

CV Node 0 Node 1 Node 2 Node 3 Total

0.2 6.83 14.83 14.83 14.83 51.32

0.6 12.04 20.04 20.04 20.04 72.16

1 24.93 32.93 32.93 32.93 123.72

CV Node 0 Node 1 Node 2 Node 3 Total

0.2 6.94 14.95 14.95 14.95 51.79

0.6 15.32 23.32 23.32 23.32 85.28

1 25.88 33.88 33.88 33.88 127.52

Base-stock Levels for Sevice Level - 80% 

Base-stock Levels for Sevice Level - 85% 

Base-stock Levels for Sevice Level - 90% 

Base-stock Levels for Sevice Level - 95% 
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Table A4: Best Found Base-Stock Levels for Different Capacity CV’s (1 LT)

 

* 1 LT refers to one period lead time 

Table A5: Safety Stock Levels for Different Demand CV’s (1 LT) 

 

 

Capacity CV Node 0 Node 1 Node 2 Node 3 Total

0.1 5.71 13.71 13.71 13.71 46.84

0.3 11.1 19.1 19.1 19.1 68.40

0.6 18.24 26.24 26.24 26.24 96.96

Capacity CV Node 0 Node 1 Node 2 Node 3 Total

0.1 6.06 14.06 14.06 14.06 48.24

0.3 11.8 19.8 19.8 19.8 71.20

0.6 21.2 29.2 29.2 29.2 108.80

Capacity CV Node 0 Node 1 Node 2 Node 3 Total

0.1 6.18 14.18 14.18 14.18 48.72

0.3 12.5 20.57 20.57 20.57 74.21

0.6 22.3 30.3 30.3 30.3 113.20

Capacity CV Node 0 Node 1 Node 2 Node 3 Total

0.1 6.42 14.42 14.42 14.42 49.68

0.3 13.04 21.04 21.04 21.04 76.16

0.6 23.8 31.8 31.8 31.8 119.20

Optimal Base-stock Level for Sevice Level - 80% 

Optimal Base-stock Level for Sevice Level - 85% 

Optimal Base-stock Level for Sevice Level - 90% 

Optimal Base-stock Level for Sevice Level - 95% 

Demand

CV Node 0 Node 1 Node 2 Node 3 Total

0.2 1.82 1.82 1.82 1.82 7.28

0.6 7.04 7.04 7.04 7.04 28.16

1 16.30 16.30 16.30 16.30 65.20

CV Node 0 Node 1 Node 2 Node 3 Total

0.2 2.27 2.27 2.27 2.27 9.08

0.6 7.37 7.37 7.37 7.37 29.48

1 17.30 17.30 17.30 17.30 69.20

CV Node 0 Node 1 Node 2 Node 3 Total

0.2 2.83 2.83 2.83 2.83 11.32

0.6 8.04 8.04 8.04 8.04 32.16

1 20.93 20.93 20.93 20.93 83.72

CV Node 0 Node 1 Node 2 Node 3 Total

0.2 2.94 2.95 2.95 2.95 11.79

0.6 11.32 11.32 11.32 11.32 45.28

1 21.88 21.88 21.88 21.88 87.52

Safety Stock for Sevice Level - 80% 

Safety Stock for Sevice Level - 85% 

Safety Stock for Sevice Level - 90% 

Safety Stock for Sevice Level - 95% 
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Table A6: Safety Stock Levels for Different Capacity CV’s (1 LT) 

 

The demand and capacity values for tables A3 and A4, A5 and A6 are provided in 

table 7.7 and 7.11 respectively. 

A5.2 Two Period Supply/Manufacturing Lead Time 

Table A7: Best Found Base-Stock Levels for Different Demand CV’s (2 LT) 

 

