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Abstract—Network performance evaluation through traditional packet-
level simulation is becomingincreasinglydifficult astoday’s networks grow
in scalealong many dimensions. As a consequencefluid simulation has
beenproposedto copewith the sizeand complexity of such systems. This
study focuseson analyzing and comparing the relative efficienciesof fluid
simulation and packet-level simulation for several network scenarios. We
usethe “simulation event” rate to measure the computational effort of the
simulators and show that this measue is both adequateand accurate. For
somescenarios,we derive analytical resultsfor the simulation event rate
and identify the major factors that contribute to the simulation event rate.
Among thesefactors, the “ripple effect” is very important sinceit can sig-
nificantly increasethe fluid simulation event rate. For a tandem queueing
system,we identify the boundary condition to establishregionswhere one
simulation paradigm is more efficient than the other. Flow aggregationis
considered asatechniqueto reducethe impact of the “ripple effect” in fluid
simulation. We also show that WFQ scheduling discipline can limit the
“ripple effect”, making fluid simulation particularly well suited for WFQ
models. Our resultsshaw that tradeoffs betweenparameters of a network
model determinesthe most efficient simulation approach.

Keywords—fluid simulation, performance evaluation, traffic model

|. INTRODUCTION

Traditionally, paclet-level simulationhasbeenwidely used
for performanceevaluationof computernetworks. However,
this techniquedoesnot scalewell asthe size and compleity
of networksincreasesThe fastgrowth of datacommunication
networks over the pastdecademalkes this approachcomputa-
tionally expensve,if notinfeasible for truly largescalemodels.
Consequentlyefficient simulationtechniquegor suchnetwork-
ing modelshave becomeanimportantissue.

Many methodshave beenproposedo speedup network sim-
ulation. Thesemethodologieganbe cateyorizedinto threedif-
ferentand orthogonaltypes (Figure 1): computationabower;
simulationtechnology;and simulationmodel. In the direction
of computationalpower, simulationscanbe spedup by using
fasterandmore powerful machines.In the simulationtechnol-
ogy direction, new enhancedalgorithmsfor implementingthe
simulationcanfurther speedugsimulation. Algorithms suchas
thecalendaqueuealgorithmandsplaytreealgorithmhave been
proposedn orderto improve the efficiengy of eventlist manip-
ulation. Anothertechniquein this directionthat hasreceved
much attentionin the literature,is the RESTART mechanism
thatexploresrareeventsimulation[1]. A third approaclistouse
modelswith a higherlevel of abstractionsimplifying the simu-
lation andimproving its efficiency. Thetradeof in this casejs
theaccurag of the desiredmeasuresf interestobtainedby the
moreabstractmodel. For example,the paclet-trainsimulation
techniquemodelsa clusterof closely-space@acletsasasingle
“packet-train”[2].
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Anothermodelingtechniquemaking simplified assumptions
aboutthe real systemis the fluid model, which wasfirst pro-
posedby Anick etal. in [3] to modeldatanetwork traffic. In the
fluid simulationparadigm,network traffic is modeledin terms
of acontinuoudluid flow, ratherthandiscretepacletinstances.
A clusterof closely-spacegacletsmaybe modeledasa single
fluid chunkwith a constanfluid rate,with smalltime-scalevari-
ationsin the paclet streambeing abstractedut of the model.
A fluid simulatorkeepstrack of the fluid rate changesat traffic
sourcesandnetwork queuesAn equivalentpaclet-level simula-
tor would keeptrackof all individual pacletsin the network. In
fluid simulation thehigherlevel of abstractiorsuggestshatless
processingmight be neededo simulatenetwork traffic. Intu-
itively, thisis not surprisingasa largenumberof pacletscanbe
representedly asinglefluid chunk.For simplenetwork compo-
nentswheretraffic flows do notcompeteor resourcesthefluid
simulatoroutperformsthe paclet-level simulator An example
would bealink thatconnectdwo nodesandnever experiences
gueueing;this componenonly introducesa constantpropaga-
tion delay

However, for othercomponentsvheredifferenttraffic flows
meetand contendfor limited resourcesit doesnot easilyfol-
low thatfluid simulationalwaysoutperformaclet-level simu-
lation. Themanagemeruf thelimited resourcecansignificantly
increasethe total processingequiredby the fluid simulator In
previouswork [4], we foundthatthefluid simulationcansome-
times be lessefficient than paclet-level simulationdueto this
reason.

In this paperwe investigateseveralcommonnetworking sce-
nariosandcompareheamountof computationag&ffort required
by fluid simulationandpaclet-level simulation.As ameasuref
computationakffort, we usethe notion of eventrateandshow
that this is both adequateand accurate. We derive analytical
resultsto characterizeéhe event rate for someof the scenarios
studied. We identify the major factorsthat contritute to the
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eventrateof both fluid andpaclet-level simulationapproaches
and establishthe tradeofs betweenthe differentfactors. The
flow aggreyationis consideredisatechniquedo reducethefluid
simulationeventrate. We alsoshav that WFQ schedulingdis-
cipline canreducetheimpactof the “ripple effect” in fluid sim-
ulation. We designedandimplementedh fluid simulatoranda
paclet-level simulatorin orderto explore their functionalities
andvalidateanalyticalresults.

Onedrawbackof a fluid modelis thatthe accurag of thein-
terestmeasuress compromisediueto the abstraction.In this
studywe will not addresgshe accuray issuesof the fluid sim-
ulator, but ratherfocuson the relative efficienciesof fluid and
paclet-level simulation. Nicol etal. [5] claim that despitethe
high level of abstractiorof fluid models,the error of estimated
measuresbtainedwith fluid simulationis very smallcompared
to the resultsof paclet-level simulation. Anotherimportantis-
suethatwill not be addressech this paperis how performance
measuresan be obtainedvia fluid simulation. However, we
notethatin [5], [6], [7], theauthorsshov how performancenea-
suressuchasend-to-enddelayandlosscharacterizatiomanbe
computedn fluid simulations.

Therestof the paperis structuredasfollows. Sectionll gives
a brief review of fluid modelsand previous work. In Section
Il feed-formard network modelsare presentecand analyzed.
SectionlV investigateghe performanceof feedbacknetwork
models.In SectionV we show thatflow aggreyationcansignifi-
cantlyreducethefluid simulationeventrate. Preliminaryresults
concerningWVFQ areprovidedin SectionVI. Finally, conclud-
ing remarksanddiscussionsrepresentedn SectionVII.

