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Abstract—Network performanceevaluation thr ough traditional packet-
level simulation is becomingincreasinglydifficult astoday’snetworks grow
in scalealong many dimensions. As a consequence,fluid simulation has
beenproposedto copewith the sizeand complexity of suchsystems.This
study focuseson analyzing and comparing the relative efficienciesof fluid
simulation and packet-level simulation for several network scenarios. We
usethe “simulation event” rate to measure the computational effort of the
simulators and show that this measure is both adequateand accurate. For
somescenarios,we derive analytical results for the simulation event rate
and identify the major factors that contribute to the simulation event rate.
Among thesefactors, the “ripple effect” is very important sinceit can sig-
nificantly increasethe fluid simulation event rate. For a tandem queueing
system,we identify the boundary condition to establishregionswhere one
simulation paradigm is more efficient than the other. Flow aggregation is
consideredasa techniqueto reducethe impact of the “ripple effect” in fluid
simulation. We also show that WFQ scheduling discipline can limit the
“ripple effect”, making fluid simulation particularly well suited for WFQ
models. Our resultsshow that tradeoffs betweenparametersof a network
modeldeterminesthe most efficient simulation approach.
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I . INTRODUCTION

Traditionally, packet-level simulationhasbeenwidely used
for performanceevaluationof computernetworks. However,
this techniquedoesnot scalewell as the size and complexity
of networks increases.Thefastgrowth of datacommunication
networks over the pastdecademakes this approachcomputa-
tionally expensive,if not infeasible,for truly largescalemodels.
Consequently, efficientsimulationtechniquesfor suchnetwork-
ing modelshavebecomeanimportantissue.

Many methodshavebeenproposedto speedup network sim-
ulation. Thesemethodologiescanbecategorizedinto threedif-
ferent andorthogonaltypes(Figure1): computationalpower;
simulationtechnology;andsimulationmodel. In the direction
of computationalpower, simulationscanbe spedup by using
fasterandmorepowerful machines.In thesimulationtechnol-
ogy direction,new enhancedalgorithmsfor implementingthe
simulationcanfurtherspeedupsimulation.Algorithmssuchas
thecalendarqueuealgorithmandsplaytreealgorithmhavebeen
proposedin orderto improvetheefficiency of eventlist manip-
ulation. Another techniquein this direction that hasreceived
much attentionin the literature, is the RESTART mechanism
thatexploresrareeventsimulation[1]. A thirdapproachis touse
modelswith a higherlevel of abstraction,simplifying thesimu-
lation andimproving its efficiency. Thetradeoff in this case,is
theaccuracy of thedesiredmeasuresof interestobtainedby the
moreabstractmodel. For example,thepacket-trainsimulation
techniquemodelsaclusterof closely-spacedpacketsasasingle
“packet-train” [2].�
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Anothermodelingtechniquemakingsimplified assumptions
aboutthe real systemis the fluid model, which wasfirst pro-
posedby Anick etal. in [3] to modeldatanetwork traffic. In the
fluid simulationparadigm,network traffic is modeledin terms
of a continuousfluid flow, ratherthandiscretepacket instances.
A clusterof closely-spacedpacketsmaybemodeledasa single
fluid chunkwith aconstantfluid rate,with smalltime-scalevari-
ationsin the packet streambeingabstractedout of the model.
A fluid simulatorkeepstrackof thefluid ratechangesat traffic
sourcesandnetwork queues.An equivalentpacket-levelsimula-
tor wouldkeeptrackof all individualpacketsin thenetwork. In
fluid simulation,thehigherlevelof abstractionsuggeststhatless
processingmight be neededto simulatenetwork traffic. Intu-
itively, this is notsurprisingasa largenumberof packetscanbe
representedby asinglefluid chunk.For simplenetwork compo-
nents,wheretraffic flowsdonotcompetefor resources,thefluid
simulatoroutperformsthe packet-level simulator. An example
would bea link thatconnectstwo nodesandnever experiences
queueing;this componentonly introducesa constantpropaga-
tion delay.

However, for othercomponentswheredifferenttraffic flows
meetandcontendfor limited resources,it doesnot easily fol-
low thatfluid simulationalwaysoutperformspacket-level simu-
lation. Themanagementof thelimited resourcecansignificantly
increasethetotal processingrequiredby thefluid simulator. In
previouswork [4], we foundthatthefluid simulationcansome-
timesbe lessefficient thanpacket-level simulationdueto this
reason.

In thispaper, we investigateseveralcommonnetworkingsce-
nariosandcomparetheamountof computationaleffort required
by fluid simulationandpacket-levelsimulation.As ameasureof
computationaleffort, we usethe notionof event rateandshow
that this is both adequateand accurate. We derive analytical
resultsto characterizethe event ratefor someof the scenarios
studied. We identify the major factorsthat contribute to the
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event rateof bothfluid andpacket-level simulationapproaches
and establishthe tradeoffs betweenthe different factors. The
flow aggregationis consideredasatechniqueto reducethefluid
simulationevent rate. We alsoshow thatWFQ schedulingdis-
cipline canreducetheimpactof the“ripple effect” in fluid sim-
ulation. We designedandimplementeda fluid simulatoranda
packet-level simulator in order to explore their functionalities
andvalidateanalyticalresults.

Onedrawbackof a fluid modelis thattheaccuracy of thein-
terestmeasuresis compromiseddueto the abstraction.In this
studywe will not addressthe accuracy issuesof the fluid sim-
ulator, but ratherfocuson the relative efficienciesof fluid and
packet-level simulation. Nicol et al. [5] claim that despitethe
high level of abstractionof fluid models,theerrorof estimated
measuresobtainedwith fluid simulationis verysmallcompared
to the resultsof packet-level simulation. Anotherimportantis-
suethatwill not beaddressedin this paperis how performance
measurescan be obtainedvia fluid simulation. However, we
notethatin [5], [6], [7], theauthorsshow how performancemea-
suressuchasend-to-enddelayandlosscharacterizationcanbe
computedin fluid simulations.

Therestof thepaperis structuredasfollows. SectionII gives
a brief review of fluid modelsandprevious work. In Section
III feed-forward network modelsare presentedand analyzed.
SectionIV investigatesthe performanceof feedbacknetwork
models.In SectionV weshow thatflow aggregationcansignifi-
cantlyreducethefluid simulationeventrate.Preliminaryresults
concerningWFQ areprovidedin SectionVI. Finally, conclud-
ing remarksanddiscussionsarepresentedin SectionVII.