Capacity

CV Node 0 Node 1 Node 2 Node 3 Total

0.1 1.71 1.71 1.71 1.71 6.84

0.3 7.10 7.10 7.10 7.10 28.40

0.6 14.24 14.24 14.24 14.24 56.96

CV Node 0 Node 1 Node 2 Node 3 Total

0.1 2.06 2.06 2.06 2.06 8.24

0.3 7.80 7.80 7.80 7.80 31.20

0.6 17.20 17.20 17.20 17.20 68.80

CV Node 0 Node 1 Node 2 Node 3 Total

0.1 2.18 2.18 2.18 2.18 8.72

0.3 8.50 8.57 8.57 8.57 34.21

0.6 18.30 18.30 18.30 18.30 73.20

CV Node 0 Node 1 Node 2 Node 3 Total

0.1 2.42 2.42 2.42 2.42 9.68

0.3 9.04 9.04 9.04 9.04 36.16

0.6 19.80 19.80 19.80 19.80 79.20

Safety Stock for Sevice Level - 90% 

Safety Stock for Sevice Level - 95% 

Safety Stock for Sevice Level - 80% 

Safety Stock for Sevice Level - 85% 

Demand

CV Node 0 Node 1 Node 2 Node 3 Total

0.2 10.71 26.71 26.71 26.71 90.84

0.6 19.34 34.34 34.34 34.34 122.36

1 24.4 40.4 40.4 40.4 145.60

CV Node 0 Node 1 Node 2 Node 3 Total

0.2 11.13 27.13 27.13 27.13 92.52

0.6 19.53 35.53 35.53 35.53 126.12

1 26.11 42.11 42.11 42.11 152.44

CV Node 0 Node 1 Node 2 Node 3 Total

0.2 11.51 27.51 27.51 27.51 94.04

0.6 20.91 36.91 36.91 36.91 131.64

1 38.15 54.15 54.15 54.15 200.60

CV Node 0 Node 1 Node 2 Node 3 Total

0.2 12.26 28.26 28.26 28.26 97.04

0.6 23.2 39.2 39.2 39.2 140.80

1 40.21 56.21 56.21 56.21 208.84

Optimal Base-Stock Level for Sevice Level - 95% 

Optimal Base-Stock Level for Sevice Level - 80% 

Optimal Base-Stock Level for Sevice Level - 85% 

Optimal Base-Stock Level for Sevice Level - 90% 
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Table A8: Best Found Base-Stock Levels for Different Capacity CV’s (2 LT) 

 

Table A9: Safety Stock Levels for Different Demand CV’s (2 LT) 

 

 

 

 

CV Node 0 Node 1 Node 2 Node 3 Total

0.1 10.10 26.1 26.1 26.1 88.40

0.3 15.34 31.34 31.34 31.34 109.36

0.6 24.8 40.8 40.8 40.8 147.20

CV Node 0 Node 1 Node 2 Node 3 Total

0.1 10.87 26.87 26.87 26.87 91.48

0.3 15.8 31.8 31.8 31.8 111.20

0.6 26.3 42.3 42.3 42.3 153.20

CV Node 0 Node 1 Node 2 Node 3 Total

0.1 10.99 26.99 26.99 26.99 91.96

0.3 16.57 32.57 32.57 32.57 114.28

0.6 28.57 44.57 44.57 44.57 162.28

CV Node 0 Node 1 Node 2 Node 3 Total

0.1 11.41 27.41 27.41 27.41 93.64

0.3 17.28 33.28 33.28 33.28 117.12

0.6 30.04 46.04 46.04 46.04 168.16

Optimal Base-Stock for Sevice Level - 80% 

Optimal Base-Stock for Sevice Level - 85% 

Optimal Base-Stock for Sevice Level - 90% 

Optimal Base-Stock for Sevice Level - 95% 

Demand 

CV Node 0 Node 1 Node 2 Node 3 Total

0.2 2.71 2.71 2.71 2.71 10.84

0.6 11.34 10.34 10.34 10.34 42.36

1 16.40 16.40 16.40 16.40 65.60

CV Node 0 Node 1 Node 2 Node 3 Total

0.2 3.13 3.13 3.13 3.13 12.52

0.6 11.53 11.53 11.53 11.53 46.12

1 18.11 18.11 18.11 18.11 72.44

CV Node 0 Node 1 Node 2 Node 3 Total

0.2 3.51 3.51 3.51 3.51 14.04

0.6 12.91 12.91 12.91 12.91 51.64

1 30.15 30.15 30.15 30.15 120.60

CV Node 0 Node 1 Node 2 Node 3 Total

0.2 4.26 4.26 4.26 4.26 17.04

0.6 15.20 15.20 15.20 15.20 60.80

1 32.21 32.21 32.21 32.21 128.84

Safety Stock for Sevice Level - 95% 

Safety Stock for Sevice Level - 80% 

Safety Stock for Sevice Level - 85% 

Safety Stock for Sevice Level - 90% 
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Table A10: Safety Stock Levels for Different Capacity CV’s (2 LT) 

