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Noise or variabilities in speech signals take different predominant forms across

different languages. Two case scenarios are presented, one where the variability can

be solved using data-driven methods and one where an analysis-based hypothesis

is necessary. In a data-driven solution, the compensation for mismatch is solved

by supplying more data that is representative of the missing information. Such

is the case for languages that make use of code-switching, or words from another

language as a form of variability.

For noise problems requiring an analysis-based solution, the first line of defense

is with the speech features, as it represents the speech input. Because of strict

requirements in real-time processing for practical applications, the development

of speech features for automatic speech recognition systems were driven by short-

time analysis methods. A known limitation of short-time analysis is it fails to

capture fast-changing phenomena within a frame of speech as it computes a single

output representation. The limitation is further supported by the augmentation

of derivative-based features to acquire gains in performance.

As a solution, this work provides a feature extraction framework in which time-

varying features are provided that is equal to the number of samples rather than a

single representation per frame. Experiments were conducted on a highly acoustic

model dependent speech recognition task to reveal issues from analysis of results.

It is concluded that in its basic formulation, gains can be acquired by limiting

the time-varying extraction only to frames that require accurate modeling, such

as signal onsets. This finding results to hybrid systems combining time-varying

and time invariant features that can improve the baseline recognition rate for up

to an average of 2% including noisy environments.



Acknowledgements

First and foremost, all praises belong to God who has allowed me to exist and

experience His mercy and loving kindness and for touching the following people

who have helped me along the way:

I extend my deep gratitude to my adviser, Prof. Yoshikazu Miyanaga, who believed

in me and supported me as a Ph.D student in all aspects. There were so many

things that I did not fulfill as his advisee and I wish to thank him for not giving

up on my shortcomings. I also thank Prof. Hiroshi Tsutsui, who has contributed

for my professional growth by sharing his insightful comments and ideas for my

research and my academic career. I also wish to thank Prof. Kunimasa Saitoh

and Prof. Takeo Ohgane for taking time to examine the contents of this thesis.

I thank my fellow researchers from the Philippines who have also contributed to my

research on large vocabulary speech recognition namely, Prof. Rowena Cristina

Guevara, Prof. Rhandley Cajote, Prof. Joel Ilao, Mr. Michael Gringo Angelo

Bayona, and Ms. Ann Franchesca Laguna. I also wish to thank Prof. Alexander

Waibel, who allowed my use of the CMU-KIT Speech Recognition Toolkit, JANUS.

I thank the institutions that provided financial aid for my subsistence through

scholarship: our graduate school, the KDDI Foundation, and the Japanese gov-

ernment through the Ministry of Education, Culture, Sports, Science and Tech-

nology. My brothers in church, who have always extended their support in many

forms. Mr. Takashi Manase, for believing in me and trusting me by supporting

my living expenses. Mr. Xihao Sun, Mr. Thomas Jeffrey Herber, Mr. George Mu-

fungulwa, and Mrs. Yuki Maeda-Higashi who similarly lent their hands through

some financial support.

I thank our general secretary, Ms. Kyoko Ikeda for her invaluable support through

helpful reminders and correspondence for meeting submission deadlines. I thank

all the members of the Information and Communication Networks Laboratory for

the kindness and for providing a wonderful research environment. I thank all of my

friends who have shown their moral support through their messages and occasional

visits to Sapporo: Ms. Romarie Lorenzo, Ms. Grace Santos, Ms. Allia Donna Go,

Mr. Reginald Almonte, Mr. Koichi Kondo, and Mr. JP Rodriguez.

Finally, I wish to thank my family for all the love and support, and for never

questioning the path I took.

iii





Contents

Abstract ii

Acknowledgements iii

Contents v

List of Figures viii

List of Tables ix

Abbreviations x

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Background and Objectives . . . . . . . . . . . . . . . . . 3

1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 A Data-Driven Case Scenario 6

2.1 Filipino LVCSR and the Code-Switching Problem . . . . . . . . . . 6

2.2 System Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Speech Database . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 System Front-End . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.3 Acoustic Modeling . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.4 Language Modeling . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.5 Decoding Set-up and Speed . . . . . . . . . . . . . . . . . . 11

2.3 Baseline Experiments and Results . . . . . . . . . . . . . . . . . . . 12

2.4 Experiments on Code-Switching Effects . . . . . . . . . . . . . . . . 15

2.4.1 General Observations . . . . . . . . . . . . . . . . . . . . . . 15

2.4.2 Error Trends . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 The HU-SCS Speech Recognition System 21

3.1 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 System Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 The Speech Recognition System . . . . . . . . . . . . . . . . . . . . 24

v



Contents vi

3.4 Front-End Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.1 Pre-emphasis . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.2 Windowing and Power Spectrum Computation . . . . . . . . 27

3.4.3 Mel-Frequency Spectrum . . . . . . . . . . . . . . . . . . . . 28

3.4.4 DCT on the Log Spectrum . . . . . . . . . . . . . . . . . . . 29

3.4.5 Delta Cepstrum . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Acoustic Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5.1 HMM Training . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.7 Noise Compensation Techniques . . . . . . . . . . . . . . . . . . . . 37

3.7.1 Cepstral Mean Subtraction . . . . . . . . . . . . . . . . . . . 37

3.7.2 Filtering in the Modulation Spectrum . . . . . . . . . . . . . 38

3.7.3 Dynamic Range Adjustment . . . . . . . . . . . . . . . . . . 38

3.8 Problem in Baseline System . . . . . . . . . . . . . . . . . . . . . . 38

4 Feature Extraction Modifications 40

4.1 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Short-Time Speech Feature Representation . . . . . . . . . . . . . . 41

4.3 Time-Varying Linear Prediction . . . . . . . . . . . . . . . . . . . . 44

4.3.1 General Concepts and Scope . . . . . . . . . . . . . . . . . . 44

4.3.2 Estimating TV-LPC Coefficients . . . . . . . . . . . . . . . 45

4.3.3 Solving TV-LPC Coefficients . . . . . . . . . . . . . . . . . . 47

4.3.4 A Covariance Method Algorithm . . . . . . . . . . . . . . . 49

4.4 Time-Varying Cepstral Coefficients . . . . . . . . . . . . . . . . . . 51

4.4.1 Stability Issues . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5 TV-LPCC Feature Extraction . . . . . . . . . . . . . . . . . . . . . 54

4.5.1 A Running Example . . . . . . . . . . . . . . . . . . . . . . 54

4.5.2 Feature Reduction-based Models . . . . . . . . . . . . . . . 56

5 Experimental Setup 60

5.1 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Experimental Measures . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2.1 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2.2 Training and Testing Scheme . . . . . . . . . . . . . . . . . 61

5.2.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 General Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.1 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.2 Parameter Settings . . . . . . . . . . . . . . . . . . . . . . . 62

5.4 Noise Robustness Experiments . . . . . . . . . . . . . . . . . . . . . 63

5.4.1 Noisy Model Generation . . . . . . . . . . . . . . . . . . . . 63

5.4.2 Noise Compensation . . . . . . . . . . . . . . . . . . . . . . 64

6 Results and Analysis 65

6.1 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.1.1 Recognition Results . . . . . . . . . . . . . . . . . . . . . . . 65



Contents vii

6.1.2 Discussion of General Findings . . . . . . . . . . . . . . . . 68

6.2 Hybrid Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2.1 Voting-Based Models . . . . . . . . . . . . . . . . . . . . . . 69

6.2.2 Data Selective Models . . . . . . . . . . . . . . . . . . . . . 71

7 Conclusion and Future Direction 76

7.1 Summary of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.1.2 Results Summary . . . . . . . . . . . . . . . . . . . . . . . . 77

7.2 Recommendations for Future Work . . . . . . . . . . . . . . . . . . 78

A Vocabulary List 79

Bibliography 82



List of Figures

1.1 Closely sounding speech signals . . . . . . . . . . . . . . . . . . . . 3

2.1 Self- and cross-coverage plots . . . . . . . . . . . . . . . . . . . . . 10

2.2 Lattice rescoring example . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Evaluation report example . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Word error rates for the development and evaluation sets of the first
written labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Alignment during evaluation . . . . . . . . . . . . . . . . . . . . . . 20

2.6 General error trends . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Isolated-word speech recognition system . . . . . . . . . . . . . . . 24

3.2 Cepstral-based feature extraction . . . . . . . . . . . . . . . . . . . 26

3.3 Mel filterbank example . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Left-to-right HMM topology . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Illustration of Gaussian mixture modeling . . . . . . . . . . . . . . 33

3.6 Baseline system confusion matrix . . . . . . . . . . . . . . . . . . . 39

4.1 AR model for speech synthesis . . . . . . . . . . . . . . . . . . . . . 44

4.2 Pole-zero diagram of an unstable filter . . . . . . . . . . . . . . . . 54

4.3 Speech signal for TV-LPCC analysis . . . . . . . . . . . . . . . . . 55

4.4 FFT and spectral estimate from LPC . . . . . . . . . . . . . . . . . 55

4.5 Line evolution spectrum from TV-LPCC coefficients . . . . . . . . . 56

4.6 High resolution spectral estimate from TV-LPCC . . . . . . . . . . 57

4.7 Feature reduction schemes . . . . . . . . . . . . . . . . . . . . . . . 58

4.8 TV-LPCC clusters based on SPDIFF as a correlation metric . . . . 59

6.1 Effect of VAD performance to cepstrum trajectories . . . . . . . . . 68

6.2 Voting-based scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.3 Modified HMM topology . . . . . . . . . . . . . . . . . . . . . . . . 71

6.4 Experiment on closely sounding words using 32-state HMM . . . . . 71

6.5 Experiment on closely sounding words using 16-state skipping HMM 72

6.6 Voting-based system . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.7 Near sounding word recognition as a function of number of frames
used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.8 Split signal data-selective model scheme . . . . . . . . . . . . . . . 74

viii



List of Tables

2.1 Filipino speech data statistics . . . . . . . . . . . . . . . . . . . . . 8

2.2 Feature extraction summary . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Language model perplexities on test set . . . . . . . . . . . . . . . . 11

2.4 Best WERs of Filipino ASR system from successive label writing . . 14

2.5 Updated performance of trained systems (WER) . . . . . . . . . . . 15

2.6 Average relative percentage of word types to insertions and dele-
tions (pre-filtering) . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Average absolute percentage contributions to WER (in parentheses)
of Tagalog versus loan words (development set only) . . . . . . . . . 16

2.8 Substitution error types and trends in order of relative frequencies
of occurence (pre-filtering) . . . . . . . . . . . . . . . . . . . . . . . 17

2.9 Ratio of utterances with and without specific language conditions . 18

2.10 Ratio of number of reference words per set . . . . . . . . . . . . . . 18

2.11 WERs of specific language condition sets in the pre- and post-
filtering stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.1 Speakers used for cross-validation . . . . . . . . . . . . . . . . . . . 61

5.2 System summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 NOISEX noise types . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.4 Reduction in accuracy rates for frequency-weighted mixing of noise
(negative values indicate improvements) . . . . . . . . . . . . . . . 64

6.1 Average results for clean experiments . . . . . . . . . . . . . . . . . 65

6.2 MFCC baseline (male) . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.3 MFCC baseline (female) . . . . . . . . . . . . . . . . . . . . . . . . 66

6.4 TV-LPCC skipping (male) . . . . . . . . . . . . . . . . . . . . . . . 66

6.5 TV-LPCC skipping (female) . . . . . . . . . . . . . . . . . . . . . . 67

6.6 TV-LPCC averaging (male) . . . . . . . . . . . . . . . . . . . . . . 67

6.7 TV-LPCC averaging (female) . . . . . . . . . . . . . . . . . . . . . 67

6.8 Average results for voting-based experiment . . . . . . . . . . . . . 72

6.9 Average results for hybrid experiments . . . . . . . . . . . . . . . . 75

ix



Abbreviations

AR AutoRegressive

ARMA AutoRegressive-Moving Average

ASR Automatic Speech Recognition

CMN Cepstral Mean Normalization

CMS Cepstral Mean Subtraction

CV Consonant-Vowel

CVN Cepstral Variance Normalization

DCT Discrete Cosine Transform

DMP Discrete Markov Process

DRA Dynamic Range Adjustment

FIR Finite Impulse Response

FSA Feature Space Adaptation

FT Fourier Transform

GMM Gaussian Mixture Model

HMM Hidden Markov Model

HU-SCS Hokkaido University Speech Communication System

IDFT Inverse Discrete Fourier Transform

x



Abbreviations xi

IFT Inverse Fourier Transform

LM Language Model

LDA Linear Discriminant Analysis

LPC Linear Predictive Coding

LPCC Linear Predictive Cepstral Coefficients

LVCSR Large Vocabulary Continuous Speech Recognition

MFCC Mel-Frequency Cepstral Coefficients

OFS Optimal Feature Space

OOV Out-Of-Vocabulary

PARCOR PARtial CORrelation

PLP Perceptual Linear Prediction

RASTA RelAtive SpecTrA

ROVER Recognizing Output Voting Error Reduction

RSA Running Spectrum Analysis

RSF Running Spectrum Filtering

SNR Signal-to-Noise Ratio

SS Spectral Subtraction

STC Semi-Tied Covariance

TV Time-Varying

VAD Voice Activity Detection

VC Vowel-Consonant

VTLN Vocal Tract Length Normalization

WER Word Error Rate



Chapter 1

Introduction

Speech communication is a very important aspect of human interaction, as it is the

way for people to establish social bonds, express ideas, and exchange information.

With the advent of technological advancement, it is only but natural for humans

to attempt developing automated systems and applications that would enable

computers to mimic, or even do something more efficient than, what humans can

do when they perceive speech. This is the goal of the field of automatic speech

recognition or abbreviated as ASR.

1.1 Motivation

Speech recognition system development during its earlier days were guided by re-

search that is coupled by multidisciplinary collaborations, making use of human

perception as a guide for modeling speech processes. As time passed, as devel-

opments were being made to speech recognition systems with varying degrees of

complexity, certain limiting aspects of development became widespread as dic-

tated by the technologies that were proven effective in driving the improvements

in performance. For example, current speech recognition technology relies on data-

driven methods of machine learning and many are convinced that speech database

quantity and quality have big roles to play in speech recognition system develop-

ment. While data-driven approaches are gaining popularity due to improvements

in processing technology, which enabled complex artificial neural networks and

1



Chapter 1. Introduction 2

deep learning methods, theory-driven analysis can help in the aspects of refining

the limits and boundaries of complex systems.

The same situation can be said about the use of well-established speech feature ex-

traction methods. The Mel-frequency cepstral coefficient or MFCC, for example,

became a staple in most commercial ASR systems and considered as a practical

choice for most development. The work in this thesis is motivated by certain

shortcomings of the MFCC, specifically when used in a limited architecture, using

whole-word hidden Markov model (HMM) units that is suitable for small-scale

ASR hardware design. This defect of the MFCC is due to the quasi-stationary

assumptions imposed by short-time processing that is inherent in most percep-

tually motivated feature extraction methods. This is also supported by the fact

that the use of MFCC from word-level to continuous speech recognition is always

accompanied by the computation of differentials, reflecting dynamic information

in transitions. To be able to capture CV or VC transitions in the spectral domain

is an important aspect of speech modeling since it often defines the difference of a

word from other words. The differences, however, cannot be easily detected from

the temporal signal.

Take for example, the two speech signals shown in Figure 1.1. The uttered words

in these two signals are “genki” and “denki” in Japanese. If the signals shown in

the bottom graphs of the figure are to be processed by a nonstationary method,

the fast changing phenomena that defines the difference between the two words

will be lost. This stationary assumption is relaxed when the underlying speech

model of the features is allowed to be nonstationary, effectively capturing transient

parts of the speech signal that often differentiates the words being recognized.

