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Abstract

Combustion instability (CI) has been persistent in all forms of propulsion since their

inception. CI is characterized by pressure oscillations within the propulsion system. If even

a small fraction of the dense energy within the system is converted to acoustic oscillations

the system vibrations can be devastating. The coupling of combustion and fluid dynamic

phenomena in a nonlinear system poses CI as a significant engineering challenge.

Drawing from previous analysis, second order acoustic energy models are taken to third

order. Second order analysis predicts exponential growth. The addition of the third

order terms capture the nonlinear acoustic phenomena (such as wave steepening) observed

in experiments. The analytical framework is derived such that the energy sources and

sinks are properly accounted for. The resulting third order solution is compared against

a newly performed simplified acoustic closed tube experiment. This experiment provides

the interesting result that in a forced system, as the 2nd harmonic is driven, no energy is

transferred back into the 1st mode. The subsequent steepened waveform is a summation of

2nd mode harmonics (2, 4, 6, 8...) where all odd modes are nonexistent. The current third

order acoustic model recreates the physics as seen in the experiment.

Numerical experiments show the sensitivity of the pressure wave limit cycle amplitude

to the second order growth rate, highlighting the importance of correctly calculating the

growth rates. The sensitivity of the solution to the third order parameter is shown as well.

Exponential growth is found if the third order parameter is removed, and increased nonlinear

behavior is found if it retained and as it is increased. The solutions sensitivity to this term

highlights its importance and shows the need for continued analysis via increasing the models

v



generality by including neglected effects. In addition, the affect of a time varying second

order growth rate is shown. This effect shows the importance of modeling the system in time

because of the time lag between changes in the growth rate to a change in the limit cycle

amplitude.
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Chapter 1

Introduction

Combustion instability (CI) is a major concern in all propulsion and power generation

devices. It is characterized by vibrations within the combustion system, generally measured

as an oscillating pressure. CI has been a problem in propulsion devices since their inception.

Combustion Instability occurs when dynamic phenomena within the propulsion system drive

oscillations. Typically these oscillations arise from a driving phenomena, a random noise or

a sudden pulse which then couples with the driving phenomena, drawing energy from the

system internally, and resonates with the acoustic oscillations in the system. The resulting

large oscillation is then responsible for design failures. Figure 1.1 depicts a typical example

of combustion instability in a solid rocket motor.

Figure 1.1: Example Pressure Plot from a Solid Rocket Motor (1)

1



Combustion Instability is a serious difficulty while designing propulsion devices because

of their large internal energy density. If even a small amount of the contained energy is

converted into organized pressure oscillations the results are disastrous. Mechanical failure,

vibration loads, and increased heat transfer are examples of the destructive nature of unstable

systems.

The name combustion instability itself is a misnomer. In many cases the oscillations have

little or nothing to do with combustion. In a simple system, such as a flute, oscillations

occur naturally with no combustion involved. The same phenomena are at work in a large

solid rocket booster.

1.1 Forced Oscillatory Behavior

Undoubtedly, the simplest oscillatory system is the mass-spring system. This type of system

is referred to as a forced system because the driving mechanism is an outside forcing function.

In its simplest form we have a mass attached to a spring riding on a frictionless platform

as shown in Figure 1.2. The mass may or may not have an externally applied force and

damping. For small amplitudes the dynamics of this system are defined by the differential

equation,
d2x

dt2
+ 2ζω0

dx

dt
+ ω2

0x = F (t). (1.1)

Where ω0 is the undamped natural frequency of the oscillator, ζ is the damping ratio and

F (t) is the driving force. For a mass on a spring having a spring constant k and a damping

Figure 1.2: Damped Mass Spring System

2



coefficient c, ω0 =
√

k/m and ζ = c/2mω0. Solving this equation for the unforced, undamped

solution we find,

x(t) = A sin(2πft+ φ) (1.2)

This solution demonstrates the natural sinusoidal nature of the oscillations. In later chapters

we will extend this thinking to fluid dynamics via acoustics. Assuming a sinusoidal driving

force F (t) = F0 sin(ωt), after stead state is achieved, we find for the damped forced solution,

x(t) =
F0

Zmω
sin(ωt+ φ) (1.3)

Where, Zm =
√

(2ω0ζ)
2 + 1

ω2 (ω2
0 − ω2)

2
and φ = arctan

(

2ωω0ζ
ω2

−ω2

0

)

. This solution shows

the origins of resonance. When the system is driven near to is natural frequency the

amplitude of the oscillations is increased. Figure 1.3 depicts the growth transient of a

forced-damped oscillator. The internal mechanisms in propulsion systems drive at varying

frequencies and amplitudes. This affects the resulting observed oscillations making them a

mix of different phenomena. We will find later that a combined forced-self excited system is

a more appropriate model, but the simple mass spring system demonstrates the resonance

principle nicely.

Additionally, the damping in a system can be positive or negative. Positive damping

decreases the amplitude of oscillation in time, and a negative damping coefficient will increase

it. In the field of combustion instability this concept of damping is referred to as alpha, α,

or the ’linear’ growth rate. The use of the term ’linear’ is due to the fact that α arrises from

linearized differential equations. In essence, α is the internally driven damping coefficient

just as in eαt. However, the notation is reversed from that of damping, µ. If it is negative,

oscillations decrease in time, if it is positive, they increase.

3



Figure 1.3: Example Waveform from a Driven Damped Harmonic Oscillator

1.2 Motor Stability

A system, within the context of combustion instability, is defined as stable when the net

effect on the organized oscillations is to dampen them. Mathematically, this is achieved

when, α < 0. In an unstable system the oscillation amplitudes grow. This is contrary to

the industry’s standard practice where a low amplitude pressure oscillation (below 10% of

the mean pressure) would be considered ’stable.’ In this case the system is clearly unstable

as seen by the presence of organized oscillations. A truly stable motor dampens out all

oscillations if pulsed and runs smoothly (excluding turbulent noise). In the end, knowing if

a motor is stable or unstable is not sufficient. The pressure amplitude at which the system

oscillates differentiates varying degrees of instability. The system designers need to know the

actual operating conditions and these design parameters are functions of a complex nonlinear

system with many energy sources and interactions.

1.3 Self-Excited Systems

It was mentioned previously that a forced system alone is not an appropriate way to model

combustion instability. The mechanisms which drive internal oscillations within a rocket

motor are typically dependent on the oscillations within the motor and not solely an outside

force. For example, the propellant burning rate is dependent on the pressure which, in turn,

is dependent on the burning rate of the propellant. This reinforcing nature shows that this
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is primarily a self excited system. Oscillations within the rocket motor arise from chaotic

turbulent behavior as well as organized flow instabilities such as vortex shedding. These

oscillations are then either reinforced or damped internally by the system.

Van Der Pol Equation

The Van Der Pol equation is a classic example of a nonlinear self excited system. It arises

from the study of electrical circuits including vacuum tubes. It is given by,

d2x

dt2
+ µ(x2 − 1)

dx

dt
+ x = 0 (1.4)

Where µ is the strength of the damping. When the system has an initial condition of x = .1

and x′ = 0 with a damping coefficient of µ = 5 the system exhibits nonlinear behavior unlike

the sinusoidal nature of the linear differential system. Figure 1.4(b) depicts this nonlinear

waveform. Figure 1.4(a) shows the phase plane plot for the same case. The system starts at

(.1, 0) and quickly grows to a larger amplitude where the system reaches its limit.

As µ approaches zero the system becomes a linear oscillator, d2x
dt2

+ x = 0. Thus, when a

smaller damping value of µ = .1 is used the system exhibits nearly sinusoidal behavior seen

in the nearly circular phase plane plot in Figure 1.5(a). The low level of driving allows for

a nice example of the growth transient shown in Figure 1.5(b).

1.4 Forced vs. Self-Excited Systems

The difference in the two systems is seen in their waveforms. First, in Figure 1.6(a), we see a

driven damped oscillator. The concave down exponential growth, proportional to 1−e−βt, is

a solution to a linear differential equation which is referred to henceforth as ’linear’ behavior.

Additionally, it is linear on a time scale t ≪ 1/β. However, in Figure 1.6(b), the system

starts with exponential, eαt growth, which transitions to nonlinear limiting. Both cases

arrive at an equilibrium, or a limit cycle amplitude, but they do so by different means. In

reality, the complex system within a rocket motor is a combination of driven and self excited
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(a) Phase Plane (b) Waveform

Figure 1.4: Van Der Pol Equation µ = 5

(a) Phase Plane (b) Waveform

Figure 1.5: Van Der Pol Equation µ = 0.1
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(a) Forced (b) Self-Excited

Figure 1.6: Comparing Forced vs. Self Excited Systems

mechanisms. Additionally, because of the random nature of the measured pressure signals

and their rapid time dependence it is difficult to make any firm conclusions based on the

experimental data.

1.5 Acoustics

Before we move onto nonlinear dynamics we will introduce the equations for acoustics. A

detailed derivation of this equation is found is Appendix A.2. More information on acoustics

can be found in (9) or (8). By combining the continuity and momentum equations we arrive

at,
1

c2
∂2p

∂t2
−∇2p = 0 (1.5)

Several assumptions have been made to bring us to this point. These assumptions play a

critical role in future models. In the acoustic solution we assume that the system is isentropic

and thermally perfect. Later, when evaluating CI, there is motivation to avoid these same

assumptions. For example, the isentropic assumption is not appropriate when distributed

combustion is present in the flow field.

The solution to the acoustic equation depends on the geometry involved. For closed tube,

which represents a choked combustion chamber, in the 1-D axial case we arrive at the classical

sines and cosines solution. The first four longitudinal mode shapes for a closed-closed acoustic

tube are shown in Figure 1.7.
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In a real system many other modes are prevalent in a closed tube. For example, tangential

and radial acoustic modes form Bessel functions. These solutions represent a linear acoustic

solution similar in nature to the mass spring problem. However, in real fluids the oscillations

behave in a nonlinear fashion, thus, we need to account for the deviation from the linear

model.