 

A5.3 Three Period Supply/Manufacturing Lead Time 

Table A11: Best Found Base-Stock Levels for Different Demand CV’s (3 LT) 

 

 

Capacity

CV Node 0 Node 1 Node 2 Node 3 Total

0.1 2.10 2.10 2.10 2.10 8.40

0.3 7.34 7.34 7.34 7.34 29.36

0.6 16.80 16.80 16.80 16.80 67.20

CV Node 0 Node 1 Node 2 Node 3 Total

0.1 2.87 2.87 2.87 2.87 11.48

0.3 7.80 7.80 7.80 7.80 31.20

0.6 18.30 18.30 18.30 18.30 73.20

CV Node 0 Node 1 Node 2 Node 3 Total

0.1 2.99 2.99 2.99 2.99 11.96

0.3 8.57 8.57 8.57 8.57 34.28

0.6 20.57 20.57 20.57 20.57 82.28

CV Node 0 Node 1 Node 2 Node 3 Total

0.1 3.41 3.41 3.41 3.41 13.64

0.3 9.28 9.28 9.28 9.28 37.12

0.6 22.04 22.04 22.04 22.04 88.16

Safety Stock for Sevice Level - 80% 

Safety Stock for Sevice Level - 85% 

Safety Stock for Sevice Level - 90% 

Safety Stock for Sevice Level - 95% 

Demand 

CV Node 0 Node 1 Node 2 Node 3 Total

0.2 15.52 39.52 39.52 39.52 134.08

0.6 26.17 50.17 50.17 50.17 176.68

1 42.2 66.2 66.2 66.2 240.80

CV Node 0 Node 1 Node 2 Node 3 Total

0.2 15.78 39.79 39.79 39.75 135.11

0.6 27 51 51 51 180.00

1 44.66 68.66 68.66 68.66 250.64

CV Node 0 Node 1 Node 2 Node 3 Total

0.2 16.43 40.53 40.53 40.53 138.02

0.6 29.64 53.64 53.64 53.64 190.56

1 46.53 70.53 70.53 70.53 258.12

CV Node 0 Node 1 Node 2 Node 3 Total

0.2 17.06 41.06 41.06 41.06 140.24

0.6 30.18 54.18 54.18 54.18 192.72

1 48.26 72.26 72.26 72.26 265.04

Optimal Base-Stock for Sevice Level - 80% 

Optimal Base-Stock for Sevice Level - 85% 

Optimal Base-Stock for Sevice Level - 90% 

Optimal Base-Stock for Sevice Level - 95% 
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Table A12: Best Found Base-Stock Levels for Different Capacity CV’s (3 LT) 

 

Table A13: Safety Stock Levels for Different Demand CV’s (3 LT) 

 

 

 