I I . BACKGROUND AND PREVIOUS WORK

In thissectionwedescribethenetworkingmodelcomponents
that will be usedasbuilding blocksto createthe scenariosin-
vestigatedthroughoutthis paper. Thetwo basicbuilding blocks
arethesourcemodelandthemultiplexermodel.Morecomplex
network modelsareconstructedusingthesetwo components.In
the following we considerthe dynamicsof the two basiccom-
ponentsfor fluid andpacketmodels.

Markovian on-off sourcemodelsare often usedin network
researchto capturetheburstynatureof thenetwork traffic. Both
packet andfluid versionsof thesesourcemodelsarewidely en-
counteredin the literature. The sourcetransitsbetweenan on
andoff state,remainingin eachstatefor an exponentiallydis-
tributedamountof time. Throughoutthis paper, the transition
ratefrom onstateto off stateandviceversawill bedenotedby

�
and � , respectively. Whenin theon state,a packetsourcetrans-
mits packetsaccordingto aPoissonprocesswith rate � , while a
fluid sourcesendsoutfluid ataconstantrate.No packetor fluid
is sentduringtheoff period.Without lossof generality, assume
thatpacketshavea fixedsize � . In orderfor a fluid sourceto be
consideredequivalentto a packet source,we would minimally
requirethat both have the sameaveragedatarate. Given this
condition,thefluid peakrateshouldbesetto be ���	�
� . Fig-
ure2 illustratesthebehavior of theon-off fluid packet andfluid
sources.

The secondbasiccomponentof network modelsis the mul-
tiplexer. An important characteristicof a multiplexer is its
schedulingdiscipline. In this paper, two schedulingdisciplines
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areconsidered:FIFOandWFQ.Thedynamicof FIFOschedul-
ing is describedhereandWFQis presentedin SectionVI.

Foragivenschedulingpolicy, thedynamicsof themultiplexer
dependson theunderlyingtraffic model(fluid or packet). In the
FIFO packet model,packetsareplacedinto andserved from a
queueaccordingto theorderof their arrival. Figure3 depictsa
FIFO queuebeingfed by threedifferentsources.Note that the
departureprocessof thepacketsis similar to thearrival pattern.
Theonly differenceis thespacingbetweenpackets.

In theFIFO fluid model,thedynamicsof themultiplexerare
moresubtle[4]. First,notethatfluid from two differentsources
aredistinct anddo not mix, just aspacketstransmittedby two
sourcescanbedifferentiatedat thequeue.Figure4 depictsthe
dynamicsof a FIFO fluid multiplexer beingfed by threeinde-
pendentandidenticalsources.For thisexample,assumethatthe
arrival rateof onesourceis equalto theservicerateof themul-
tiplexer. At time  "! the secondsourceentersthe on stateand
immediatelystartsto receive serviceat full capacity. At time $# , source1 turnson andboth flows mustnow sharethe ser-
vice rateequally. At time  &% , source3 startstransmittingand
eventually, at time  '%)( , all of themwill sharethe servicerate
equally. Notethatthearrival of flow 3 at time  '% causesflow 1
andflow 2 to changetheirdepartureratesat  &%)( . In general,the
arrival of a new flow cancausea departureratechangein many
otherflows. Note that theoutputprocessof a givensourcecan
containmany more ratechangesthan the arrival process.For
a larger network model, theseratechangeswill be propagated
downstreamcausingeven more rate changesin the departure
processof otherflows. This propagationandamplificationof
ratechangeshasbeenobservedbeforeandis known asthe rip-
pleeffect[8], [4]. Wewill shortlyseethattherippleeffecthasa
profoundimpacton theefficiency of fluid simulation.

However, not every flow ratechangeaffectsthe outputrates
of all the other flows currently being serviced. If the sum of
the ratesof all arriving flows is smallerthantheservicerateof
the queue,thena flow ratechangedoesnot affect otherflows
currentlybeingserviced. In this case,we saythat a flow rate
changedoesnot “interfere” with otherflows in thequeue.An
arrival flow ratechangecausingotherflow ratechangesin the
departureof thequeueis called“flow interference”.

To betterunderstandhow differentflowsarestoredandserved
in a multiplexer, we introducethe conceptof fluid chunk. A
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fluid chunkis a contiguouswell-definedamountof fluid stored
in the queue.Figure5 illustratesthreechunksof fluid formed
by two differentflows. Notethatwithin a chunktheratioof the
arrival rateamongdifferentflows remainsconstant.Chunksare
determinedandplacedin thequeuein theorderthatthey arrive.
A chunkis servedonceit reachestheheadof thequeue.All the
flows in thechunkareservedsimultaneously, with servicerates
proportionalto the flow arrival rateswithin the chunk. Figure
5 depictsthreefluid chunksthatareformedby theratechanges
of two flows. In the first chunkthe arrival rateof flow 1 was
greaterthanthatof flow 2. In thesecondchunkthearrival rates
areequal,andin thelastchunkflow 2 goesoff.

Another intrinsic characteristicof fluid simulation is flow
merging,andconsequently, theflow merging probability. Flow
merging can be best understoodwith a single sourcesingle
queuemodel. It occurswhenthequeueis back-loggedandthe
sourcetransitsfrom theoff to theon state.In this case,theout-
put rate of the flow will not changeat the end of the current
chunk,andthe two consecutive fluid chunkswill merge in the
queue.Theprobabilitythatsuchascenariooccursduringsimu-
lation is denotedasthemergingprobability, i.e., theprobability
that a rate changeon an input flow doesnot introducea new
chunk.

In orderto comparethe relative efficienciesof fluid simula-
tion andpacket-level simulation,we mustestablisha common
measureof computationaleffort. In a simulation,basicevents
suchaspacket arrival/departureor fluid ratechange,arefunda-
mentalunits of work and(aswe shall see)aredirectly related
to thecomputationaleffort involvedin a simulation.Therefore,
we usethesimulationeventrateasa measureof computational
effort. Theeventrateof a simulatoris definedas:* �,+.-0/132$4 57638:98 (1)

where
576;8:9

is thetotal numberof eventsprocessedby thesim-
ulatorby simulationtime

8
.