Aside from the effectiveness of the time-varying speech feature as a speech model

representation, the inherent robustness to speech variability is also a main con-

cern [1]. In the literature, modeling the nonstationarity of speech signals is already

considered as a way to address variability [2, 3]. Other research delved on the use

of feature compensation techniques where mismatches in training and testing data

are analyzed and resolved. Some of these techniques are already considered as sta-

ple in the speech recognition field and their interaction with the proposed speech

features will also be investigated in this thesis. Another motivation for this re-

search is that the use of time-varying speech features also falls in between the
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Figure 1.1: Closely sounding speech signals “genki” and “denki” and onsets.

concept of additional cues and features for enhancement coupled with dimension-

ality reduction and feature selection. This is because time-varying techniques are

considerably high in resolution compared to the time-invariant counterparts.

1.2 Research Background and Objectives

The research work done in this thesis is based on an on-going collective research ef-

fort aptly called the Hokkaido University speech communication system (HU-SCS)

[4], which aims to continuously develop and improve speech communication tech-

nologies. This system integrates speech detection, robust speech analysis, speech

recognition, and speech rejection to create practical systems that can be imple-

mented on hardware. In its current stage of development, it has already released

consumer electronics that utilize these speech technologies under the guidance of

fast and low power hardware design [5]. Through this, the position of this thesis in

the entire speech recognition field can be clarified through the limitations imposed

by the target speech recognition system. In particular, the enhancements that

the work in this thesis aims to show is only signal-based and will not affect the

computationally efficient hardware design that is already in place.

It is the concern in the research done for this thesis that the current state of

isolated-word, ASR development be pushed on one side of its field. It is concerned

with presenting theoretical and experimental details on the use of time-varying

speech features, specifically for enhancing speech recognition system performance
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under noisy conditions. By noise, it only does not mean noise associated with

the speech production mechanism of humans, but also external factors and overall

variability in speech production, acquisition, processing, and storage [2]. Although

these variabilities are not targeted individually, the aim for development is to test

for the inherent robustness of the speech feature when the overall variability is

lumped together at the recognition stage. Because of this aim, the target platform

will be a speech recognition system whose performance is highly dependent on the

accuracy of the speech features, which represent the speech model.

The following are the objectives for undertaking this thesis:

1. To highlight the different approaches to dealing with speech variability for

speech recognition by providing test case scenarios.

2. To illustrate the problems inherent in using stationary speech features in a

practical setting.

3. To present a practical approach in applying time-varying speech feature ex-

traction methods for speech recognition systems and determine possible ways

of using these features.

4. To investigate the performance of time-varying LPC-based features under

different noise conditions. This is due to the lack of experimental findings in

the subject. Most time-varying speech modeling applications are concerned

with spectral estimation and in solving the underlying problems of the model

itself, and experimental findings for speech recognition are few.

5. Present a working isolated-word speech recognition system that makes use

of time-varying speech features and prove its model to be effective.

1.3 Thesis Organization

Chapter 2 first provides a different test-case scenario that highlights the common

approach to dealing with errors in speech recognition. This chapter showcases the

development of a large vocabulary continuous speech recognition (LVCSR) system

where typically, data-driven methods are used. The discussion in this chapter will
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serve as a contrast to an analysis-based method that will become the main focus

of the thesis.

Chapter 3 gives an overview of isolated-word speech recognition systems. It hinges

on the common notion that speech recognition systems are highly application

dependent. The aim of this chapter is to present the baseline architecture of

the isolated-word speech recognition system that serves as the backbone for the

analysis-based focus of this thesis. While discussing the building blocks of the

speech recognition system, it is also an opportunity to differentiate the techniques

used in other systems in the literature. Thus, this chapter will also be a review

of the fundamentals in ASR while highlighting the limits of the baseline system.

However, procedures that only apply to continuous speech are only mentioned

slightly and will not be discussed in detail, unless the adoption of techniques

introduced in this thesis will immensely affect the said procedures for continuous

speech. Aside from discussing the details of the working architecture, this chapter

also summarizes the evaluation efforts and the currently known performance of

the said baseline system. This allows for a shift of the discussion to the existing

problems and the proposed solution, which will be the subject of the succeeding

chapter.

Chapter 4 details the ideas and adoption of several methods that leads to the use

of the proposed time-varying speech features. The various implementations based

on different criteria will also be discussed, as well as possible issues, used solutions,

and justifications that were made.

Chapter 5 deals with the practical aspects of setting up the experimental environ-

ment for conducting the evaluation of the different models. This includes system

configuration parameters, details of the database and its division, and creation of

noisy models for robustness tests. Confidence measures and evaluation metrics, as

well as bias-variance considerations are discussed in this chapter.

Chapter 6 presents the results of the experiments and model selection procedures

made. Post-experiment analysis and additional work are also discussed in this

chapter.

Chapter 7 concludes the thesis with a summary of results, contributions, and

recommendations for future work.



Chapter 2

A Data-Driven Case Scenario

2.1 Filipino LVCSR and the Code-Switching Prob-

lem

LVCSR research for Filipino, the official language of the Philippines, can be con-

sidered as relatively few in the speech recognition literature [6]. One possible

reason is the lack of interest due to its ongoing state of standardization and in-

tellectualization that in order to develop a system, researchers will be forced to

rely on statistical information and base the description of Filipino on what is in

widespread use. While a Filipino speech database has been collected in the past for

the purpose of speech recognition[7], a large percentage of its contents was found

to be pure Tagalog, the former national language. This is due to the fact that

Tagalog and Filipino share identical grammar based on linguistic rules[8]. This led

to a degradation in the recognition performance when actual Filipino sentences are

spoken. Practical Filipino sentences as input degrades the performance of older

systems by 40-50%. Thus, there is a need for a development of a Filipino ASR

system that reflects the true character of the language. For one, the Philippines

is well-known as an English-speaking nation. Most Filipinos speak English as an

additional language for daily, casual conversations.

In linguistics, using two or more languages in the context of a single conversation

is commonly known as code-switching. In the context of speech recognition, this

6
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means that all frequently used English words must be added in the lexicon and

that the language model must accommodate the probabilities for these words as

well. Thus, addressing code-switching in Filipino ASR is to deal with the combined

problems and inherent suboptimalities of the two languages involved. As there ex-

ist no established evaluation results for this type of speech recognition task, this

research was initiated, including the parameters and settings that come with data-

driven development. As with other published research on Filipino ASR[9–11], the

work outlined in this chapter is by no means exhaustive. Details of the text data

for language modeling were also evaluated, avoiding the data sparsity and bias

issues previously reported using an older Filipino database[12].

2.2 System Parameters

For the evaluations to follow, an explicit analysis of the ASR channel conditions

was not considered. Thus, there is a need to clarify the parameters and the

dimensions of the system.

2.2.1 Speech Database

About 15000 prompts that contained Filipino isolated words, phrases, and sen-

tences were used as reading materials. Spontaneous speech were also recorded

where the speakers were asked about several random topics. The transcriptions

for these were manually made with the help of native speakers. All other prompts

are automatically associated as the transcripts of the generated recording file.

The prompts were taken from a variety of sources with different domains, ranging

from news, literary works, daily and situational conversations. These were either

downloaded from the internet or taken with permission from digital publications.

Spontaneous speech was also recorded at the end of each session. No considera-

tion for phonetic balancing was made in order to reflect the inherent nature of the

texts. Each utterance recorded is limited to a span of one minute.
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All speech data were recorded at a high rate and down-sampled to 16-kHz, at 16-

bit resolution per sample in a single channel. Two set-ups were made, depending

on whether the activity was done in the lab or off-site. Recordings inside the lab-

oratory were done inside a pseudo-anechoic chamber while the off-site recording

required a much simpler set-up, involving only a headset directly connected to a

laptop. About 30% of the recordings were made under moderately noisy environ-

ments (between 15 and 20 dB SNR) for noise compensation.

Because the speech corpus and the recognition system were simultaneously being

developed at the start of the research, only a subset of the speech corpus described

was used. This subset contains An additional set of 25 male and 25 female speakers

were added later due to a large number of overlapping prompts in the original

set. To compensate for moderately noisy environments, additional speech data

containing such channel conditions were used. These additional data consisted of

25 male and 25 female speakers. These data were also collected due to a large

number of overlapping prompts in the original set. A summary of the resulting

division for the development, test, and evaluation sets is given in Table 2.1.

Table 2.1: Filipino speech data statistics

Training Testing Evaluation Total

Speakers (unique) 146 (144) 5 5 156 (154)
Utterances 33,340 1,525 1,527 36,392

Prompts covered 12,474 1,498 1,509 15,481
Words 375,039 19,961 19,100 414,100

Vocabulary 14,461 4,384 4,163 15,673
Duration in hours 54.9 2.8 2.8 60.6

2.2.2 System Front-End

The set-up for feature extraction is summarized in Table 2.2. The computation of

derivatives for temporal dependency before linear discriminant analysis (LDA) is

done via a linear transformation using 15 frames around the current frame. Vocal

tract length normalization (VTLN)[13] is also applied on a per speaker basis as

an enhancement.
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Table 2.2: Feature extraction summary

Features Mel-Frequency Cepstral Coefficients
Frame length 16msec

Overlap length 6msec
Mel-filters 30

Normalization Mean, variance
Pre-LDA dimension 240
Post-LDA dimension 48

VTLN linear domain

2.2.3 Acoustic Modeling

Our system is HMM-based (three-state Bakis model) and only fully continuous

systems are considered. The distributions were trained using recursive Gaussian

splitting [14] with a maximum of 64 Gaussians, and improved by a variant of semi-

tied covariance (STC) [15] training called optimal feature space (OFS) training.

This latter training results in a global invariant transformation matrix [16] that

incorporates the LDA matrix computed previously. We bootstrapped a small

English seed model and used it to generate initial labels for the training data. A

context independent system was trained and used to bootstrap a quintphone-based

context dependent system. There were 54 manually-created classes for the phone

set for state tying.

2.2.4 Language Modeling

Before actual language modeling was done, some analysis were made via scripting.

Aside from the sparsity of the training text due to the overlapping utterances

across speakers, it was also observed that training text for language modeling

cannot be included because of its high correlation to the testing set utterances.

We prepared subsets of texts from the remaining prompts not covered by the

database then correlated the texts to the test corpus via a maximum likelihood-

based weighted interpolation scheme. For all cases, the training corpus constitutes

the mixture by 99%. Because of this, the training set was instead considered as

the heldout set. After removing the overlaps with the testing set, it was used as

the tuning set for LM training. Due to the high correlation of the training text to

the test set utterances, three different text sets obtained from the internet through
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a crawler were prepared for the experiments. Figure 2.1 shows how the self- and

cross-coverage of the training set are very close to each other while the texts from

the crawler are more variable. Note that for the vocabulary of the corpora from

the internet of 360k words, the OOV rate for the test set was still at 3.44%.
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Figure 2.1: Self- and cross-coverage plots of the training (train) set and the
13 Million (crawler) words set to the test set.

The vocabulary for the LMs was generated by taking the most frequent words

from the corpora using the crawler before a cutoff and crossing it with the words

from the training set. This provided a 10.5k vocabulary, with an OOV of 5.45%

when compared to the vocabulary from the test corpus.

Using the three subcorpora from the web, 4-gram back-off and interpolated models

for several smoothing techniques [17–22] were generated. For each smoothing

algorithm, the three LMs P1(w|h), P2(w|h), and P3(w|h) were combined linearly
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to generate an interpolated model P (w|h). This was done linearly via

P (w|h) = λ1P1(w|h) + λ2P2(w|h) + λ3P3(w|h) (2.1)

where interpolation weights λ1, λ2, and λ3 were chosen to maximize the likelihood

of the tuning set. After generating all models, the one that minimizes the per-

plexity over the test set was picked. Table 2.3 shows the results of the training.

While differences are subtle for most cases, it is clear that the modified Kneser-

Ney algorithm still gives the lowest perplexity. However, while most systems get

better results from interpolated n-gram models, ours got better perplexities from

the simple back-off models.

Table 2.3: Language model perplexities on test set.

Smoothing Back-off Interpolated

Natural (Ristadt) 341.24 –
Good-Turing/Katz 272.52 –

Witten-Bell 268.48 369.14
Absolute (Ney) 267.75 375.48

Orig. Kneser-Ney 267.73 294.68
Mod. Kneser-Ney 266.94 279.66

2.2.5 Decoding Set-up and Speed

Lattice rescoring (Figure 2.2) based on language model weight z and word transi-

tion penalty p variations is done to search for the necessary statistical correction

for the combined acoustic and language model (log) scores:

P (W |X) = P (X|W )P (W )zp|W | (2.2)

where P (X|W ) is the acoustic model probability, P (W ) is the language model

probability, and |W | is the length of the utterance. The standard Word Error

Rate (WER) is used to evaluate all systems. An example evaluation report is

shown in Figure 2.3.

Decoding parameters such as beam settings were heuristically determined from

previous experiments that balance recognition accuracy and speed. Feature Space

Adaptation (FSA) [23] was applied in decoding based on empirical results where



Chapter 2. A Data-Driven Case Scenario 12

it consistently gives significant improvements to our systems. The gain for this

advantage, however, was inversely proportional to system improvement. The speed

of our tool’s single pass decoder [24] is at a real-time factor average of 0.13 and

0.21 using the best decoding parameters, for context-independent and context-

dependent systems respectively, using a 3.6-GHz Intel Core i7-3820 computer.

This fast decoding enables us to use the systems for real-time applications.

2.3 Baseline Experiments and Results

The bootstrapped model was evaluated on the test set and initial results were at

51.5% and 58.6% WER, for the FSA-based and non-FSA decoding respectively.

From successive evaluations it was observed that using FSA gives around 3% aver-

age advantage over its non-FSA counterpart. A set of recognition scores from the

first labeling epoch are given in Figure 2.4 for both development and evaluation

sets. From this set of results, seven Viterbi iterations were decided for succeeding

evaluations. In the next set of tables, only FSA-based results are shown. Table

2.4 summarizes the results of the successive label writing procedure done using

the development training and test sets under a comparable set up of seven Viterbi

============================================================

SUMMARY - WER (del,ins)

============================================================

LV : 30.6 (2.3, 7.3)

FINIS : 26.4 (2.5, 5.5)

CONS_ALL: (, )

lz\lp 20 25 30 35

20 28.0(2.6 5.9) 27.9(2.9 5.4) 27.9(3.2 5.2) 27.8(3.5 4.8)

25 26.8(2.6 5.4) 26.8(2.9 5.0) 26.9(3.2 4.8) 27.0(3.5 4.5)

30 26.2(2.7 5.2) 26.2(2.9 4.9) 26.3(3.2 4.6) 26.4(3.4 4.5)

35 26.1(2.8 5.0) 26.1(3.0 4.8) 26.1(3.2 4.6) 26.1(3.4 4.4)

40 26.1(2.9 5.0) *25.9(3.1 4.7) 26.0(3.2 4.5) 26.1(3.5 4.4)

45 26.0(2.9 4.9) 26.0(3.1 4.8) 26.0(3.3 4.6) 26.0(3.4 4.5)

50 26.1(3.0 4.9) 26.1(3.2 4.8) 26.1(3.3 4.6) 26.1(3.4 4.5)

Figure 2.2: Lattice rescoring example
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DETAILED OVERALL REPORT FOR THE SYSTEM: H_35_40_*_*.ctm

SENTENCE RECOGNITION PERFORMANCE

sentences 813

with errors 70.4% ( 572)

with substitions 66.8% ( 543)

with deletions 19.4% ( 158)

with insertions 31.5% ( 256)

WORD RECOGNITION PERFORMANCE

Percent Total Error = 27.7% (2035)

Percent Correct = 77.8% (5721)

Percent Substitution = 19.1% (1407)

Percent Deletions = 3.1% ( 227)

Percent Insertions = 5.5% ( 401)

Percent Word Accuracy = 72.3%

Ref. words = (7355)

Hyp. words = (7529)

Aligned words = (7756)

Figure 2.3: Evaluation report example

iterations.