Il. BACKGROUND AND PREVIOUS WORK

In this sectionwe describehe networkingmodelcomponents
thatwill be usedashbuilding blocksto createthe scenariosn-
vestigatedhroughouthis paper Thetwo basicbuilding blocks
arethe sourcemodelandthe multiplexer model. More complex
network modelsareconstructedisingthesewo componentsin
the following we considerthe dynamicsof the two basiccom-
ponentdor fluid andpacketmodels.

Markovian on-off sourcemodelsare often usedin network
researchio capturethebursty natureof the network traffic. Both
paclet andfluid versionsof thesesourcemodelsarewidely en-
counteredn the literature. The sourcetransitsbetweenan on
andoff state,remainingin eachstatefor an exponentiallydis-
tributedamountof time. Throughoutthis paper the transition
ratefrom on stateto off stateandvice versawill bedenotediy A
andu, respectrely. Whenin theon statea packet sourcetrans-
mits pacletsaccordingto a Poissorprocesswith rate+y, while a
fluid sourcesendutfluid ata constantate.No pacletor fluid
is sentduringthe off period. Withoutlossof generalityassume
thatpacletshave afixedsizez. In orderfor afluid sourceto be
consideredequivalentto a paclet source ,we would minimally
requirethat both have the sameaveragedatarate. Given this
condition, the fluid peakrateshouldbe setto be h = yz. Fig-
ure 2 illustratesthe behaior of the on-off fluid paclet andfluid
sources.

The secondbasiccomponenbf network modelsis the mul-
tiplexer. An important characteristicof a multiplexer is its
schedulingdiscipline. In this paper two schedulingdisciplines
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areconsideredFIFO andWFQ. Thedynamicof FIFO schedul-
ing is describechereandWFQ is presentedn SectionVI.

Foragivenschedulingpolicy, thedynamicsof themultiplexer
depend®n theunderlyingtraffic model(fluid or paclet). In the
FIFO paclet model, pacletsareplacedinto andsened from a
gueueaccordingto the orderof their arrival. Figure3 depictsa
FIFO queuebeingfed by threedifferentsources.Note thatthe
departurgrocesof the pacletsis similar to the arrival pattern.
Theonly differenceis the spacingbetweerpaclets.

In the FIFO fluid model,the dynamicsof the multiplexer are
moresubtle[4]. First, notethatfluid from two differentsources
aredistinctanddo not mix, just aspacletstransmittedoy two
sourcescanbe differentiatedat the queue.Figure 4 depictsthe
dynamicsof a FIFO fluid multiplexer beingfed by threeinde-
pendentndidenticalsourcesFor thisexample assumehatthe
arrival rateof onesourceis equalto the servicerateof the mul-
tiplexer. At time T'0 the secondsourceentersthe on stateand
immediatelystartsto receve serviceat full capacity At time
T1, sourcel turnson andboth flows mustnow sharethe ser
vice rateequally At time T'2, source3 startstransmittingand
eventually at time 72, all of themwill sharethe servicerate
equally Notethatthearrival of flow 3 attime 72 causedlow 1
andflow 2 to changeheirdepartureatesat7'2’. In generalthe
arrival of anew flow cancausea departuraatechangan mary
otherflows. Notethatthe outputprocessf a givensourcecan
containmary more rate changeghanthe arrival process. For
a larger network model, theserate changeswill be propagated
downstreamcausingeven more rate changesn the departure
processof otherflows. This propagationand amplificationof
ratechanges$asbeenobsenedbeforeandis known astherip-
ple effect[8], [4]. We will shortlyseethattheripple effecthasa
profoundimpacton the efficiency of fluid simulation.

However, not every flow rate changeaffectsthe outputrates
of all the other flows currently being serviced. If the sum of
theratesof all arriving flows is smallerthanthe servicerate of
the queue thena flow rate changedoesnot affect otherflows
currently being serviced. In this case,we saythat a flow rate
changedoesnot “interfere” with otherflows in the queue.An
arrival flow rate changecausingotherflow rate changesn the
departureof the queueis called“flow interference”.

To betterunderstandhow differentflows arestoredandsened
in a multiplexer, we introducethe conceptof fluid chunk. A



INFOCOM 2001

T5 T4 T3 T2 Tl TO Té Td Td Ti Tf Td

Source 1L H
Source le]Q H

Source 3

Server Output

Fig. 4. Dynamicsof a FIFO fluid multiplexer

\

7<<\<///° Flzwl

Fig. 5. Differentfluid chunksin a FIFO queue

fluid chunkis a contiguouswell-definedamountof fluid stored
in the queue. Figure5 illustratesthreechunksof fluid formed

by two differentflows. Notethatwithin a chunktheratio of the

arrival rateamongdifferentflows remainsconstant Chunksare

determinechndplacedin thequeuen theorderthatthey arrive.

A chunkis senedonceit reacheshe headof thequeue All the

flowsin the chunkaresenedsimultaneouslywith servicerates
proportionalto the flow arrival rateswithin the chunk. Figure

5 depictsthreefluid chunksthatareformedby theratechanges
of two flows. In the first chunkthe arrival rate of flow 1 was

greaterthanthatof flow 2. In the seconcdchunkthearrival rates
areequal,andin thelastchunkflow 2 goesoff.

Another intrinsic characteristicof fluid simulationis flow
melging, andconsequentlythe flow memging probability. Flow
melging can be bestunderstoodwith a single sourcesingle
gueuemodel. It occurswhenthe queueis back-loggedandthe
sourcetransitsfrom the off to the on state.In this casetheout-
put rate of the flow will not changeat the end of the current
chunk,andthe two consecutie fluid chunkswill memgein the
gueue.Theprobabilitythatsucha scenaricoccursduring simu-
lation is denotedasthe merging probability, i.e., the probability
that a rate changeon an input flow doesnot introducea new
chunk.

