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Abstract. We have studied the reactions ??  ~ t  +/~- and 
yy--*r+ r -  by measuring the properties of  events of  the 
types e + e - - - * e + e - I ~ + l ~  - and e + e - ~ e + e - z + z  - at 
e + e -  centre-of-mass energies between 88 and 94 GeV. The 
data sample corresponds to an integrated e+e  - lumi- 
nosity of  40.4 p b - 1  collected by the OPAL detector at 
LEP. The QED structure function F 2 is extracted f rom a 
sample of  1462 y ~ g + g -  events in which one photon 
is off the mass shell (single-tagged). The Q2 range for 
these massive photons is 4-400 GeV 2, with an average 
Q2 of 8 GeV 2. We have observed 48 e+e - --*e+e-/~ +/~- 
events in which both final state electrons are detected. 
In the sample of  single-tag events we have identified 
34.9_+6.7 events as due to the reaction ? y ~ z + r - ,  on 
an estimated background of 5.1 + 2.7 events. In all cases 
the measured event distributions agree with QED cal- 
culations. 

1 Introduction 

Two-photon reactions have been studied at e+e colli- 
ders for some time [1, 2] and measurements of  the reac- 
tion ~y ~/~ +/~- have been made at e+e - centre-of-mass 
energies of  up to 61.4 GeV [3-10]. The two-photon re- 
actions e+e  - ~ e + e - ~ + F t -  and e + e - - * e + e - r + r  - are 
pure G ( e  4) QED reactions and are, therefore, in prin- 
ciple well understood. 

In this paper, we present a measurement of  the reac- 
tion e+e - - - , e+e- /~+/~  - under two conditions: i )  single 

a Also at TRIUMF, Vancouver, Canada V6T 2A3 
u Now at MPI, Mfinchen, Germany 
~ Also at Shinshu University, Matsumoto 390, Japan 

tag, i.e. one of the final state electrons was observed, and 
i i )  double tag, i.e. both final state electrons were ob- 
served. In both cases, we required the two final state 
muons to be observed. Untagged events, those in which 
both final state electrons escaped detection close to the 
beam axis were not considered. 

This paper also describes the first direct observation 
of  tau pair production in photon-photon collisions. The 
high energy of the LEP beams makes the ),y mass range 
needed for ~r + r -  production more accessible. This feature 
of  LEP and the excellent particle identification properties 
of  the OPAL detector enable us to measure the reaction 
e + e -  --* e + e -  r + r - by selecting final states with one elec- 
tron and one muon or charged hadron, in addition to the 
tag. In order to reduce backgrounds only single-tag events 
were considered in this study. 

The data sample consists of  the data collected f rom 
1990 to 1992, which amounts to 40.4 p b - 1  of integrated 
e + e -  luminosity in the centre-of-mass energy range be- 
tween 88 and 93 GeV. 

2 Theory and Monte Carlo simulations 

The four main diagrams contributing at the lowest order 
to the reactions e+e - ~ e + e - ~ + ~ -  and e+e - 
e+e r + r  - are shown in Fig. 1. The classical "two-pho- 
ton" diagram is the one shown as "multiperipheral", 
Fig. la. We compare the data to the following Monte 
Carlo simulations: 
1. The single-tag e+e - - -*e+e -~+ /~  - events were simu- 
lated using the four-fermion generator written by Berends, 
Daverveldt  and Kleiss [11] (BDK),  which includes all 
four diagrams. We have used the version modified by 
Daverveldt  to include the contributions coming f rom the 
annihilation through the Z 0. It  is optimised for the gen- 
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Fig.la-d. The four main diagrams contributing at the lowest order 
to the processes e+e - ~e+e  f + f - ,  with f = / t ,  r. In b both initial 
and final state radiation are included 

eration of untagged events and usable for single-tag 
events, but it is very inefficient in generating double-tag 
events. 
2. For the simulation of double-tag data, we used the 
FERMISV [12] generator, which includes the same dia- 
grams, and also initial and final state radiation. 
3. The e+e - - - - , e+e-z+r  - events were simulated using 
the Vermaseren generator [13] which includes the dia- 
grams of Fig. la and b. The decay of the tau leptons was 
simulated with the routines from the JETSET library 
[14,15]. 