For the context-dependent system, variations were made on the number of distri-

butions. As can be observed, for both cases the best results were achieved from the

second writing of labels and performance degrades after subsequent writings. After

further viterbi training, the lowest WER of 30.0% and 21.7% were achieved for the

context independent and dependent systems, respectively. It is worth noting that

the variations made do not have any large impact on the real time performance of

the system.

Table 2.5 shows the summary of the performance of the best trained systems and

further enhancements to both the test and evaluation sets. From these results the

reliability of the performance to unseen data can be deduced as the evaluation

results are fairly consistent. Context-dependence gives a huge average advantage
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Figure 2.4: Word error rates for the development and evaluation sets of the
first written labels.

Table 2.4: Best WERs of Filipino ASR system from successive label writing.

Context-independent Context-dependent
Labeling epoch LDA only OFS 2000 3000

1 34.8 31.5 22.5 20.7
2 33.8 30.1 22.2 20.5
3 34.0 30.3 22.3 20.7
4 34.3 31.0 22.7 20.9
5 34.4 31.0 23.4 21.2
6 34.6 30.7 23.7 21.4
7 35.0 30.9 24.1 21.9

of around 11%. VTLN, manual corrections of lexical entries and post-filtering of

evaluation hypotheses based on frequency errors bring down the WER at a current

best performance of 25.3% for the evaluation set. The mappings in the post-filter

were decided based on initial substitution error reports. Included in the mapping

are the following:
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1. Words in Tagalog that are closely pronounced to their English counterparts

are mapped to English.

2. Most common spelling variants are mapped to a single consistent spelling.

3. Affixated words with simple root extraction (e.g. pinaka + [adjective]) are

separated from their affixes. Cases of infixes and more complex inflections

are not touched.

4. Contractions are expanded.

Table 2.5: Updated performance of trained systems (WER)

Description Test Eval

Context-independent 30.0 35.3
Context-dependent 21.7 27.0

VTLN 21.0 25.9
Manual corrections 20.5 25.3

2.4 Experiments on Code-Switching Effects

2.4.1 General Observations

Using the system that generated the best performance from Table 2.5, the results

of the scoring were analyzed. On average (development and evaluation sets), the

distribution of substitutions, insertions, and deletions are roughly at 70%, 15%,

and 15%, respectively. A summary of average relative contributions of different

word types for insertion and deletion errors can be found in Table 2.6. Note that

because there are certain words that can be considered as both a Tagalog or an

English word, the total when added up exceeds 100%. Error analysis reports cur-

rently do not provide the context of the error occurrence. Based on this summary,

loan words contribute up to 26.7% of insertion and deletion errors, which is about

7.8% of the total WER.

The best system with the first FSA-based baseline system were then compared in

terms of the absolute contribution of loan words to the WER. From Table 2.7,
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Table 2.6: Average relative percentage of word types to insertions and dele-
tions (pre-filtering).

Insertions Deletions

Tagalog 74.6 82.9
Loan words 34.5 17.9
Acronyms 0.6 4.0
Nonspeech 1.1 1.0

the data-driven approach solved roughly 44.8% and 6.6% of the contributions of

Tagalog and loan words to WER, respectively. For these systems, this is a 3%

absolute increase in accuracy for loan words. This is based on a database that

contains 20% of loan words in the lexicon and roughly 40% in the actual prompts.

Table 2.7: Average absolute percentage contributions to WER (in parenthe-
ses) of Tagalog versus loan words (development set only).

Baseline (51.5%) Best System (22.9%)

Tagalog 40.1 17.0
Loan words 10.4 7.0

2.4.2 Error Trends

Aside from the fact that the majority of errors are substitution types, the fre-

quency of occurrence and the acoustic relationship between error pairs give more

meaningful insights. Based on the evaluations, six major trends of substitution

errors were defined. The rank and relative contributions of these are summarized

in Table 2.8. From this table, substitution errors that contain loan words on aver-

age contribute roughly 7.4% to the total WER. Notable trends in the errors that

cannot be simply solved using post-filtering of the hypotheses are mostly morpho-

logical in nature. A majority of similar onset errors contain suffixations of -ng to

nouns that do not contain them (e.g. ano becomes anong). There is also a preva-

lence of reduplication of initial and middle syllables for verbs (e.g. inisip becomes

iniisip). Homonyms are mostly concentrated on loan words and can be attributed

to poor coverage of the language model. Homonyms can also span more than a

single word. Several examples in Tagalog are: naaakyat (possible to go up) vs.
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na aakyat (that is going up), naman niyang vs. naman ’yang (these are of dif-

ferent meanings). Orthographical errors due to spelling variants can be alleviated

by creating post-filters that can assign a single reference word to multiple entries

that have the same connotation. Miscellaneous errors come from acronyms and

non-speech sounds.

Table 2.8: Substitution error types and trends in order of relative frequencies
of occurence (pre-filtering).

Description Frequency Example

Tagalog-Tagalog 65.5 mula vs. wala
Tagalog-Loan 22.0 atensyon vs. retention
Loan-Loan 14.0 adjust vs. jazz

Similar ending 14.4 wrap vs. sarap
Similar onset 12.9 akin vs. aking
Homonyms 9.6 bakit vs. bucket

Different middle 4.5 buto vs. boto
Orthographical 3.6 kaunti vs. konti

Others 3.2 T.V. vs. T.B.

To further investigate the nature of the errors, the decoding of the test set ut-

terances were divided based on some criteria. For code-switching, a list of loan

words were used to flag each utterance. However, utterances with mere proper

noun usage are not considered as a switch. Flagging of utterances with inflections

is based on the 80 known affixation rules in Filipino. Particles usage is based on

the following words: na, pa, man, nga, din/rin, lang, naman, daw/raw, po/ha, ba,

pala, muna, yata and some cases of kaya, tuloy, kasi, sana. For flagging usage of

non-standard orthography, the results from [25] were used for the list of spelling

variants. However, the counts were not explicitly included due to the fact that

almost all utterances were being included in the set and those being left out from

the smaller set are very short phrases. Tables 2.9 and 2.10 give us the result of

these counts.

We used the optimal setting for the development set to evaluate all the divided

sets. Table 2.11 shows the achieved WERs with and without post-filtering. It

is evident that post-filtering the hypotheses gives an average of 0.62% absolute
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Table 2.9: Ratio of utterances with and without specific language conditions.

Set Condition Train Dev Eval

All utterances 33340 1523 1529
Code-switching 7308 : 26032 552 : 971 560 : 969

Inflections 26886 : 6454 1194 : 329 1205 : 324
Particles usage 17458 : 15882 766 : 757 774 : 755

Table 2.10: Ratio of number of reference words per set.

Set Condition Dev Eval

All utterances 20272 19406
Code-switching 11804 : 9669 10131 : 10460

Inflections 18341 : 2730 17635 : 2763
Particles usage 14180 : 7209 13280 : 7355

improvement for all systems. Based on these results, the following observations

were made:

1. Generally speaking, around 20% average absolute contribution to the WERs

come from uncorrected human errors in the data both from the recordings

and the transcriptions, differing accents, and those enumerated in Table 2.8.

2. For code-switching, despite utterances flagged as non-switching being higher

in number, it achieved a lower WER due to a lesser number of loan words.

Loan words contributed about 6.4% and 0.5% average absolute WER to the

switching and non-switching sets, respectively.

3. Utterances with inflections had the highest gain from post-filtering due to

the large contribution of Tagalog words. Some inflected words still con-

tributed around 1.82% and 0.73% average absolute WER to the respective

cases. These generally come from inflected reference words with reduplicated

middle syllables substituted with no reduplication (e.g. makakaramdam vs.

makaramdam). Note however that 9% absolute WER for utterances without

inflections come from loan words.

4. The 1.5% average relative advantage of utterances without particles and

auxiliary words mostly come from loan words and the general errors. The

average absolute contributions of the particles to the WERs are at 0.85%

and 0.26%, respectively. Note the difference in number of reference words.
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Table 2.11: WERs of specific language condition sets in the pre- and post-
filtering stages.

Pre-Filtering Post-Filtering
Condition Dev Eval Dev Eval

All utterances 21.0 25.9 20.5 25.3
Code-switching 24.2 : 17.7 29.7 : 22.8 23.7 : 17.1 29.0 : 22.2

Inflection 20.0 : 31.0 24.9 : 35.0 19.1 : 30.4 24.1 : 34.4
Particles usage 20.9 : 22.0 25.7 : 27.6 20.3 : 21.5 25.0 : 27.1

Finally, the quality of the context-dependent models being generated was investi-

gated through the reports generated by the scoring toolkit. For example, as can

be seen in Figure 2.5, statistics of phonetic replacements can be inferred. Due in

part to the large number of context-dependent models and the influence of the

language model, our analysis was based on the recognition of the training set itself

and the language model scores were discounted from the decoding. Not surpris-

ingly, as was observed from the pre-analysis stage of our development, n and N

are the most misrecognized. As for vowels, the o and u sounds are the most in-

terchanged. For our systems, solving the distinction problem between n and N

can provide around 3.84% absolute increase in recognition accuracy. The vowels

u and o accounts for 2% of our systems WER. All other phones are of average

contributions to the error. Some however are insignificant in contribution due to

underrepresentation. These phones are (in increasing order of representation): z,

ñ, T, l
"
, D, and ⁀dZ (using IPA symbols). This reflects a subset of the loan words

that is accountable for almost 6% of our system’s WER. A graph on Figure 2.6

showing specific trends accounting for more than 4% of the average error is also

provided as a clearer reference for the limitation of the system.

2.5 Summary

After several training and enhancements, a lowest word error rate of 20.5% was

achieved, using a context-dependent system that can still perform in real time.

This is at par with the highest reported accuracy for Filipino speech, notwith-

standing the fact that our system allows for code switching that contributes con-

siderable difficulty in the recognition. The open-domain language model, speaker-

independent acoustic models, and near 80% word recognition accuracy, all point
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id: (Suppressed)

Labels: <o,f0,female>

File: (Suppressed)

Channel: 1

Scores: (#C #S #D #I) 6 5 1 4

REF: aalamin KO lamang ANG kaniyang VITAL signs at ****** ** ...

HYP: aalamin PA lamang *** kaniyang BAITANG signs at MONTHS AS ...

Eval: S D S I I ...

REF: KO VITAL MAGSAGAWA ...

HYP: PA BAITANG MONTHS AS ...

Eval: S D S I I ...

REF: K OX V AX Y T AX XL M AX G S AX ...

HYP: P AX B AX Y T AX NG M AH N TH S AX S AX...

REF: K OX V XL AX G ...

HYP: P AX B NG AH N TH S ...

S S S S S S I I ...

Figure 2.5: Alignment during evaluation

Train Dev/Eval

Expected Vowel Interchanges (i/e, o/u)

Nasal (ng,n,m,l

Loan Word Vowels

Glides

Plosives (p,t,g,k)

25.12%

26.34%

7.7%

34.96%

5.88%

27.41%

26.54%

6.71%

29.83%

9.51%

Figure 2.6: General error trends

towards the possibility of using it for practical purposes.



Chapter 3

The HU-SCS Speech Recognition

System

3.1 Chapter Overview

Automatic speech recognition (ASR) is a technology that allows computers to

make sense of human speech as inputs to a machine. This technology helps ma-

chines in converting human speech into a machine-readable information that can

be further processed to do useful tasks. Nowadays, there are many applications

that make use of ASR such as hands-free (voice-operated) controllers, automatic

dictation software, and voice-controlled personal assistants in smartphones.

Despite the many useful applications, ASR is a difficult problem because it has to

deal with different situations that are often not governed by strict rules. There-

fore, before undertaking any study related to ASR, one has to define the target

dimensions of the application.

Several approaches to obtain speech features are available in the literature. The

three most popular are the Mel-frequency cepstral coefficients, perceptual linear

prediction coefficients, and the linear predictive coding cepstral coefficients. The

speech features used by the baseline system is the MFCC and its inner workings

are explained in this chapter.

To utilize the speech feature representation that is extracted from the speech

signal, an acoustic modeling block is necessary. The most popular of which is

21
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the hidden Markov modeling approach because it is extensively used for time-

varying phenomena. For speech recognition applications, an additional modeling

procedure called Gaussian mixture modeling is applied to the framework of HMM

because the observable events from the speech features are continuous and multi-

dimensional in nature. Training and usage of the HMM model is explained as the

baseline system makes use of it.

For any speech recognition to be of practical use, some form of noise robustness

must be present in the system especially for environments with under 20 dB of

signal-to-noise ratio present[1]. While there are many techniques in the field,

those that were employed for the baseline system are those techniques that solves

for training and testing mismatch, called feature compensation methods. These

techniques are explained and discussed in detail, as they are also used for this

thesis.

Finally, the chapter ends with a discussion of the current performance of the base-

line system including an exposition of the problems that triggers the motivation

for this thesis.

3.2 System Dimensions

Aside from the fact that the field of ASR is multi-disciplinary, focusing the atten-

tion to different possibilities for the target task makes it a very broad topic. At

the onset, one can talk about the following different dimensions for a given task:

• Target Language. Different languages have different characteristics that

can manifest in the speech signals. Tonal languages like Chinese and Thai

require more sophisticated acoustic modeling while there are certain nuances

available only to some specific language. Language models can also depend

largely on the language used and specific techniques can be applied.

• Recognition Task. Tasks can range from isolated word recognition to

keyword spotting to continuous speech. Even these choices can branch to

different conditions for the task depending on the application. For example,

techniques that apply to read speech may fail when used for spontaneous

speech.
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• Vocabulary Size. The words that need to be recognized can range from a

few tens to more than 100,000 words.

• Target Users. Embedded in the concept of acoustic modelling is the choice

of whether models are generated separately for specific categories such as

age, gender, voice type, etc. A more challenging problem is that of speaker-

independent modeling where a global model is used for any user of the sys-

tem.

• Expected Topic. Depending on the task, developers may limit the models

by considering the expected topic. Some can make more general models by

allowing a degree of freedom for new words to be recognized.

• Availability of Data. A very important issue in developing ASR systems

is that of whether the system is data-driven or not. A data-driven approach

relies on the availability of training data for modeling. Recently, however,

there is an increasing interest in developing methods for insufficient data.

• Channel Conditions. A natural consequence of having different tasks is

the possibility of having many possible channel conditions. This includes,

but is not limited to, acoustic environments, speech capturing devices, etc.

This consideration led to the subfield of far-field ASR.

Despite these differences in application, most of the algorithms developed for ASR

can be applied in general by considering a balance in processing complexity and

accuracy. In fact, some research delves on the possibility of unifying the develop-

ment of ASR by pointing to an all-specific speech recognition system.

For this thesis, the focus is on a modified feature extraction scheme. Feature

extraction represents the block that provides the input to the speech recognition

system and can be applied to a wide-array of speech processing applications, even

outside ASR. For this reason, a basic low dimensional speech recognition system

is appropriate to expose the inherent capabilities of the feature extraction scheme.

State-of-the-art techniques for speech recognition, when applied simultaneously to

a new approach could blur these inherent characteristics.

The speech recognition system that will be described for the rest of this chapter

pertains to a Japanese language-based, isolated-word, 142 vocabulary, speaker-

independent, commands-related, hands-free speech recognition system.
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3.3 The Speech Recognition System

The architecture employed by the isolated-word speech recognition system is shown

in Figure 3.1. It is divided into two phases, the upper portion is called the training

stage and the lower portion, the recognition stage. The recognition stage is used

for the actual usage of the system and for evaluation purposes, in which case the

system is connected to some performance calculation module.