In orderto comparethe relative efficienciesof fluid simula-
tion and paclet-level simulation,we mustestablisha common
measureof computationakffort. In a simulation,basicevents
suchaspaclet arrival/departurer fluid ratechangearefunda-
mentalunits of work and (aswe shall see)are directly related
to the computationakffort involvedin a simulation. Therefore,
we usethe simulationeventrateasa measuref computational
effort. The eventrateof a simulatoris definedas:
N{(t)

e = lim
t—oo ¢

(1)

whereN (t) is thetotal numberof eventsprocessedy the sim-
ulatorby simulationtime ¢.

In a paclet-level simulation, events include sourcetransi-
tions,pacletgeneratiorandpacletdeparture$rom queuesFor
fluid simulation,eventsincludesourcetransitionsandflow rate
changesat sourcesand queues. We note that different events
usually require differentamountsof computationawork, and
thesedifferencesmay changefrom one simulatorto another
However, sincethe eventrateincludesall the eventswithin the
simulatorand eachevent represents basiccomputationalef-
fort, we expectthe eventrateto be an adequateneasureof the

overall computationakffort of the simulator We will indeed
seethatthe executiontime of a simulationis proportionalto the
correspondingventrate.

In orderto comparethe actualefficiency betweerfluid simu-
lation and paclet simulation,andvalidateanalyticalresultsob-
tained, two simulationframeaworks were designedand imple-
mented. The framevork developedconsistsof simpleandin-
dependenthetwork componentsuchassourceslinks, routers
andqueueghatform the building blocksfor thenetwork model.
Thesebuilding blocks can be instantiatedby specifyingtheir
specific parametersand connectedtogetherto form a much
larger complex model. Eachsimulatorframewnork corresponds
to a modelingtechnique paclet or fluid, andboth have a very
similar interfaceso thata modelcanbe executedin the paclet
or fluid simulatorwith minimummodification.Both simulators
were constructedusing the SSF (ScalableSimulation Frame-
work) framawork, which itself allows the constructionof gen-
eralpurposeevent-drvensimulation[9]. Several APls arepub-
licly availablein differentprogrammindanguagesln ourwork,
we usedthe DaSSFimplementationwhich provides enhanced
simulation featuressuch as scalableparallel techniqueg10].
Both paclet andfluid simulatorframewvorks developedas part
of this studyarepublicly available?.

All simulationexperimentonductedn thisreportwerecar
ried outusingthe simulationframenvorksmentionedabove. The
simulationswere performedon a dual processorPentium-Ii|
730MHz machinewith 1Gb of physicalmemoryrunning Red
Hat Linux releases.1with kernelversion2.2.14-mosixSMP

In all experimentsnvolving a comparisorbetweerfluid and
paclet-level simulation,the samplepath of the on and off pe-
riods of correspondingsourceds the same. The purposeis to
highlight othertypesof eventsoccurringin the simulationand
establisha fair comparisorbetweernthetwo simulators.

In this section we comparethe simulationeventratebetween
the fluid simulationand paclet-level simulation,in the context
of feed-forwardFIFO networks.

In orderto investigatethe impactof the ripple effect on the
amountof computationakffort requiredto simulatea network
model, we first presenta systemconsistingof a single on-off
sourceandasingleFIFO queue This casedoesnotexhibit arip-
ple effect sincethereis only oneflow goingthroughthe queue.
In our previous work [4], an analyticalapproximationfor the
eventrateof a single FIFO queuewaspresented.The analysis
in [4] containsa parametetto representhe meiging probabil-
ity, whichwasnot solved. Usingthe techniquepresentedn [3],
we canobtainan exact analyticalexpressionfor the eventrate
of this model. The preciseexpressionfor the fluid simulation
eventrateis now givenby:

FEED-FORWARD FIFO NETWORKS

Ah
c(A+p)
Thederivationof thisformulacanbefoundin [11] andtheresult

canbeinterpretedasfollows. Thefirst termin (2) is the event
rategeneratedy the sourcetransitions.Every time the source

2)\
ef a

= —+2(1 -
)\+,u+(

)A (2)

1The simulatorcanbe obtainedat http://gaia.cs.umass.edu/fluidsim
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Fig. 6. A tandemqueueingnetwork

changest state,a new eventis counted,representinghe flow
rate changeof that source. The secondterm is the queuede-
partureeventrate. This termaccountdor theflow ratechanges
generatedy the queueandthe effect of chunkmeiging.
Comparedwith the exact paclet-level simulationevent rate
e? =2 u/(A+p)+2py/ (A +p) [4], with e/ from equation(2),
we notethatthefluid simulationoutperformgaclet-level simu-
lationif v > A/u(A+p—Ah/c). Thisanalysisvasvalidatedby
simulationresults. Therefore for a singlesource singlequeue
caseafluid simulationwill requirelesscomputingthanacorre-
spondingpaclet-level simulationwhenererthe above condition
for v holds. We will seeshortly however, thatthis advantages
mitigatedby theripple effectin the caseof multiple queues.
Now we considerlargerandmorecomplicatedeed-forward
network. The tandemqueueingnetwork was chosenasa con-
creteexampleto representa feed-forward network becauseof
its simpleandregulartopology This permitstractableanalyt-
ical modelsof simulationefficiengy to be constructedandalso
allows easyparameterizatiomf the model. At the sametime,
a morecomplicatedeed-forward queueingnetwork canbe de-

composednto mary tandemqueueswith differentparameters.

We will seethatby understandinghe simpletandemqueueing
system,considerablénsight can be gainedinto more compli-
catedfeed-forwardnetworks.

The tandemqueueingnetwork modelconsideredn this sec-
tion is depictedin Figure6. In this particularmodel,thereare
N input flows at eachqueue,with flow 0 startingasan on-off
sourceatnode0, andtraversingthroughall thenodes.The other
(N — 1) flows, which areall identicalandindependenbn-off
sources)eave the systemafter passingthroughone node. Al-
though,this systemhasmary parametershatcanbetuned,two
of them- thenumberof sourceenteringeachnodeandthenum-
ber of nodesin the system- arethe mostimportant,sincethey
have directinfluenceon the ripple effect. Thus, both will be
exploredanddiscussedn thefollowing.