In a packet-level simulation, events include sourcetransi-
tions,packetgenerationandpacketdeparturesfrom queues.For
fluid simulation,eventsincludesourcetransitionsandflow rate
changesat sourcesand queues.We note that differentevents
usually requiredifferentamountsof computationalwork, and
thesedifferencesmay changefrom one simulator to another.
However, sincetheevent rateincludesall theeventswithin the
simulatorandeachevent representsa basiccomputationalef-
fort, we expecttheevent rateto beanadequatemeasureof the

overall computationaleffort of the simulator. We will indeed
seethattheexecutiontimeof asimulationis proportionalto the
correspondingeventrate.

In orderto comparetheactualefficiency betweenfluid simu-
lation andpacket simulation,andvalidateanalyticalresultsob-
tained, two simulationframeworks were designedand imple-
mented. The framework developedconsistsof simpleand in-
dependentnetwork componentssuchassources,links, routers
andqueuesthatform thebuilding blocksfor thenetwork model.
Thesebuilding blocks can be instantiatedby specifying their
specific parameters,and connectedtogetherto form a much
largercomplex model. Eachsimulatorframework corresponds
to a modelingtechnique,packet or fluid, andbothhave a very
similar interfaceso thata modelcanbe executedin the packet
or fluid simulatorwith minimummodification.Both simulators
were constructedusing the SSF(ScalableSimulationFrame-
work) framework, which itself allows the constructionof gen-
eralpurposeevent-drivensimulation[9]. SeveralAPIs arepub-
licly availablein differentprogramminglanguages.In ourwork,
we usedthe DaSSFimplementationwhich providesenhanced
simulation featuressuch as scalableparallel techniques[10].
Both packet andfluid simulatorframeworks developedaspart
of this studyarepublicly available1.

All simulationexperimentsconductedin this reportwerecar-
riedoutusingthesimulationframeworksmentionedabove. The
simulationswere performedon a dual processorPentium-III
730MHz machinewith 1Gb of physicalmemoryrunningRed
Hat Linux release6.1with kernelversion2.2.14-mosixSMP.

In all experimentsinvolving a comparisonbetweenfluid and
packet-level simulation,the samplepathof the on andoff pe-
riods of correspondingsourcesis the same. The purposeis to
highlight othertypesof eventsoccurringin the simulationand
establisha fair comparisonbetweenthetwo simulators.

I I I . FEED-FORWARD FIFO NETWORKS

In thissection,wecomparethesimulationeventratebetween
the fluid simulationandpacket-level simulation,in the context
of feed-forwardFIFO networks.

In orderto investigatethe impactof the ripple effect on the
amountof computationaleffort requiredto simulatea network
model, we first presenta systemconsistingof a single on-off
sourceandasingleFIFOqueue.Thiscasedoesnotexhibit arip-
ple effect sincethereis only oneflow goingthroughthequeue.
In our previous work [4], an analyticalapproximationfor the
event rateof a singleFIFO queuewaspresented.Theanalysis
in [4] containsa parameterto representthe merging probabil-
ity, which wasnot solved.Usingthetechniquepresentedin [3],
we canobtainan exact analyticalexpressionfor the event rate
of this model. The preciseexpressionfor the fluid simulation
eventrateis now givenby:*=< � % � ��?> � > % 6 #A@ � �B 6 �C> � 9 9 � (2)

Thederivationof thisformulacanbefoundin [11] andtheresult
canbe interpretedasfollows. Thefirst term in (2) is theevent
rategeneratedby thesourcetransitions.Every time thesource�

Thesimulatorcanbeobtainedathttp://gaia.cs.umass.edu/fluidsim
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Fig. 6. A tandemqueueingnetwork

changesit state,a new event is counted,representingthe flow
ratechangeof that source. The secondterm is the queuede-
partureeventrate.This termaccountsfor theflow ratechanges
generatedby thequeueandtheeffectof chunkmerging.

Comparedwith the exact packet-level simulationevent rate*ED �F% � �HG 6 �I> � 9 > %)�J�JG 6 �I> � 9 [4], with * < from equation(2),
wenotethatthefluid simulationoutperformspacket-level simu-
lationif �LK � GE� 6 ��> �"@ � �
G B 9 . Thisanalysiswasvalidatedby
simulationresults.Therefore,for a singlesource,singlequeue
case,afluid simulationwill requirelesscomputingthanacorre-
spondingpacket-level simulationwhenever theabovecondition
for � holds.We will seeshortlyhowever, that this advantageis
mitigatedby theripple effect in thecaseof multiple queues.

Now weconsideralargerandmorecomplicatedfeed-forward
network. The tandemqueueingnetwork waschosenasa con-
creteexampleto representa feed-forward network becauseof
its simpleandregular topology. This permitstractableanalyt-
ical modelsof simulationefficiency to be constructedandalso
allows easyparameterizationof the model. At the sametime,
a morecomplicatedfeed-forwardqueueingnetwork canbede-
composedinto many tandemqueueswith differentparameters.
We will seethatby understandingthesimpletandemqueueing
system,considerableinsight canbe gainedinto more compli-
catedfeed-forwardnetworks.

The tandemqueueingnetwork modelconsideredin this sec-
tion is depictedin Figure6. In this particularmodel,thereare5

input flows at eachqueue,with flow 0 startingasan on-off
sourceatnode0, andtraversingthroughall thenodes.Theother635 @M# 9 flows, which areall identicalandindependenton-off
sources,leave the systemafter passingthroughonenode. Al-
though,this systemhasmany parametersthatcanbetuned,two
of them- thenumberof sourcesenteringeachnodeandthenum-
berof nodesin thesystem- arethemostimportant,sincethey
have direct influenceon the ripple effect. Thus, both will be
exploredanddiscussedin thefollowing.

We first considerthe numberof nodesin the tandemqueue.
The model investigatedhas15 sources(14 new enteringeach
node)per nodewith a constantload of 0.8 and

� �N�O�P# .
Figure7 presentsthe resultsobtainedfrom the simulators.We
observe that the fluid simulationevent rate increasesquadrati-
cally with the numberof nodesin the system. This quadratic
behavior is causedby the ripple effect, which propagatesfur-
ther as the numberof nodesincreases.The packet-level sim-
ulation resultsin Figure7 arefor �7�RQ , and,not surprisingly,
presentsalinearincrease.However, thefluid simulationcanstill
bemoreefficientwhenthenumberof nodesis smallor when � ,
thepacket rate,is large. Note that thefluid simulationdoesnot
dependon � , enablingit to outperformits counterpartwhen � is
large. Othermodelswith differentnumberof sourcesentering
eachnodealsoexhibit thesamebehavior.