Capacity

CV Node 0 Node 1 Node 2 Node 3 Total

0.1 14.80 38.8 38.8 38.8 131.20

0.3 19.8 43.8 43.8 43.8 151.20

0.6 34.4 58.4 58.4 58.4 209.60

CV Node 0 Node 1 Node 2 Node 3 Total

0.1 15.26 39.26 39.26 39.26 133.04

0.3 20.28 44.28 44.28 44.28 153.12

0.6 36.54 60.54 60.54 60.54 218.16

CV Node 0 Node 1 Node 2 Node 3 Total

0.1 16.05 40.05 40.05 40.05 136.20

0.3 20.82 44.82 44.82 44.82 155.28

0.6 38.54 62.54 62.54 62.54 226.16

CV Node 0 Node 1 Node 2 Node 3 Total

0.1 28.16 40.16 40.16 40.16 148.64

0.3 22.04 46.04 46.04 46.04 160.16

0.6 40.89 64.89 64.89 64.89 235.56

Base-Stock Levels for Sevice Level - 80% 

Base-Stock Levels for Sevice Level - 85% 

Base-Stock Levels for Sevice Level - 90% 

Base-Stock Levels for Sevice Level - 95% 

Demand

CV Node 0 Node 1 Node 2 Node 3 Total

0.2 3.52 3.52 3.52 3.52 14.08

0.6 14.17 14.17 14.17 14.17 56.68

1 30.20 30.20 30.20 30.20 120.80

CV Node 0 Node 1 Node 2 Node 3 Total

0.2 3.78 3.79 3.79 3.75 15.11

0.6 15.00 15.00 15.00 15.00 60.00

1 32.66 32.66 32.66 32.66 130.64

CV Node 0 Node 1 Node 2 Node 3 Total

0.2 4.43 4.53 4.53 4.53 18.02

0.6 17.64 17.64 17.64 17.64 70.56

1 34.53 34.53 34.53 34.53 138.12

CV Node 0 Node 1 Node 2 Node 3 Total

0.2 5.06 5.06 5.06 5.06 20.24

0.6 18.18 18.18 18.18 18.18 72.72

1 36.26 36.26 36.26 36.26 145.04

Safety Stock for Sevice Level - 90% 

Safety Stock for Sevice Level - 95% 

Safety Stock for Sevice Level - 80% 

Safety Stock for Sevice Level - 85% 
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Table A14: Safety Stock Levels for Different Demand CV’s (3 LT) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Capacity

CV Node 0 Node 1 Node 2 Node 3 Total

0.1 2.80 2.80 2.80 2.80 11.20

0.3 7.80 7.80 7.80 7.80 31.20

0.6 22.40 22.40 22.40 22.40 89.60

CV Node 0 Node 1 Node 2 Node 3 Total

0.1 3.26 3.26 3.26 3.26 13.04

0.3 8.28 8.28 8.28 8.28 33.12

0.6 24.54 24.54 24.54 24.54 98.16

CV Node 0 Node 1 Node 2 Node 3 Total

0.1 4.05 4.05 4.05 4.05 16.20

0.3 8.82 8.82 8.82 8.82 35.28

0.6 26.54 26.54 26.54 26.54 106.16

CV Node 0 Node 1 Node 2 Node 3 Total

0.1 16.16 4.16 4.16 4.16 28.64

0.3 10.04 10.04 10.04 10.04 40.16

0.6 28.89 28.89 28.89 28.89 115.56

Safety Stock for Sevice Level - 80% 

Safety Stock for Sevice Level - 85% 

Safety Stock for Sevice Level - 90% 

Safety Stock for Sevice Level - 95% 
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A6. Additional Computational Results for Three­echelon Allocation 
Policies 

Table A15: Best Found Base-stock Levels for LAPD Policy

 

Table A16: Best Found Base-stock Levels for LAPI Policy
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Table A17: Best Found Base-stock Levels for PPA Policy for Case A

 

Table A18: Best Found Base-stock Levels for PPA Policy for Case B
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Table A19: Best Found Base-stock Levels for PA Policy for Case A

 

Table A20: Best Found Base-stock Levels for PA Policy for Case B
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Table A21: Scenarios for Fixed Allocation (FA) 

 

Fixed Allocation (FA): In a fixed allocation a source of demand cannot receive more 

than fixed upper bound or fixed quantity. The last two columns in table A21 show the 

fixed quantity (subjective) for the intermediate product and the final product.  The best 

found base-stock levels obtained using this inventory allocation policy using case A and 

case B described in chapter 8 is shown in table A22 and A23 respectively.  

Table A22: Best Found Base-stock Levels for FA Policy for Case A
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Table A23: Best Found Base-stock Levels for FA Policy for Case B
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A7. Update Equations for Five­echelon Allocation Policies 

The update equations for model # 5 – 10 based of table 8.9 are described in sub-

sections below, all the equations show only the modified equations with respect to the 

equations described in model #1: 

A7.1 Update equations for model # 5 

( )3 3 1 3 1 3 3 1 4

1 2 1 1min , 3* ...i i i

n n n n n n n n
Y Y Y ratio s Yξ ξ ξ ξ+ − − −

⎡ ⎤= + − + − − − −⎣ ⎦    (A.18) 
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2 2 3 4 1
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Y Y DS

s Y

ξ ξ ξ
ξ ξ ξ

ξ ξ η
−

+ −
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⎡ ⎤+ + + − −
⎢ ⎥= + + + − −

− − −⎢ ⎥⎣ ⎦
 (A.19) 

2 2 2 2 2 2 2 2 4 3 4

1 2 1 1 2 2min , ...i i i

n n n n n n n n n nY Y Y s Yξ ξ ξ ξ ξ ξ+ − − − − −⎡ ⎤= + − + − − − − − −⎣ ⎦   (A.20) 
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   (A.21) 