We first considerthe numberof nodesin the tandemqueue.
The modelinvestigatechas 15 sources(14 new enteringeach
node) per nodewith a constantioad of 0.8 andA = p = 1.
Figure7 presentghe resultsobtainedfrom the simulators.We
obsene thatthe fluid simulationeventrateincreasegjuadrati-
cally with the numberof nodesin the system. This quadratic
behaior is causedby the ripple effect, which propagategur-
ther asthe numberof nodesincreases.The paclet-level sim-
ulationresultsin Figure7 arefor v = 3, and, not surprisingly
presentalinearincrease However, thefluid simulationcanstill
be moreefficientwhenthe numberof nodess smallor when-y,
the pacletrate,is large. Note thatthefluid simulationdoesnot
dependn -y, enablingit to outperformits counterpartvhen+y is
large. Othermodelswith differentnumberof sourcesentering
eachnodealsoexhibit the samebehavior.

In previous work, we derived analyticalresultsfor the tan-
demqueueingsystenin orderto compareheefficiency between
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Fig. 7. Simulationeventrateof atandemsystem

paclet-level andfluid simulation[4]. Thatanalysisfocusedon
studyingthebehavior of thetandemqueueunderdifferentnum-
ber of nodesin the systemundersimplifying assumptionsThe
analyticalresultspredictthe quadraticgrowth of thefluid simu-
lation eventrate,whichis corroboratedby thesimulationresults
presentedhere.

The secondimportantparameteis the numberof flows en-
tering eachnodein the tandemsystem. This parametegaffects
the amountof interactionamongdifferent flows which gives
riseto theripple effect. The scenariove considerherehas20
nodeswith a constanioad of 0.8and\ = p = 1. Theservice
rateof the queuess scaledto maintaina constantoad for dif-
ferentnumberof sources. The paclet-level simulationresults
areshown for v = 3. Figure8 presentghe simulationresults
obtainedfor this model. Note that the fluid simulationevent
rateincreasesub-linearlywith the numberof flows, while the
paclet-level simulationincreasedinearly. Again, thefluid sim-
ulationeventratedoesnotdependn v, andwill eventuallyout-
performthe paclet-level simulation. Note that the resultsob-
tainedin this caseareoppositeto the onesobtainedwhenvary-
ing thenumberof nodes Here,thefluid simulationwill eventu-
ally outperformthe paclet-level simulationdueto its sub-linear
increase.A possibleexplanationfor the sub-linearincreasan
the eventrateof thefluid simulationlies in the behaior of the
ripple effect. Sincethe servicerateis increasedo maintainthe
load constantthe numberof flows that canbe servicedby the
gueuewithoutinterferingwith eachotherincreasesThis canre-
ducetheripple effect, sincelessinterferenceamongflows will
occur

The tradeof betweenthesedifferentparameterseadsto the
conclusionthat the parametesspacecanbe partitionedinto re-
gionssuchthat,in eachregion, eitherfluid or paclet-level simu-
lation is alwayssuperior A simpleanalysiswill allow usto get
a rough (approximate)dea of theseregions. Eventhoughthe
locationof theseboundariesnay not be precisedueto approxi-
mationsin theanalysisjt is importantto notethatsuchregions
do exist.

Let Rf(K) and RP(K) denotethe fluid and packet simula-
tion eventratesfor a K nodetandemqueueingsystem. The
eventsassociateavith the simulationof the sourcesarenotcon-
sideredsincetheseareidenticalfor both paradigms.Basedon
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thepropositiondn [4], thefluid eventrateis givenby:

2
= —MI:NK+ (N— 1)0[00

_ (K—l)K]
A4

R! (K) -

®3)
wheretheterm agy is the probability that source0 is in theon
state.

The paclet-level simulationeventrate is determinedby the
numberof pacletssentby eachsourceandthe numberof nodes
eachpaclettraversesThis leadsto:

2y

RP(K) = NK -
(K) P

(4)

To investigatethe relative efficiency of both simulation
paradigmsand determinea boundarycondition, let R (K) =
R?P(K). Solvingfor N leadsto:

(K-1)K
N = Qo0 —
aoow + K — K:yx

(5)

If this equationis satisfied thenthe fluid andpaclket simula-
tion eventratesare equally efficient. Figure9 shavs the N-vy
boundaryconditioncurveswith differentnumberof nodesK in
thesystem.Foragivenvalueof K, thetradeof curvecarriesthe
following interpretation:if the point (Ng, o) lies to the right
of the curwve, fluid simulationis more efficient thanits paclet

counterpartptherwise paclket simulationis moreefficient. We
obsene thatincreasingK shiftsthe tradeof curve to theright,
increasinghespacan which pacletsimulationis moreefficient
(hasa smallereventrate). The asymptoticine canbe obtained
from (5) andis givenby:

Y _ @oo Qoo

AT Ko Tl

The fluid simulationis always more efficient if /A, the
numberof paclets transmittedper on period, is greaterthan
(a00/2K — ago/2 + 1), regardlessof the size of the tandem
gueueingsystem. This is expectedsincethe eventrate of fluid
simulationdoesnot dependon v, while the paclet-level event
rateis proportionalto -y. This resultconfirmsthe existenceof
boundarieof regionswhereone simulationparadigm(fluid or
paclet-level) is awaysmoreefficientthantheother Boundaries
andregionsbasedon otherparametersuchas N-K, werealso
beestablishe@ndcanbefoundin [11].

For more complicated feed-forward queueing networks,
wheredifferentflows cantraversemorenodesandinteractwith
more flows, we conjecturethat the ripple effect will be even
more pronounced. However, the event rate shouldstill be fi-
nite becausea flow ratechangeraversesnly afinite numberof
nodesin thenetwork beforeit leavesthe system.Thusthenum-
ber of extra eventscauseddy ripple effectis finite. Eventhese
more complicatednetworks are expectedto have well-defined
regionsin which eitherthe fluid or the paclet-level simulation
is moreefficient.

V. FEEDBACK QUEUEING NETWORKS

In the previous sectionour analyticaland simulationresults
for atandemqueueingnetwork demonstratethatthe eventrate
for afluid simulationis finite for ary stablefeed-fornardqueue-
ing networks. In this sectionwe considera network that has
a cycle. We saw earlierthat with fluid simulationa flow rate
changecancausea changedn the outputrateof otherflows, thus
affecting otherflows at downstreammodes.This “ripple effect”
couldbeparticularlyworrisomein acyclic network. A flow rate
changecanmodify the rate of several otherflows andall these
ratechangesantraversethe nodesin a cycle and spavn more
ratechangestesultingin acascadef flow ratechangesin such
a scenariothe eventrateof the simulationcould grow without
bound.