In previous work, we derived analyticalresultsfor the tan-
demqueueingsystemin orderto comparetheefficiency between
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packet-level andfluid simulation[4]. Thatanalysisfocusedon
studyingthebehavior of thetandemqueueunderdifferentnum-
berof nodesin thesystemundersimplifying assumptions.The
analyticalresultspredictthequadraticgrowth of thefluid simu-
lationeventrate,which is corroboratedby thesimulationresults
presentedhere.

The secondimportantparameteris the numberof flows en-
teringeachnodein the tandemsystem.This parameteraffects
the amountof interactionamongdifferent flows which gives
rise to the ripple effect. The scenariowe considerherehas20
nodeswith a constantloadof 0.8 and

� �X�Y�Z# . Theservice
rateof thequeuesis scaledto maintaina constantload for dif-
ferentnumberof sources.The packet-level simulationresults
areshown for �[�\Q . Figure8 presentsthe simulationresults
obtainedfor this model. Note that the fluid simulationevent
rateincreasessub-linearlywith the numberof flows, while the
packet-level simulationincreaseslinearly. Again, thefluid sim-
ulationeventratedoesnotdependon � , andwill eventuallyout-
performthe packet-level simulation. Note that the resultsob-
tainedin this caseareoppositeto theonesobtainedwhenvary-
ing thenumberof nodes.Here,thefluid simulationwill eventu-
ally outperformthepacket-level simulationdueto its sub-linear
increase.A possibleexplanationfor the sub-linearincreasein
theevent rateof thefluid simulationlies in thebehavior of the
ripple effect. Sincetheservicerateis increasedto maintainthe
load constant,the numberof flows that canbe servicedby the
queuewithout interferingwith eachotherincreases.Thiscanre-
ducethe ripple effect, sincelessinterferenceamongflows will
occur.

The tradeoff betweenthesedifferentparametersleadsto the
conclusionthat the parameterspacecanbe partitionedinto re-
gionssuchthat,in eachregion,eitherfluid or packet-level simu-
lation is alwayssuperior. A simpleanalysiswill allow usto get
a rough(approximate)ideaof theseregions. Even thoughthe
locationof theseboundariesmaynot beprecisedueto approxi-
mationsin theanalysis,it is importantto notethatsuchregions
do exist.

Let ] < 63^_9 and ]"` 6;^_9 denotethe fluid andpacket simula-
tion event ratesfor a

^
nodetandemqueueingsystem. The

eventsassociatedwith thesimulationof thesourcesarenotcon-
sidered,sincetheseareidenticalfor bothparadigms.Basedon
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thepropositionsin [4], thefluid eventrateis givenby:] < 6;^_9 � % � ��?> � g 5h^ > 6;5 @i# 9:jHklk 63^ @m# 9:^% n (3)

wherethe term
j kok

is the probability that source0 is in theon
state.

The packet-level simulationevent rate is determinedby the
numberof packetssentby eachsourceandthenumberof nodes
eachpacket traverses.This leadsto:] ` 63^_9 � 5L^\p %)�J��C> � (4)

To investigate the relative efficiency of both simulation
paradigmsanddeterminea boundarycondition, let ] < 6;^_9 �]"` 6;^_9 . Solvingfor

5
leadsto:5 � j kokrq0s'tru:v3swj kok q0s'tJuxv3sw > ^ @ ^zy{ (5)

If this equationis satisfied,thenthefluid andpacket simula-
tion event ratesareequallyefficient. Figure9 shows the

5
- �

boundaryconditioncurveswith differentnumberof nodeŝ in
thesystem.For agivenvalueof

^
, thetradeoff curvecarriesthe

following interpretation:if the point
635$kU| � k}9 lies to the right

of the curve, fluid simulationis more efficient than its packet

counterpart;otherwise,packet simulationis moreefficient. We
observe that increasinĝ shifts the tradeoff curve to the right,
increasingthespacein whichpacketsimulationis moreefficient
(hasa smallereventrate). Theasymptoticline canbeobtained
from (5) andis givenby:� � � j kok% ^ @ j kok% > #

The fluid simulation is always more efficient if �JG � , the
numberof packets transmittedper on period, is greaterthan63jHkok GU% ^ @ jHklk G)% > # 9 , regardlessof the sizeof the tandem
queueingsystem.This is expectedsincethe event rateof fluid
simulationdoesnot dependon � , while the packet-level event
rate is proportionalto � . This resultconfirmsthe existenceof
boundariesof regionswhereonesimulationparadigm(fluid or
packet-level) is alwaysmoreefficientthantheother. Boundaries
andregionsbasedon otherparameterssuchas

5
-
^

, werealso
beestablishedandcanbefoundin [11].

For more complicated feed-forward queueing networks,
wheredifferentflows cantraversemorenodesandinteractwith
more flows, we conjecturethat the ripple effect will be even
more pronounced.However, the event rate shouldstill be fi-
nitebecauseaflow ratechangetraversesonly afinite numberof
nodesin thenetwork beforeit leavesthesystem.Thusthenum-
berof extra eventscausedby ripple effect is finite. Eventhese
morecomplicatednetworks areexpectedto have well-defined
regionsin which eitherthe fluid or the packet-level simulation
is moreefficient.

IV. FEEDBACK QUEUEING NETWORKS

In the previous sectionour analyticalandsimulationresults
for a tandemqueueingnetwork demonstratedthattheeventrate
for afluid simulationis finite for any stablefeed-forwardqueue-
ing networks. In this sectionwe considera network that has
a cycle. We saw earlier that with fluid simulationa flow rate
changecancauseachangein theoutputrateof otherflows,thus
affectingotherflows at downstreamnodes.This “ripple effect”
couldbeparticularlyworrisomein acyclic network. A flow rate
changecanmodify the rateof severalotherflows andall these
ratechangescantraversethenodesin a cycle andspawn more
ratechanges,resultingin acascadeof flow ratechanges.In such
a scenario,theevent rateof thesimulationcouldgrow without
bound.

In this sectionwe investigatethe simulationevent rateof a
feedbackqueueingsystemusingthecyclic queueingmodel,de-
pictedin Figure10. We considertheeffect of differentparam-
eterson the simulationevent rate. The relationshipbetween
theeventrateandthecorrespondingexecutiontime is alsopre-
sentedto supportouruseof thesimulationeventrateasthemea-
sureof computationaleffort in a simulation.