The events from all three generators were processed by 
the OPAL detector simulation code [16] and the standard 
offline reconstruction code. All events were generated at 
a centre-of-mass energy corresponding to the Z ~ 
mass, where 33.1 of the 40.4pb -~ of data were taken. 
The BDK generator was used to verify that the brems- 
strahlung diagram contributes 2% of the events to the 
single-tag e+e - ---,e+e-/~ +/~- channel. The annhihila- 
tion and conversion diagrams both contribute less than 
0.1%, and were neglected in the single-tag analysis. 

For comparing the photon structure function F 2 ob- 
tained from the data with the QED prediction, we have 
used TWOGEN, a Monte Carlo which generates only the 
two-photon flux factor N which can then be folded with 
any structure function [17, 18]. The differential cross sec- 
tion for single-tag events can be written as: 

d3a  4/r~ 2 
dxdQ2d z -- Q4 X {(1 --y)F2(x, Q2) 

dN +xy2Fl(X, Q2)} dz (1) 

Here Q2 is the momentum transfer squared of the photon, 
tagged by the measurement of the scattered electron. The 

kinematic variable x is defined as x =  Q2/(Q2+ W2), 
where W is the invariant mass of muon pair, y,~ 1 

- -  Etag/Ebeam and z = 1 - Euntag/Ebeam. The energies of 
the tagged and the untagged electron are Etag and Euntag , 
respectively. The untagged electron is assumed to have 
Q2= 0. The QED structure functions of the photon are 
predicted to be [19]: 

F 1 (x, Q2) 

-27r x2+(1-x)2+4rn~ ( W 2 + Q 2 ) 2 j  

__ (1__2X)2_ t 4m~ _ u (1 7 )  l' (2) 

and 

F 2 (x, Q2) 

I / 4 m 2 \ 1 / 2  =2xFl(x'Q2)+4~rc x2 ( l - x ) ~ 1 - ~ )  

2 m 2 W 2 
WZ+ Q21og [ ~----~u+ (~m~m2-1)d2lZ 1 . (3) 

The contribution from the structure function F~ (x, Q2) 
is negligible for y < 0.25. In this paper, we shall only be 
concerned with the determination of F 2 (x, Q2). 

3 The OPAL detector 

As the OPAL detector has already been described in de- 
tail [20], we restrict ourselves here to an overview of the 
main components. The coordinate system of the detector 
is defined with the z-axis along the electron beam direc- 
tion, 0 and ~0 being the polar and azimuthal angles. 
Tracking of charged particles is mainly performed by the 
jet chamber, a large volume drift chamber, 4 m long and 
3.7 m in diameter, divided into 24 azimuthal sectors each 
containing a plane of 159 sense wires. The charge mea- 
sured by the sense wires is used to obtain dE/dx, the 
specific energy loss of the particle in the detector gas. 
Together with the momentum, this gives a measurement 
of the mass of the particle, leading to an e-re separating 
power of more than two standard deviations for momenta 
up to 12 GeV [21]. The jet chamber, the vertex detector, 
and the chambers measuring the z coordinates of particles 
as they leave the jet chamber, are positioned inside a 
solenoidal coil which provides an axial magnetic field of 
0.435 T. It is surrounded by a time-of-flight counter array 
(TOF), a presampler and an electromagnetic calorimeter. 

The electromagnetic calorimeter consists of a barrel 
and two endcap arrays of lead glass blocks. Each block 
subtends a solid angle of approximately 40• 40 mrad 2, 
with a thickness of over 24 radiation lengths (X0) in the 
barrel region and typically 22X 0 in the endcaps. The 
energy resolution for electrons of 45 GeV is typically 
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cre/E,.~3%. Outside the electromagnetic calorimeter is 
the instrumented return yoke of the magnet, forming the 
hadron calorimeter, and beyond this are four layers of 
the outer muon detectors. The hadron calorimater, which 
consists of  nine layers (eight layers in the endcap) of 
streamer tubes interleaved with the iron slabs of  the mag- 
net return yoke, is read out via 4 mm wide strips spaced 
1 cm apart, and projective towers formed by pads. These 
strips provide tracking in the (r, ~0) plane, while the towers 
measure the energy deposited in coarse (~0, z) bins. The 
material in front of  the hadron calorimeter corresponds 
to about two hadronic interaction lengths. The hadron 
calorimeter itself accounts for about 4.8 interaction 
lengths. A muon with a transverse momentum Pt = 1 GeV 
will on the average traverse six planes of the hadron 
calorimeter. 