The training phase involves two major blocks, the feature extraction and the model

estimation modules. The feature extraction is lumped into a set of processes called

the front-end processing, which also involves data retrieval and storage for later

use. Storage is included in the procedures because the training phase is regarded

as an off-line procedure, and does not require real-time considerations. The model

estimation block involves procedures pertaining to training of the acoustic model

and storage as well.

The recognition phase involves data acquisition and feature extraction but differs

from the training phase because the data are not stored. Rather, the data goes

through a model comparison block, which compares the unknown input with the

stored models. The nearest model is then declared as representative of the new,

unknown input.

Figure 3.1: Isolated-word speech recognition system used for this thesis.
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Many tools exist for implementation, simulation, and development of ASR sys-

tems. For this thesis, MATLAB is used as the simulation environment.

3.4 Front-End Processing

The front-end processing block is the main interface of the speech recognition

system for acquiring and processing the speech input. In the acquisition phase

is where sampling rates and channel condition decisions are made. Because of

channel compensation techniques, the usually strict and specific interfacing re-

quirements are relaxed. For example, a wide range of condenser microphones or

even built-in microphones and headsets would work for the system as long as the

proper sampling rates and SNR levels are met. Once the desired speech signal

length is acquired, the process of feature extraction is done, which makes a com-

pact representation of the speech signal that will be stored as a pattern in the

acoustic modeling process.

Shown in Figure 3.2 are the three most widely used feature extraction methods

based on the cepstral domain of the speech signal. Cepstral domain analysis al-

lows for the concept of source separation, which in turn is based on a physiological

understanding of the speech production mechanism. The basic definition of the

cepstrum is that it is the inverse spectrum of the log spectrum of a signal. The

reason for doing this is that the logarithm operation could compress the dynamic

range of the spectrum and reduce amplitude differences in the harmonics. Treat-

ing the log spectrum as a waveform and performing an IFT leads to the cepstral

domain. Source separation is achieved based on the fact that truncating the cep-

stral domain with increasing number of samples leads to increased spectral detail.

This means that fast changing phenomena representing the source are positioned

at higher samples in the cepstral domain.

The isolated-word speech recognition makes use of the Mel frequency cepstral

coefficients or MFCC as its speech feature representation and will be described in

detail. The perceptual linear prediction or PLP is a modification of the MFCC,

as it includes additional auditory processing that may or may not be beneficial

according to different results in the literature. The linear predictive coding or

LPC is based on a source-filter model of the speech production mechanism, which
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Figure 3.2: The three most widely used cepstral-based feature extraction
techniques.

parameterize the speech spectrum as a set of filter coefficients. While the PLP

feature extraction method is not used in this thesis, the LPC path will be discussed

with some modifications in the succeeding chapter.

3.4.1 Pre-emphasis

In the study of speech production, it can be shown that the pressure waves that

are acquired in the speech acquisition block is influenced by radiation impedance

from the lips. This radiation gives a drop to the high-frequency components at

about 6 dB per decade. The reason for pre-emphasis is to reverse this effect by

approximating the radiation as a derivative, which can be modeled as an FIR filter

with a single zero:

H(z) = 1− µz−1 (3.1)

where µ ∈ [0.95, 0.99]. A common choice is to set µ = 0.97 and is used all through

out the experiments using pre-emphasis. This leads to the difference equation
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where y[n] is the pre-emphasized speech signal and x[n] is the raw speech input:

y[n] = x[n]− 0.97x[n− 1] (3.2)

Aside from compensating for the high-frequency suppression, pre-emphasis also

smooths the signal spectrum and allows for an unbiased frequency weighting when

SNR level is computed for noise mixing.

3.4.2 Windowing and Power Spectrum Computation

As mentioned, the common practice for speech processing is to divide the signal

into blocks before processing. The reason is not only because of real-time process-

ing but also due to the nonstationary nature of the signal. Spectral content of

speech changes over time depending on the spoken sound. These changes are not

reflected when the processing is done to the entirety of the speech signal. As will

be highlighted in the next chapter, choosing the length for the window can cause

a time-frequency tradeoff. For most of the short-time feature extraction methods

used in the field, the length of windows that are short enough to allow for the

quasi-stationary or nearly stationary assumption is acceptable. This interval is at

the range of 5 to 30 milliseconds, depending on the sampling rate and spectral

content.

The process for short-time analysis used in the HU-SCS system is as follows:

1. Analysis window length of around 23.22 milliseconds is defined with a sam-

pling rate of 11.025 kHz. This gives 256 samples for every frame.

2. To account for abrupt changes due to frame blocking, overlaps in between

frames are defined. A 50% overlap is used for all experiments involving the

use of overlaps. For this system, this is a shift length of 11.61 milliseconds

or an overlap of N0 =128 samples between adjacent frames.

3. A windowing function is chosen with the intention to smoothen the edges of

every frame, which further avoids unnatural discontinuities in the analysis.

The windowing function is selected by trading off the width of the main lobe

and the attenuation of the side lobes in the spectral domain. A raised cosine
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or Hamming window is used for this system:

w[n] = 0.5

(

1− cos

(

2πn

N − 1

))

, 0 ≤ n ≤ N − 1 (3.3)

4. The windowed segments sm[n] are generated by sliding the windowing func-

tion w[n] on multiples ofN0 samples and multiplying it with the pre-emphasized

speech signal y[n]:

sm[n] = y[n+mN0]w[n] (3.4)

This is equivalent to sliding the signal on a stationary window starting from

n = 0 at multiples of N0.

5. Finally, apply FT analysis via FFT to each window segment sm[n]:

S[m, k] =
N−1
∑

n=0

sm[n]e
−j2πk/N , 0 < k < Nfft (3.5)

where Nfft is the FFT width, which is set 512 samples. The power spectrum

is then computed via:

|S[m, k]| = S[m, k]S∗[m, k] = |S[m, k]|2 (3.6)

3.4.3 Mel-Frequency Spectrum

The Mel part of the name of MFCC comes from a filter bank whose function is to

group together certain bands according to the mel-scale, which is based on human

perception. This mel-frequency scale is related to the linear frequency according

to:

fmel = 2595 log10

(

1 +
f

700

)

(3.7)

which is linear up to around 1000 Hz and suddenly suppresses frequencies above

it in a logarithmic fashion. Based on this characteristic, critical bands of the filter

bank are designed as triangular filters Λr[k] whose bandwidths are constant for

center frequencies below 1000 Hz and increases at an exponential rate up to half

the sampling rate as shown in Figure 3.3. Passing the DFT values |S[m, k]| to

the R filters, the rth value of the mel spectrum M [r] with lower frequency Lr and
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Figure 3.3: Triangular filterbank example for mel-frequency computation.

upper frequency Ur can be defined as:

M [r] =

Ur
∑

k=Lr

|Λr[k]S[m, k]|

Ur
∑

k=Lr

|Λr[k]|
2

(3.8)

For the HU-SCS system, 13 linear filters were used below 1000 Hz and 37 filters

up to half the sampling frequency for a total of R =40 filters.

3.4.4 DCT on the Log Spectrum

Finally, to get the MFCC samples, a discrete cosine transform is applied to the

logarithm of the mel filterbank outputs. The discrete cosine transform is of the

second type, which is more efficient than doing an IFT as it decorrelates the log

energies of the mel-scale frequency:

Cm[k] =
1

R

R
∑

r=1

log(M [r]) cos

[

2π

R

(

r +
1

2

)

k

]

(3.9)

As mentioned, the goal of cepstral processing is to separate the source in order to

get the slow changes of the vocal tract that defines the signal. This is done by

getting M samples of the cepstrum, which is typically M < R. For this system,
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the number of extracted cepstral samples is set to 12. For every frame, a set of 12

cepstral samples is considered as a feature vector.

The system also makes use of the log energy Em:

Em =
R
∑

r=1

log(M [r]) (3.10)

to set the length of the feature vectors to 13.

3.4.5 Delta Cepstrum

Calculation of differentials between adjacent feature vectors has become a staple in

speech recognition because it provides significant increase in accuracy. The reason

for this will be explained more in the succeeding chapter. These time derivatives

reflect the transitional changes happening in between feature vectors. Empirical

results have shown that derivatives up to the second order can provide significant

increase in performance. The deltas or first derivatives are computed as:

∆Cm[k] =

T
∑

τ=−T

Ct+τ [k]

T
∑

τ=−T

τ 2

(3.11)

and the second derivatives as:

∆∆Cm[k] =

T ′

∑

τ ′=−T ′

∆Ct′+τ ′ [k]

T ′

∑

τ ′=−T ′

τ ′2

(3.12)

The values of T and T ′ for this system was set to 2 and 1, respectively. The

resulting values are then concatenated to the original 13-element feature vectors,

which results to 39-element MFCC vectors that define the baseline system features.
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Figure 3.4: An example of a Bakis or left-to-right HMM topology with skip-
ping.

3.5 Acoustic Modeling

The acoustic modeling block can be considered as the core mechanism that al-

lows the possibility of pattern matching for the decoding process. The acoustic

model makes a generalized inventory of the statistics of the acoustic units used

in the system. Different studies in isolated-word speech recognition use different

types of acoustic models, depending on the task complexity. For a medium size

vocabulary task, the HMM modeling paradigm is well-suited. An understanding

of HMM modeling is founded on the theory of discrete Markov processes, both

using probabilistic transitions to model system events. In the latter, system states

are assumed to be uniquely attached to one particular event and no information

is hidden. Thus in DMPs, once an observation is made, the model state is easily

deduced. For temporally complex events such as changes in speech feature vec-

tors, a more complex modeling is required. This is the role of HMM modeling. In

HMM, the observable events are now probabilistic functions of the model states.

Therefore, to know the state of an observable event, the way to find out is to look

at all the possibilities and decide based on a likelihood metric.

It should be noted, however, that the HMM does not have a single structural

representation and the topology is dictated by empirical studies. For modeling

events that change over time like speech, the usual topology employed is a left-

to-right model or Bakis model as shown in Figure 3.4. Aside from the topological

structure, the acoustic units that the model will represent is also application-

dependent. Different task complexities call for different acoustic units. As an

example, for a continuous speech recognition system with a 10,000-word vocabu-

lary, 10,000 HMM models are not practical. Because of this, subword units such

as diphones or phonemes were used as basic units since these are shared between

words, generating a smaller number of acoustic models. For the system used for
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this thesis, only 142 words are used and word units will not deal a great amount

of storage and complexity problems. The HMM topology used is a 32-state left-

to-right model without any skips.

3.5.1 HMM Training

In order to describe the training done for the system, what defines an HMM model

is first described. HMMs are specified by two scalar values and three probability

distributions. To facilitate a time-step analysis, variables are also defined. An

event state at time t is set to a variable qt. An observation at time t is set to the

variable ot. The scalar values of the HMM model are:

• N , the number of states in the hidden Markov chain. The states then could

be defined as S = {S1, S2, . . . , SN}.

• M , the number of discrete observation symbols in every state. The symbols

are defined as V = {v1, v2, . . . , vM}.

and the probability distributions:

• A = {aij}, the state transition probability. The probability of a transition

from state Si to state Sj is aij. Mathematically,

aij = P (qt+1 = Sj|qt = Si) (3.13)

• B = {bj(k)}, the observation probability distribution. The probability of

emitting symbol vk in state Sj is bj(k). For speech recognition, these emis-

sions are in the form of vectors. Therefore, multinomial continuous distri-

butions are used. Mathematically,

bj(o) =
M
∑

k=1

cjkN (o, µjk,Σjk) (3.14)

where the symbols V are replaced by an observation vector o, and bj(o) is

defined by a mixture of M Gaussian components. This is the concept of

GMM modeling for estimating probability densities as illustrated in Figure
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3.5. Here, the elements of o has normal distributions defined by o ∼ N (µ, σ)

and c is the scaling factor.

• π, the initial state distribution. The probability of starting the sequence at

state Sj is πj.

πj = P (q1 = Sj) (3.15)

which are typically written as a triplet in compact form: λ = {A,B, π}.

The steps for training will be described for a single observation sequence:

1. Initialize the HMM model λ. A and π are usually initialized using uniform

values, whereas B is set according to some predefined distribution.

2. Using Forward-Backward algorithm, compute for:

• αt(i), the probability of the training sequence up to time t and the state

Si at time t, given model λ:

αt(i) = P (o1, o2, . . . , ot, qt = Si|λ) (3.16)

Figure 3.5: Illustration of Gaussian mixture modeling.
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• βt(i), the probability of the partial observation sequence from t+ 1 up

to the end T , given state Si at time t and model λ:

βt(i) = P (ot+1, ot+2, . . . , oT |qT = Si, λ) (3.17)

3. Using the computed values αt(i) and βt(i), compute for the following prob-

ability:

• γt(j, k), which represents the probability of being in state Sj at time t

with k-mixture components accounting for observation ot, given both

the training sequence O and model λ:

γt(j, k) = P (qt = Sj|O, λ) (3.18)

• ξt(i, j), representing the probability of being in state Si at time t, and

Sj at time t+ 1:

ξt(i, j) = P (qt = Si, qt+1 = Sj|O, λ) (3.19)

4. Finally, update the values of the model λ using the computed values:

(a) For πi, the expected frequency of being in state Si at time 1:

π′
i = γ1(i) (3.20)

(b) For aij, using the ratio of the expected frequency of state Si to state Sj

transitions over all the expected frequency of transitions from state Si:

a′ij =

T−1
∑

t=1

ξt(i, j)

T−1
∑

t=1

γt(i)

(3.21)

(c) For bj(o), the mixture components are updated individually. Starting

with the scaling factor cjk, using the ratio between the expected number

of times the system is in state Sj using the k-th mixture component,
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and the expected number of times the system is in state Sj:

c′jk =

T
∑

t=1

γt(j, k)

T
∑

t=1

M
∑

k=1

γt(j, k)

(3.22)

the means µjk and variances Σjk are updated using:

µ′
jk =

T
∑

t=1

γt(j, k)ot

T
∑

t=1

γt(j, k)

(3.23)

Σ′
jk =

T
∑

t=1

γt(j, k)(ot − µjk)(ot − µjk)
T

T
∑

t=1

γt(j, k)

(3.24)

This whole procedure of updating the parameters and iterating is the Baum-

Welch algorithm.

5. The training procedure is done with the objective of updating the param-

eters λ to maximize P (O|λ) with the maximum likelihood criterion. Using

Forward-Backward algorithm, compute for this likelihood of the training se-

quence with the updated model λnew by enumerating every possible state

sequence and evaluating the corresponding probability:

P (O|λnew) =
∑

q1,q2,...qT

π′
q1
b′q1(oq1)a

′
q1q2

b′q2(oq2) . . . a
′
qT−1qT

b′qT (oqT ) (3.25)

Note that this computation involves many probabilistic values between 0 and

1 and rescaling has to be done to avoid underflows.

6. Finally, repeat the updating process until a local optimum for P (O|λ) is

found.
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3.6 Decoding

The decoding process is coupled with the acoustic modeling algorithm used for

the system. Among all the possible state sequence, find the single best state

sequence path. Mathematically, this means finding the maximum P (O|Q, λ) which

is accomplished using the Viterbi algorithm. The procedure starts by defining a

variable δt(i) representing the highest path probability containing t observations

that ends at state Si:

δt(i) = max
q1,q2,...qt−1

P (q1, q2, . . . , qt = Si, o1, o2, . . . , ot|λ) (3.26)

Using induction, δt+1(j) can be computed as:

δt+1(j) = max
i

[δt(i)aij] bj(ot+1) (3.27)

As the induction procedure is continued, the states being added to the path must

be tracked by constructing an array:

ψt+1(j) = argmax
1≤i≤N

[δt(i)aij] (3.28)

The Viterbi algorithm, can then be described by a step-by-step procedure:

1. Initialize δ1(i) and ψ1(i) as:

δ1(i) = πibi(o1) (3.29)

ψ1(i) = 0 (3.30)

for all values of 1 ≤ i ≤ N .