In this sectionwe investigatethe simulationevent rate of a
feedbackgueueingsystemusingthecyclic queueingmodel,de-
pictedin Figure10. We considerthe effect of differentparam-
eterson the simulationeventrate. The relationshipbetween
the eventrateandthe correspondingxecutiontime is alsopre-
sentedo supportouruseof thesimulationeventrateasthemea-
sureof computationaéffort in a simulation.

A. Afeedbak queueingnodel

The scenariallustratedin Figure 10 containsfour identical
FIFO queueswith infinite storagecapacitythat are connected
togetherto form a cycle. A singleon-off sourceis injectedinto
eachof thequeuesTheroutingof theflowsis predefinedothat
eachflow traversesexactly three queueshefore departingthe
system.In this setting,threedifferentflows passthrougheach
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gueue.Thefour traffic sourcesareidentical,with equalon and
off periodsandthe peakratesaresetto 1. Thestability condition
of this systemrequiresthe servicerateto be greaterthan 1.5,
which s the averageaggrayateinput rateat eachof the queues.
In orderto evaluatethis systemunderdifferentloads theservice
ratewill bevaried.We will seethatanotheimportantparameter
is thelink propagatiordelay which will alsobe varied,taking
valuesof 0.001,0.01,0.1and1 time units. Thesimulationevent
rateandexecutiontime werecollectedfor serviceratesranging
from 1.6to 3.1, which correspond$o systemoadsof 0.9375to
0.5.

B. Resultsof fluid simulation

The fluid simulation event rate of the feedbackqueueing
modelis plottedin Figure1l, asafunctionof servicerate. The
four staircasecurvescorrespondo four differentlink propaga-
tion delays.In thesamdfigure,theeventratesof thepaclet-level
simulationof the samemodelare plotted,with differentpaclet
transmissiomates(y).

In the extendedtechnicalreportof this work [12], we show
thatthe existenceof aloop in the queueingmodelsignificantly
increasedhe fluid simulationevent rate over that of a similar
openloop model.However, Figurel1 shavsthatthefluid simu-
lation eventrateof thesimulationcorverges(is finite) for awide
rangeof serviceratesandlink delays.This canbeexplainedin-
formally by consideringhe dynamicsof the FIFO queue.Note

thataninput flow ratechangedoesnot causenew ratechanges
amongoutputflows at a queueif the queueis emptyand,atthe
sametime, the aggreyatearrival rateinto the queueis smaller
thanthe queues servicerate. Soevenfor a closed-loopgqueue-
ing system,a flow rate changecanonly causea finite number
of new ratechangesat “downstream”queuesif the probability
thata queueis emptyandthe aggrejatedarrival rateis smaller
thantheservicerateis greaterthanzero.If this conditionholds,
thenaflow ratechangewill eventuallyarrive ataqueuen which
thisratechangewill passthroughwithout causingratechanges
in otherflows.

This corvergenceconditionis directly relatedto the service
rateof the queueswhich interestinglyhastwo oppositeeffects
onthesimulationeventrate. First, asthe servicerateincreases,
the averagequeueingdelay decreasesmaking the fluid rate
changegpropagatefasterthroughthe closedloop. This effect
tendsto increasethe eventrate, sincemorefluid rate changes
occurwithin afixedtime interval. On the otherhand,a larger
servicerateimpliesthatthequeudas morelik ely to beemptyand
at the sametime, the aggre@atearrival rateis smallerthanthe
servicerate, resultingin a larger probability that a rate change
will not causea ripple effect. This effect tendsto reducethe
simulationeventrate. It is the tradeof betweenthesetwo fac-
torsthatdetermineghe simulationeventrate. From Figure11,
we seethatin this model,whenthe servicerateis belov 2, the
first factordominatesandthe eventrateincreasesstheservice
rateincreasesFor serviceratesgreaterthan 2, the secondfac-
tor becomesnoresalient,leadingto the flatteningof the event
rates.

Anotherimportantfactoraffectingthe eventratein theclosed
loop systemis the link propagationdelay betweenadjacent
gueues. The smallerthe link delay the lesstime it takesfor
a rate changeto propagatearoundthe network. Smallerlink
delayswill resultin moreflow rate changesn a unit of time,
causingthe overall simulationeventrateto increase Therefore,
for agivenservicerate theeventrateincreasessthelink delay
decreases.

Anotherinterestingobsenation can also be notedin Figure
11. Eacheventcurve exhibitstwo discontinuitiesatservicerates
of 2 and3, whereeventratedropsdramatically Thesedisconti-
nuitiescanbeexplainedasfollows. Whenaflow ratechangear-
rivesataqueuejf thequeuehasabacklog,theratechangewill
causenew rate changesn all the other flows with a non-zero
flow rate. Whenthe queuds empty this only happensvhenthe
aggrejatedarrival rateis largerthanthe servicerate. Therefore,
the probability that a rate changecausesa ripple effect is the
sumof the probability that eitherthe queueis not emptyor the
gueues emptybut theaggreyatedarrival rateis now largerthan
servicerate.

To explain the simulation event rate drop when the service
rateis two, we considertwo servicerates,oneslightly lessthan
two, theotherslightly greater We denotehesewo servicerates
as(2—e) and(2+e¢), wheree < 1. Theprobabilitythataqueue
is emptycanbetakento bethe samefor thesetwo cases.Now
we considetthe probabilitythataggreyatedarrival rateis greater
thanservicerate.For thecasevhentheservicerateis (2—¢), the
aggrejatedarrival rateis largerthanthe servicerate whentwo
or moresourcesaresimultaneousihon. In our modelthis prob-
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ability is 11/16.For thecasewhenthe servicerateis(2 + ¢), the
aggrejatedarrival rateis largerthanthe servicerateonly when
at leastthreesourcesare simultaneouslyon; the probability of
this eventis 5/16. The probability that a rate changecauses
ripple effectis muchsmallerwhenthe serviceratereachegwo
from the left andthis probability jump causesa major dropin
eventrate,whichleadsto thediscontinuity Thediscontinuityat
serviceratethreecanbe explainedvia similar alguments.