The forward detectors consist of several sub-detectors 
of  which three are used in this analysis: a lead-scintillator 
sandwich calorimeter, a set of  proportional tube cham- 
bers embedded in the calorimeter, and two planes of drift 
chambers upstream of the calorimeter. 

The forward detector calorimeter measures the energy 
deposited by a photon or an electron with a resolution 

of A E / E =  18%/]/@-, E in GeV. Careful calibration of 
the energy scale keeps the fluctuations in the measured 
shower energy between LEP fills to less than 0.5%. The 
calorimeter also measures the shower position by virtue 
of its azimuthal division into 16 segments and separate 
inner and outer edge readouts. The polar angle resolution 
varies between 1 and 10 mrad, being best near the inner 
edge of the calorimeter. The resolution in azimuth varies 
between 3.5 and 35 mrad, being best at the segment 
boundaries. Furthermore, the calorimeter gives shower 
development information through longitudinal segmen- 
tation into presampler (4Xo) and main (19X o) sections. 
The acceptance of the calorimeter extends from 39 to 
155 mrad, and is essentially complete in azimuth. The 
tube chambers are situated after the presampler section 
and measure the shower position in 0 and ~o. The reso- 
lution for 45 GeV electrons is 1.3 mrad in ~9 and 19 mrad 
in 0- The tube chamber acceptance extends from 50 to 
135 mrad in 0 and covers 95% in azimuth. The precisely 
located drift chambers are used to determine the absolute 
radial position of the tube chambers to a precision of  
135 gm. The distance between the forward detectors at 
each side of OPAL is known to a precision of  0.5 mm. 

4 The event selection 

In the events under study we distinguish: i) the high- 
energy electrons (tags), and ii) the low-energy muons of  
the decay products of the tau pair. These can be handled 
independently. 

The pattern recognition program reconstructed charged 
tracks from strings of at least eight hits in the jet chamber 
(0 > 200 mrad). A good track was defined in this analysis 
as having: at least 30 hits registered in the jet chamber, 
the first one at a radius smaller than 75 cm; a distance 
of  closest approach to the nominal beam axis of  less than 
1 cm, and I zl < 20 cm at this point. The momentum of 

the track had to be between 300 MeV and 20 GeV with 
a component transverse to the beam axis (Pt) greater than 
100 MeV. 

If  a track failed one or more of these criteria, it could 
be defined as being of  medium quality if the radius of its 
first measured point was at a distance of less than 50 cm 
from the beam axis and it had at least 30 jet chamber hits 
associated with it. As a result, medium quality tracks 
would include low energy photon conversion tracks and 
badly measured low angle tracks, but not tracks which 
scattered back from the pressure vessel or magnet coil. 
The latter, and other tracks not classified as of medium 
or good quality were ignored. 

An electromagnetic calorimeter cluster was defined as 
an energy deposition of more than 100 MeV in the barrel 
lead glass array, or more than 250 MeV in the endcap. 

In the first stage of the selection the presence of  a tag 
was established. A tag in the forward detector was defined 
as any electromagnetic energy deposition Etag exceeding 
half the beam energy Ebeam. We expect most tags to be 
observed in the forward detector because the tag angle 
spectrum is strongly peaked at small angles. In order to 
have well measured energy values, we required the polar 
angle 0tag of this tag to be between 47 and 120 mrad. No 
distinction between photons and electrons was made in 
the forward detector. In order to ensure that the untagged 
electron in single-tag events had Q2~0,  we rejected 
events with additional clusters in the forward detector 
with energies of  more than the threshold value of 2 GeV 
but less than Ebeam/2. 

A tag with a polar angle above 200 mrad was defined 
using electromagnetic clusters in the barrel and endcap 
lead glass arrays. Such a cluster was called a tag if its 
energy exceeded half the beam energy and at least one 
charged track of any quality was found in a cone of 15 ~ 
half-opening angle centred on the cluster. Additional 
charged tracks within this cone were ignored. No re- 
quirement was made on the charge of the tag. 

In the next step of the selection only tracks not as- 
signed to tags were considered for event selection. The 
events were required to have two and only two good 
tracks with opposite charges. Events with additional me- 
dium quality tracks were rejected, as were events with 
reconstructed photon conversions. At least one of the 
tracks had to have a momentum greater than 1 GeV 
and a polar angle 0 satisfying I cos 0 1 < 0.72. The other 
charged track had to have a momentum larger than 
300 MeV and a polar angle satisfying I cos 0 I < 0.95. 