( )1 1 3 1 3 1 1 3 4

1 2 1 1min , 1*i i i

n n n n n n n n
Y Y Y ratio s Yξ ξ ξ ξ+ − − −

⎡ ⎤= + − + − − −⎣ ⎦    (A.22) 
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s Y
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     (A.23) 

A7.2 Update equations for model # 6 

3 3 1 3 1 3 3 1 4 2 3 4

1 2 1 1 2 2 2min , ...i i i

n n n n n n n n n n nY Y Y s Yξ ξ ξ ξ ξ ξ ξ+ − − − − − −⎡ ⎤= + − + − − − − − − −⎣ ⎦   (A.24) 
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( )1 1 3 1 3 1 1 3 4

1 2 1 1min , 1*i i i

n n n n n n n n
Y Y Y ratio s Yξ ξ ξ ξ+ − − −

⎡ ⎤= + − + − − −⎣ ⎦    (A.27) 
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A7.3 Update equations for model # 7 

( )1 1 3 1 3 1 1 3 4 4

1 2 1 1 2min , 1*i i i

n n n n n n n n n
Y Y Y ratio s Yξ ξ ξ ξ ξ+ − − − −

⎡ ⎤= + − + − − − −⎣ ⎦    (A.29) 
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A7.4 Update equations for model # 8 

2 2 2 2 2 2 2 2 4 3 4

1 2 1 1 2 2min , ...i i i
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A7.5 Update equations for model # 9 

3 3 1 3 1 3 3 1 4 2 3 4
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A7.5 Update equations for model #10 
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A8.Additional Computational Results for Five­Echelon Allocation 
Policies 

Table A24: Demand and Capacity Values for Instance 1

 

Table A25: Demand and Capacity Values for Instance 2

 

 

Table A26: Demand and Capacity Values for Instance 3 

 
 

Table A27: Demand and Capacity Values for Instance 4 
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Table A28: Best Found Base-stock Levels and Total Cost for Model #1 
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Table A29: Best Found Base-stock Levels and Total Cost for Model #2 
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Table A30: Best Found Base-stock Levels and Total Cost for Model #3 
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Table A31: Best Found Base-stock Levels and Total Cost for Model #4 
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Table A32: Best Found Base-stock Levels and Total Cost for Model #5 
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Table A33: Best Found Base-stock Levels and Total Cost for Model #6 
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Table A34: Best Found Base-stock Levels and Total Cost for Model #7 
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Table A35: Best Found Base-stock Levels and Total Cost for Model #8 
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Table A36: Best Found Base-stock Levels and Total Cost for Model #9 
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Table A37: Best Found Base-stock Levels and Total Cost for Model #10 
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A9.Additonal Information on Network 1 and Network 2 

 

A9.1 Objective Function and Constraints for Network 1 

Objective function: 

7

0
0

min
i

i i

s
i

c s
≥ =
∑           (A.44) 

The constraints ensure that the desired service level is achieved at the node where 

external source of demand exists, in case of network 1 they are nodes 4, 3, 2 and 0. 
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Where iα represent the service-level for stage i. The constraints can also be written 

as: 
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A9.2 Lagrange Function and Associated First­Order Equations for Network 1 

The Lagrange function for network 1 is stated below: 
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The first order differentiation of the Lagrange function with respect to the base-stock 

levels and Lagrange multipliers is listed below: 
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A9.3 First­Order Outstanding Order Equations for Network 1 

The first order outstanding order equations for network 1are listed below 
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The first order on-hand inventory equations for network 1 are similar to the three-

echelon assembly system. 

 

A9.4 Objective Function and Constraints for Network 2 

Objective function: 
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0
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s
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c s
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∑           (A.72) 

The constraints ensure that the desired service level is achieved at the node where 

external source of demand exists, in case of network 1 they are nodes 0, 1, 2, and 3 
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Where iα represent the service-level for stage i. The constraints can also be written 

as: 
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A9.5 Lagrange Function and Associated First­Order Equations for Network 2 

The Lagrange function for network 1 is stated below: 
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A9.6 First­Order Outstanding Order Equations for Network 2 

 

The first order outstanding order equations for network 1are listed below 
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A10. Additional Results for Network 1 and Network 2 
 

Table A38: Base-stock Levels for Network 1 

 
 

Table A39: Safety-stock Levels for Network 1 

 
 