For a cyclic queueingnetwork, one would expectthat more
interactionamongflows causesmore ripple effects, resulting
in a highereventrate. To shav how differentinteractionlev-
elsaffectthefluid simulationeventrate,we extendedthe cyclic
gueueingnodelin Figure10to containsix nodes.In thesimula-
tion, we variedthenumberof queues flow traversesdecreased
theservicerateto scaletheload,andobtainedheresultsshavn
in Figure12. As expectedthe eventratesincreasesstheinter-
actionlevelincreasesq,e.,aflow traversesnorehops.Theevent
ratesalsoexhibit discontinuitiesandbehaiors asa function of
loadsimilarto thatfor the four nodemodel.

C. Resultof padeet-level simulation

A closedloop doesnot introduceary specialconsideration
into a paclet-level simulationmodel. A pacletis simply gen-
eratedat a source,traversesthroughthree queues,and leaves
the systemwithout introducingary extra eventsto otherpaclet
flows. Whenthe systemis stable,the simulationeventrateis
independentf the servicerateandlink propagatiordelay The
paclet-level simulationeventratefor the modelin Figure10is
thusfully determinedby the paclet rate of the sourceandthe
numberof nodesaflow traversesandis givenby:

e = (es + eth)Nn (6)

wheree, representshe eventrate of a singlesource;e, is the
eventrateof thequeueandary othercomponentbetweeradja-
centqueuegi.e., link, router)perflow; N, isthenumberof hops
traversedby eachflow; and V,, is the total numberof nodesin
thesystem.Thesimulationeventrateatanodeis the sumof the
eventrate of the sourcesandthe event rate of componentde-
tweenadjacennodes(e; + e,V},). Theeventrateof themodel
is justthesumof eventratesof the N,, nodes.

This formula was verified with simulationresults(not pre-
sentechere) andwasusedo plottheeventratesfory = 1,5, 10
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in Figure11. Thisyieldsacomparisorbetweerthetwo simula-
tion techniquesNoticethatthefluid simulationis moreefficient
if thepaclettransmissiomateof thesourceyy, is greatethan10.
Notethatfor a on-off paclet voice model,thetypical on period
averagedetweerD.4and1.2second$13]. Study[14] suggests
thatavoicepacketshouldbetransmittecevery 20ms,whichhas
beenwidely adoptedby mary voice applicationgools, suchas
vat[15]. Usingtheseparametersatypical valuefor the paclet
rate () is 30. For modelshaving theseparametersthe fluid
simulationis likely to be moreefficient.

D. CPUtimeversuseventrate

In orderto evaluatethe appropriatenessf our usingthe sim-
ulationeventrateasa measuref computatioreffort, theexecu-
tion times of the simulationswerecollected. In Figure 13, the
simulationexecutiontime correspondingo theeventratecurves
arepresented ComparingFigure 11, which plots eventrateas
afunctionof servicerate,with Figure13, which plotsexecution
time asa function of servicerate, we seethat both exhibit the
samebehaviors. This suggestshatthe basiceventratedefined
in Equationl is agoodmeasuref asimulations computational
costandcanbe usedto establisha comparison.

V. FLOW AGGREGATION IN FLUID SIMULATION

Theanalysisof thetandemqueuemodelin Sectionlll showvs
thattheinteractionbetweerdifferentflows cancausearipple ef-
fectin aqueueingietwork, greatlyincreasinghecomputational
effort neededy fluid simulationwhenthe network is large. A
standardnethodfor combattingthisis to isolatethe flow of in-
terestand aggreyatethe remainingflows into a singleflow. In
this sectionwe studythe effect of flow aggreyationon the sim-
ulationeventratefor both paclet-level andfluid simulationand
discusgheimplications.
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In paclet-level simulation,flow aggreyationdoesnot reduce
the numberof eventssimulated,sincethe simulatormust still
keeptrack of eachindividual paclets being generatedy the
source.lt doesnotmatterif the pacletbelonggo theaggreyated
backgroundraffic flow or to theflow of interest.In fluid simula-
tion, however, aflow ratechangecancausemary ratechangesn
otherflows - changeghatoccurat the samesimulationtime. If
theflows areaggreyatedtogetheyonly oneratechangewill oc-
cur, representinghe overall effect of theindividualratechanges
on the aggreyateflow. Figure 14 illustratesthe savings of flow
aggreation. In this example,threeflows (a1, a2, a3) arefed
into a FIFO queue. After the interactionamongthe flows at
the queue,the correspondinglepartureprocessess given by
di, ds, ds, respectiely. The aggreatedarrival processandde-
partureprocessare plotted below the individual flows. In the
figure we obsene thatthe numberof ratechangesn theaggre-
gatedarrival processs equalto the sumof theratechange®f all
theindividual arriving flows. Hence,no savings areobtainedn
the arrival procesawith sourceaggreyation. However, the total
numberof ratechangesn the departurgprocessof the individ-
ualflowsis 11, while, theaggreyateddeparturgrocessexhibits
only 3 ratechanges.Therearetwo importantfactorsthat lead
to thelarge eventratereduction.Oneis thataratechangen the
aggregatedflow mayrepresenimary simultaneousatechanges
in theindividual flows, which arecountedasonly asingleevent
in the aggreyateflow. Theotherfactoris thatafteraggreyation,
all the individual flows becomea single flow. Therefore,the
probability of meming betweerfluid chunksincreases.

To measurethe improvementsobtainedwith flow aggrea-
tion, we presentan analysisof a modelwith a singlequeuebe-
ing fed with multiple identicalon-off sourcesSincethesources
malke the samecontribution to the overall simulationeventrate
in boththeaggreyatedandnon-aggrgatedscenariosthefollow-
ing analysisonly considerghe eventrate of the departurepro-
cesses.The differencebetweerthe two caseswould be solely
dueto theflow aggregation.