2. For 2 ≤ t ≤ T and 1 ≤ j ≤ N ,recursively compute for:

δt(j) = max
1≤i≤N

[δt−1(i)aij] bj(ot) (3.31)

ψt(j) = argmax
1≤i≤N

[δt−1(i)aij] (3.32)



Chapter 3. The HU-SCS 37

3. For the last sequence, compute for:

P ∗ = max
1≤i≤N

[δT (i)] (3.33)

q∗T = argmax
1≤i≤N

[δT (i)] (3.34)

4. Finally, the best-state sequence is retrieved by backtracking:

q∗t = ψt+1(q
∗
t+1) (3.35)

3.7 Noise Compensation Techniques

3.7.1 Cepstral Mean Subtraction

Cepstral mean subtraction or CMS is a channel normalization approach to com-

pensate for the acoustic channel. The time invariant channel parameters in a

recording system and convolutional disturbance noise are evaluated by CMS and

these noises are reduced from an observed speech waveform. By using CMS, the

distortion between the training speech data and the observed speech data can be

improved. If Cm(k) represents the feature vector at time m, then the CMS-applied

feature vector C̃m(k) is defined as:

C̃m(k) = Cm(k)−
1

T

T
∑

τ=1

Cτ (k) (3.36)

In CMS, the averages of all the feature components are calculated per utterance,

and the averages are subtracted from the values themselves. This is similar to

z-score normalization which involves CMN and CVN. CMS can eliminate channel

effects caused by multiplicative noise such as microphone mismatch and distortion

caused by the transmission channel. The multiplicative factor becomes an addition

operation after the logarithm scaling of the cepstrum. The process also requires

no estimation procedure except for the averages.
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3.7.2 Filtering in the Modulation Spectrum

If the spectrum obtained in the speech analysis is taken as a time-series data

in frequency, the resulting spectrum is called the modulation spectrum. In this

modulation spectrum, the important components of speech is said to be present in

the range of 1 to 10 Hz. On the other hand, the influence of multiplicative noise

is concentrated below 1 Hz. Therefore, by using a high-pass filter with a cut-off at

1 Hz, we can eliminate some parts of the multiplicative noise. Some studies also

used bandpass filters from 1 to 12 Hz.

By using an IIR filter, there is a possibility that the resulting filter could be

unstable due to limit cycles caused by quantizations leading to cancellations of

poles or zeros. Therefore, the use of stable FIR filters have been proposed for the

baseline system. This technique is called running spectrum filtering or RSF in

order to differentiate it from RASTA.

3.7.3 Dynamic Range Adjustment

Noise that cannot be solved by CMS is addressed by DRA. These can be pertur-

bations caused by the other enhancement methods. For example, filtering in the

modulation frequency, which may also affect desired data. Therefore, this process

is usually undertaken as the last noise compensation process. If Cm(k) represents

the feature vector at timem, then the DRA-applied feature vector C̃m(k) is defined

as:

C̃m(k) =
Cm(k)

max
τ=1,...,T

Cτ (k)
(3.37)

3.8 Problem in Baseline System

To conclude this chapter, the confusion matrix of the best-performing system

under clean channel conditions is shown in Figure 3.6. Using numerical analysis,

it was found that around 6% of the errors generated by the best-performing system

comes from a clear confusion in between words that are near in pronunciation. The

confusion matrix clearly shows that there are overlaps in false negative results in
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between words that only differ by one or two phonemes. The next chapter will

discuss how this thesis proposes to solve this problem.

Figure 3.6: Baseline system confusion matrix



Chapter 4

Feature Extraction Modifications

4.1 Chapter Overview

As concluded in the previous chapter, some problems have yet to be solved in

developing speech recognition systems. The analysis of the confusion matrices

have clearly shown that majority of prevalent errors in the current system are due

to words that are almost similar except for a transient part. This chapter expounds

on the details of the limitations of the standard speech feature representation that

is used in the previous system and how it can be addressed.

The techniques for feature extraction presented in the previous chapter such as the

MFCC, PLP, and LPCC were not only driven by studies in speech signal processing

but also by available technology, processing resources and real-time application

requirements. Because of this, short-time framing of signals for processing became

a staple in most development for speech signals. While this concern has been

acknowledged even since the 1950’s, developments did not meet much success due

to the underlying complexity of improving time-frequency resolution. For example,

bilinear time-frequency distributions is one step above conventional analysis as it

aims to accurately represent the energy of a signal in both time and frequency

domains.

For the case of ASR, its development continued with the stationary feature ex-

traction methods, only to be augmented with dynamic information to reflect tran-

sitional changes. Even for the case of continuous speech, acoustic modeling only

40
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accounts for a share of the overall accuracy and the recognition system has to rely

on other sources of information such as language models and adaptive techniques

in order to improve. These augmentations suggest that techniques that would

allow the rich, dynamic information to be reflected in the model could aid sys-

tems that rely on more accurate speech models. Thus, efforts in nonstationary or

time-varying signal processing research are being conducted.

There exists a number of techniques suitable for ASR such as diphone-based mod-

eling, AM-FM modeling. However, the most studied class is that of parametric

speech models that assumes AR or ARMA models for synthesis. Solving for the

parameters of these models has been well-studied and the common time-varying

extension is to allow these parameters to be time-varying[26, 27]. There are said

to be roughly three classes of models in the literature, the differences of which are

based on how the prediction coefficients are defined:

1. adaptive models [28]

2. explicit basis function models

3. random (mostly Markovian) models [29]

For the case of speech recognition, the use of a linear combination of basis functions

seems to have a good compromise between the aforementioned requirements. This

then became the topic of a number of research, giving a basic formulation of the

extension and a discussion of issues involved. However, only a few have attempted

to apply it in actual speech recognition systems due to issues that are explained

in this chapter. The complete procedure employed for this thesis is detailed in the

rest of the discussion, and will conclude with the proposed models.

4.2 Short-Time Speech Feature Representation

Breakthroughs in speech signal processing are founded in a continuous develop-

ment that also involved considerations in technology and real-time processing. As

a practical example, a professional English speaker can talk fast at an average rate

of 160 words per minute. The said rate translates to one word every 0.375 second.

Using narrowband processing, which is the lower limit for conversational speech,
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the average word is digitally processed at a rate of 8,000 samples every second. At

this rate every word will produce an average of 3,000 samples, which amounts to

3,000 numerical values that have to be stored and processed. For a simple radix-2

fast Fourier transform operation, a word signal that has to be analyzed leads to

49,152 operations. The latency of this process depends on the duration between

the first and last samples in the word signal, and the time it takes to finish the

operation. Processing also relies on the available technology and so, limitations

have to be imposed in order to satisfy the memory and real-time requirements

of the target speech communication system. For the case of speech processing,

this process of dividing the signal into smaller frames of samples also facilitates

batch processing of incoming signals. This block processing of speech as input is

common in speech recognition systems.

The speech signal, the acoustic waveform that a speaking person produces, con-

tains information about the air pressure that is released from the lungs, and un-

dergoes modifications depending on how the vocal tract is moved at any instant.

Due to differences in physiology and articulation from one person to another, or

even with the same person, the signals representing multiple utterances of the

same word will have differences, however minor. For speech recognition, system

performance depends on a resource-efficient detection of (1) differences between

different words and (2) similarity between multiple instances of the same word

despite the expected differences. This leads to the notion of finding a compact

representation of speech that helps in achieving the aforementioned goals through

the extraction of relevant speech parameters. This is more commonly known as

feature extraction in the field of speech recognition.

In addition to the suboptimal characteristics of the speech input, the environment

and external factors can also contribute to the occurring signal variations. Thus,

robustness against variations and noise is also a major concern in developing speech

features. Psychoacoustics and physiological studies have allowed researchers to

set boundaries for the model space of speech signals. These studies have led to

reductions in the sensitivity of the speech features to speaker variations. However,

these models were developed with short-time or block-based analysis in mind.

While short-time analysis is considered as a principal tool of the speech commu-

nity, it also presents an impediment to speech features as used for speech recog-

nition. This is because while the speech signal is considered as a time-varying
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phenomenon, reliance to short-time analysis has led to models that require sta-

tionarity within each frame. Hence, deciding on the constant length of each frame

creates suboptimality for the representation. Deciding on this length of the anal-

ysis window has the following implications:

1. There is a time-frequency resolution trade-off that favors time when the

window length is short, and vice versa.

2. If the window length is in the order of the pitch period for a voiced sound,

variations in analysis will occur depending on the location of the analysis

window within the pitch period. As window length is increased, the variation

is also diminished.

3. Transient unvoiced sounds are increasingly blurred by longer windows.

4. Bias-variance trade-offs for additive noise and variations caused by amplitude

modulation.

Despite these considerations, studies have allowed for empirical choices for the

frame length based on the concept of quasi-stationarity of speech signals. In

general, this is in the order of 10 to 30 milliseconds of speech per frame. While

the choice was proven to be effective when the system performance is compared to

random guessing, the short-time analysis window still violates the quasi-stationary

assumption. This is especially evident in transient parts of the speech signal,

which makes the model highly dependent on the correct representation of voiced

sounds. As a result, the speech recognition system becomes highly reliant on vowel

recognition.

In Furui[30] and Jenkins[31], it was shown that humans perceive VC and CV tran-

sitions as larger sources of information for correctly identifying phonetic contexts,

rather than the longer stationary portions. This led to the use of differential spec-

tral parameters, which captures the relative changes or transitions between frames.

These became more commonly known as delta and delta-delta parameters for the

first and second differentials, respectively. Incorporating these parameters, typi-

cally by concatenating with the initial feature vectors, improved the performance

of speech recognition systems. Thus, developing a working theory for the tran-

sient and highly nonstationary parts of speech is a key area that can be explored

to improve the overall recognition performance.
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4.3 Time-Varying Linear Prediction

4.3.1 General Concepts and Scope

In the speech processing literature, different methods have been proposed to in-

corporate the nonstationary information of the signal. However, the techniques

assume that the acoustic modeling is dependent on the modification that will be

done to the feature extraction process. Given the nature of short-time analysis,

which assumes that the signals within each frame interval are stationary, the extent

of an automatic accommodation of non-stationarity was done by allowing speech

model parameters to be time-dependent. This is the concept of time-varying anal-

ysis based on a parametric speech model.

The most widespread choice of parameterization in the speech processing literature

for time-varying analysis are the AR and ARMA models[32]. The stationary AR

model for synthesis as shown in Figure 4.1 assumes an all-pole digital filter model

H(z) with gain G and filter coefficients ai with P values indicating the order:

H(z) =
G

1 +
P
∑

i=1

aiz
−i

(4.1)

The simplification of the AR model from the general pole-zero transfer function

of the ARMA is properly justified in the literature except for nasal sounds. Based

on the complexity of the two models, the AR model is sufficient as it provides

performance improvements at a lower cost.

For Equation 4.1, given an input u[n] and output s[n], the difference equation can

be derived as:

u[n]

G

P∑

i=1

aiz
−i

s[n]

Figure 4.1: AR model for speech synthesis.
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s[n] = −
P
∑

i=1

ais[n− i] +Gu[n] (4.2)

where u[n] represents the actuating signal and s[n] the generated speech signal. By

making the assumption that the speech signal is a correlated Gaussian process, an

approximate linear prediction can be made to a speech sample at any time using

past samples:

ŝ[n] = −
P
∑

i=1

αis[n− i] (4.3)

This change in notation from a to α also serves to reflect the fact that the actual

speech signals will not be exactly equivalent to this model. To reflect the non-

stationary nature of the speech signal s[n], the parameters αi are allowed to be

time-varying:

ŝ[n] = −
P
∑

i=1

αi[n]s[n− i] (4.4)

Solving for the coefficients αi[n] will pose a problem since there will be an infinite

number of solutions and no inherent structure will show. The coefficients must then

be constrained such that the resulting αi[n] follows a time series decomposition in

which the innovations have normalized and constant variance. These coefficients

can be either solved adaptively if the time dependency is not explicitly defined

or systematically if otherwise. The time dependency can be defined as a known

stochastic process, or as a linear combination of known time functions.

4.3.2 Estimating TV-LPC Coefficients

For speech recognition, it was previously shown that a balance between accurate

representation of the speech signal and parsimonious use of processing resources

is necessary especially if the target is for real-time application that may involve

dedicated hardware. With these considerations, constraining the coefficients αi[n]

as a linear combination of known time functions is a reasonable choice. Following

Equation 4.4, αi[n] can be written as:

αi[n] =

Q
∑

j=0

Aijfj[n] (4.5)
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where fj[n] is the set of functions where several choices exist. Prior to 1986, the

basis functions revolved around a few known functions chosen to reflect the overall

smooth transition of the speech signal, notwithstanding the case of plosive sounds.

During that time, the most common functions were those of powers of time, Fourier

series, prolate spheroidal wave functions, and Legendre polynomials. Empirical

results have shown similar results for these choices according to a comprehensive

survey in Grenier [33, 34]. However, a common finding that is present in the use

of these models is that they cannot ensure stability when least squares method of

estimation is used. In Grenier the time-varying aspect is later extended to lattice

structures employing parameters such as PARCOR coefficients and log area ratios

of reflection coefficients in order to ensure stability[35]. Ensuring stability for the

basic least squares solution would later become a research theme where attempts

have led to alternative optimization metrics[27, 36–40]. In this thesis, these issues

are resolved using the basic solutions as it focuses on a different aspect of utilizing

the time-varying coefficients.

The basic least squares estimation method adopted in Liporace [41], Grenier[33,

34], and Hall[42] is derived based on the same idea for stationary LPC. Combining

Equations 4.4 and 4.5, the prediction equation becomes:

ŝ[n] = −
P
∑

i=1

Q
∑

j=0

Aijfj[n]s[n− i] (4.6)

where as usual, the prediction error is defined as:

e[n] = s[n]− ŝ[n] (4.7)

The optimization criterion for the least squared estimation method is the sum of

the squared prediction error function:

J(Aij) =
∑

n

e2[n]

=
∑

n

(

s[n] +
P
∑

i=1

Q
∑

j=0

Aijfj[n]s[n− i]

)2

(4.8)
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The objective then is to minimize J in order to get the optimal basis function

coefficients A∗
ij:

A∗
ij = argmin

Aij

J(Aij) (4.9)

which in turn, allows for the solution of αi according to Equation 4.5.

4.3.3 Solving TV-LPC Coefficients

Following the established theory for solving stationary LPC coefficients, the solu-

tion for time-varying LPC coefficients requires some preliminary assumptions. For

example in Equation 4.8, no clear range for n is given to the objective function

J(Aij). The range can be either finite or infinite, which corresponds to the co-

variance and autocorrelation methods for the stationary case, respectively. While

more efficient methods exist for the autocorrelation method when applied to time-

invariant LPC, it was established in Hall[42] that for the case of time-varying LPC,

the covariance method is more advantageous for the following reasons:

1. Distortions caused by discontinuities at both ends of the data interval that

is present in the time-invariant autocorrelation method is also present for

the time-varying case. For the covariance method, this is not true because

the error minimization is only applied over the range where the P -order

prediction can be applied.

2. A solution for reducing the distortions caused by the discontinuities is to

use a windowing function. However, this causes more distortions for the

time-varying LPC, as it is very sensitive to slight changes in the signal.