Table A40: Base-stock Levels for PT5 Inventory Allocation Under Network 2 

 
 
 

 

 

 

 



309 

 

Table A41: Safety-stock Levels for PT5 Inventory Allocation Under Network 2 

 
 

Table A42: Base-stock Levels for PT4 Inventory Allocation Under Network 2 

 
 

Table A43: Safety-stock Levels for PT4 Inventory Allocation Under Network 2 
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Table A44: Base-stock Levels for PA Inventory Allocation Under Network 2 

 
 

Table A43a: Safety-stock Levels for PA Inventory Allocation Under Network 2 
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A11. Additional Results Heuristic Starting Points 
 

Table A44a: Starting Points for Three-Echelon Assembly System Instance 1 

 
 

Table A45: Best Found Base-stock Levels for Three-Echelon Assembly System 

under Instance 1 with Traditional Approach 

 
 

Table A46: Target Base-stock Levels for Three-Echelon Assembly System under 

Instance 1 with Rule Based Approach 
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Table A47: Starting Points for Three-Echelon Assembly System under Instance 1 

with Decomposition Approach 

 
Table A48: Target Base-stock Levels for Three-Echelon Assembly System under 

Instance 1 with Decomposition Approach 

 
Table A49: Starting Points for Three-Echelon Assembly System Instance 2 
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Table A50: Best Found Base-stock Levels for Three-Echelon Assembly System 

under Instance 2 with Traditional Approach 

 
 

Table A51: Target Base-stock Levels for Three-Echelon Assembly System under 

Instance 2 with Rule Based Approach 

 
Table A52: Starting Points for Three-Echelon Assembly System under Instance 2 

with Decomposition Approach 
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Table A53: Target Base-stock Levels for Three-Echelon Assembly System under 

Instance 2 with Decomposition Approach 

 
Table A54: Starting Points for Three-Echelon Assembly System Instance 3 

 
 

Table A55: Best Found Base-stock Levels for Three-Echelon Assembly System 

under Instance 3 with Traditional Approach 
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Table A56: Target Base-stock Levels for Three-Echelon Assembly System under 

Instance 3 with Rule Based Approach 

 
Table A57: Starting Points for Three-Echelon Assembly System under Instance 3 

with Decomposition Approach 

 
 

Table A58: Target Base-stock Levels for Three-Echelon Assembly System under 

Instance 3 with Decomposition Approach 

 
 

Table A59: Starting Points for Five-Echelon Assembly System Under Instance 3 

with Traditional Approach 
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Table A60: Starting Points for Five-Echelon Assembly System Under Instance 3 

with Rule Based Approach 

 
Table A61: Starting Points for Five-Echelon Assembly System Under Instance 3 

with Decomposition Approach 

 
Table A62: Best Found Base-stock Levels for Five-Echelon Assembly System under 

Instance 3 with Traditional Approach 

 
Table A63: Target Base-stock Levels for Five-Echelon Assembly System under 

Instance 3 with Rule Based Approach 

 
Table A64: Target Base-stock Levels for Five-Echelon Assembly System under 

Instance 3 with Decomposition Approach 
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Table A65: Starting Points for Network 1 Under Instance 3 with Traditional 

Approach 

 
Table A66: Starting Points for Network 1 Under Instance 3 with Rule Based 

Approach 

 
Table A67: Starting Points for Network 1 Under Instance 3 with Decomposition 

Approach 

 
Table A68: Best Found Base-stock Levels for Network 1 under Instance 3 with 

Traditional Approach 

 
Table A69: Target Base-stock Levels for Network 1 under Instance 3 with Rule 

Based Approach 
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Table A70: Target Base-stock Levels for Network 1 under Instance 3 with 

Decomposition Approach 

 
 

Table A71: Starting Points for Network 2 Under Instance 3 with Traditional 

Approach 

 
 

Table A72: Starting Points for Network 2 Under Instance 3 with Rule Based 

Approach 

 
Table A73: Starting Points for Network 2 Under Instance 3 with Decomposition 

Approach 

 
Table A74: Best Found Base-stock Levels for Network 2 under Instance 3 with 

Traditional Approach 
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Table A75: Target Base-stock Levels for Network 2 under Instance 3 with Rule 

Based Approach 

 
Table A75: Target Base-stock Levels for Network 2 under Instance 3 with 

Decomposition Approach 
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