1.6 Nonlinear Behavior

Nonlinear systems have interesting consequences which are not seen in linear systems. These

nonlinear effects are critical in understanding combustion instability. Unstable pressure

traces are well documented in the literature. Several key characteristics are prevalent in the

data. These are:

• Limit Cycle Amplitudes

• Wave Steepening

• ’DC’ or Mean Pressure Shift

1.6.1 Limit Cycle Amplitudes

In a simplified case we can imagine a negatively damped spring-mass oscillator. The mass

would begin oscillating at a given amplitude and in time it would increase in amplitude. If

the damping value were dependent upon the oscillation amplitude, we could image a system

Figure 1.7: Longitudinal Mode Shapes, First Four Modes
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where the damping coefficient would increase as the oscillation amplitude rises. Thus, as

the system increases in amplitude the damping coefficient becomes neutral and we reach a

balanced oscillation amplitude. This is referred to as the limit cycle amplitude. In dynamical

systems the limit cycle is an orbit in phase space on which trajectories converge. This orbit

may be stable or unstable and at least one trajectory must spiral into it. This phenomena

can be seen clearly in Figure 1.6 as both systems reach a limit amplitude. More information

on dynamical systems and limit cycles can be found in “Nonlinear Dynamics and Chaos” by

Steven Strogatz (69) and “Deterministic Chaos” by Heinz Schuster (70).

In a real fluid dynamic system this ’damping coefficient’ is comprised of many mechanisms

and thereby many variables. In a linear system it is known as the growth rate, or α, as in

eαt. Some mechanisms dampen oscillations, some drive them. The large number of unique

mechanisms all working simultaneously in a complex nonlinear system poses combustion

instability as one of the more difficult engineering challenges.

1.6.2 Wave Steepening

When an acoustic wave travels through a medium it tends to steepen. This is a natural

process due to localized changes in the speed of sound. As a result the waveform will

converge to a steepened waveform depicted in Figure 1.8. This shock-like structure is the

result of the nonlinear nature of fluids and is well documented in acoustic literature (8).

This is nature’s method of limiting the infinite exponential growth predicted with linear

resonance. The exponential growth is only valid in the system initially and predicts an

eventual unphysical infinite pressure rise. In the real nonlinear system energy cascades from

the high amplitude low modes to higher modes. This process limits the wave growth as the

higher modes require more energy to sustain.

1.6.3 Mean Pressure Shift

When steepened waves are present in a closed chamber an interesting phenomena occurs.

The mean pressure in the chamber increases. This can be see clearly in Figure 1.1. This
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Figure 1.8: Pierce’s description of wave steepening (8)

effect is due to the work done on the fluid by the waveform at the surface. If it is not

considered in the design, this mean pressure increase, or ’DC’ shift, as it is called in the

industry, combined with shock-like waves can result in catastrophic failure of a pressurized

chamber.

The phrase ’DC shift’ comes from the analogy between alternating current (AC) and direct

current (DC), where the AC is analogous to the oscillating pressure and the DC represents

the mean pressure. This notation likely originated from the fact that the pressure is measured

with an electrical sensor where the oscillating pressure response would be observed as AC

and the mean pressure as DC.

1.6.4 Nonlinear Systems

There are many interesting characteristics which are prevalent in unstable systems. Many

of these are the result of non-linear processes. Figure 1.9 shows a collection of mechanisms

which all play a role in the transfer of energy within the system. These mechanisms either

add energy into the organized oscillations (propellant pressure response, acoustic boundary

layer pumping, vortex shedding, etc) or remove energy (viscous damping, nozzle damping,

particle damping, etc). This balance, looked at from a nonlinear perspective, determines the

stability of the system and if it is unstable it will define the character of the pressure trace.

More information on the individual mechanisms can be found in Culicks book (28).
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Figure 1.9: Example System Energy Gains and Losses

1.6.5 Damping as a Function of Time

In a rocket system the net damping coefficient, or α, is changing rapidly in time. This effect

makes it difficult to visualize the waveform and phase diagram. Additionally, there is a

transient between a change in α and arriving at a limit amplitude. When α is changing in

time before the steady state is achieved the true limit amplitude may never be reached. This

fact shows the need for detailed analysis of the individual mechanisms and a time dependant

solution of the entire system. As an example, the Van Der Pol equation is modified so that µ

is a variable. It has a mean value of 0.1 with sinusoidal and random additions. This results

in a random appearing, or noisy, phase plane plot shown in Figure 1.10 with crossing lines

and no clear limit cycle. An actual data signal is bound to have many more mechanisms

varying the driving α, along with more noise in the system, causing the phase plane and

waveform plots to appear disorganized.

y”(x) −
(

.1 + 2(sin(.5x))2 + .2 sin(10x) + RandomReal(0, 1)
) (

1 − y(x)2
)

y′[x]

+ y(x) = 0 (1.6)
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Figure 1.10: Van Der Pol with variable µ
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1.7 Experimental and Historical Examples

Since the inception of rocketry, combustion instability has been a serious problem. Several

real world examples will highlight the various characteristics of combustion instability.

1.7.1 Rocketdyne F-1 Engine

Producing over 1.5 million lbf thrust, five of these motors were used in the first stage of

the Saturn V. The F-1 engine, shown in Figure 1.11, had serious combustion instability

issues during its development (11). Over 2700 full scale tests were performed to analyze its

performance. During these tests ’bombs’ (acting as a pressure pulses) were detonated within

the combustion chamber to test for stability. Pressure pulses such as these occur naturally

in real systems sparking the growth of instabilities. For example, in a solid rocket motor, if

a piece of propellant or igniter breaks off within the motor it will travel through the nozzle

instantaneously changing the throat area. This sudden change will cause a immediate rise

in chamber pressure, acting like a pressure pulse or ’bomb’. For practical testing reasons,

since instabilities can grow from noise within the system, the pulse allows for an immediate

testing of instability without waiting for the natural transient to grow.

An example of the pressure trace produced by the F-1 is shown in Figure 1.12. High

amplitude steepened waves are seen on the order of 500psi. This is roughly the same order as

the chamber pressure given at 965 psia. The intense pressure waves cause extreme localized

heating causing damage to the injector surface.

An injector design was arrived at involving baffles, shown in Figure 1.13, presumably to break

up the coherence of the tangential oscillations in the chamber and reduce their interaction

with the injection process (11). This design reduced the oscillations to below an acceptable

amplitude of 10% of the mean pressure. In modern systems this is considered a ’stable

rocket,’ but as mentioned in the introduction this is still an unstable system because the

system is sustaining organized oscillations.
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Figure 1.11: F-1 Liquid Rocket Engine (11)

Figure 1.12: F-1 example pressure trace (11)
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Figure 1.13: F-1 injector plate showing the presence of baffles (11)
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1.7.2 Brownlee-Marble Solid Rocket Motor Data

Tests performed by W.G. Brownlee and F.E. Marble at the Caltech Jet Propulsion

Laboratory in 1959 (12) (13) (14) were one of the first controlled and fully instrumented

experimental studies of solid rocket motors. Figure 1.14 shows the experimental setup of a

5in diameter solid rocket motor. Nonlinear features such as limit cycle amplitude and mean

pressure increase were observed in a repeatable manner in over 400 tests. Carefully observed

stability boundaries were measured, shown in Figure 1.15. In a paper by Flandro, et all (50)

the data was recently analyzed using current techniques and, as shown in Figure 1.16, it is

found that the current theoretical basis captures the true physics seen in the experimental

data. The key features of these tests are illuminated with improvements in data analysis of

E.W. Perry’s T-Burner data (50).

1.7.3 Minuteman III, 3rd Stage

The Minuteman III, 3rd stage solid rocket motor is a clear example of vortex shedding

induced combustion instability (60). The internal ballistics cause large shear layers to form

as the flow passes protrusions in the propellant grain. This sheared flow, depicted in Figure

1.17, is unstable and results in the generation of vortices. These vortices travel downstream

Figure 1.14: Experimental Setup of 5in Motor (13)
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Figure 1.15: Experimental Setup of 5in Motor (50)

Figure 1.16: Experimental Data vs. Simulation Data (50)
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Figure 1.17: Minuteman III Vortex Shedding (60)

and impinge on the interior nozzle surface. The instability of the shear layer and the vortex

impingement are both sources of sound and drive the pressure oscillations.

The internal geometry changes as the propellant grain burns back in time which in turn

changes both the frequency at which the vortices are shed and the acoustic natural frequency.

These shed vortices prefer to fit into the geometrical gap between the shedding protrusion and

the nozzle surface in integer values. As a result, the frequency of the vortex shedding can shift

throughout the burn. Oscillation amplitudes are highest when the vortex impulse driving

frequency resonates with the chamber acoustics. Similarly, chamber pressure oscillations

alter the shedding of the vortices. Thus we find a coupling between the vortex shedding

frequency and the chamber acoustics. Figure 1.18 shows this ’locking in’ phenomenon

characterized by the sudden shifts in oscillatory frequency as the vortex shedding frequency

shifts to match the acoustic frequency.

1.7.4 Experimental Verification of Mean Pressure Increase and

Wave Steepening

This nonlinear phenomenon has been characterized in previous work by Saenger (17) and

Jacob (18). Both phenomena are easily seen in a simple acoustics experiment such as a
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Figure 1.18: Typical Pressure Amplitude Waterfall for Minuteman III, Third Stage (61)

closed tube with a piston driven on one end and a pressure sensor on the other. Figure 1.19

shows the experimental setup by Jacob (18).

When the system is driven off the fundamental resonant frequency, the system displays

traditional sinusoidal acoustic behavior as shown in Figure 1.20(a). Yet, when driven near

the natural frequency, the system quickly transitions to a steepened waveform shown in

Figure 1.20(b).

The spectrum of the steepened waveform is shown in Figure 1.21. As the system is driven near

to the fundamental acoustic mode, the waveform steepens. This steepening is characterized

by the energy flowing from the first mode to higher modes.

Additionally, as the system is driven near to the fundamental mode, an increase in mean

pressure is measured. This is a result of the work done on the fluid by the piston (52).