3. The autocorrelation method assumes that the signal is stationary over the

time interval, contradicting the basic assumption of the time-varying LPC.

Following the results of deriving the objective function based on a least squares es-

timation method, Equation 4.9 can be expanded by working out the minimization
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for J(Aij) in Equation 4.8:

∂J(Aij)

∂Apq

= 0

2
∑

n

(

s[n] +
P
∑

i=1

Q
∑

j=0

A∗
ijfj[n]s[n− i]

)

fq[n]s[n− p] = 0 (4.10)

where 1 ≤ p ≤ P and 0 ≤ q ≤ Q.

The grouping and order of Equation 4.10 can be rearranged such that the set of

linear equations for solving Aij becomes apparent:

P
∑

i=1

Q
∑

j=0

A∗
ij

(

∑

n

fj[n]fq[n]s[n− i]s[n− p]

)

= −
∑

n

fq[n]s[n]s[n− p] (4.11)

where 1 ≤ p ≤ P and 0 ≤ q ≤ Q.

A generalized correlation function can then be defined:

Cjq(i, p) =
∑

n

fj[n]fq[n]s[n− i]s[n− p] (4.12)

such that Equation 4.11 can be written as:

P
∑

i=1

Q
∑

j=0

A∗
ijCjq(i, p) = −C0q(0, p) (4.13)

where 1 ≤ p ≤ P and 0 ≤ q ≤ Q.

This can be further expressed in matrix form by defining the vectors

AT
j =

[

A1j A2j . . . APj

]

, 0 ≤ j ≤ Q (4.14)

and

ΨT
j =

[

C0j(0, 1) C0j(0, 2) . . . C0j(0, P )
]

, 0 ≤ j ≤ Q (4.15)
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and the matrix

Φjq =















Cjq(1, 1) Cjq(1, 2) · · · Cjq(1, P )

Cjq(2, 1) Cjq(2, 2) · · · Cjq(2, P )
...

...
. . .

...

Cjq(P, 1) Cjq(P, 2) · · · Cjq(P, P )















, 0 ≤ j, q ≤ Q (4.16)

making Equation 4.13 compactly represented as:















Φ00 Φ01 · · · Φ0Q

Φ10 Φ11 · · · Φ1Q

...
...

. . .
...

ΦQ0 ΦQ1 · · · ΦQQ





























A0

A1

...

AQ















= −















Ψ0

Ψ1

...

ΨQ















(4.17)

This final matrix form can also be rewritten such that the vectors and matrices

are defined over the range of P , with the range of Q explicitly specified.

4.3.4 A Covariance Method Algorithm

The resulting matrix form of Equation 4.17 can be solved using different meth-

ods depending on the underlying symmetry. For the derived equations, it can be

deduced from Equation 4.13 that the elements Cjq(i, p), Cqj(i, p), Cjq(p, i), and

Cjq(p, i) will have equal values. This will mean that the matrices Φjq in equation

4.17 are themselves symmetric and also forms block symmetry. In addition, de-

pending on the chosen functions fj[n], further reductions in computations can be

achieved.

An efficient and general method that can be used for solving the equations is

the Cholesky decomposition, otherwise known as the square-root method, which

is extensively used for time-invariant LPC. The formulation for the time-varying

LPC is very similar to the time-invariant case. The subsequent formulas arising

from defining the predictor coefficients as a linear combination of basis functions

only differs from the time-invariant case in such a way that the number of scalars

involved is increased by the order of the basis functions used. With the assumption

that the derived result of Equation 4.17 can be solved as if it is the result of the

invariant LPC formulation, the original algorithm can be used to solve for the
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coefficients. First Equation 4.17 can be expressed as:

ΦA = −Ψ (4.18)

The first step is to express the matrix Φ as

Φ = VDVT (4.19)

where V is a lower triangular matrix whose main diagonal is composed of unity

elements, and D is a diagonal matrix. Element-wise, these values are expressed

as:

φ(k, ℓ) =
ℓ
∑

m=1

VkmdmVℓm, 1 ≤ ℓ < k (4.20)

using algebraic manipulation:

Vkℓdℓ = φ(k, ℓ)−
ℓ−1
∑

m=1

VkmdmVℓm, 1 ≤ ℓ < k (4.21)

and diagonal elements:

φ(k, ℓ) =
k
∑

m=1

VkmdmVkm (4.22)

again, using algebraic manipulation:

dk = φ(k, k)−
k−1
∑

m=1

V 2
kmdm, k ≥ 2 (4.23)

To solve for the elements, the first diagonal entry d1 is initialized as:

d1 = φ(1, 1) (4.24)

and iteratively solve for each element using Equations 4.21 and 4.23. Once the all

entries are solved, the linear equations can be viewed now as:

VDVTA = −Ψ (4.25)

and the values of A can be solved by expressing 4.25 in terms of a dummy variable:

Y = DVTA (4.26)
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using a two-step procedure. The dummy variable can be recursively solved as:

Yk = −ψk −
k−1
∑

ℓ=1

VkℓYℓ, 2 ≤ k ≤ P (Q+ 1) (4.27)

by initializing

Y1 = −ψ1 (4.28)

After solving for all entries of Y, the second step is derived by algebraic manipu-

lation of the element-wise Equation 4.26:

ak =
Yk
dk

−

P (Q+1)
∑

ℓ=k+1

Vℓkaℓ, 1 ≤ k < P (Q+ 1) (4.29)

using the initial condition:

aP (Q+1) =
YP (Q+1)

dP (Q+1)

(4.30)

4.4 Time-Varying Cepstral Coefficients

As mentioned, parametric models are used for representing speech because of the

balance in representation and resource. However, another important aspect of

speech feature representations is its robustness against variability. For speech

recognition, it has been shown that features derived from vocal tract modeling

and source separation are significantly robust against noise and variability [2, 3].

Specifically, while LPC coefficients can be utilized to be noise-robust [43, 44],

they are not found to be effective as feature parameters [45]. For this reason, the

solved coefficients from the linear prediction process outlined are further subject

to cepstral conversion.

The nearest cepstral conversion for linear prediction coefficients is the one derived

in Atal[46], called LPCC. A unique and simple relationship was shown to exist

between the coefficients of the LPC synthesis filter and the time series samples of

the logarithmic response. This can be derived by directly equating the logarithm

of the filter transfer function and its power series expansion:

ln

(

1

1 +
∑P

i=1 aiz
−i

)

=
∞
∑

n=1

cnz
−n (4.31)
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Taking the derivative of both sides with respect to z−1:

−
P
∑

i=1

iaiz
−i+1

1 +
P
∑

i=1

aiz
−i

=
∞
∑

n=1

ncnz
−n+1 (4.32)

the denominator is multiplied to both sides, yielding:

−
P
∑

i=1

iaiz
−i+1 =

(

1 +
P
∑

i=1

aiz
−i

)

∞
∑

n=1

ncnz
−n+1 (4.33)

and a recursive relationship can be found by equating the constant term and

various powers of z−1:

cn =



































−a1, n = 1

−an −
n−1
∑

i=1

(

i

n

)

cian−i, 1 < n ≤ P

−
n−1
∑

i=1

(

i

n

)

cian−i, n > P

(4.34)

The recursion allows an infinite number of cepstral samples to be solved for one

set of filter coefficients. These cepstral samples are different from the cepstrum

derived directly from the speech signals as the trunction of a signal for Fourier

analysis results to a time series with all zeros. The derived cepstral samples are

directly taken from an all-pole transfer function. The recursive derivation also

requires that the filter is stable since the sample represent the contributions of the

poles scaled by the corresponding residue of each pole.

4.4.1 Stability Issues

A recurring observation in early studies of time-varying LPC based on the least

square estimation method is that it is not guaranteed to be stable. Sets of filter

coefficients result to sudden bursts in computed spectral estimates. While still

considered to be smooth based on the temporal movement of the spectral estimate,

the values of the coefficients are too high to be useful for conversion. Thus, in order
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to convert LPC coefficients to their corresponding cepstra, stability of the resulting

filters must be ensured. The first step for ensuring stability is by detecting unstable

and marginally stable set of coefficients using a step-down procedure based on the

lattice filter theory.

Given the P th-order polynomial of the synthesis filter AP (z), the last coefficient

is checked if it is greater than or equal to 1 as it represents the product of all the

poles in the filter. This means that if,

AP (z) = 1 + a1z
−1 + a2z

−2 + . . .+ aP−1z
−(P−1) + aP z

−P (4.35)

the P th reflection coefficient is set as the last coefficient of the polynomial:

kP = aP (4.36)

If |kP | ≥ 1, then one or all of the poles could be outside or marginally at the unit

circle such as the one depicted in Figure 4.2. Otherwise, a recursive step-down

process is done by solving for the lower-order filter AP−1(z):

AP−1(z) =
AP (z)− z−PkPAP (1/z)

1− k2P
(4.37)

The (P − 1)th reflection coefficient is again set and checked for |kP−1| ≥ 1. If the

filter is stable, the process will continue until k1 is reached. It should be mentioned

that this process is equivalent to computing for the factorized form and searching

for a pole that is greater than or equal to unity albeit more processor-intensive.

While it is possible to replace the unstable filter with an equivalent minimum

phase, stable model using Schur factorization, the process did not provide signifi-

cant improvements over the actual procedures employed. Thus, a simpler solution

was used for dealing with unstable and marginally stable coefficients. For unsta-

ble filters, poles outside the unit circle are reflected inside the unit circle. For

marginally stable filters, the previous coefficient vector is simply replicated.
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Figure 4.2: Pole-zero diagram of an unstable filter.

4.5 TV-LPCC Feature Extraction

The application of TV-LPCC coefficients is not as straightforward as it is expected

to be because of a number of involved parameters and dependency on the target

speech recognition architecture. At the onset, sensitivity concerns call for an

efficient VAD system for consistent matching of signal end points. For the actual

model itself, the order P of the estimation function and, the number of functions

Q used for constraining the coefficients, and the basis functions themselves must

also be decided. Short-time analysis requirements are still present although at a

lower concern because the stationary assumption is relaxed. However, in terms

of complexity and for evaluation and comparative purposes, a number of limiting

assumptions still has to be done.

4.5.1 A Running Example

To put things in perspective, a running example using a speech signal sample will

be used to clarify important details. The speech signal shown in Figure 4.3 is



Chapter 4. Feature Extraction Modifications 55

subject to TV-LPCC feature extraction. This signal comes from the onset of the

word genki in Japanese. Figure 4.4 shows the short-time log magnitude spectrum
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Figure 4.3: Speech signal sample for TV-LPCC extraction.

as computed by the FFT at 512 samples, and the corresponding spectral estimate

based on time invariant LPC. Figure 4.5 then shows a possible set of spectral

0 1000 2000 3000 4000 5000

−60

−40

−20

0

L
o
g
 M

a
g
n
it
u
d
e
 (

d
B

)

Frequency in Hz

0 1000 2000 3000 4000 5000

−60

−50

−40

−30

−20

−10

0

L
o
g
 M

a
g
n
it
u
d
e
 (

d
B

)

Frequency in Hz

Figure 4.4: FFT and spectral estimate from LPC

estimates that can be extracted from the single frame pictures in Figure 4.3. The
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Frequency in Hz

Figure 4.5: Line evolution spectrum from TV-LPCC coefficients.

time runs from the bottom going up. It can be clearly seen that the spectrum

between the beginning up to the onset of the speech signal is very different from

the central spectrum that was captured by the static spectral estimate of the

invariant LPC. This shows the advantage of the TV-LPCC in dealing with fast

transitions in the signal and will be exploited to enhance the performance of the

speech recognition system.

4.5.2 Feature Reduction-based Models

One of the consequences of using time-varying features is that the estimation pro-

cess is done in a per sample basis rather than per frame. It is then expected that

the number of features will not be comparable to the number of features resulting

from a nonstationary extraction method. For example, the high resolution pro-

vided by the TV-LPCC reflects the huge increase in vectors as shown in Figure 4.6.

This increase in the number of feature vectors also poses some numerical calcula-

tion problems when dealing with utterance-based averaging. The HMM training

procedure could also fail for reasons relating to bursty outliers and numerical com-

putations involving probabilities. Therefore, an effective utilization of the features

based on the analysis of the high resolution spectral estimates is required. Figure

4.7 shows an illustration of these two schemes used in this thesis. Other studies
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have done feature vector decimation either in the frame length specification or

by defining a skipping length during the process to match the number of baseline

feature vectors, this is considered as the conventional reduction scheme[47, 48]. In

this work spectral difference is used to reduce the number of feature vectors by

means of averaging correlated or nearby vectors. This is defined as:

SPDIFF =

(

10

ln 10

)

2

[

P
∑

i=1

(

c
(i)
k − c

′(i)
k

)2
]1/2

(4.38)

Figure 4.6: High resolution spectral estimate from TV-LPCC.

Figure 4.8 illustrates how the number of TV-LPCC vectors are reduced from 512

vectors to 11 vectors via averaging.
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Figure 4.7: Feature reduction schemes
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Figure 4.8: TV-LPCC clusters based on the SPDIFF as a correlation metric.



Chapter 5

Experimental Setup

5.1 Chapter Overview

This chapter summarizes all the considerations made when conducting the eval-

uation experiments. Speech recognition is a pattern recognition problem, and as

such requires unbiased procedures for assessing the performance of the models in-

volved. For testing models, a 1-fold or hold-out cross-validation scheme is used at

an 80-20 training-testing ratio. Variations in the models were made in terms of

gender, target words, and training models. Metrics used for assessment are based

on general ASR system evaluations such as word accuracy. The database used and

the overall parameter settings are also provided.

Noise robustness experiments were also conducted by generating noisy hold-out

cross-validation data. The noise generation method was based on a frequency-

weighing scheme that avoids low-frequency biasing. Finally, the different systems

for noise compensation were enumerated.

5.2 Experimental Measures

5.2.1 Model Selection

Hold-out cross validation will be used to measure the relative performance of the

proposed algorithm and its variations. The database D is split into a training

60



Chapter 5. Experimental Setup 61

set Dtrain consisting of 80% of the data. The remaining 20% is the hold-out cross

validation set Dcv. Both training and testing sets are also equal in distribution in

terms of gender, each having 32 and 8 speakers, respectively. For each case, the

speakers that are included in the training and testing sets are randomly generated

and are used consistently for all experiments. The speakers used for the cross-

validation set is provided in Table 5.1.

Table 5.1: Speakers used for cross-validation

Gender Speaker Numbers

Male 2, 6, 15, 19, 22, 23, 32, 40
Female 1, 5, 13, 18, 21, 27, 31, 35

5.2.2 Training and Testing Scheme

The training and testing sets described were applied to three separate cases using

the baseline formulation: gender-based separation, word-based separation, and

model-based. Gender-based separation simply evaluates performance on separate

gender sets, word-based separation evaluates performance on words that are caus-

ing errors in the baseline system, and model-based pertains to changes in the

training model, such as the number of training iterations, changes in the HMM

topology, etc.

5.2.3 Evaluation Metrics

For isolated-word speech recognition, the performance accuracy is simply measured

using the word error metric. The word error metric is simply the number of

substitutions made to the reference words from the test set. While this metric can

be considered as too simple for any conclusive hypothesis testing, this is standard

performance measurement and is used all through out for comparative conclusions.
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5.3 General Setup

All the modules were ran using the MATLAB environment. The parameter set-

tings were based on standard experiments done using the same set of modules for

training and recognition.

5.3.1 Database

The training and testing speech data comes from a Japanese language isolated-

word command database consisting of 142 words spoken by 40 male and 40 female

Japanese speakers. The database spans a subset of words that can be recognized by

a human-machine interface robot called Chapit created by the company Raytron.