A. A feedback queueingmodel

The scenarioillustratedin Figure10 containsfour identical
FIFO queueswith infinite storagecapacitythat areconnected
togetherto form a cycle. A singleon-off sourceis injectedinto
eachof thequeues.Theroutingof theflowsis predefinedsothat
eachflow traversesexactly threequeuesbeforedepartingthe
system.In this setting,threedifferentflows passthrougheach



INFOCOM 2001 6

S1

S2

S3

S4

H1

H2

H3

H4

Fig. 10. A feedbackqueueingmodel

20

40

60

80

100

120

140

160

180

200

220

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2
Service Rate

S
im

ul
at

io
n 

E
ve

nt
 R

at
e

~)��� �

�)���
�)�W�

delay 1.0
delay 0.1
delay 0.01
delay 0.001

Fig. 11. Simulationeventratefor thefeedbackqueueingmodel

queue.Thefour traffic sourcesareidentical,with equalon and
off periodsandthepeakratesaresetto 1. Thestabilitycondition
of this systemrequiresthe servicerate to be greaterthan1.5,
which is theaverageaggregateinput rateat eachof thequeues.
In orderto evaluatethissystemunderdifferentloads,theservice
ratewill bevaried.Wewill seethatanotherimportantparameter
is the link propagationdelay, which will alsobe varied,taking
valuesof 0.001,0.01,0.1and1 timeunits.Thesimulationevent
rateandexecutiontime werecollectedfor serviceratesranging
from 1.6to 3.1,whichcorrespondsto systemloadsof 0.9375to
0.5.

B. Resultsof fluid simulation

The fluid simulation event rate of the feedbackqueueing
modelis plottedin Figure11,asa functionof servicerate.The
four staircasecurvescorrespondto four differentlink propaga-
tion delays.In thesamefigure,theeventratesof thepacket-level
simulationof thesamemodelareplotted,with differentpacket
transmissionrates( � ).

In the extendedtechnicalreportof this work [12], we show
that theexistenceof a loop in thequeueingmodelsignificantly
increasesthe fluid simulationevent rateover that of a similar
openloopmodel.However, Figure11showsthatthefluid simu-
lationeventrateof thesimulationconverges(is finite) for awide
rangeof serviceratesandlink delays.Thiscanbeexplainedin-
formally by consideringthedynamicsof theFIFO queue.Note

thatan input flow ratechangedoesnot causenew ratechanges
amongoutputflows at a queueif thequeueis emptyand,at the
sametime, the aggregatearrival rate into the queueis smaller
thanthequeue’s servicerate. Soevenfor a closed-loopqueue-
ing system,a flow ratechangecanonly causea finite number
of new ratechangesat “downstream”queues,if theprobability
thata queueis emptyandtheaggregatedarrival rateis smaller
thantheservicerateis greaterthanzero.If this conditionholds,
thenaflow ratechangewill eventuallyarriveataqueuein which
this ratechangewill passthroughwithout causingratechanges
in otherflows.

This convergenceconditionis directly relatedto the service
rateof thequeues,which interestinglyhastwo oppositeeffects
on thesimulationeventrate.First, astheservicerateincreases,
the averagequeueingdelay decreases,making the fluid rate
changespropagatefasterthroughthe closedloop. This effect
tendsto increasethe event rate,sincemorefluid ratechanges
occurwithin a fixed time interval. On the otherhand,a larger
servicerateimpliesthatthequeueis morelikely to beemptyand
at the sametime, the aggregatearrival rate is smallerthanthe
servicerate,resultingin a largerprobability that a ratechange
will not causea ripple effect. This effect tendsto reducethe
simulationevent rate. It is the tradeoff betweenthesetwo fac-
tors thatdeterminesthesimulationevent rate. FromFigure11,
we seethat in this model,whentheservicerateis below 2, the
first factordominates,andtheeventrateincreasesastheservice
rateincreases.For serviceratesgreaterthan2, thesecondfac-
tor becomesmoresalient,leadingto theflatteningof theevent
rates.

Anotherimportantfactoraffectingtheeventratein theclosed
loop systemis the link propagationdelay betweenadjacent
queues. The smaller the link delay, the lesstime it takes for
a rate changeto propagatearoundthe network. Smaller link
delayswill result in moreflow ratechangesin a unit of time,
causingtheoverall simulationeventrateto increase.Therefore,
for agivenservicerate,theeventrateincreasesasthelink delay
decreases.

Another interestingobservation canalsobe notedin Figure
11. Eacheventcurveexhibitstwo discontinuitiesatservicerates
of 2 and3, whereeventratedropsdramatically. Thesedisconti-
nuitiescanbeexplainedasfollows.Whenaflow ratechangear-
rivesata queue,if thequeuehasa backlog,theratechangewill
causenew ratechangesin all the otherflows with a non-zero
flow rate.Whenthequeueis empty, thisonly happenswhenthe
aggregatedarrival rateis largerthantheservicerate.Therefore,
the probability that a rate changecausesa ripple effect is the
sumof theprobability thateitherthequeueis not emptyor the
queueis emptybut theaggregatedarrival rateis now largerthan
servicerate.

To explain the simulationevent rate drop when the service
rateis two, we considertwo servicerates,oneslightly lessthan
two, theotherslightly greater. Wedenotethesetwo servicerates
as
6 %H@?� 9 and

6 % > � 9 , where���P# . Theprobabilitythataqueue
is emptycanbetakento bethesamefor thesetwo cases.Now
weconsidertheprobabilitythataggregatedarrival rateis greater
thanservicerate.For thecasewhentheservicerateis

6 %�@&� 9 , the
aggregatedarrival rateis larger thanthe serviceratewhentwo
or moresourcesaresimultaneouslyon. In our modelthis prob-
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Fig. 12. SimulationEventratefor a6-nodecyclic queue

ability is 11/16.For thecasewhentheservicerateis
6 % > � 9 , the

aggregatedarrival rateis largerthantheservicerateonly when
at leastthreesourcesaresimultaneouslyon; the probability of
this event is 5/16. The probability that a ratechangecausesa
ripple effect is muchsmallerwhentheserviceratereachestwo
from the left andthis probability jump causesa major drop in
eventrate,which leadsto thediscontinuity. Thediscontinuityat
serviceratethreecanbeexplainedvia similararguments.