Figure 1.22 shows the increase in mean pressure as a function of the forcing frequency. In a

rocket system this same phenomena is observed. Driving mechanisms such as the burning

rate pressure response act as the piston. Both steepened waves and mean pressure increase

are measure in liquid and solid rocket motors.
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Figure 1.19: Shock Tube Experiment Setup (18)

(a) Off Resonance (b) On Resonance

Figure 1.20: Shock Tube Pressure Plots (18)

Figure 1.21: Waterfall Plot from Shock Tube Experiment (18)
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Figure 1.22: Mean Pressure Increase by Jacob (18)

Second Harmonic Driving

In further previously undocumented work, when the second harmonic is driven by the piston

the higher modes which are divisible by 2 are driven. Very little energy transfers back into

the 1st mode. Figure 1.23 shows the spectrum of the pressure measurement (taken by a

dynamic pressure transducer) when the tube is driven near to the second harmonic at 110

Hz. These spectra were taken with an FFT analysis of the pressure measurement at the

end of the closed tube. In future analysis it may be appropriate to use wavelet analysis

to capture time dependence. Figure 1.24 depicts the same data highlighting the first three

modes showing the high amplitude at 110 Hz and no observable frequency components at

the first or third modes. A small frequency component is seen at 60Hz due to wall voltage

noise.

Tangential Steepening

Tangential waves do not steepen in the same manner as the longitudinal waves (57) and are

often mistaken as detonation waves. Additionally, the mean pressure increase may not be

present. The steepened tangential waveform is shown in Figure 1.25.
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Figure 1.23: Forced Second Harmonic Spectrum

Figure 1.24: Forced Second Harmonic Spectrum Zoomed in on Missing First Mode
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Figure 1.25: Steepened Tangential Waveform (57)

1.7.5 JPL Data

Tangential oscillations have been studied extensively in a test motor developed at JPL (88).

This motor was highly instrumented with multiple pressure taps. Figure 1.26 shows the

motor setup. Figure 1.27 shows a series of pressure readings from pressure sensors located

throughout the chamber length. This data shows the variation in the pressure amplitude

across the axial length. The steepened waveform exhibits a high amplitude at the injection

surface highlighting the importance of the injection interaction. Figure 1.28 is a detailed

plot of a pressure signal. The waveform is similar to the steepened tangential waves seen in

Figure 1.25.

1.7.6 Space Shuttle Solid Rocket Booster (SRB)

Modern motivation comes from recent additions to the NASA space fleet in the ARES

rockets. The space shuttle solid rocket booster (SRB) has been adapted for future use in

both the ARES I and ARES V flight vehicles. In the ARES I vehicle, oscillations within

the boosters resonate with structural harmonics. This causes a dangerous level of oscillatory
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Figure 1.26: Layout of JPL Test Engine (88)

Figure 1.27: Multiple Simultaneous Pressure Traces from JPL Engine (88)
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Figure 1.28: Pressure Trace from JPL Engine (89)

acceleration placed on the astronauts and the rocket (72). The ARES I oscillations involve a

modified SRB, RSRMV, which will be discussed later. These modern oscillations originate in

the space shuttle SRB design. Data from the space shuttle flights and ground tests confirm

this. Figure 1.29 depicts a collection of cases of SRB combustion instability. A small pressure

oscillation amplitude, considering that the mean pressure is on the order of 600-800 psia, is

measured at one to four psi. This is certainly a much smaller oscillation than seen in the

F-1 which was deemed stable. However, due to the large size of the motors this translates

to a large thrust oscillation.

1.7.7 ARES I RSRMV

The modified space shuttle solid rocket boosters (RSRM) are lengthened versions of the

SRB. An fifth section has been added to the length of the motor. The increase in length

decreases the fundamental harmonic to approximately 12 Hz. Additional changes were made

to the grain geometry shape. The increase in total surface area along with other instability

mechanisms such as vortex shedding from protrusions into the mean flow yield an initial

prediction that the RSRM will oscillate at a higher amplitude than the SRB.

Unlike the space shuttle, the ARES I vehiclehas a similar structural harmonic near to the 12

Hz created by the motor. This coupling causes large acceleration oscillations in the rocket.

This vibration threatens the astronauts lives and the integrity of the rocket itself. Because

of these issues increased study has gone into the solution to the CI problem in the RSRM

and other large solid rocket motors.
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Figure 1.29: SRB First Mode Pressure Oscillations (4)

1.7.8 Non-Rocket Examples: Ramjets, Scramjets, Afterburners,

etc.

Rocketry is not the only example of a system which will exhibit combustion instability,

though, it is the most documented. Any system which contains large amounts of energy will

find ways to oscillate. If only a small fraction of that energy couples with the natural system

frequencies, harsh oscillatory amplitudes are produced. As a result all propulsion devices will

likely exhibit combustion instability. These alternative systems exhibit the same phenomena

demonstrated in the previous rocketry examples. Vortices are shed and couple with acoustic

oscillations, injection processes couple with flow conditions, and steepened waves and mean

pressure shift are general nonlinear phenomena that are applicable to all propulsion systems.

Unfortunately, data for these systems is scarce because the majority of the data is either

proprietary or classified. However, it is beneficial to keep these alternative systems in mind

when developing combustion instability theories and codes so that they will be applicable
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to all systems. For example, no limitations will be placed on the mean flow Mach number

so that the theory is applicable to afterburners and scramjets. The most current derivations

fit these requirements and are applicable to all systems. This will maintain the solution

techniques validity for all systems from solid rocket motors to scramjets. More information

is available in Culick’s report, “Unsteady Motions in Combustion Chambers for Propulsion

Systems,” (28).

1.8 Summary of Applicable Theoretical

Figure 1.30 shows the progression of relevant combustion instability research in a chrono-

logical flow chart. The center column shows the direct lineage leading to the current

analysis. Due to the large variety of theories, the following section will briefly discuss the

applicable prior theoretical models relevance to current models. Other valuable information

on combustion instability testing and research, shown in the side columns, is still relevant

and portions of their work are applicable in modern analysis and will be referenced when

needed. This list is by no means exhaustive. The field of propulsion research dates back

hundreds of years. However, the current combustion instability analysis relies primarily on

work by Kirchoff (20), Cantrell and Hart (21), Morfey (31), Myers (42), Culick (28), Yang

(11) and Flandro (57).

1.8.1 Kirchoff

Kirchoff’s paper (20) provides us with the principle of energy conservation in the acoustic

system. The change in the oscillatory energy must equal the work done on the system in

addition to the energy sources. This is the foundation of combustion instability research.

The change in the pressure oscillations in a system are caused by specific phenomena, or

mechanisms, which either increase the oscillatory energy or decrease it. From Kirchoff,

∂E

∂t
+ ∇ ·W = D (1.7)
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Kirchoff 1877
∂E
∂t

+ ∇ · W = D
Rayleigh 1878

Energy Balance
with Mean Flow

Cantrell & Hart 1964
Morfey 1965

Morfey 1971
Pierce 1981

Energy Balance
with Entropy Waves

Energy Balance
with Vorticity

Extended Energy
Balance Corollary

Culick 1965
Perturbed Acoustic

Wave Equation

Nonlinear Acoustic
Waves (SSPP)
Culick 1975

Nonlinear Acoustics
with Vorticity

Culick & Yang 1992
Flandro 1995

Nonlinear Acoustics
’DC’ Shift

CFD
Yang 1996

Flandro 2000 & 2005

Time-Lag η-τ
Von Karmen, Crocco

& Cheng 1955
Sirignano, Mitchell,

Harrje, Peardon

Nonlinear Effects
Sigrignano,

Powell & Zinn

Spray Combustion
Sigrignano, Mitchell,

Zinn & Anderson

Spray Combustion
CFD

Anderson 1995
Merkle 2005

Figure 1.30: Theoretical History Flow Chart
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Where E is the system energy, W is the total work done on the system and D is the summation

of the energy sources.

1.8.2 Cantrell and Hart

Cantrell and Hart wrote their paper “Interaction between Sound and Flow in Acoustic

Cavities: Mass, Momentum, and Energy Considerations” (21) in 1964. Their use of the

energy method is a key motivation in current work. They start with the mass, momentum

and energy fluid dynamic equations,

∂ρ

∂t
+ ∇ · (m) = 0 (1.8)

0 =
∂v

∂t
+ ∇(v2/2) + (1/ρ)∇p =

∂v

∂t
+ ∇

[

(v2/2) + h
]

(1.9)

∂

∂t

{

ρ
[

CpT + (v2/2)
]}

(1.10)

Where m = ρv the product of the density,ρ, and the velocity, v. p is the pressure, T is the

temperature, h = CpT = CvT + p/ρ is the specific enthalpy. Cantrell and Hart argue that

acoustic stability is determined by calculating the average rate of work done on the surface

of the flow field.

〈∫

S

p1v1 · dS
〉

= 0 (1.11)

Where the notation 〈〉 denotes the time average. The variables are expanded by inserting

an expansion of the field variables. Then each order is separated into its respective part.
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m0 = ρ0v0 (1.12)

m1 = ρ0v1 + ρ1v0 (1.13)

m2 = ρ0v2 + ρ1v1 + ρ2v0 (1.14)

h1 = c20
ρ1

ρ0

=
p1

ρ0

(1.15)

h2 =
c20
ρ0

[

ρ2 +
γ − 2

2

ρ2
1

ρ0

]

(1.16)

(

v2

2

)

1

= v0 · v1 (1.17)

(

v2

2

)

2

= v0 · v2 +
v2

1

2
(1.18)

These similar expansion philosophies will be used in later work as well. Using the energy

growth rate equation, dE
dt
/(E−E0) and applying the previous relations to an acoustic cavity

yields,

2α = −

〈

∫

S
dS ·

[

p1v1 +
p2

1
v0

ρ0c2
0

+ ρ0(v0 · v1)v1 + p1

c2
0

(v0 · v1)v0

]〉

〈

∫

v
dv
[

ρ0v2

1

2
+

p2

1

2ρ0c2
0

+ p1(v0·v1)

c2
0

]〉 (1.19)

This equation relates the first order acoustic field and the mean flow variables to the energy

growth rate, α. The growth rate can then be applied to a rocket system, yielding,

α = −ρ0c
2
0

L

{

Re[Yb] −
v0b

γp0

+
2L

a
Re[Yw]

}

(1.20)

Where Yb is the specific acoustic admittance at the propellant surface, Yw is the specific

acoustic admittance of the walls, v0b is the mean speed of the burned gas leaving the burning

surface, L is the chamber length, and a is the chamber radius. In the paper, “Acoustic Energy
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in Non-uniform Flows,” Morfey (31) extends the concept of acoustic energy to nonuniform

flows.