Each word in the database are uttered 4 times by each speaker, although there

are a few incidental exceptions. Each files is at exactly 4 seconds of duration

with words ranging from 1 to 8 syllables. The files were recorded using a single

channel with a sampling frequency of 11025 Hz. The vocabulary list is included

in Appendix A for reference. The same database setup and settings described in

this chapter was used to evaluate the baseline speech recognition system outlined

in Chapter 2.

5.3.2 Parameter Settings

The parameters used for the baseline and proposed models are summarized in

Table 5.2. The same back-end recognition system was used. The frame length

used for the time-varying speech features was chosen to span approximately the

same range as the MFCC. The estimation of the time-varying models was done

with P = 14 and Q = 1, in order to show the minimal performance based on

favorable results from other experiments [49]. The basis function used for the

TV-LPCC was a simple power function:

fq[n] = nq (5.1)
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Table 5.2: System summary

Baseline Proposed

Features 12 MFCC + Log Energy 13 TV-LPCC
Derivatives ∆+∆∆ ∆+∆∆

Frame length 23.2msec 46.44msec
Overlap length 11.6msec None
Pre-emphasis Yes Yes

Window Hanning None
Mel-filters 40 N/A

Normalization Mean, variance Mean, variance
HMM States 32 32

Viterbi Iterations 10 10

5.4 Noise Robustness Experiments

For the experiments dealing with noise, the inherent robustness of the proposed

techniques were first initially tested by not using any noise compensation tech-

niques. Some considerations were also made to the noise model generation in

order to avoid spectral biasing.

5.4.1 Noisy Model Generation

Noisy conditions were applied to robustness experiments through the use of the

NOISEX noise database. Table 5.3 shows a list of the noise types and the corre-

sponding symbol that will be used for the experimental results.

Table 5.3: NOISEX noise types

Noise Type Noise Type Noise Type

N1 Babble N6 F-16 Cockpit N11 M109 Tank
N2 Buccaneer Jet Cockpit 1 N7 Factory Floor 1 N12 Machine Gun
N3 Buccaneer Jet Cockpit 2 N8 Factory Floor 2 N13 Pink
N4 Destroyer Engine Room N9 HF Channel N14 Volvo Car Interior
N5 Destroyer Operations Room N10 Leopard Military Vehicle N15 White

All noise types were mixed with the clean speech samples with SNR levels of 10, 15,

and 20 dB. To avoid low-frequency bias, G.712 standard-based filters were applied

to the speech before mixing. The number of noise types applied in some cases

were reduced due to time constraints. The selection of noise types were based on

the relative effect of noisy conditions when frequency weighting is not used. Using
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the baseline system, recognition rates were calculated with and without frequency

weighting and the differences in accuracies were calculated. The results for this

comparison is given in Table 5.4.

Table 5.4: Reduction in accuracy rates for frequency-weighted mixing of noise
(negative values indicate improvements)

Noise 20 dB 15 dB 10 dB Noise 20 dB 15 dB 10 dB

N1 5 12 19.2 N8 -2.7 -5.2 -2.5
N2 -0.4 2.9 2.9 N9 6.8 12.9 20.3
N3 -0.7 -2.5 0 N10 9.6 19.6 31.8
N4 -1.3 -0.2 2.6 N12 8.8 11.5 12.5
N5 8.8 15.6 20.6 N13 3.7 7.5 9.4
N6 3 7.2 12.3 N14 7.7 16.5 35.7
N7 6.4 11.9 13.5 N15 -3.5 -5.2 -4.5
N8 7.6 14.5 25.9

From the table, three categories of noise types were defined based on the relative

bias frequency weighting can reduce. Low-bias noise types are within the 5%

range: Buccaneer fighter jets noise types, engine room noise, HF radio channel,

and white noise. Medium-bias noise types are those in the 5-15% range: F16

fighter jet, factory 1, machine gun, and pink noise. High-bias noise have above

15% reduction influence in recognition rate: voice babble, operations room, factory

noise 2, leopard tank, M109 tank, and the Volvo 340 noise types.

5.4.2 Noise Compensation

Finally, the performance of the proposed feature extraction method based on the

original formulation are also subject to the noise compensation techniques intro-

duced in Chapter 2. The systems evaluated were CMS/DRA, RASTA/DRA, and

RSF/DRA.
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Results and Analysis

6.1 Results and Discussion

6.1.1 Recognition Results

The following tables show the results for the clean cases:

Table 6.1: Average results for clean experiments

Method Male Female Average

MFCC 93.00 92.52 92.76
Skipping 92.30 89.17 90.74
Averaging 92.52 90.34 91.43

It is clearly seen that the results of the experiment show that the proposed schemes

are suboptimal when compared to the MFCC.

The following tables are the results for the noisy experiments:
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Table 6.2: MFCC baseline (male)

Baseline CMS/DRA RASTA/DRA RSF/DRA
Noise Type 10 15 20 10 15 20 10 15 20 10 15 20

N1 44.38 60.68 76.67 50.75 69.71 82.33 48.45 64.54 80.18 51.74 67.89 82.35
N2 61.13 69.63 77.55 72.73 84.04 88.34 66.55 75.68 83.14 71.28 79.62 87.10
N3 67.70 75.37 81.78 71.50 82.98 85.04 70.01 79.86 83.99 71.59 78.97 84.77
N4 73.90 79.07 83.02 81.54 86.56 90.14 77.58 84.68 86.90 80.83 86.14 89.48
N5 44.15 63.99 82.25 45.47 66.73 82.66 44.48 63.60 81.79 44.54 62.84 80.70
N6 72.64 79.73 86.02 77.24 87.10 89.92 74.79 82.10 87.46 76.74 83.16 88.35
N7 57.27 76.79 95.97 57.46 80.12 95.92 57.20 76.06 94.40 55.91 74.06 91.34
N8 74.43 82.31 88.39 75.84 83.43 88.84 74.78 81.92 87.83 74.69 80.34 85.44
N9 72.36 78.76 83.37 75.79 82.63 86.51 73.10 81.64 85.25 73.57 79.70 85.34
N10 77.55 82.17 84.84 82.09 86.68 88.42 79.63 84.35 85.47 81.20 84.07 85.92
N11 67.63 77.01 85.69 72.14 83.36 89.72 69.60 80.53 87.69 70.43 79.82 87.79
N12 59.19 66.89 73.06 66.30 77.18 79.80 60.98 70.96 75.94 62.48 70.40 78.19
N13 68.22 76.87 85.49 71.04 83.42 87.41 70.08 78.76 86.28 70.47 78.98 86.64
N14 77.61 78.70 79.74 79.70 81.12 81.35 78.39 81.78 80.55 77.28 79.34 80.73
N15 69.59 77.24 84.52 70.66 78.91 84.99 69.75 78.03 84.45 69.01 77.01 83.93

Average 65.85 75.01 83.22 70.02 80.93 86.76 67.69 77.63 84.75 68.78 77.49 85.20

Table 6.3: MFCC baseline (female)

Baseline CMS/DRA RASTA/DRA RSF/DRA
Noise Type 10 15 20 10 15 20 10 15 20 10 15 20

N1 42.95 60.23 75.53 47.76 65.69 81.34 46.88 64.01 79.33 45.17 61.76 77.23
N2 62.49 71.81 79.88 66.75 80.26 87.10 65.58 75.53 85.20 63.80 74.03 83.23
N3 55.71 62.96 69.98 59.53 72.07 78.57 58.32 67.76 76.92 56.54 66.37 74.68
N4 76.34 81.27 86.02 80.37 89.14 90.29 80.62 85.27 88.68 79.69 84.15 87.07
N5 40.77 60.08 78.97 45.52 66.59 85.01 44.64 64.54 83.44 43.53 62.71 81.73
N6 70.27 78.03 84.10 75.13 84.94 86.84 75.06 81.65 86.57 73.73 79.88 84.84
N7 47.39 67.39 86.27 52.12 73.15 84.57 51.29 68.71 85.29 49.71 67.30 84.54
N8 71.88 79.33 86.55 76.81 86.92 89.51 75.13 82.77 89.33 72.68 81.42 88.59
N9 70.71 76.65 82.31 73.81 80.94 88.03 73.43 81.32 88.27 71.94 79.94 86.57
N10 75.80 80.46 83.94 80.71 87.70 87.83 79.71 83.44 86.62 78.63 82.60 85.15
N11 66.38 75.73 84.68 70.57 82.32 87.78 70.37 79.52 87.09 69.21 78.10 86.31
N12 58.12 66.12 72.50 61.44 72.11 74.67 60.34 67.88 74.99 58.49 66.50 73.76
N13 57.78 66.74 75.22 61.97 77.89 83.87 60.75 72.34 82.56 58.87 69.90 79.67
N14 76.07 77.73 78.24 80.12 81.66 82.24 80.01 81.11 81.80 79.25 81.01 81.18
N15 58.36 66.67 73.99 63.34 75.32 81.49 62.46 72.04 80.40 61.40 69.64 77.78

Average 62.07 71.41 79.88 66.40 78.45 84.61 65.64 75.19 83.77 64.18 73.69 82.16

Table 6.4: TV-LPCC skipping (male)

Baseline CMS/DRA RASTA/DRA RSF/DRA
Noise Type 10 15 20 10 15 20 10 15 20 10 15 20

N1 37.85 55.41 71.13 46.88 63.00 77.46 45.17 61.49 76.52 43.13 59.24 74.71
N2 52.00 59.45 65.53 61.75 73.15 83.87 59.67 70.52 80.29 57.18 67.01 75.00
N3 60.15 67.40 74.03 64.04 73.25 82.13 63.74 72.71 80.63 62.45 71.17 78.20
N4 67.52 72.21 75.87 75.42 82.28 87.15 73.77 80.44 85.40 71.82 77.33 82.28
N5 35.77 56.34 75.62 38.46 57.84 77.05 38.52 58.63 77.09 37.74 58.30 77.04
N6 66.77 72.36 76.62 75.98 80.73 84.37 74.38 79.62 83.55 71.47 76.96 81.27
N7 52.61 70.51 86.92 56.24 74.87 91.74 55.98 73.88 91.07 54.50 73.07 90.31
N8 67.16 74.19 80.10 74.99 80.31 83.99 74.04 79.75 83.55 72.04 77.43 82.17
N9 68.27 72.97 75.96 70.07 77.68 83.41 70.21 76.54 82.67 69.82 75.37 80.21
N10 70.65 73.90 76.61 79.90 82.24 84.34 78.57 81.07 83.14 75.68 79.31 81.20
N11 62.14 70.43 77.75 70.70 77.95 84.65 68.79 76.82 83.47 66.84 75.03 81.47
N12 51.68 59.13 65.23 65.60 70.93 75.69 63.31 69.29 73.66 59.46 65.72 70.83
N13 63.97 72.93 81.20 65.82 76.51 85.56 66.39 76.30 85.40 65.47 75.25 83.58
N14 72.04 73.46 72.90 76.88 76.94 75.59 75.85 76.71 75.93 74.73 75.18 74.62
N15 57.75 67.41 75.62 60.98 71.31 81.05 61.32 70.96 80.24 59.93 69.33 78.58

Average 59.09 67.87 75.41 65.58 74.60 82.54 64.65 73.65 81.51 62.82 71.71 79.43



Chapter 6. Results and Analysis 67

Table 6.5: TV-LPCC skipping (female)

Baseline CMS/DRA RASTA/DRA RSF/DRA
Noise Type 10 15 20 10 15 20 10 15 20 10 15 20

N1 35.24 53.60 70.73 44.15 61.19 77.51 42.65 60.26 76.19 39.74 57.10 74.32
N2 55.78 65.44 74.35 55.11 68.70 81.93 55.71 69.00 81.03 56.24 68.31 78.81
N3 50.96 57.43 63.67 53.24 62.80 72.14 53.42 62.95 71.14 52.20 60.88 68.51
N4 69.20 74.66 78.84 70.55 78.35 85.98 70.92 78.38 84.84 70.80 77.36 82.47
N5 32.60 54.68 75.55 39.66 61.03 81.32 39.00 60.38 80.26 36.98 58.10 79.15
N6 63.75 70.41 76.21 68.59 75.91 82.23 68.46 75.57 81.32 66.45 73.07 79.27
N7 41.58 61.47 81.16 45.89 63.06 78.81 45.64 64.00 80.42 44.65 63.30 80.67
N8 65.41 74.28 81.38 71.88 77.85 83.06 71.44 78.52 83.93 69.51 77.12 83.07
N9 63.25 70.97 77.88 63.84 73.53 82.24 64.24 73.95 82.38 63.94 73.24 80.59
N10 70.34 74.61 77.37 74.31 78.77 82.83 74.13 78.56 82.48 73.30 76.82 80.23
N11 58.77 69.19 78.94 66.06 75.19 82.83 64.61 74.09 82.80 62.63 72.37 81.55
N12 53.07 60.13 66.93 54.67 63.35 70.69 54.35 63.13 70.42 53.92 62.15 69.30
N13 51.18 61.43 70.17 58.36 69.76 80.17 57.57 68.36 78.59 55.41 66.46 75.95
N14 68.97 70.63 71.26 75.76 76.81 77.49 75.02 75.93 76.80 72.99 75.05 75.25
N15 51.69 60.56 67.63 55.83 65.37 74.69 55.74 64.62 73.41 54.73 63.95 71.67

Average 55.45 65.30 74.14 59.86 70.11 79.59 59.53 69.85 79.07 58.23 68.35 77.39

Table 6.6: TV-LPCC averaging (male)

Baseline CMS/DRA RASTA/DRA RSF/DRA
Noise Type 10 15 20 10 15 20 10 15 20 10 15 20

N1 37.51 55.17 70.93 45.64 61.88 77.24 44.31 60.59 76.52 41.89 58.75 75.03
N2 53.20 60.62 66.18 62.37 73.52 84.55 61.44 72.02 81.01 58.60 67.70 76.34
N3 61.87 69.21 74.75 66.26 75.11 82.90 66.27 74.62 81.54 64.99 72.40 79.06
N4 69.11 73.52 76.29 76.80 82.30 87.68 75.35 81.04 85.42 73.86 78.41 82.06
N5 37.22 57.45 75.99 40.45 59.31 77.46 40.56 59.45 77.45 39.09 59.14 77.20
N6 68.06 73.14 76.98 77.77 82.61 85.54 75.59 80.41 83.88 73.22 78.34 81.80
N7 54.10 71.23 87.32 57.46 75.78 92.41 57.26 74.94 92.00 56.62 74.26 90.09
N8 68.44 74.94 80.36 76.84 81.14 85.10 75.29 80.70 84.86 72.90 77.96 82.79
N9 69.72 73.62 76.36 71.54 78.01 83.82 72.37 77.78 82.51 71.56 76.94 80.59
N10 71.59 74.50 77.00 81.43 84.27 85.18 80.00 82.10 83.42 77.37 79.47 81.39
N11 63.41 71.68 78.03 71.84 79.37 85.41 71.14 78.18 83.97 68.56 76.10 82.07
N12 52.72 59.90 65.64 66.94 72.52 76.62 63.91 69.81 74.35 60.29 67.01 71.75
N13 67.22 74.34 81.34 68.35 77.39 85.70 68.35 77.13 85.52 68.21 76.12 83.74
N14 73.25 73.93 73.19 78.77 78.34 76.57 77.78 77.47 76.86 76.65 76.22 75.70
N15 59.19 68.03 75.77 62.48 72.53 81.21 62.73 72.54 80.80 61.13 70.41 79.07

Average 60.44 68.75 75.74 67.00 75.60 83.16 66.16 74.59 82.01 64.33 72.61 79.91

Table 6.7: TV-LPCC averaging (female)

Baseline CMS/DRA RASTA/DRA RSF/DRA
Noise Type 10 15 20 10 15 20 10 15 20 10 15 20