For a cyclic queueingnetwork, onewould expect that more
interactionamongflows causesmore ripple effects, resulting
in a higherevent rate. To show how different interactionlev-
elsaffect thefluid simulationeventrate,we extendedthecyclic
queueingmodelin Figure10to containsix nodes.In thesimula-
tion, wevariedthenumberof queuesaflow traverses,decreased
theservicerateto scaletheload,andobtainedtheresultsshown
in Figure12. As expected,theeventratesincreasesastheinter-
actionlevel increases,i.e.,aflow traversesmorehops.Theevent
ratesalsoexhibit discontinuitiesandbehaviors asa functionof
loadsimilar to thatfor thefour nodemodel.

C. Resultsof packet-levelsimulation

A closedloop doesnot introduceany specialconsideration
into a packet-level simulationmodel. A packet is simply gen-
eratedat a source,traversesthroughthreequeues,and leaves
thesystemwithout introducingany extra eventsto otherpacket
flows. Whenthe systemis stable,the simulationevent rate is
independentof theservicerateandlink propagationdelay. The
packet-level simulationeventratefor themodelin Figure10 is
thus fully determinedby the packet rateof the sourceandthe
numberof nodesa flow traversesandis givenby:* D � 6 *E� > *=� 5C�U9:5?� (6)

where * � representsthe event rateof a singlesource;* � is the
eventrateof thequeueandany othercomponentsbetweenadja-
centqueues(i.e.,link, router)perflow;

5C�
is thenumberof hops

traversedby eachflow; and
5 �

is thetotal numberof nodesin
thesystem.Thesimulationeventrateatanodeis thesumof the
event rateof the sourcesandthe event rateof componentsbe-
tweenadjacentnodes( *E� > *=� 5C� ). Theeventrateof themodel
is just thesumof eventratesof the

5 �
nodes.

This formula was verified with simulationresults(not pre-
sentedhere),andwasusedto plot theeventratesfor ����# |���| #}!
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in Figure11. Thisyieldsacomparisonbetweenthetwo simula-
tion techniques.Noticethatthefluid simulationis moreefficient
if thepackettransmissionrateof thesource,� , isgreaterthan10.
Notethat for a on-off packet voicemodel,thetypical on period
averagesbetween0.4and1.2seconds[13]. Study[14] suggests
thatavoicepacketshouldbetransmittedevery20ms,whichhas
beenwidely adoptedby many voiceapplicationstools,suchas
vat [15]. Usingtheseparameters,a typical valuefor thepacket
rate ( � ) is 30. For modelshaving theseparameters,the fluid
simulationis likely to bemoreefficient.

D. CPU timeversuseventrate

In orderto evaluatetheappropriatenessof our usingthesim-
ulationeventrateasameasureof computationeffort, theexecu-
tion timesof the simulationswerecollected. In Figure13, the
simulationexecutiontimecorrespondingto theeventratecurves
arepresented.ComparingFigure11, which plots event rateas
a functionof servicerate,with Figure13,whichplotsexecution
time asa function of servicerate,we seethat both exhibit the
samebehaviors. This suggeststhat thebasicevent ratedefined
in Equation1 is agoodmeasureof asimulation’scomputational
costandcanbeusedto establishacomparison.

V. FLOW AGGREGATION IN FLUID SIMULATION

Theanalysisof thetandemqueuemodelin SectionIII shows
thattheinteractionbetweendifferentflowscancausearippleef-
fect in aqueueingnetwork, greatlyincreasingthecomputational
effort neededby fluid simulationwhenthenetwork is large. A
standardmethodfor combattingthis is to isolatetheflow of in-
terestandaggregatethe remainingflows into a singleflow. In
this sectionwe studytheeffect of flow aggregationon thesim-
ulationeventratefor bothpacket-level andfluid simulationand
discusstheimplications.
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In packet-level simulation,flow aggregationdoesnot reduce
the numberof eventssimulated,sincethe simulatormuststill
keeptrack of eachindividual packets being generatedby the
source.It doesnotmatterif thepacketbelongsto theaggregated
backgroundtraffic flow or to theflow of interest.In fluid simula-
tion,however, aflow ratechangecancausemany ratechangesin
otherflows - changesthatoccurat thesamesimulationtime. If
theflows areaggregatedtogether, only oneratechangewill oc-
cur, representingtheoveralleffectof theindividualratechanges
on theaggregateflow. Figure14 illustratesthe savingsof flow
aggregation. In this example, threeflows (   u |   w |  ¢¡ ) are fed
into a FIFO queue. After the interactionamongthe flows at
the queue,the correspondingdepartureprocessesis given by£ u | £ w | £ ¡ , respectively. Theaggregatedarrival processandde-
partureprocessareplottedbelow the individual flows. In the
figurewe observe that thenumberof ratechangesin theaggre-
gatedarrival processis equalto thesumof theratechangesof all
theindividual arriving flows. Hence,no savingsareobtainedin
thearrival processwith sourceaggregation. However, the total
numberof ratechangesin thedepartureprocessof the individ-
ual flows is 11,while, theaggregateddepartureprocessexhibits
only 3 ratechanges.Therearetwo importantfactorsthat lead
to thelargeeventratereduction.Oneis thata ratechangein the
aggregatedflow mayrepresentmany simultaneousratechanges
in theindividualflows,whicharecountedasonly asingleevent
in theaggregateflow. Theotherfactoris thatafteraggregation,
all the individual flows becomea single flow. Therefore,the
probabilityof mergingbetweenfluid chunksincreases.

To measurethe improvementsobtainedwith flow aggrega-
tion, we presentananalysisof a modelwith a singlequeuebe-
ing fedwith multiple identicalon-off sources.Sincethesources
make thesamecontribution to theoverall simulationeventrate
in boththeaggregatedandnon-aggregatedscenarios,thefollow-
ing analysisonly considersthe event rateof the departurepro-
cesses.The differencebetweenthe two caseswould be solely
dueto theflow aggregation.

Considera FIFO queuefed by
5

independentandidentical
Markovianon-off sources,theprobabilitythatasinglesourceis
in theonstateis

j �z�HG 6 �¤> � 9 andtheeventrateof eachsource
is % � �HG 6 �¥> � 9 . Ignoringthemergingof fluid chunksandother
subtletiesintrinsic to fluid simulation[4], the event rateof the
departureprocesswithout flow aggregation,denotedby * < , can
beapproximatedby:* < � ¦§ ¨0© u ª % � ��?> � > % � ��?> � 635 @[# 9xjI«

� % � ��?> � 6 #A@ j > jH5_9:5 (7)

The first term insidethe summationis the event rategenerated
by thetransitionsof a source.Thesecondtermaccountsfor the
ratechangesin this flow causedby interferenceof otherflows.