1.8.3 Myers

Continuing from Cantrell and Harts and Morfeys work, Myers (42) finds the solution of the

acoustic energy in a non-uniform flow. The derivation of this work will be highlighted in

detail in the dissertation. Continuing with the energy methodology, using the relation,

∂E

∂t
+ ∇ ·W = D, (1.21)

he finds that for the general case including entropy fluctuations,

E = ρ [H −H0 − T0 (s− s0)] − m0 · (u − u0) − (p− p0) (1.22)

W = (m − m0) [H −H0 + T0 (s− s0)] + m0 (T − T0) (s− s0)

− (mj −m0j
)

(

Pij

ρ
− P0ij

ρ0

)

+ (T − T0)

(

q

T
− q0

T0

)

(1.23)

D = m · ζ0 + m0ζ − (s− s0)m · ∇T0 + (s− s0)m0 · ∇T

−
(

Pij

ρ
− P0ij

ρ0

)

∂

∂xi

(mj −m0j
) + (mj −m0j

)

(

1Pij

ρ2

∂ρ

∂xi

− P0ij

ρ2
0

∂ρ0

∂xi

)

+ (T − T0)

(

φ

T
− φ0

T0

)

+

(

q

T
− q0

T0

)

· ∇(T − T0)

− (T − T0)

(

q · ∇T
T 2

− q0 · ∇T0

T 2
0

)

(1.24)

These relations play a key role in the oscillations seen in rocket motors. These equations

will be expanded upon and applied to the rocket motor system showing the result that the

essential physics of combustion instability can be reproduced.

1.8.4 Flandro

Current work by Flandro (45) (46) applies Myers energy balance (42) to combustion

instability. His work combines previous combustion instability analysis with the modern
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acoustic energy method. This analysis yields a more complete picture of the system, while

making minimal assumptions. In addition to his continuation of the energy method, Dr.

Flandro has championed modern analysis by leading the understanding on interior motor

dynamics and their impact on combustion instability.
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Chapter 2

Introductory Equations

The foundation of the generalized combustion instability is in the thermodynamic and

fluid dynamic equations. Every attempt is made to minimize assumptions in the initial

formulations. This ensures that the solution is applicable in a wide variety of situations.

Several assumptions will be made. These assumptions are used to simplify the mathematics

allowing for an analytical solution. The effect of these assumptions and the possibility of

removing them will be discussed in the document. Restrictive conditions may be applied in

later analysis to allow for computation, however, the derivation will remain complete and

allow for future analysis of neglected variables.

Once the governing equations are settled, each field variable is split into slowly changing and

oscillatory parts. These algebraic expansions are applied to the governing equations. After

these expansions are applied the thermodynamic relations are used to relate the oscillatory

field variables to one another. This is accomplished by using a Taylor series expansion of

each variable where the thermodynamics are used to evaluate the partial derivatives.

In later Chapters these expansions will be applied to the energy equation, and the subsequent

relations will be used in the solution of the systems oscillatory energy. Then using

Galerkin spectral decomposition and acoustics, the oscillatory pressure amplitude is solved

for numerically.
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2.1 Thermodynamics

We begin with the thermodynamic relations for a single species closed system. The

combustion zone in a solid rocket motor is very small and located near to the burning

surface. Therefore it is reasonable to assume that the bulk of the system acts as a single

species with no chemical reactions. This is an assumption, and extending the presented

analysis to multiple species including combustion would make for a very interesting future

study. Three of these equations define the whole thermodynamic system, several more have

been stated for use in later algebra. More information on the thermodynamic equations can

be found in Liepmann and Roshko’s “Gas Dynamics” (64).

de = Tds+
p

ρ2
dρ (2.1a)

dh = Tds+
1

ρ
dp (2.1b)

dh = γTds+
a2

ρ
dρ (2.1c)

dp =
a2ρ

cp
ds+ a2dρ (2.1d)

dT =
T

cp
ds+

1

ρcp
dp (2.1e)

dT =
1

cp

(

γTds+
a2

ρ
dρ

)

(2.1f)

Where p is the pressure, ρ is the density, T is the temperature, s is the entropy, e is the

internal energy, h is the enthalpy, a is the speed of sound, γ is the specific heat ratio, and

Cp is the constant pressure specific heat. A thermally perfect gas is assumed. The state

equation for a thermally perfect gas is given by p = ρRt. The speed of sound, a, is given by
√

(

∂p
∂ρ

)

s
=

√

γ
(

∂p
∂ρ

)

T
and if thermally perfect, a =

√
γRT . In order to preserve the entropy

oscillations the isentropic assumption is avoided at all times.
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2.2 Fluid Dynamics

Three governing equations are required to fully define the fluid dynamics. Continuity (C),

Momentum (L), Entropy (S) are chosen. These three equations correspond to the three types

of waves: pressure, vorticity and entropy. The entropy equation is chosen over the energy

equation for this purpose. Since we are primarily concerned with the net energy balance,

the energy equation will be used later to pull all the pieces together. The derivation of the

fluid mechanic equations is shown clearly in “Fluid Mechanics” by Landau and Lifshitz (66)

and “Theory of Nonlinear Acoustics in Fluids” by Enflo and Hedberg (65).

Continuity:
∂ρ

∂t
+ ∇ · m = 0 (2.2)

Momentum:
∂u

∂t
+ ω × u + ∇H − T∇s = ψ (2.3)

Entropy:
∂ρs

∂t
+ ∇ · (ms) = Q (2.4)

Energy:
∂

∂t
(ρH − p) + ∇ · (mH) − m · ψ − TQ = 0 (2.5)

Definitions:

Enthalpy: h = e+
p

ρ
(2.6)

Total Enthalpy: H = h+
1

2
u2 (2.7)

Mass Flow Rate: m = ρu (2.8)

Vorticity: ω = ∇× u (2.9)

Lamda Vector: ζ = ω × u (2.10)

Heat Release: Q =
Φ −∇q + H

T
(2.11)
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Where H is the distributed combustion heat release, q is the heat transfer, and ψ, the viscous

stress, is given in vector form as:

ψ =
1

ρ

[

−µ∇×∇× u +

(

η +
4

3
µ

)

∇ (∇ · u) + F

]

(2.12)

Where η is the bulk viscosity, µ is the dynamic viscosity and F is an external body force.

The viscous dissipation term cannot be written in purely vector form. It is instead written

in tensor form.

Φ = Pij
∂uj

∂xi

(2.13)

Where,

Pij = σ′

ij = µ

(

∂vi

∂xj

+
∂vj

∂xi

− 2

3
δik
∂vl

∂xl

)

+ ηδik
∂vl

∂xl

(2.14)

2.3 Variable Expansions

The idea of separating the mean parameter from the fluctuating variable is taken from the

study of acoustics. There, the fluctuating pressure is separated from the mean pressure,

which is generally assumed to be constant. This principle can be extended to all variables,

were all variables are algebraically expanded into the form,

q(x, t) = q0(x) +
∞
∑

n=1

εnqn(x, t) (2.15)

Where q0 is the slowly changing mean flow term steady state value, q1 is the first order

oscillatory value, and q2 is the second order perturbation of order (q1)
2. ǫn is a small

parameter. This expansion is useful given the fact that in general the pressure oscillations are

much smaller than the mean pressure. Thus for the pressure expansion the small parameter

ǫ = p1/P0. This term is always less than one. Therefore, p1 > p2 > p3 > etc. The same logic
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follows for the other variables.

m = m0 + εm1 + ε2m2 + ...

u = u0 + εu1 + ε2u2 + ...

p = p0 + εp1 + ε2p2 + ...

ρ = ρ0 + ερ1 + ε2ρ2 + ...

T = T0 + εT1 + ε2T2 + ...

s = s0 + εs1 + ε2s2 + ...

(2.16)

These expansions are inserted into the set of governing equations. Each order is equated

on an individual basis. Note that the time dependency of the mean flow parameters are

considered small and therefore neglected. However, spatial dependence is retained.

Mean Flow:

∇ · m0 = 0 (2.17a)

ζ0 + ∇H0 − T0∇s0 = ψ0 (2.17b)

∇ · (m0s0) = Q0 (2.17c)

First Order:

∂ρ1

∂t
+ ∇ · m1 = 0 (2.18a)

∂u1

∂t
+ ζ1 + ∇H1 − T0∇s1 − T1∇s0 = ψ1 (2.18b)

∂(ρ0s1 + ρ1s0)

∂t
+ ∇ · (m0s1 + m1s0) = Q1 (2.18c)
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Second Order:

∂ρ2

∂t
+ ∇ · m2 = 0 (2.19a)

∂u2

∂t
+ ζ2 + ∇H2 − T0∇s2 − T1∇s1 − T2∇s0 = ψ2 (2.19b)

∂(ρ0s2 + ρ1s1 + ρ2s0)

∂t
+ ∇ · (m0s2 + m1s1 + m2s0) = Q2 (2.19c)

Third Order:

∂ρ3

∂t
+ ∇ · m3 = 0 (2.20a)

∂u3

∂t
+ ζ3 + ∇H3 − T0∇s3 − T1∇s2 − T2∇s1 − T3∇s0 = ψ3 (2.20b)

∂(ρ0s3 + ρ1s2 + ρ2s1 + ρ3s0)

∂t

+∇ · (m0s3 + m1s2 + m2s1 + m3s0) = Q3 (2.20c)

Note that analysis goes beyond that done by Myers’ (42) calculations. Most notably, the

term H is included as the distributed heat release. To save time in further analysis the

following notation may be used,

Cn = continuity order n

Ln = linear momentum order n

Sn = entroy order n

Then the three fluid dynamic governing equations can be written as:

C = 0

L− ψ = 0

S −Q = 0
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2.4 Thermodynamic Power Series

To complete the system of equations shown in Section 2.3 the expansion of the thermody-

namic quantities h, T, p and e are required. Each variable is expanded as a power series in

s, ρ, or p about the respective stagnate values, s0, ρ0, or p0. All thermodynamic variables

can be written as a function of two other thermodynamic variables; thus, every variable

is expanded with a two dimensional Taylor series (64). These expansions will provide the

relationships between the oscillatory field variables and will be used later in the expansion

of the governing equations, including the energy equation.