The reaction e+e - ~ r  + r -  was found to be a back- 
ground to events in which the tag was measured at 
0 > 200 mrad. This background was rejected by the re- 
quirement that ~9~mtag < 200 mrad. Here t~untag is the polar 
angle of the untagged electron, reconstructed from the 
momentum vectors of  the tagged electron and the two 
charged tracks. The value of 200 mrad allows for uncer- 
tainties in the momentum measurements. 

All events were required to have initiated the detector 
read-out with a trigger consisting of a coincidence be- 
tween an energy deposition of more than 15 GeV in one 
of  the two forward detector modules and a charged 
track in the barrel region of the jet chamber. The efficiency 



of this trigger for events satisfying all cuts was deter- 
mined by means of  other, independent, triggers to be 
95.3 • 0.6%. 

5 The event identification 

Identification of  the final state particles was required for 
further selection. Identification criteria were defined for 
electrons and muons. Figures 2a and b show the overall 
efficiencies for identifying electrons and muons as func- 
tions of  their momentum.  The slight disagreement be- 
tween data and Monte Carlo at high electron momenta  
has no influence on the results. 

The electron identification was based on two measured 
quantities: the ratio of  electromagnetic energy measured 
in the lead-glass calorimeter to the momentum measured 
in the central detector E/p, and the energy loss dE/dx 
in the jet chamber. The E/p selection was used for mo- 
menta greater than 3 GeV: a charged particle was called 
an electron if the electromagnetic cluster associated 
with it had an energy E satisfying E/p > 0.8. Between 
0.3 and 3.0 GeV a particle was identified as an elec- 
tron if 9.0 < dE/dx < 12.0 keV/cm.  For  both momen- 
tum ranges, it was required that no signal above 200 MeV 
was observed in the region of the hadron calorimeter 
associated with the charged track. 

Charged particles were identified as muons only if 
their momentum exceeded 1 GeV. The electromagnetic 
energy associated to the charged track was required to 
be less than 1.5 GeV. A signal was required in the muon 
chambers or in the hadron calorimeter strips. In the muon 
chambers, a track segment with at least three hits had to 
be reconstructed. In the hadron calorimeter, at least three 
layers had to show a strip signal associated with the track, 
of  which one had to be at least in the fourth layer. The 
ratio of  the total number  of  strips to the number of  layers 
hit had to be less than three. This last requirement was 
to reject hadrons which penetrated several layers before 
initiating a shower. In order to satisfy the criteria for 
muon identification, a muon impinging perpendicularly 
on the hadron calorimeter had to traverse the lead glass 
array and at least three layers of  iron, amounting to a 
total of  four hadronic interaction lengths. 
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6 Single-tag mupair events 

We identified the e+e---,e+e-i~+l,- final state by re- 
quiring the presence of one identified muon and rejecting 
events with identified electrons other than the tag. With 
these cuts we selected 1462 events, of  which 48 events 
had a tag with 0tag > 200 mrad. 

6.1 Backgrounds and systematic errors 

The process e + e - --+ e + e - r + z -  constitutes the dominant  
background to e+e - - - + e + e - p + / z  - .  Using the Vermas- 
eren Monte Carlo we have estimated the background for 
all r decay channels to be 24.0 _+ 2.4 events. Cross sections 
for continuum production and resonance formation in 
yT---,n+rc - are much lower than the yy--+/~+/~ - cross 
section and the pions are not expected to pass the muon 
selection criteria described above. The reaction e + e - ~  
r + r  - contributes 0.2_+0.2 events to the events with 
0tag > 200 m r a d .  

The systematic errors in the reconstruction and selec- 
tion efficiency were derived from the comparison between 
the data and the B D K  Monte Carlo. We varied the cuts 
and compared the ratios of the numbers of  events in the 
data and the Monte Carlo. We have estimated the errors 
due to the cuts in three intervals of  x. Adding the errors 
in quadrature, we obtained systematic errors for the ef- 
ficiency of 8.2% for x < 0.4, 11.9% for 0.4 < x < 0.7 and 
8.2% for x > 0.7. An error of  1% for the uncertainty in 
the luminosity measurement [22] was also included. 