Supposenext thatoneis interestedin the
5

-th flow andtreats
all theotherflowsasasingleaggregatedbackgroundtraffic flow.
In this case,eachratechangeof the

5
-th flow may causeone

ratechangein theaggregatedflow, andeachratechangein the
aggregatedflow may causeone rate changein the

5
-th flow.

Let
j ( denotetheprobability thatat leastonesourcein theag-
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gregatedtraffic in on; we have
j (±�²#'@ 6 #³@ j¤9 ¦ tJu . Again,

ignoring the merging of flow chunksandthe eventsdueto the
specialchunkeffect, theapproximationfor eventrate * <´ is:* <´ � µ % � ��?> � > % � ��?> � 635 @m# 9xjJ¶ >µ % � ��?> � 635 @i# 9 > % � ��·> � j ( ¶ (8)

The term in the first bracket is the event rateof the
5

-th flow.
The secondterm is the event rateof the aggregateflow, which
representstheother

5 @m# flows.
Theaboveanalysisindicatesthat in theworstcase,theevent

rateincreasesquadraticallywith thenumberof sourcesfeeding
the queueif the identity of eachflow is preserved. With flow
aggregation,theeventratebecomesto increaselinearlywith the
numberof flows.

Simulationresultspresentedin Figure15 show exactly how
flow aggregationcanconsiderablyreducethe simulationevent
rate. In this simulation,the sourcesareall identical,with

� ��i�\# , andpeakrateequalto 1. Theservicerateof thequeue
of the infinite capacityFIFO queueis 5. The two curvesin the
figureshow how thesimulationeventratevariesasthenumber
of identicalsourcesincreasesfrom 2 to 19. Note that the load
increaseswith the numberof sourcesandthe systembecomes
unstablewith 20 sources.

We observe that in Figure 15 the event rate without flow
aggregation increasesquadraticallywith the total numberof
sources,aspredictedby theanalysis.The event ratewith flow
aggregationincreaseslinearly at the beginning andeventually
decreasesafterthenumberof sourcesreaches12. Thereasonfor
this behavior is thatasthenumberof flows aggregatedtogether
increases,the merging probability becomeslargerandcanfur-
therreducetheeventrate.For realnetwork models,thenumber
of flows goingthrougha queueis usuallylargeenoughthat the
flow aggregationcangreatlyreducetheevent rateandtheexe-
cutiontime of thefluid simulator.

The event rate of the packet-level simulationfor the above
scenariois just the aggregatedpacket transmissionrateof the
sources: * ` � ��?> � p � p¸5 (9)
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where� is thepacket transmissionratewhenthesourceis in the
onperiod.Notethatthefirst termrepresentsthefractionof time
thesourceis on.

While the ripple effect can inducea large numberof extra
events in fluid simulation,which can be prohibitive for large
scalenetwork, the flow aggregationtechniqueprovidesan in-
strumentto reducetheeffect of interactionamongflows,hence
reducingthe overall event rate. Also note that the event rate
of fluid simulation with flow aggregation exhibits the same
asymptoticlinear behavior as packet-level simulation. If the
packetrate( � ) is large,thenthefluid simulationcanoutperform
the packet-level simulationfor tandemnetwork models,which
would not betruewithout theflow aggregation.An exampleof
this potentialis illustratedin Figure15, wherethe aggregated
fluid simulationoutperformsthe packet-level simulationwith�7�R%)! , andthesimulationwithout flow aggregationperforms
theworst.

VI . WEIGHTED FAIR QUEUEING IN FLUID SIMULATION

All thescenariosstudiedthusfarhaveinvolvedFIFOqueues.
The dynamicsof FIFO queuesdirectly causethe ripple effect,
which cansignificantly increasethe event rateof fluid simula-
tion for a largenetwork model.Weightedfair queueing(WFQ)
[16] providesacertaindegreeof separationbetweenflows from
differentsources,andwewill seethatthisseparationwill signif-
icantly decreasetheimpactof theripple effect in WFQ queues.
A comparisonbetweenthe fluid and packet-level simulation
eventratesof WFQqueueingnetwork modelsis presented.

A fluid WFQserveris work conservingandoperatesatafixed
rate B . Theserverwill thusbebusyif thereis fluid storedin any
of its subqueues.A WFQ nodeconsistsof a setof

^
classesor

subqueues,eachhaving the FIFO policy andbeingfed by one
or moredifferentflows. The servicerate is distributedamong
the classesaccordingto a set of positive partition parameters¹)º u | º w |¸p»p¸p»| º s¥¼ . Thedetailsof thedynamicsof a WFQ node
canbefoundin [17].

In a WFQ node,if the serviceratesdistributedto eachsub-
queueis kept constant,a flow only interactswith thoseflows
thatmerge into thesameclass,insteadof all theflows arriving
at the node. In this case,interferenceamongflows thatbelong
to different classesis eliminatedby the isolation mechanism
providedby the WFQ schedulingdiscipline. Lessinterference
amongflows in WFQnodereducestheripple effect,andhence,
thesimulationeventrate.

However, dueto thework conservingpolicy of WFQ,theser-
vice rateallocatedto eachclasscanchange.Thesechangesoc-
cur when somesubqueuesrequire lessservicerate than their
partitionswhile othersubqueuescanusemoreserviceratethan
theirpartitions.Theservicerateof aclassdependsonthesizeof
thecorrespondingFIFO subqueue,thefluid arrival rate,aswell
asthequeuelengthof otherclasses.Thedynamicsof WFQ are
illustratedin Figure16. Theweightfor eachqueueis 0.5andthe
servicerateis B . Initially flow 1 grabstheentireservicerate B .
At time

8 u flow 2 turnson,andthetwo queuesbegin to sharethe
servicerateequally, resultingin adepartureratechangefor both
flows at thatmoment.Whenflow 1 turnsoff at

8 w andits queue
emptiesat a latertime

8 ¡ , theserviceratefor flow 2 jumpsto B ,
resultingin afluid departureratechangein flow 2. Thisdynamic

t

t

0.5

0.5

c

t 32

1

Flow 1

Flow 2

Fig. 16. A two queueweightedfair queuingsystem

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10

0.5 load
0.8 load
0.9 load

Number of Classes (subqueues)

S
im

ul
at

io
n 

E
ve

nt
 R

at
e ½)¾�¿ À

Á)ÂdÃ
Fig. 17. Simulationeventratevs. thenumberof classesin aWFQ node

allocationof theservicerateis calledthe “servicerateredistri-
bution process”.Therefore,a serviceratechangeof a classcan
causeratechangesnot only on all flows in its class,but alsoon
flowscurrentlybeingservicedin otherclasses.In contrastto the
effect of flow isolation, the servicerate redistribution process
actuallycausesextraeventswhichcontributesto thefluid simu-
lationeventrate.However, for a moderatelyloadedWFQnode,
we expect the impactof the servicerateredistribution process
not to besignificant.