2.4.1 Expansion of ρe

The Taylor series expansion of ρe about the point (ρ0, s0) is,

ρe = ρ0e0 +
∂(ρe)

∂ρ

∣

∣

∣

∣

0

(ρ− ρ0) +
∂(ρe)

∂s

∣

∣

∣

∣

0

(s− s0)

+
∂2(ρe)

∂ρ2

∣

∣

∣

∣

0

(ρ− ρ0)
2

2!
+
∂2(ρe)

∂ρ∂s

∣

∣

∣

∣

0

(ρ− ρ0)(s− s0)+
∂2(ρe)

∂s2

∣

∣

∣

∣

0

(s− s0)
2

2!

+
∂3(ρe)

∂ρ3

∣

∣

∣

∣

0

(ρ− ρ0)
3

3!
+
∂3(ρe)

∂ρ2∂s

∣

∣

∣

∣

0

(ρ− ρ0)
2(s− s0)

2!

+
∂3(ρe)

∂ρ∂s2

∣

∣

∣

∣

0

(ρ− ρ0)(s− s0)
2

2!
+
∂3(ρe)

∂s3

∣

∣

∣

∣

0

(s− s0)
3

3!
+ ... (2.21)

Each individual partial derivative is evaluated. The fundamental thermodynamic relations

(2.1) are used heavily in these algebraic manipulations. For example completing the

derivatives with respect to ρ, remembering that entropy, s, is held constant yields,

∂(ρe)

∂ρ

∣

∣

∣

∣

s

= ρ
∂e

∂ρ

∣

∣

∣

∣

s

+ e
∂ρ

∂ρ

∣

∣

∣

∣

s

= ρ
∂e

∂ρ

∣

∣

∣

∣

s

+ e (2.22)

And from (2.1a),
∂e

∂ρ

∣

∣

∣

∣

s

=
p

ρ2
. (2.23)
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Therefore,

ρ
∂e

∂ρ

∣

∣

∣

∣

s

+ e = ρ
p

ρ2
+ e. =

p

ρ
+ e = h (2.24)

Similarly, continuing through the rest of the partial derivatives.

∂2(ρe)

∂ρ2

∣

∣

∣

∣

s

=
∂(h)

∂ρ

∣

∣

∣

∣

s

=
∂h

∂p

∣

∣

∣

∣

s

∂p

∂ρ

∣

∣

∣

∣

s

=
1

ρ
a2 (2.25a)

∂3(ρe)

∂ρ3

∣

∣

∣

∣

s

=
∂
(

a2

ρ

)

s

∂ρ
=
ρ ∂a2

∂ρ

∣

∣

∣

s
− a2

ρ2

=
ρ (γ − 1) a2

ρ
− a2

ρ2
= (γ − 2)

a2

ρ2
(2.25b)

Furthermore, the derivatives with respect to entropy,s, are completed,

∂(ρe)

∂s

∣

∣

∣

∣

ρ

= ρ
∂e

∂s

∣

∣

∣

∣

ρ

= ρT (2.26a)

∂2(ρe)

∂s2

∣

∣

∣

∣

ρ

=
∂(ρT )

∂s

∣

∣

∣

∣

ρ

= ρ
∂T

∂s

∣

∣

∣

∣

ρ

=
ργT

cp
(2.26b)

∂3(ρe)

∂s3

∣

∣

∣

∣

ρ

=
∂
(

ργT
cp

)

ρ

∂s
=
ργ

cp

∂T

∂s

∣

∣

∣

∣

ρ

=
ργ

cp

γT

cp
=
ρT

cv2
(2.26c)

And the mixed derivatives yield,

∂2(ρe)

∂ρ∂s
=
∂h

∂s

∣

∣

∣

∣

ρ

= γT (2.27a)

∂3(ρe)

∂ρ2∂s
=
∂ (γT )

∂ρ

∣

∣

∣

∣

s

=
γa2

cpρ
=

a2

cvρ
(2.27b)

∂3(ρe)

∂ρ∂s2
=
∂ (γT )

∂s

∣

∣

∣

∣

ρ

=
γ2T

cp
(2.27c)

In addition to the partial derivatives, the perturbation expansions of the differential ρ and

s terms are needed in order to complete the expansion of (2.21). The expansions of density,

entropy, pressure and mixed terms are shown through third order as they are all used in
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later analysis.

(ρ− ρ0) = ερ1 + ε2ρ2 + ε3ρ3 + . . . (2.28a)

(ρ− ρ0)
2 = ε2ρ1

2 + ε3 (2ρ1ρ2) + . . . (2.28b)

(ρ− ρ0)
3 = ε3ρ1

3 + . . . (2.28c)

(s− s0) = εs1 + ε2s2 + ε3s3 + . . . (2.29a)

(s− s0)
2 = ε2s1

2 + ε3 (2s1s2) + . . . (2.29b)

(s− s0)
3 = ε3s1

3 + . . . (2.29c)

(p− p0) = εp1 + ε2p2 + ε3p3 + . . . (2.30a)

(p− p0)
2 = ε2p1

2 + ε3 (2p1p2) + . . . (2.30b)

(p− p0)
3 = ε3p1

3 + . . . (2.30c)

(ρ− ρ0)(s− s0) =
(

ερ1 + ε2ρ2 + ε3ρ3

) (

εs1 + ε2s2 + ε3s3

)

(2.31a)

= ε2ρ1s1 + ε3 (ρ1s2 + ρ2s1) + . . . . (2.31b)

(ρ− ρ0)
2(s− s0) = ε3ρ1

2s1 + . . . (2.31c)

(ρ− ρ0)(s− s0)
2 = ε3ρ1s1

2 + . . . (2.31d)
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(p− p0)(s− s0) =
(

εp1 + ε2p2 + ε3p3

) (

εs1 + ε2s2 + ε3s3

)

(2.32a)

= ε2p1s1 + ε3 (p1s2 + p2s1) + . . . . (2.32b)

(p− p0)
2(s− s0) = ε3p1

2s1 + . . . (2.32c)

(p− p0)(s− s0)
2 = ε3p1s1

2 + . . . (2.32d)

Now insert the partial derivatives into 2.1a,

ρe = ρ0e0 + h0(ρ− ρ0) + ρ0T0(s− s0)

+
a0

2

2ρ0

(ρ− ρ0)
2 + γT0(ρ− ρ0)(s− s0) +

ρ0γT0

2cp
(s− s0)

2

+ (γ − 2)
a0

2

6ρ0
2
(ρ− ρ0)

3 +
γa0

2

2cpρ0

(ρ− ρ0)
2(s− s0)

+
γ2T0

2cp
(ρ− ρ0)(s− s0)

2 +
γ2ρ0T0

6cp2
(s− s0)

3 + . . . (2.33)

And finally insert the perturbation expansions,

ρe = ρ0e0 + h0(ερ1 + ε2ρ2 + ε3ρ3) + ρ0T0(εs1 + ε2s2 + ε3s3)

+
a0

2

2ρ0

(ε2ρ1
2 + ε3 (2ρ1ρ2)) + γT0

(

ε2ρ1s1 + ε3 (ρ1s2 + ρ2s1)
)

+
ρ0γT0

2cp
(ε2s1

2 + ε3 (2s1s2)) + (γ − 2)
a0

2

6ρ0
2
(ε3ρ1

3)

+
γa0

2

2cpρ0

(ε3ρ1
2s1) +

γ2T0

2cp
(ε3ρ1s1

2) +
γ2ρ0T0

6cp2
(ε3s1

3) +O(ε4) (2.34)
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The individual terms are gathered into their respective orders,

ρe = ρ0e0 + ε {h0ρ1 + ρ0T0s1}

+ ε2

{

h0ρ2 + ρ0Ts2 +
a0

2ρ1
2

2ρ0

+ γT0ρ1s1 +
ρ0γT0

2cp
s1

2

}

+ ε3



































h0ρ3 + ρ0T0s3 +
a0

2ρ1ρ2

ρ0

+ γT0 (ρ1s2 + ρ2s1)

+
ρ0γT0

cp
s1s2 + (γ − 2)

a0
2ρ1

3

6ρ0
2

+
γa0

2ρ1
2s1

2cpρ0

+
γ2T0ρ1s1

2

2cp
+
γ2ρ0T0s1

3

6cp2



































+O(ε4) (2.35)

Using the notation which will be implemented later in the expansion of the energy equation

the terms are separated.