Considera FIFO queuefed by N independenandidentical
Markovianon-off sourcesthe probabilitythata singlesourcels
in theonstateis @ = u/(A\+ ) andtheeventrateof eachsource
is 2Au/ (A + w). Ignoringthememing of fluid chunksandother
subtletiesintrinsic to fluid simulation[4], the eventrate of the
departurgorocesswithout flow aggreyation,denotedoy e/, can
beapproximatedy:

N 22u
Z<A+u+

=1
2
—(1- N)N
)\+/~L( a+aN)

22p
f T (N-1
e )\+N( )a)

(7)

Thefirst terminsidethe summationis the eventrategenerated
by thetransitionsof a source.The secondermaccountdor the
ratechangesn this flow causedy interferenceof otherflows.
Supposaext thatoneis interestedn the N-th flow andtreats
all theotherflows asasingleaggreyatecbackgroundraffic flow.
In this case,eachrate changeof the N-th flow may causeone
ratechangein the aggreyatedflow, andeachratechangen the
aggregatedflow may causeonerate changein the N-th flow.
Let o' denotethe probability thatat leastonesourcein the ag-
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gregatedtraffic in on; we have o’ = 1 — (1 — o)V 1. Again,
ignoring the meming of flow chunksandthe eventsdueto the
specialchunkeffect, the approximatiorfor eventratee? is:

20\u 2

A (e e ) Y

2 [/\+u PR )“]+
2\ 22,
S N -1 8
[A+u( )3T a] ®

Thetermin thefirst braclet is the eventrate of the N-th flow.
The secondtermiis the eventrate of the aggregyateflow, which
representsheotherV — 1 flows.

The above analysisindicatesthatin the worst case the event
rateincreasegjuadraticallywith the numberof sourcedeeding
the queueif the identity of eachflow is presered. With flow
aggregation,the eventratebecomedgo increasdinearly with the
numberof flows.

Simulationresultspresentedn Figure 15 shov exactly how
flow aggreationcanconsiderablyreducethe simulationevent
rate. In this simulation,the sourcesareall identical, with A =
u = 1, andpeakrateequalto 1. The servicerateof the queue
of the infinite capacityFIFO queueis 5. The two curvesin the
figure shav how the simulationeventratevariesasthe number
of identicalsourcedncreasedrom 2 to 19. Note thatthe load
increasewith the numberof sourcesandthe systembecomes
unstablewith 20 sources.

We obsene that in Figure 15 the event rate without flow
aggreyation increasegquadraticallywith the total number of
sourcesas predictedby the analysis. The eventratewith flow
aggrejationincreasedinearly at the beginning and eventually
decreaseafterthenumberof sourceseached 2. Thereasorfor
this behavior is thatasthe numberof flows aggreyatedtogether
increasesthe meging probability becomedarger andcanfur-
therreducethe eventrate. For realnetwork models the number
of flows goingthrougha queueis usuallylarge enoughthat the
flow aggreyationcangreatlyreducethe eventrateandthe exe-
cutiontime of thefluid simulator

The event rate of the paclet-level simulationfor the above
scenariais just the aggrejatedpaclet transmissiorrate of the
sources:

(9)
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wherey is the packettransmissiomatewhenthe sources in the
onperiod. Notethatthefirst termrepresentthefractionof time
the sourceis on.

While the ripple effect caninducea large numberof extra
eventsin fluid simulation, which can be prohibitive for large
scalenetwork, the flow aggreyationtechniqueprovidesan in-
strumentto reducethe effect of interactionamongflows, hence
reducingthe overall event rate. Also note that the event rate
of fluid simulation with flow aggreyation exhibits the same
asymptoticlinear behaior as paclet-level simulation. If the
pacletrate(vy) is large,thenthefluid simulationcanoutperform
the paclet-level simulationfor tandemnetwork models,which
would not be truewithout the flow aggreyation. An exampleof
this potentialis illustratedin Figure 15, wherethe aggreyated
fluid simulation outperformsthe paclet-level simulationwith
v = 20, andthe simulationwithout flow aggreyationperforms
theworst.

V1. WEIGHTED FAIR QUEUEING IN FLUID SIMULATION

All thescenariostudiedthusfar have involvedFIFO queues.
The dynamicsof FIFO queuedirectly causethe ripple effect,
which cansignificantlyincreasethe event rate of fluid simula-
tion for alarge network model. Weightedfair queueing WFQ)
[16] providesa certaindegreeof separatiorbetweerflows from
differentsourcesandwewill seethatthisseparatiomill signif-
icantly decreas¢heimpactof theripple effectin WFQ queues.
A comparisonbetweenthe fluid and paclet-level simulation
eventratesof WFQ queueingnetwork modelsis presented.

A fluid WFQseneris work conservingandoperatesitafixed
ratec. Thesenerwill thusbebusyif thereis fluid storedin any
of its subqueuesA WFQ nodeconsistof asetof K classe®r
subqueuesgachhaving the FIFO policy andbeingfed by one
or moredifferentflows. The servicerateis distributedamong
the classesaccordingto a setof positive partition parameters
{¢1, 02, -, ¢x}. Thedetailsof the dynamicsof a WFQ node
canbefoundin [17].

In a WFQ node,if the serviceratesdistributedto eachsub-
gueueis kept constant,a flow only interactswith thoseflows
thatmemge into the sameclass,insteadof all the flows arriving
atthe node. In this case,interferenceamongflows thatbelong
to different classesis eliminatedby the isolation mechanism
provided by the WFQ schedulingdiscipline. Lessinterference
amongflows in WFQ nodereducegheripple effect,andhence,
the simulationeventrate.

However, dueto thework conservingpolicy of WFQ, theser
vice rateallocatedto eachclasscanchange.Thesechangeoc-
cur when somesubqueuesequire less servicerate than their
partitionswhile othersubqueuesanusemoreserviceratethan
their partitions.Theservicerateof aclassdepend®nthesizeof
the correspondind-1FO subqueuethe fluid arrival rate,aswell
asthe queudengthof otherclassesThe dynamicsof WFQ are
illustratedin Figure16. Theweightfor eachqueuds 0.5andthe
servicerateis ¢. Initially flow 1 grabsthe entireserviceratec.
At timet; flow 2 turnson,andthetwo queuesaginto sharethe
servicerateequally resultingin adepartureatechangeor both
flows atthatmoment.Whenflow 1 turnsoff att, andits queue
emptiesat a latertime ¢3, the serviceratefor flow 2 jumpsto ¢,
resultingin afluid departureatechangen flow 2. Thisdynamic
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allocationof the servicerateis calledthe “servicerateredistri-

bution process”.Therefore a serviceratechangeof a classcan

causeratechangesiotonly on all flows in its class,but alsoon

flows currentlybeingservicedn otherclassesIn contrasto the

effect of flow isolation, the servicerate redistrikution process
actuallycausextra eventswhich contributesto thefluid simu-

lation eventrate. However, for amoderatelyjoadedWFQ node,
we expectthe impactof the servicerate redistrilkution process
notto besignificant.