As mentionedabove,theflow isolationandservicerateredis-
tribution processhave oppositeimpactson thefluid simulation
eventrate. Theeventratefor a WFQ nodewill dependon how
the input flows aredivided into differentclassesandhow often
theservicerateis recomputedanddistributedamongclasses.

Figure17showsthesimulationeventrateof aWFQnodeasa
functionof thenumberof classesin theWFQ.In thissimulation,
20 independentandidenticalon-off sourceswereusedasinput,
with

� �X�7�Z# . Thepeakratewhile in theon stateis ���Ä# .
The sourcesare equally allocatedto the classes,so that each
classis fed by thesamenumberof sources.Thepartitionof the
servicerate is distributedequallyamongthe differentclasses.
The systemload wasvariedby changingthe servicerate,and
loadsof 0.5,0.8.and0.9wereinvestigated.

Note thatwhenthenumberof classesis one,theWFQ node
behavesexactly the sameasa singleFIFO queue.This corre-
spondsto theleftmostpointsin Figure17. If wechoosetheload
of 0.9,theeventrateof thefluid simulationdecreasesby afactor
of 32%whena singleclassFIFO is replacedby a 2-classWFQ
node.Theeventratefurtherdecreasesasthenumberof classes
in theWFQnodeincreases,sinceincreasedisolationamongdif-
ferentflows diminishestheripple effect. However, asthenum-
berof classesincreasespast7, theeventratedueto theservice
rate redistribution startsto becomesignificant, increasingthe
overall simulationevent rate. Note that for all loads,the event
rateto simulatethe WFQ nodewith any numberof classes,is
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alwayslessthanthe event rateto simulatea singleFIFO node
with thesameinput flows.

As expected,decreasingthe load will leadto a higherprob-
ability that thefluid flowing from thesourceswill passthrough
thenodewithout queueing.Hence,lessripple effect is incurred
andtheoverall fluid simulationevent rateis smaller. Note that
for the load of 0.5, no queueingtakesplace,sincethe service
rateis equalto sumof the peakrateof all the sources.There-
fore,thenumberof classeshasnoimpactonthefluid simulation
eventrate,asobservedin Figure17. Theeventratein this case
is givensolelyby the behavior of the sourcesandcanbe com-
putedanalytically. Thus,thefluid simulationof a WFQ nodeis
likely to bemoreefficient, in termsof eventrate,thanthefluid
simulationof a FIFO node,speciallyat higherloads.

For packet-level simulation,theevent rateof theWFQ node
is given by the rateat which packetsarrive at the node,which
is determinedby therateat which packetsaregeneratedby the
sources.Theisolationbetweenclassesin WFQdoesnot reduce
the packet-level simulationevent rate. Moreover, the packet-
level simulationeventratein thismodelcanbeeasilycomputed
usingequation(9). The comparisonbetweenfluid simulation
andpacket-level simulationstill dependson thetradeoffs of the
network andtraffic rateparameters,especially� . In Figure17
thepacket-level event ratefor �7� �Å| #}! arepresentedto illus-
trate the tradeoffs. Note that fluid simulationcan outperform
packet-level simulationfor someparameterconfigurations.A
quantitative analysisof the WFQ fluid simulationevent rate,
to establisha betterunderstandingof the parameterspaceand
tradeoffs, is still anongoingresearchtopic.

VI I . CONCLUSIONS

In this paper, we evaluatedthe relative performanceof fluid
simulation over packet-level simulation by analyzingseveral
differentnetworking scenarios.The simulationevent ratewas
usedasthebasicmeasureof comparisonbetweenthetwo simu-
lation techniques.Theresultsobtainedshow thatthesimulation
executiontime is proportionalto thesimulationeventrate,mak-
ing this measurebothadequateandaccurate.

An importantissueis the impactof the ripple effect on the
fluid simulationevent rate. This characteristicof fluid simula-
tion is a majorcontributor to thesimulationeventrate,particu-
larly, in largeandcomplex models.Theripple effect is intrinsic
to fluid simulationanddoesnot appearin packet-level simula-
tion. In thiscase,theeventrateis fully determinedby therateat
which packetsaregeneratedandtheir routesinsidethenetwork
model.Therefore,therelativeefficiency betweenthetwo simu-
lation approachesdependscritically on theimpactof theripple
effectandtheratesat whichpacketsaregenerated.

We have derived analyticalresultsto characterizethe simu-
lation event rate for the tandemqueueingmodel. For all the
scenariosinvestigated,we have providedsimulationresultsand
discussedthetrendsof theeventrates.Wehaveshownthetrade-
offs betweenparametersof the models,which determinesthe
mostefficient simulationtechnique.In general,fluid simulation
outperformspacket-level simulationwhenthepacket rate( � ) is
large.Wehavealsoconsideredtwo methodsthatcanreducethe
impactof theripple effect, namely, flow aggregationandWFQ
policy. A fluid simulatoranda packet-level simulatorwasde-

signedandimplementedin orderto exploretheir functionalities
andvalidateanalyticalresults.

An alternative approachto improve theperformanceof fluid
simulationis the time-driven fluid simulationscheme[18]. In
this approach,thecontinuousfluid flow is discretizedinto fixed
lengthof fluid chunks,whereeachchunkhasaconstantrateand
representsmany packets.Thisdiscretizationis donethroughout
the network being simulated. The simulationadvancesat the
granularityof the discretization,which canbe adjustedto ac-
commodatedifferentresolutionrequirementsin modeling.Flow
ratechangeswithin a time stepareaveragedout, reducingthe
numberof ratechangesresultingfrom the ripple effect. Also
the uniform discretizationinterval facilitatesparallelismin the
simulation.This schemeis undergoingboththeoreticalandex-
perimentalinvestigation.
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