N1 35.63 53.94 71.48 44.65 61.54 78.15 43.38 60.42 77.13 40.74 58.32 75.72
N2 57.17 66.32 75.00 56.54 70.29 82.57 57.51 69.47 81.36 57.33 68.14 78.79
N3 53.28 59.71 65.43 55.39 65.20 74.03 55.73 64.81 72.83 55.19 62.88 70.05
N4 71.91 76.32 79.69 72.73 80.22 87.21 73.71 80.07 86.25 73.03 78.47 83.67
N5 33.83 55.62 76.73 41.55 62.30 82.60 40.48 62.20 82.19 37.99 59.21 79.83
N6 65.54 71.83 77.49 69.99 77.41 83.93 69.60 77.20 83.08 68.06 74.66 80.92
N7 43.55 63.45 82.41 47.42 64.04 80.29 47.81 64.59 81.24 46.23 64.21 81.79
N8 66.59 74.80 82.56 73.69 79.69 84.74 72.63 79.50 84.84 70.74 77.75 83.82
N9 66.20 73.46 79.21 66.40 75.38 83.52 67.13 75.47 83.02 66.77 74.72 81.46
N10 72.58 76.07 78.92 76.43 81.14 84.24 76.75 80.56 83.82 75.30 79.06 81.68
N11 60.61 70.71 80.04 67.48 76.01 83.93 66.24 75.37 84.00 64.09 73.46 82.09
N12 54.98 62.38 68.27 56.77 65.21 72.35 57.43 65.44 71.92 56.31 64.25 70.74
N13 53.71 63.07 71.09 60.50 71.18 81.03 58.99 69.61 79.83 57.26 67.59 76.64
N14 70.76 72.26 72.26 77.21 78.49 78.89 76.77 77.45 77.84 74.79 76.23 76.23
N15 53.51 61.63 69.44 57.94 67.30 76.65 57.66 67.45 75.43 55.90 65.05 73.45

Average 57.32 66.77 75.33 61.65 71.69 80.94 61.45 71.31 80.32 59.98 69.60 78.46
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6.1.2 Discussion of General Findings

From the experiments, it is the sensitivity of the TV-LPCC that is contributing to

its degraded performance. A small difference in the samples were observed to lead

to big differences in the resulting cepstra. To show this, we compared the trajec-

tories of the time-varying coefficients for the case when boundaries were generated

automatically and when it is manually corrected to match the boundaries used for

training the same speech. It is clearly seen in Figure 6.1 that the shift caused by

the blocking procedure could result to the trajectories of the same noisy signal to

become different.
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Figure 6.1: Effect of VAD performance to cepstrum trajectories.

Thus, for all the experiments, the result of the VAD for clean speech signals had

to be used for all the noisy test cases. However, as shown in Tables 6.1, 6.2, 6.3,

6.4, 6.5, 6.6, and 6.7, both proposed techniques always performed worse than the

baseline. For all cases, CMS with DRA has the best average performance and is

used for succeeding experiments.
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One interesting observation is the comparison of performance between the skipping

and the averaging schemes. In general, the averaging reduction method performs

better than skipping making the proposed method one step ahead of the conven-

tional way of reducing the features. Despite the suboptimal performance, the fact

that the features can recognize words makes the results encouraging for future

work.

6.2 Hybrid Models

Based on the results, it can also be argued that the standard MFCC formulation

is already performing well for the case of voiced speech segments and the use of

nonstationary modeling can be used as an augmentation for prevalent problems. It

is common practice in the speech recognition literature to combine certain models

using a justified scheme. For this research, two possibilities in combining stationary

and nonstationary features were employed. The first is collectively called data

selective, which is based on the notion that transient parts of the signal are required

to have better modeling. The other group is based on the notion that different

features can have varying strengths in dealing with different speech phenomena as

employed in several works in experimental speech recognition.

6.2.1 Voting-Based Models

The idea of voting-based methods comes from the fact that different features

may have varying properties that will be effective for different set of speech phe-

nomenon. This is especially true for noisy cases where modulation and varying

spectral influences are present. Because a number of models is generated from the

baseline formulation of the time-varying methods, consensus of different systems

can be gathered where the most frequent recognition can be used as the overall

system output. This type of scheme is depicted in Figure 6.2.

Using the training and testing set, the performance of MFCC and skipping TV-

LPCC were tested on the group of words genki, tenki, and denki. This comparison

was done by taking the entire duration of speech with a few silence included by

the energy-based VAD. The original 32-state left-to-right HMM was used.
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For the second case, the speech signal was cut in half. Due to the inconsistencies

with respect to the cut-off of the speech signal. The HMM model was modified

such that it can reflect this inconsistency. First, a few speech files were analyzed

and the coverage of the signal were found to vary between getting only the first

consonant up to getting until the /n/ or /k/ sound. Based on this, 3-state were

used to span one phoneme. Including the initial silence, 16 states will be used.

Every third state is also let skip to the end in case the speech is cut off immediately.

This is shown in Figure 6.3.

For both cases, the use of the average TV-LPCC derived cepstral coefficients prove

to have better distinction between the P, T, and G sounds after enough training

iterations as shown in Figures 6.4 and 6.5. The margins are very large. To confirm

the hypothesis, a small experiment was done using the same set-up as outlined in

Chapter 4. However, it uses a parallel recognition scheme, where the consensus

is used as the actual output. This is shown in Figure 6.6. TVLPCC1 refers to

TV-LPCC using Skipping and TVLPCC2 referes to TV-LPCC using Averaging.

The results of the experiment is summarized in Table 6.8. Note that only the

Babble, Buccaneer 1 and 2, Destroyer engine room, HF channel, Pink, and White

Noise types were included due to time constraints. Also, this result is only for

male speakers. As can be seen, an average of 1.02% increase in recognition rate

was achieved. This confirms the observation that the sensitivity of the features is

also affected by speaker-dependence and other factors.
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Figure 6.2: Voting-based scheme architecture
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Figure 6.3: The HMM topology modified for cut onsets.

6.2.2 Data Selective Models

Based on the analysis done in evaluating the performance of the best system for

the HU-SCS, words causing the most errors only differ by one phoneme specifi-

cally at the beginning or at the onset. The idea for these data selective models
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Figure 6.4: MFCC and TV-LPCC performance on closely sounding words
using a 32-state HMM.
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Figure 6.5: MFCC and TV-LPCC performance on closely sounding words
(halved in time) using a 16-state skipping HMM.

is to incorporate both time-varying and invariant features on the training data.

The idea is to only apply time-varying analysis to transient parts of the speech

Table 6.8: Average results for voting-based experiment

Noise types MFCC MFCC+TVLPCC1+TVLPCC2

Clean 93.00 95.82
N1 82.33 83.74
N2 88.34 88.34
N3 85.04 85.32
N4 90.14 92.39
N9 86.51 87.36
N13 87.41 87.69
N15 84.99 85.27

Avg 87.22 88.24
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Figure 6.6: Voting-based system used

signal and apply the original stationary formulation to the rest of the data. How-

ever, considering the sensitivity of the time-varying method, a precise detection

of end-points and glottal changes must be in place. This is similar to studies that

made use of time-varying techniques to classify CV transitions, where this type of

selectivity has been proven to be effective [50].

For this research a VAD-dependent scheme is used. Instead of using an end-

point detection algorithm, a minimal constant number of frames is determined via

an iteration process. This iteration process is only applied to set of utterances

that are considered to require the use of the time-varying models, such as the

close sounding word problem being solved. The procedure computes for the time-

varying features using the best performing baseline model among the non-hybrid

types using an increasing number of frames for every set, and the smallest number

of frames where all sets are performing well is used. Once the constant number

of frames is determined, the division will be applied to all words in the database

for evaluation. Figure 6.7 shows the result of this procedure to two near sounding

groups.

To continue this process, we have settled for 7 frames to confirm the hypothesis.

Shown in Figure 6.8 is the scheme used for the experiment. Initially, 7 frames
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Figure 6.7: Near sounding word recognition as a function of number of frames
used.

are used to solve for the TV-LPCC features. Then, the rest of the signal was

subject to MFCC extraction. Similar to the averaging technique, using Equation

4.38, the number of TV-LPCC vectors were reduced in order to make training

feasible. The results were then compared to the new hybrid schemes proposed.

Clearly, both hybrid schemes improve the performance of the baseline system by

1-2%. However, it should be noted that this assumes that the system knows the

appropriate boundaries as detected for clean speech.

Figure 6.8: Split signal data-selective model scheme.
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Table 6.9: Average results for hybrid experiments

White Babble
Noise types Clean 10 20 10 20 Average

MFCC 93 70.66 84.99 50.75 82.33 76.35
Voting-Based 95.82 71.21 85.27 52.04 83.74 77.62
Split Features 94.02 72.37 87.07 53.46 86.11 78.61



Chapter 7

Conclusion and Future Direction

7.1 Summary of Thesis

The research done in this thesis focused on the use of time-varying feature extrac-

tion for speech recognition. The research background and motivation pertaining

to speech modeling and speech recognition were presented, and the theoretical

and practical issues involved in the development process. Highlighting modeling

accuracy and low complexity, the basic formulation of time-varying LPC coeffi-

cients was described and successfully implemented. The initial experiments have

proven to be suboptimal due to sensitivity issues but further analysis based on fur-

ther experiments have led to hybrid models that give marginal gains by exploiting

both the strength and weaknesses of the proposed technique. Overall, the result

of the experiments have shown that there is indeed some potential in the use of

TV-LPCC as speech features.

7.1.1 Contributions

This work presented a pioneering work where the use of an HMM-based, isolated-

word speech recognition system with words as acoustic units is exploited to discover

and highlight the merits of time-varying LPCC as features. In particular, the gains

acquired by incorporating the technique did not require very high complexity since

the proposed technique can be solved using linear operations.

76



Chapter 7. Conclusion and Future Direction 77

The thesis was successful in its implementation of the time-varying speech feature

extraction method as the system can recognize words using the proposed scheme.

However, using the proposed formulation did not surpass the performance of the

currently best-performing system. This is only true if the proposed scheme is used

for the entirety of the speech signal.

The thesis also provided several experimental results for noisy test conditions.

The interaction of the proposed scheme with various feature compensation tech-

niques were tabulated and recorded. It was concluded that the reason behind the

suboptimality is the sensitivity of the feature extraction method.

Finally, these aforementioned sensitivity and instability issues associated with the

technique have been worked around by data-selective splitting of features, reducing

the occurrences of bursts in cepstral values that increase the model entropy. Small-

scale experiments were conducted in order to verify the hypothesis. It is then

concluded that the time-varying feature extraction scheme can be well-suited for

short-duration signals. Hybrid systems were proposed, combining the merits of

both time-varying and time invariant feature extraction scheme and the results

were positive.

7.1.2 Results Summary

The use of time-varying LPCC features has been successfully implemented for use

in an isolated-word speech recognition system. The evaluation experiments have

shown that the inherent sensitivity of the technique prevents it from performing

better than MFCC due to the bursty spectral estimates. However, despite this, it

was found that it can solve the problem of near similar pronunciation words by

not using entire words, but only the transient parts of the signal.

A series of simulations were performed using training data and cross-validation

data. Noise robustness experiments were performed under clean, 20 dB, 15 dB,

and 10 dB SNR conditions. In all cases, the proposed technique did not perform

better than the baseline feature technique. By similar argument, the results for

TV-LPCC are not representative of the noise robustness of the technique but

is attributed to the sensitivity and burstiness. This was proven when the same
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procedure was applied using only the near similar pronunciation words as the

TV-LPCC performed better than the MFCC in the latter cases.

Finally, by doing separate experiments, gains in the use of time-varying speech fea-

tures were acquired when the TV-LPCC features were used alongside MFCC. This

was motivated by using voting-based system that also improved the performance

of the system due to errors from similar pronunciation words.

7.2 Recommendations for Future Work

The most natural step in continuing this work is to pinpoint areas in which param-

eter settings were being made empirically. Recently, lots of work are being done

in the field of Artificial Intelligence where most of these complex optimization are

being done automatically. For example, simulated annealing and other genetic

algorithms can be used to optimize all the parameters of the system including the

LPC order and basis function order.

Another issue that may arise is in the fair comparison between time invariant

and time-varying schemes. In this work, the frame lengths for the time-varying

scheme was chosen such that the skipping models will output vectors that are

the center of the frames for the time invariant cases. This does not necessarily

reflect the strength of the time-varying method. Better reduction methods can

also be employed such that no information is discarded. This can be thought of as

a part of Missing Feature Theory where the most relevant information from the

high resolution cepstrum is computed. Both the skipping and averaging methods

introduced in this thesis are lossy and there are no justified reason for using them

except that one is conventional and the other one is straightforward.

Another area that can be approached is in smoothing the bursty spectral and

cepstral estimates of the time-varying LPC. This can drastically change the per-

formance of the technique given that even with this bursty estimate, the accuracy

for clean settings is still high for the proposed method. This can further lead to

the investigation of the entropy of the proposed scheme. Using an entropy mea-

sure, a better way of doing split models can be developed. This idea is fairly

new to speech recognition and further study of hybrid schemes will definitely be

beneficial.



Appendix A

Vocabulary List

The following are the 142 words contained in the database used for training and

testing the systems in this thesis:

1. ohayou

2. konnichiwa

3. konbanwa

4. oyasumi

5. ittekimasu

6. tadaima

7. baibai

8. matane

9. sayounara

10. hajimemashite

11. kawaiine

12. ikutsu

13. onamaewa

14. genki

15. saikindou

16. tsukareta

17. omoronai

18. suki

19. kirai

20. tanoshiine

21. kanashiine

22. tsuraine

23. tsumaranai

24. eraine

25. omoshiroine

26. kashikoine

27. ureshiine

28. nemuine

29. mukatsuku

30. samuine

31. atsuine

32. arigatou

33. utte

34. shoumei

35. terebi

36. bideo

37. eakon

38. sutando

39. dibidi (DVD)

40. denki

41. shoumeitsukete

42. shoumeikeshite
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43. terebitsukete

44. terebitsukete

45. bideotsukete

46. bideokeshite

47. eakontsukete

48. eakonkeshite

49. channeru

50. onryou

51. boryuumu

52. myuuto

53. dengen

54. saisei

55. teishi

56. ichijiteishi

57. yoyaku

58. ao

59. aka

60. midori

61. kiiro

62. biesu (BS)

63. shiesu (CS)

64. haadodisuku

65. senkyoku

66. bangumihyou

67. hyouji

68. dejitaruterebi

69. deetahousou

70. housoukirikae

71. nyuuryokukirikae

72. shouon

73. modoru

74. subete

75. menyuu

76. soufuu

77. reibou

78. danbou

79. jidou

80. joshitsu

81. dorai

82. ondo

83. kazamuki

84. taimaa

85. tsukete

86. keshite

87. sutaato

88. sutoppu

89. akaruku

90. kuraku

91. kaishi

92. kakunin

93. henkou

94. settei

95. kaijou

96. kanryou

97. kettei

98. tasukete

99. tsugi

100. chappito

101. tenki

102. zero

103. ichi

104. ni

105. san

106. yon

107. go

108. roku

109. nana

110. hachi

111. kyuu

112. ku

113. juu

114. juuichi

115. juuni
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116. hai

117. iie

118. shuuryou

119. torikeshi

120. owari

121. zenshin

122. koutai

123. mae

124. ushiro

125. on (ON)

126. offu (OFF)

127. appu (UP)

128. daun (DOWN)

129. akeru

130. shimeru

131. dai

132. chuu

133. shou

134. ue

135. shita

136. migi

137. hidari

138. kyou

139. jaku

140. koutsuu

141. kankou

142. annai
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