As mentionedabove, theflow isolationandservicerateredis-
tribution processhave oppositeimpactson the fluid simulation
eventrate. The eventratefor a WFQ nodewill dependon how
theinput flows aredividedinto differentclassesandhow often
theservicerateis recomputednddistributedamongclasses.

Figurel7 shavsthesimulationeventrateof aWFQ nodeasa
functionof thenumberof classesn theWFQ.In thissimulation,
20independenandidenticalon-off sourcesvereusedasinput,
with A = p = 1. The peakratewhile in the on stateis v = 1.
The sourcesare equally allocatedto the classesso that each
classis fed by the samenumberof sourcesThe partition of the
servicerateis distributed equally amongthe differentclasses.
The systemload was varied by changingthe servicerate, and
loadsof 0.5,0.8. and0.9 wereinvestigated.

Note thatwhenthe numberof classess one,the WFQ node
behaesexactly the sameasa single FIFO queue. This corre-
spondsgo theleftmostpointsin Figurel?. If we chooseheload
of 0.9,theeventrateof thefluid simulationdecreaseby afactor
of 32%whenasingleclassFIFO is replacedby a 2-classWFQ
node.The eventratefurther decreaseasthe numberof classes
in theWFQ nodeincreasessinceincreasedsolationamongdif-
ferentflows diminishestheripple effect. However, asthe num-
ber of classesncreasepast7, the eventratedueto the service
rate redistribution startsto becomesignificant, increasingthe
overall simulationeventrate. Note thatfor all loads,the event
rateto simulatethe WFQ nodewith ary humberof classesijs
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alwayslessthanthe eventrateto simulatea single FIFO node
with the sameinput flows.

As expected,decreasinghe load will leadto a higherprob-
ability thatthe fluid flowing from the sourceswill passthrough
thenodewithout queueingHence lessripple effectis incurred
andthe overall fluid simulationeventrateis smaller Note that
for the load of 0.5, no queueingtakes place,sincethe service
rateis equalto sumof the peakrate of all the sources.There-
fore,thenumberof classediasnoimpactonthefluid simulation
eventrate,asobsenredin Figurel7. Theeventratein this case
is givensolely by the behavior of the sourcesandcanbe com-
putedanalytically Thus,thefluid simulationof a WFQ nodeis
likely to be moreefficient, in termsof eventrate,thanthefluid
simulationof a FIFO node,speciallyat higherloads.

For paclet-level simulation,the eventrate of the WFQ node
is given by the rateat which pacletsarrive at the node,which
is determinedby the rateat which packetsaregeneratedy the
sourcesTheisolationbetweerclassesn WFQ doesnotreduce
the paclet-level simulationevent rate. Moreover, the paclet-
level simulationeventratein this modelcanbe easilycomputed
using equation(9). The comparisonbetweenfluid simulation
andpaclet-level simulationstill depend®on thetradeofs of the
network andtraffic rate parametersespeciallyy. In Figure17
the paclet-level eventratefor v = 5,10 arepresentedo illus-
trate the tradeofs. Note that fluid simulationcan outperform
paclet-level simulationfor someparameteiconfigurations. A
guantitatve analysisof the WFQ fluid simulation event rate,
to establisha betterunderstandingf the parameterspaceand
tradeofs, is still anongoingresearchopic.

VII. CONCLUSIONS

In this paper we evaluatedthe relative performanceof fluid
simulation over paclet-level simulation by analyzingseveral
differentnetworking scenarios.The simulationevent rate was
usedasthebasicmeasuref comparisorbetweerthetwo simu-
lation techniquesTheresultsobtainedshav thatthe simulation
executiontimeis proportionato thesimulationeventrate,mak-
ing this measurdothadequatendaccurate.

An importantissueis the impactof the ripple effect on the
fluid simulationeventrate. This characteristiof fluid simula-
tion is a major contributor to the simulationeventrate, particu-
larly, in largeandcomplex models.Theripple effectis intrinsic
to fluid simulationanddoesnot appeaiin paclet-level simula-
tion. In this casethe eventrateis fully determinedy therateat
which pacletsaregenerate@ndtheir routesinsidethe network
model. Thereforetherelative efficiency betweerthetwo simu-
lation approachesdlepend<ritically ontheimpactof theripple
effectandtheratesat which pacletsaregenerated.

We have derived analyticalresultsto characterizéhe simu-
lation event rate for the tandemqueueingmodel. For all the
scenariosnvestigatedwe have provided simulationresultsand
discussedhetrendsof theeventrates.We have shovn thetrade-
offs betweenparameter®f the models,which determineghe
mostefficient simulationtechnique In generalfluid simulation
outperformspaclet-level simulationwhenthe pacletrate(v) is
large. We have alsoconsideredwo methodshatcanreducethe
impactof theripple effect, namely flow aggrgationand WFQ
policy. A fluid simulatoranda paclet-level simulatorwasde-
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signedandimplementedn orderto exploretheir functionalities
andvalidateanalyticalresults.

An alternatve approacho improve the performanceof fluid
simulationis the time-driven fluid simulationschemg18]. In
this approachthe continuoudfluid flow is discretizednto fixed
lengthof fluid chunkswhereeachchunkhasa constantateand
representsnary paclets. This discretizatioris donethroughout
the network being simulated. The simulationadwancesat the
granularity of the discretization,which can be adjustedto ac-
commodatelifferentresolutionrequirement modeling.Flow
rate changeswithin atime stepare averagedout, reducingthe
numberof rate changegesultingfrom the ripple effect. Also
the uniform discretizationinterval facilitatesparallelismin the
simulation. This schemds undegoingboththeoreticalandex-
perimentainvestigation.
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