We have studied the effect of  initial state radiation by 
adding to the T W O G E N  Monte Carlo the possibility of  
generating one bremsstrahlung photon collinear with the 
beam axis. We found that  this changed the acceptance 
with our cuts by less than 1% and we have therefore 
neglected the effect of  initial state radiation in this paper. 

Taking into account the systematic errors and the sta- 
tistical error of  the Monte  Carlo sample, we expect 
1418 _+ 142 events from the B D K  Monte Carlo, of  which 
46 4- 7.4 with a tag at 0 > 200 mrad. The average values 
of  x and Q2 of the high-Q 2 events are 0.65 (RMS 0.64) 
and 127.8 (RMS 125.9), respectively, to be compared with 
0.68 (RMS 0.67) and 140.4 (RMS 138.0) in the BDK 
Monte Carlo. 
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Fig. 2. a The efficiency for identifying an electron 
in a single-tag event in which the second particle 
was positively identified as an electron, b The 
efficiency for identifying a muon in a single-tag 
event in which the second particle was positively 
identified as a muon. The efficiencies are plotted 
as functions of the particle momenta. The points 
represent the data, the solid lines represent the 
Monte Carlo 
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6.2 The QED structure function 

The QED structure function F 2 was extracted from the 
data using the following procedure: 

1. Single-tag e+e - - -*e+e- /~+/ t  - events were generated 
with the BDK Monte Carlo. 
2. The generated events were subjected to the detector 
simulation and to the analysis cuts, and were weighted 
by a factor e/F2(x, Q2). 
3. The x-distribution of the data was then divided by the 
Monte Carlo distribution of the weighted events. By 
doing this, we divided out the detector effects and also 
the photon flux factor, and obtained a distribution for 
F2, which can be compared directly with QED calcula- 
tions. 

The result is shown in Fig. 3. The solid points are the 
measured values of  F 2 as a function of x for the tagging 
r a n g e  0 t a g  > 47 mrad and for y < 0.25. This corresponds 
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Fig. 3. The measured values of the structure functions F 2 as func- 
tions of x for our measurement (full circles), the PEP-9 measure- 
ment (open circles) and the CELLO measurement (open squares). 
The solid lines are the QED expectations; the expectations for the 
CELLO and OPAL data are identical within the systematic errors 

to an average Q2 (calculated from the generated events) 
of 8.0 GeV 2. The open circles are the PEP-9 measure- 
ments [4] for 0 < Q 2 <  1.7 GeV 2. The open squares are 
the CELLO measurements [3] at (Q2)  = 9.5 GeV 2. The 
solid lines represent the QED expectations. They were 
obtained by generating events according to the QED ex- 
pression for F 2 with a two-photon luminosity generator 
as described in [17, 18]. The expectation for the CELLO 
data is almost identical to the one shown for our data. 
The errors shown are statistical only. Our measurement 
is corrected for the estimated background from 7 7--' r + r -  
events. It is in god agreement with the expectation. 

7 Double-tag mnpair events 

We found 48 events in which both final state electrons 
were detected, either in the forward or in the central 
detector. We expect 36.9+_5.0 such events from the 
FERMISV Monte Carlo for the same integrated lumi- 
nosity. In the kinematic region of the double-tag events 
the contributions of  the annihilation and conversion di- 
agrams become significant (9.3 % and 2.8 %, respectively). 
This can be seen in the distribution of the events as a 
function of the acoplanarity of the tags, defined as r e -  
~0tag I --~0tag2,  shown in Fig. 4a. The distribution is uni- 
form, except for very small acollinearities which have an 
excess of  events. This behaviour is reproduced by the 
FERMISV Monte Carlo (open histogram), but not by 
the Vermaseren Monte Carlo, which does not include the 
annihilation and conversion diagrams. Figure 4b shows 
the distribution of events as a function of the invariant 

+ p -  mass. We see a slightly better agreement with the 
data in the FERMISV Monte Carlo than in the Ver- 
maseren Monte Carlo, especially at the low masses. We 
attribute the slight excess of events in the mass bin be- 
tween 0.5 and 1 GeV to a statistical fluctuation. We do 
not observe the excess of events around W =  300 MeV 
which was reported by the AMY collaboration [10]. 