(ρe)0 = ρ0e0 (2.36a)

(ρe)1 = {h0ρ1 + ρ0T0s1} (2.36b)

(ρe)2 =

{

h0ρ2 + ρ0Ts2 +
a0

2ρ1
2

2ρ0

+ γT0ρ1s1 +
ρ0γT0

2cp
s1

2

}

(2.36c)

(ρe)3 =



































h0ρ3 + ρ0T0s3 +
a0

2ρ1ρ2

ρ0

+ γT0 (ρ1s2 + ρ2s1)

+
ρ0γT0

cp
s1s2 + (γ − 2)

a0
2ρ1

3

6ρ0
2

+
γa0

2ρ1
2s1

2cpρ0

+
γ2T0ρ1s1

2

2cp
+
γ2ρ0T0s1

3

6cp2



































(2.36d)

In later analysis we will prefer the use of p1 over ρ1 terms. In order to make these

modifications additional expansions of h, p, ρ are required. Starting with the multivariable

Taylor series expansion for each term.

h = h0 +
∂h

∂ρ

∣

∣

∣

∣

0

(ρ− ρ0) +
∂h

∂s

∣

∣

∣

∣

0

(s− s0) +
∂2h

∂ρ2

∣

∣

∣

∣

0

(ρ− ρ0)
2

2

+
∂2h

∂s∂ρ

∣

∣

∣

∣

0

(ρ− ρ0)(s− s0) +
∂2h

∂s2

∣

∣

∣

∣

0

(s− s0)
2

2
+ . . . (2.37)
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p = p0 +
∂p

∂ρ

∣

∣

∣

∣

0

(ρ− ρ0) +
∂p

∂s

∣

∣

∣

∣

0

(s− s0) +
∂2p

∂ρ2

∣

∣

∣

∣

0

(ρ− ρ0)
2

2

+
∂2p

∂s∂ρ

∣

∣

∣

∣

0

(ρ− ρ0)(s− s0) +
∂2p

∂s2

∣

∣

∣

∣

0

(s− s0)
2

2
+ . . . (2.38)

ρ = ρ0 +
∂ρ

∂p

∣

∣

∣

∣

0

(p− p0) +
∂ρ

∂s

∣

∣

∣

∣

0

(s− s0) +
∂2ρ

∂p2

∣

∣

∣

∣

0

(p− p0)
2

2

+
∂2ρ

∂s∂p

∣

∣

∣

∣

0

(p− p0)(s− s0) +
∂2ρ

∂s2

∣

∣

∣

∣

0

(s− s0)
2

2
+ . . . (2.39)

Just as in the expansion of ρe, each of the individual partial derivatives need to be evaluated.

Again, this is done using the thermodynamic relations. First, the derivatives of a2 are

evaluated since they are used throughout the other derivatives.

∂a2

∂ρ

∣

∣

∣

∣

s

=
∂ (γRT )

∂ρ

∣

∣

∣

∣

s

= γ
∂
(

p
ρ

)

∂ρ
= γ





ρ ∂p
∂ρ

∣

∣

∣

s
− p ∂ρ

∂ρ

∣

∣

∣

s

ρ2





= γ

(

ρa2 − p

ρ2

)

=
γa2

ρ
− γp

ρ2
=
γa2

ρ
− γρRT

ρ2

=
γa2

ρ
− a2

ρ
= (γ − 1)

a2

ρ
(2.40a)

∂a2

∂s

∣

∣

∣

∣

ρ

=
∂ (γRT )

∂s

∣

∣

∣

∣

ρ

= γR
∂T

∂s

∣

∣

∣

∣

ρ

= γR

(

γT

cp

)

=
γa2

cp
=
a2

cv
(2.40b)

∂a2

∂p

∣

∣

∣

∣

s

=
∂a2

∂ρ

∣

∣

∣

∣

s

∂ρ

∂p

∣

∣

∣

∣

s

= (γ − 1)
a2

ρ

1

a2
=

(γ − 1)

ρ
(2.40c)

∂a2

∂s

∣

∣

∣

∣

p

=
∂ (γRT )

∂s

∣

∣

∣

∣

p

= γR
∂T

∂s

∣

∣

∣

∣

p

= γR
T

cp
(2.40d)
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Now the enthalpy derivative terms,

∂h

∂ρ

∣

∣

∣

∣

s

=
∂h

∂p

∣

∣

∣

∣

s

∂p

∂ρ

∣

∣

∣

∣

s

=
a2

ρ
(2.41a)

∂h

∂s

∣

∣

∣

∣

ρ

= γT (2.41b)

∂2h

∂ρ2

∣

∣

∣

∣

s

=
∂ (a2/ρ)

∂ρ

∣

∣

∣

∣

s

=
1

ρ2

[

ρ
∂a2

∂ρ

∣

∣

∣

∣

s

− a2 ∂ρ

∂ρ

∣

∣

∣

∣

s

]

=
1

ρ2

[

ρ (γ − 1)
a2

ρ
− a2

]

= (γ − 2)
a2

ρ2
(2.41c)

∂2h

∂s2

∣

∣

∣

∣

ρ

= γ
∂T

∂s

∣

∣

∣

∣

ρ

= γ

(

γT

cp

)

=
γT

cv
=

a2

Rcv
(2.41d)

∂2h

∂ρ∂s
=

∂

∂s

∣

∣

∣

∣

ρ

(

∂h

∂ρ

∣

∣

∣

∣

s

)

=
∂

∂s

(

a2

ρ

)

ρ

=
1

ρ

(

∂a2

∂s

∣

∣

∣

∣

ρ

)

=
a2

ρcv
(2.41e)

And the pressure derivative terms,

∂p

∂ρ

∣

∣

∣

∣

s

= a2 (2.42a)

∂p

∂s

∣

∣

∣

∣

ρ

=
a2ρ

cp
(2.42b)

∂2p

∂ρ2

∣

∣

∣

∣

s

=
∂a2

∂ρ

∣

∣

∣

∣

s

= (γ − 1)
a2

ρ
(2.42c)

∂2p

∂s2

∣

∣

∣

∣

ρ

=
1

cp

∂ (a2ρ)

∂s

∣

∣

∣

∣

ρ

=
1

cp

[

ρ
∂a2

∂s

∣

∣

∣

∣

ρ

+ a2 ∂ρ

∂s

∣

∣

∣

∣

ρ

]

=
1

cp
ρ
a2

cv
=
γρa2

cp2
(2.42d)

∂2p

∂s∂ρ
=
∂ (a2)

∂s

∣

∣

∣

∣

ρ

=
a2

cv
=
γa2

cp
(2.42e)
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And finally the density derivative terms,

∂ρ

∂p

∣

∣

∣

∣

s

=
1

a2
(2.43a)

∂ρ

∂s

∣

∣

∣

∣

p

= − ρ

cp
(2.43b)

∂2ρ

∂p2

∣

∣

∣

∣

s

=
∂ (1/a2)

∂p

∣

∣

∣

∣

s

=
1

a4

[

a2 ∂1

∂p

∣

∣

∣

∣

s

− ∂a2

∂p

∣

∣

∣

∣

s

]

= −(γ − 1)

a4ρ
(2.43c)

∂2ρ

∂s2

∣

∣

∣

∣

p

= − 1

cp

∂ρ

∂s

∣

∣

∣

∣

p

= − 1

cp

(

− ρ

cp

)

=
ρ

cp2
(2.43d)

∂2ρ

∂s∂p
= − 1

cp

∂ρ

∂p

∣

∣

∣

∣

s

= − 1

cpa2
(2.43e)

∂2ρ

∂s∂p
=
∂ (1/a2)

∂s

∣

∣

∣

∣

p

=
1

a4

[

− ∂a2

∂s

∣

∣

∣

∣

p

]

= − 1

a4
γR

T

cp
= − 1

a4

a2

cp
= − 1

cpa2
(2.43f)

Using these completed partial derivatives, the Taylor series expansions are completed. The

partial derivatives are applied which are followed by the perturbation expansions. Then the

terms are separated into their respective orders. First enthalpy, inserting Equation’s 2.41

into Eqn 2.37.

h = h0 +
a0

2

ρ0

(ρ− ρ0) + γT0(s− s0) + (γ − 2)
a0

2

ρ0
2

(ρ− ρ0)
2

2
+

a0
2

ρ0cv
(ρ− ρ0)(s− s0) +

a0
2

Rcv

(s− s0)
2

2
+ ... (2.44)

Then using the perturbation expansions, Eqn’s 2.28, 2.29, and 2.31.

h = h0 +
a0

2

ρ0

(ερ1 + ε2ρ2) + γT0(εs1 + ε2s2)

+ (γ − 2)
a0

2

ρ0
2

ε2ρ1
2

2
+

a0
2

ρ0cv
ε2ρ1s1 +

a0
2

Rcv

ε2s1
2

2
+ ... (2.45)
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And arranging the terms into their respective orders,

h = h0 + ε

{

a0
2

ρ0

ρ1 + γT0s1

}

+ ε2

{

a0
2ρ2

ρ0

+ γT0s2 + (γ − 2)
a0

2ρ1
2

2ρ0
2

+
a0

2ρ1s1

ρ0cv
+
a0

2s1
2

2Rcv

}

+ ... (2.46)

Second, pressure, inserting Equation’s 2.42 into Eqn 2.38.

p = p0 + a0
2(ρ− ρ0) +

a0
2ρ0

cp
(s− s0) + (γ − 1)

a0
2

ρ0

(ρ− ρ0)
2

2

+
γa0

2

cp
(ρ− ρ0)(s− s0) +

γρ0a0
2

cp2

(s− s0)
2

2
+ ... (2.47)

Then using the perturbation expansions, Eqn’s 2.28, 2.29, and 2.31.

p = p0 + a0
2(ερ1 + ε2ρ2) +

a0
2ρ0

cp
(εs1 + ε2s2) + (γ − 1)

a0
2

ρ0

ε2ρ1
2

2

+
γa0

2

cp
ε2ρ1s1 +

γρ0a0
2

cp2

ε2s1
2

2
+ ... (2.48)

And arranging the terms into their respective orders,

p = p0 + ε

{

a0
2ρ1 +

a0
2ρ0s1

cp

}

+ ε2















a0
2ρ2 +

a0
2ρ0s2

cp
+ (γ − 1)

a0
2ρ1

2

2ρ0

+
γa0

2ρ1s1

cp
+
γρ0a0

2s1
2

2cp2















+ ... (2.49)

Finally density, inserting Equation’s 2.43 into Eqn 2.39.

ρ = ρ0 +
1

a0
2
(p− p0) −

ρ0

cp
(s− s0)

− (γ − 1)

a0
4ρ0

(p− p0)
2

2
− 1

cpa0
2
(p− p0)(s− s0) +

ρ0

cp2

(s− s0)
2

2
+ ... (2.50)
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Then using the perturbation expansions, Eqn’s 2.30, 2.29, and 2.31.

ρ = ρ0 +
1

a0
2
(εp1 + ε2p2) −

ρ0

cp
(εs1 + ε2s2)

− (γ − 1)

a0
4ρ0

ε2p1
2

2
− 1

cpa0
2
ε2p1s1 +

ρ0

cp2

ε2s1
2

2
+ ... (2.51)

And arranging the terms into their respective orders,

ρ = ρ0 + ε

{

p1

a0
2
− ρ0s1

cp

}

+ ε2

{

p2

a0
2
− ρ0s2

cp
− (γ − 1) p1

2

2a0
4ρ0

− p1s1

cpa0
2

+
ρ0s1

2

2cp2

}

+ ... (2.52)

Drawing from these relations, we find that,

h1 =
a0

2

ρ0

ρ1 + γT0s1 =
p1

ρ0

+ T0s1 (2.53)

p1 = a0
2ρ1 +

a0
2ρ0

cp
s1 (2.54)

ρ1 =
p1

a0
2
− ρ0

cp
s1 (2.55)

We can see that they are self consistent, such that ρ1 can be derived from p1. One reason

for expanding ρ was to ensure that this is correct. Additionally we see a clear similarity

between these equations and the thermodynamic relations for the set (h, ρ, s). For instance,

the thermodynamic relation,

dp = a0
2dρ+

a0
2ρ0

cp
ds, (2.56)

corresponds directly with Eqn 2.54. The second order relations are similarly extracted and

are shown to be,

h2 =
a0

2ρ2

ρ0

+ γT0s2 + (γ − 2)
a0

2ρ1
2

2ρ0
2

+
a0

2ρ1s1

ρ0cv
+
a0

2s1
2

2Rcv
(2.57)

p2 = a0
2ρ2 +

a0
2ρ0s2

cp
+ (γ − 1)

a0
2ρ1

2

2ρ0

+
γa0

2ρ1s1

cp
+
γρ0a0

2s1
2

2cp2
(2.58)

ρ2 =
p2

a0
2
− ρ0s2

cp
− (γ − 1) p1

2

2a0
4ρ0

− p1s1

cpa0
2

+
ρ0s1

2

2cp2
(2.59)
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These equations are also self consistent.

2.4.2 Manipulating ρe terms

The previously derived expansions for ρe are manipulated using the relationships between

the field variables. This allows ρe terms to be put into a form which prefers pressure over

density fluctuations. The details of these manipulations are shown in Appendix A.3.

(ρe)2 = h0ρ2 + ρ0T0s2 +
p1

2

2ρ0a0
2

+ T0ρ1s1 +
ρ0T0s1

2

2cp
(2.60)

(ρe)3 = h0ρ3 + ρ0T0s3 +
(1 − 2γ) p1

3

6ρ0
2a0

4
+

p1p2

ρ0a0
2

+
p2s1

γR

+
p1s2

γR
− p1

2s1

2cpρ0a0
2
− p1s1

2

2cpγR
− ρ0T0s1s2

cp
+
T0ρ0s1

3

6cp2
(2.61)
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Chapter 3

Energy Corollary

When using the three full governing equations (continuity, momentum and entropy) the

energy equation becomes redundant. Thus any solution which satisfies the previous set of

governing equations automatically satisfies the energy equation. Thereby, it is interesting

to explore the consequences of introducing the previous field variable expansions into the

energy equation. Care is taken to reduce the energy equation down to an form related to

the acoustic energy (42). In this chapter the expansions shown previously are used to reduce

the energy equation. The energy equation given in vector form is,

∂

∂t
(ρH − p) + ∇ · (mH) − m · ψ − TQ = 0 (3.1)

The energy equation is expanded and shown through second order by splitting the field

variables as shown in Chapter 2.3. Beginning with the base (or zeroth) order,

∇ · (m0H0) − m0 · ψ0 − T0Q0 = 0 (3.2)

And first order,

∂

∂t
(ρH − p)1 + ∇ · (m0H1 + m1H0) − m0 · ψ1 − m1 · ψ0 − T0Q1 − T1Q0 = 0 (3.3)

50



And second order,

∂

∂t
(ρH − p)2 + ∇ · (m0H2 + m1H1 + m2H0)

− m0 · ψ2 − m1 · ψ1 − m2 · ψ0 − T0Q2 − T1Q1 − T2Q0 = 0 (3.4)

3.1 Base Order or Zeroth Order Energy

Each order is analyzed individually, beginning with the base order energy.

∇ · (m0H0) − m0 · ψ0 − T0Q0 = 0 (3.5)

Expanding the divergence term and rearranging.

H0∇ · m0 + m0 · (∇H0 − ψ0) − T0Q0 = 0 (3.6)

Recalling the base order relations (2.17) and insert them into the zeroth order energy. Use

the m0 · L0 expansion for the ∇H0 term.

m0 · L0 = m0 · (ζ0 + ∇H0 − T0∇s0) (3.7)

Rearrange the terms to solve for m0 · ∇H0,

m0 · ∇H0 = m0 · L0 − m0 · ζ0 + m0 · T0∇s0 (3.8)

Insert into (3.6).

H0∇ · m0 − m0 · ψ0 − T0Q0 + m0 · L0 − m0 · ζ0 + m0 · T0∇s0 = 0 (3.9)
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Using the vector definition for ζ and expanding we find the identity,

m0 · ζ0 = ρ0u0 · (ω0 × u0) = 0 (3.10)

As a result, there are no vorticity contributions to the base order energy balance. Again,

rearranging the terms in (3.9),

H0∇ · m0 + m0 · (L0 − ψ0) − T0Q0 + m0 · T0∇s0 = 0 (3.11)

Expand and insert the definition of the base order entropy equation, So, and then multiply

by To.

S0 = ∇ · (m0s0) = s0∇ · m0 + m0 · ∇s0

m0 · ∇s0 = S0 − s0∇ · m0

T0m0 · ∇s0 = T0S0 − T0s0∇ · m0 (3.12)

Insert back into (3.11).

H0∇ · m0 + m0 · (L0 − ψ0) − T0Q0 + T0S0 − T0s0∇ · m0 = 0 (3.13)

Collect the terms.

(H0 − T0s0)∇ · m0 + m0 · (L0 − ψ0) + T0 (S0 −Q0) = 0 (3.14)

Insert the base order continuity equation, ∇ · m0 = C0

(H0 − T0s0)C0 + m0 · (L0 − ψ0) + T0 (S0 −Q0) = 0 (3.15)

Since C0 = L0 − ψ0 = S0 −Q0 = 0, Equation (3.15) shows that based on prior knowledge

0 = 0. Therefore the base order energy reveals no new information.
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3.2 First Order Energy

The same process is performed on the first order equations, only with more algebra this time.

∂

∂t
(ρH − p)1 + ∇ · (m0H1 + m1H0) − m0 · ψ1 − m1 · ψ0 − T0Q1 − T1Q0 = 0 (3.16)

To start, the expansion of the first term is needed. Inserting the definition of the total

enthalpy and expanding,

(ρH − p)1 =

(

ρ

(

h+
1

2
u2

)

− p

)

1

=

(

ρ

(

e+
p

ρ
+

1

2
u2

)

− p

)

1

=

(

ρe+
1

2
ρu2

)

1

= (ρe)1 +
1

2
ρ1u0

2 + ρ0u0 · u1

= h0ρ1 + ρ0T0s1 +
1

2
ρ1u0

2 + ρ0u0 · u1

(ρH − p)1 = ρ1H0 + ρ0T0s1 + ρ0u0 · u1

(3.17)

The results of Equation (3.17) are placed back into the first order energy equation.

∂

∂t
(ρ1H0 + ρ0T0s1 + ρ0u0 · u1) + ∇ · (m0H1 + m1H0)

− m0 · ψ1 − m1 · ψ0 − T0Q1 − T1Q0 = 0 (3.18)

Expand the time derivative term remembering that mean flow variables time dependency is

neglected. Then all terms are algebraically reduced and the first order governing equations

are used to reduce the first order energy balance. The details of this process are shown

in Appendix A.4. The primary concern is the reduction of the terms containing vorticity.
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Remembering that,

m1 = ρ0u1 + ρ1u0

ζ1 = ω0 × u1 + ω1 × u0

(3.19)

Apply these definitions to the vorticity terms,

m1 · ζ0 + m0 · ζ1 = (ρ0u1 + ρ1u0) · (ω0 × u0)

+ ρ0u0 · (ω0 × u1 + ω1 × u0)

= ρ0u1 · (ω0 × u0) + ρ1u0 · (ω0 × u0)

+ ρ0u0 · (ω0 × u1) + ρ0u0 · (ω1 × u0)

(3.20)

ρ1u0 · (ω0 × u0) = 0

ρ0u0 · (ω1 × u0) = 0
(3.21)

Recalling scalar triple product rules we find that there is no vorticity contribution to the

first order energy balance.

m1 · ζ0 + m0 · ζ1 = ρ0u1 · (ω0 × u0) + ρ0u0 · (ω0 × u1) = 0 (3.22)

So as before in the base order energy equation, regardless of entropy or vorticity fluctuations,

the energy equation for the first order reduces to zero.

(H0 − T0s0)C1 + T0(S1 −Q1) + m0 · (L1 − ψ1) = 0 (3.23)
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3.3 Second Order Energy Expansions

The second order process follows exactly as the first order process did. Each term is expanded

with the thermodynamic expansions and then simplified.

∂

∂t
(ρH − p)2 + ∇ · (m0H2 + m1H1 + m2H0)

− m0 · ψ2 − m1 · ψ1 − m2 · ψ0 − T0Q2 − T1Q1 − T2Q0 = 0 (3.24)

The expansion of the first terms is found. The details of the algebra in this Section is shown

in Appendix A.5.