As in the single-tag case, the reaction e+e - ~  
e + e - r + r  - is expected to be the dominant background 
to the double-tag e+e - ~ e + e - p  + p -  events. Using the 
Vermaseren Monte Carlo we have estimated this back- 
ground to be 1.7 _+ 0.6 events. No Monte Carlo events of 
the reaction e + e - ~ �9 + r - passed our cuts. 
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Fig. 4. a The distribution of double-tag 
e+e - ~ e + e - / ~  +/~- events as a function of the 
acoplanarity between the two final state electrons. 
The points represent the accepted events, the lines 
the Monte  Carlo simulations (open: FERMISV, 
shaded: Vermaseren), both  normalised to the 
integrated luminosity, b The distribution of events as 
a function of W, the effective muon-muon mass. The 
data points and the histograms have the same 
meaning as in a. All errors are statistical only 
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8 T h e  observat ion  o f  7 Y ~ z + z -  events  

The selection criteria for identification of the r + r  final 
state were designed for events in which one tau decayed 
into an electron and the other tau into a muon or into a 
hadron with possibly additional neutral particles. This 
very characteristic decay mode represents about  25% of 
the total z + r -  decays. For  any other tau decay mode, 
the backgrounds f rom other two-photon reactions were 
too large for our cuts. 

The final selection criterion is discernable in Fig. 5 
which shows the distribution of tracks as a function of 
the particle identification variable T R in the case that the 
other track in the event was identified as an electron. 
Here, T R - - [ T  m - T u ( p ) ] / [ T ~ ( p ) -  T# (p)], T m is the mea- 
sured energy loss rate in the jet chamber ( d E / d x ) ,  and 
T~ (p) and T u (p) are the expected energy loss rates for an 
electron and a muon with momentum p, respectively. The 
points with error bars are the measured values; the shaded 
histogram corresponds to a Monte Carlo simulation of 
the ~7 ~ z + ~-  process with the Vermaseren Monte Carlo, 
normalised to the integrated luminosity of the data sam- 
ple and corrected for the triggering efficiency. The esti- 
mated contribution from the background was added to 
the Monte Carlo. The smooth lines represent fits of  
Gaussian distributions to the data. The resolution ob- 
tained f rom the fit is 3.5%, in good agreement with the 
expectation [21]. The peak at about  T R = 0  corresponds 
to the y~ -*3  + z -  events accepted by our selection. The 
peak at T R = 1 in the Monte Carlo distribution is due to 
events in which both tau leptons decay to electrons. The 
cut was applied at T R = 0.3, which yields 43 events in the 
data. 
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Fig. 5. The distribution of tracks as a function of T R in events in 
which the other track is identified as an electron. The points with 
error bars are the measured data, the shaded histogram corresponds 
to a Monte Carlo simulation of the ~,?~-~r+r- process with the 
Vermaseren Monte Carlo, normalised to the integrated luminosity 
of the data sample. The estimated background is added to the 
Monte Carlo histogram. The smooth lines are fits of Gaussian 
distributions to the data. The dashed line indicates where the cut 
was applied 

8.1 Backgrounds f o r  e+ e ~ e +  e - z +  r - events 

We have considered several sources of  backgrounds for 
the e+e - - - , e+e- r+v  - events: 

1. The background due to the tail in the T R distribution 
of ?,),--*e+e - events was estimated by counting the num- 
ber of  tracks with T R > 1.7 in Fig. 5. We found 2 events 
and expect statistically that the contamination of events 
with T R < 0.3 is the same. We found no y y ~ e + e -  Monte 
Carlo events satisfying all cuts. 
2. The background due to the reaction ~ 7 ~ p + p  - was 
estimated from a Vermaseren Monte Carlo sample of  
y y ~ p + # -  events to be 1.9_+ 1.1 events. 
3. The backgrounds from events with larger multiplicities 
with photon conversions in which one or more tracks 
were not reconstructed, was estimated by counting the 
number of  events satisfying all cuts except the charge 
balance. We found one such event. This estimate includes 
the contribution f rom beam-gas interactions. In addition, 
the absence of beam-gas events is confirmed by the fact 
that the origin of  the charged tracks (measured along the 
beam axis) corresponds within the experimental errors to 
the interaction point. In beam-gas events this origin is 
uniformly distributed along the beam axis. 
4. The e +e - - * r + r - ( 7 )  Monte Carlo contributes 
0.2 _+ 0.2 event to the y y --* z + T-  sample. 
5. The reactions 77 - - - ' K + K -  and yy ---,p/~ can contribute 
to the sample if one of  the kaons or protons lies in the 
d E / d x  overlap regions e - K  or e - p ,  and the other is 
identified as a muon or charged hadron. In two events, 
both particles were compatible with being kaons. The 
particles originally identified as electrons in these events 
had valid TOF signals which confirmed the kaon hy- 
pothesis. In the same way, one event was found to be 
compatible with ?~7--*P#. We removed the events from 
the sample, and added the statistical error of  _+ 1.7 to the 
error in the background. 

Adding these numbers, we estimate a background of 
5.1 _ 2.7 events in the ~ ~, ~ ~ + -r- event sample. 

With the cuts described above we have selected 40 
events in the data, with an estimated contamination of 
5.1 _+ 2.7 events due to various background reactions. We 
assume that the systematic error is of  a similar magnitude 
as the systematic error established for the 7y---,~t+~t - 
acceptance. Including again a systematic error of  1% on 
the luminosity measurement for this sample we expect 
32.7 _+ 4.8 events from the Vermaseren Monte Carlo with 
the same cuts as applied to the data. The error also in- 
cludes the statistical error of  the Monte Carlo sample. 

In Fig. 6a the distribution of the accepted y y - * z + z -  
events is given as a function of the absolute value of the 
transverse momentum sum of the two charged particles 
and the tagged electron, normalised to the beam energy: 
I~, Pt I/Ebeam �9 The points represent the data, the open 
histogram the Vermaseren Monte Carlo normalised to 
the integrated luminosity. The shaded histogram repre- 
sents the same quantity for the single-tag ?~7~t+/~ - 
events, with an arbitrary normalisation. The striking dif- 
ference between the ?~7--*/1+# - and 77--+z+z events 
can be explained by the presence of neutrinos and neutral 
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Fig. 6. a The distribution of ? ~ ? ~ r + r  - events as a 
function of the scaled transverse momentum sum, 
including the tagged electron. The points represent 
the accepted ~ y - - , r + r  - events, the open histogram 
the y y - - * r + r  - Monte Carlo, normalised to the 
integrated luminosity. The shaded histogram shows 
the same quantity for ~y~tt+t t  - events, with 
arbitrary normalisation, b The distribution of 
y y ~ r + r  - events as a function of Q2 for the 
accepted events in the data (points with error bars) 
and in the Monte carlo (solid line). All errors are 
statistical only 

pions in the decays of the tau leptons, which are absent 
in the y?~ --*/z +/z- events. This difference and the fact that 
the y y - - * r + r  - distribution is well reproduced by the 
Monte Carlo confirm that the data are consistent with a 
significant production rate of ~ y - - * r + r  - events. In 
Fig. 6b we show the distribution of the accepted 
~ - - * r + r  - events as a function of the Q2 of the photon, 
tagged by the electron observed in the forward detector. 
The measured values (data points) are in reasonable 
agreement with the Monte Carlo expectation (solid line). 

9 Conclusions 

W e  have observed  the reac t ion  e + e -  ---, e + e ~ +/~ - ,  bo th  
in the s ingle- tag and  in the doub le - t ag  mode .  W e  have 
ex t rac ted  the p h o t o n  s t ructure  funct ion  F 2 f rom the 
s ingle- tag events and  found  agreement  wi th  the Q E D  ex- 
pec ta t ion .  W e  have selected 1462 single- tag events wi th  
an es t imated  b a c k g r o u n d  o f  24.0_+ 2.4 events,  and  48 
doub le - t ag  events  wi th  an  es t imated  b a c k g r o u n d  o f  
1.7_+0.6 events,  which  should  be c o m p a r e d  with  the 
M o n t e  Car lo  expec ta t ions  o f  1418+  142 single- tag and  
36.9 + 5.0 doub le - t ag  events,  respectively.  W e  have iden-  
t if ied 34.9___ 6.7 events o f  the reac t ion  y y - - * r + r  - in the 
s ingle- tag m o d e  on  an  es t imated  b a c k g r o u n d  o f  5.1 _+ 2.7 
events. This  is in g o o d  agreement  wi th  a Q E D  M o n t e  
Car lo  s imula t ion  using the Vermaseren  genera tor ,  which  
predicts  32.7_+4.8 events. The  Q2 d i s t r ibu t ion  o f  the 
y y - - * z + r  - events agrees wi th  the expec ta t ion  f rom the 
Vermaseren  M o n t e  Car lo .  
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