(ρH − p)2 = H0ρ2 + T0(ρ1s1 + ρ0s2) +
p1

2

2ρ0a0
2

+
ρ0T0s1

2

2cp

+ ρ1u0 · u1 +
1

2
ρ0u1

2 + m0 · u2 (3.25)

The expanded form of the time derivative term is inserted into Eqn. 3.24,

∂

∂t









H0ρ2 + T0(ρ1s1 + ρ0s2) +
p1

2

2ρ0a0
2

+
ρ0T0s1

2

2cp

+ρ1u0 · u1 +
1

2
ρ0u1

2 + m0 · u2









+ ∇ · (m0H2 + m1H1 + m2H0) − m0 · ψ2 − m1 · ψ1

− m2 · ψ0 − T0Q2 − T1Q1 − T2Q0 = 0 (3.26)

To assist in the bookkeeping the following terms in the time derivative are defined as,

E2 =
p1

2

2ρ0a0
2

+
ρ0T0s1

2

2cp
+ ρ1u0 · u1 +

1

2
ρ0u1

2 (3.27)
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After applying the field variable expansions and the second order governing equations the

following equation is found,

∂E2

∂t
+ (H0 − T0s0)C2 + m0 · (L2 − ψ2) + T0 (S2 −Q2)

− T0∇ · (m1s1) − m0 · ζ2 + T1∇ · (m0s1) + ∇ · (m1H1)

− m1 · ψ1 − m2 · ζ0 − T1Q1 = 0 (3.28)

Now the vorticity terms are dealt with similar to the first order energy balance, remembering

that, ζ2 = ω0 × u2 + ω1 × u1 + ω2 × u0 and m2 = ρ0u2 + ρ1u1 + ρ2u0

m0 · ζ2 + m2 · ζ0 = ρ0u0 · (ω0 × u2 + ω1 × u1 + ω2 × u0)

+ (ρ0u2 + ρ1u1 + ρ2u0) · (ω0 × u0)

= ρ0u0 · (ω1 × u1) + ρ1u1 · (ω0 × u0) (3.29)

In the second order case, all of the terms in the energy equation do not fall out. Thus we get

some more information from it. Redundant terms are removed and the vorticity terms are

simplified.Terms are arranged into three parts: the time derivative energy terms, the work

or ∇· terms, and the remaining source terms. This collection is motivated by recalling the

energy balance form of ∂E
∂t

+ ∇ ·W = D.

∂E2

∂t
+ ∇ · [m1 (H1 − T0s1) + m0T1s1] + m0s1 · ∇T0 − m0s1 · ∇T1

− m1 · ψ1 − T1Q1 − ρ0u0 · (ω1 × u1) − ρ1u1 · (ω0 × u0) = 0 (3.30)

Now the terms m1 · ψ1 and T1Q1 are expanded upon. These terms are in tensor form and

cannot be written in purely vector form. Thus, it is required to split them and leave them
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in tensor form,

m1 · ψ1 = m1j

(

1

ρ

∂Pij

∂xi

)

1

(3.31)

=
∂

∂xi

[

m1j

(

Pij

ρ

)

1

]

−
(

Pij

ρ2

)

1

∂m1j

∂xi

+m1j

(

Pij

ρ

∂ρ

∂xi

)

1

(3.32)

T1Q1 = T1

(

φ−∇ · q
T

)

1

(3.33)

= T1

(

φ

T

)

1

−∇ ·
[

T1

( q

T

)

1

]

+
( q

T

)

1
· ∇T1 − T1

(

q · ∇T
T 2

)

1

(3.34)

3.3.1 Final Second Order (Energy, Work and Sources)

The base order and first order expanded energy equation yielded no new information.

However, the second order equation produced a relation between the first order oscillatory

field variables. Using the form of Kirchoff’s equation (20), we have the form,

∂E2

∂t
+ ∇ ·W2 = D2 (3.35)

Where,

E2 =
p1

2

2ρ0a0
2

+
ρ0T0s1

2

2cp
+ ρ1u0 · u1 +

1

2
ρ0u1

2 (3.36a)

W2 = m1 (h1 + u0 · u1 − T0s1) + m0T1s1 + T1

( q

T

)

1
−m1j

(

Pij

ρ

)

1

(3.36b)

D2 = −m1s1 · ∇T0 + m0s1 · ∇T1 − ρ0u0 · (u1 × ω1) − ρ1u1 · (u0 × ω0)

−
(

Pij

ρ

)

1

∂m1j

∂xi

+m1j

(

Pij

ρ2

∂ρ

∂xi

)

1

+ T1

(

φ

T

)

1

+
( q

T

)

1
· ∇T1 − T1

(

q · ∇T
T 2

)

1

(3.36c)

These equations represent the second order change in energy in a closed system. This analysis

can then be applied to a rocket system where the volume integral of the total energy equation
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is evaluated yielding the total system change in oscillatory energy. This total change in energy

is then numerically solved. This second order energy change reduces to a linear differential

equation where the solutions are exponential functions. As a result, the third order energy

balance is needed to capture nonlinear effects. Details on the application of the second order

total energy balance are shown in chapter 5.

3.4 General Energy Corollary

Instead of algebraically expanding each order as shown earlier in chapter 3, it is possible to

construct a general case which can later be expanded to any order. This method is preferred

as it is algebraically simpler and it will be used to derive the third order energy balance.

Following work by Myers (42),

Start with the energy equation,

∂

∂t
[ρH − p] + ∇ · (mH) − m · ψ − TQ = 0 (3.37)

Subtract the general relations,

(H0 − T0s0) = 0 (3.38a)

T0 (S −Q) = 0 (3.38b)

m0 · (L− ψ) = 0 (3.38c)

Remembering that,

C =
∂ρ

∂t
+ ∇ · m = 0 (3.39a)

L =
∂u

∂t
+ ω × u + ∇H − T∇s = ψ (3.39b)

S =
∂ρs

∂t
+ ∇ · (ms) = Q (3.39c)
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Using the base order equations and algebraic expansions the energy equation is manipulated.

The details are shown in Appendix A.6. After some work the following expansion is found,

∂

∂t
{ρ [H −H0 − T0 (s− s0)] − m0 · (u − u0) − (p− p0)}

+ ∇ · [(m − m0) [H −H0 + T0 (s− s0)] + m0 (T − T0) (s− s0)]

− (m − m0) · (ψ − ψ0) − (T − T0) (Q−Q0)

− m · ζ0 − m0ζ + (s− s0)m · ∇T0 − (s− s0)m0 · ∇T = 0 (3.40)

The heat transfer and viscous terms have to be split into work and source terms. Beginning

with the stress terms, we expand them with their tensor form.

(m − m0) · (ψ − ψ0) = (mj −m0j
)

(

1

ρ

∂Pij

∂xi

− 1

ρ0

∂P0ij

∂xi

)

=
∂

∂xi

[

(mj −m0j
)

(

Pij

ρ
− P0ij

ρ0

)]

−
(

Pij

ρ
− P0ij

ρ0

)

∂

∂xi

(mj −m0j
)

+ (mj −m0j
)

(

1Pij

ρ2

∂ρ

∂xi

− P0ij

ρ2
0

∂ρ0

∂xi

)

(3.41)

(T − T0)(Q−Q0) = (T − T0)

(

φ

T
− φ0

T0

− ∇ · q
T

+
∇ · q0

T0

)

= (T − T0)

(

φ

T
− φ0

T0

)

−∇ ·
[

(T − T0)

(

q

T
− q0

T0

)]

+

(

q

T
− q0

T0

)

· ∇(T − T0) − (T − T0)

(

q · ∇T
T 2

− q0 · ∇T0

T 2
0

)

(3.42)

These relations are separated into work and source terms. Inserting them back into Eqn.

3.40 and separating Energy, Work and Source terms with the form, ∂E
∂t

+ ∇ ·W = D it is
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found that,

E = ρ [H −H0 − T0 (s− s0)] − m0 · (u − u0) − (p− p0) (3.43)

W = (m − m0) [H −H0 + T0 (s− s0)] + m0 (T − T0) (s− s0)

− (mj −m0j
)

(

Pij

ρ
− P0ij

ρ0

)

+ (T − T0)

(

q

T
− q0

T0

)

(3.44)

D = m · ζ0 + m0ζ − (s− s0)m · ∇T0 + (s− s0)m0 · ∇T

−
(

Pij

ρ
− P0ij

ρ0

)

∂

∂xi

(mj −m0j
) + (mj −m0j

)

(

1Pij

ρ2

∂ρ

∂xi

− P0ij

ρ2
0

∂ρ0

∂xi

)

+ (T − T0)

(

φ

T
− φ0

T0

)

+

(

q

T
− q0

T0

)

· ∇(T − T0)

− (T − T0)

(

q · ∇T
T 2

− q0 · ∇T0

T 2
0

)

(3.45)

This method is applied to the second order expansion shown in Chapter 3 and the results

are recreated in Appendix B.
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Chapter 4

Third Order Expansion

Section 3.4 showed that it is possible to use the general energy corollary to quickly and more

simply (and therefore less prone to error) arrive at the second order energy balance. In the

base, first and second orders it was possible, without too much trouble, to arrive at the

energy balance by expanding the governing equations and inserting them into the energy

equation. However, due to the increasing amount of algebraic manipulation required the

third order will be derived solely using the exact energy corollary.

Typically, previous combustion instability theories only extend to second order. This is

justifiable as higher orders are increasingly negligible. This expansion will allow us to

quantify the third order terms and judge their true value numerically. In this chapter the

algebraic steps are shown in detail.

4.1 Energy

Starting with the general energy equation given from the general energy corollary from

Chapter 3,

E = ρ [(H −H0) − T0 (s− s0)] − m0 · (u − u0) − (p− p0) (4.1)
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Each field variable is algebraically expanded upon,

E = (ρ0 + ρ1 + ρ2 + ρ3) [H1 +H2 +H3 − T0 (s1 + s2 + s3)]

− m0 · (u1 + u2 + u3) − (p1 + p2 + p3) (4.2)

The third order terms are extracted from the algebraic expansion of the general energy

corollary,

E3 = ρ0H3 + ρ1H2 + ρ2H1 − ρ0T0s3 − ρ1T0s2 − ρ2T0s1 − m0 · u3 − p3 (4.3)

Recalling the relations,






















H1 = h1 + u0 · u1

H2 = h2 +
1

2
u1

2 + u0 · u2

H3 = h3 + u1 · u2 + u0 · u3

(4.4)

These expansions are used within Eqn. 4.3,

E3 = ρ0 (h3 + u1 · u2 + u0 · u3) + ρ1

(

h2 +
1

2
u1

2 + u0 · u2

)

+ ρ2 (h1 + u0 · u1)

− ρ0T0s3 − ρ1T0s2 − ρ2T0s1 − m0 · u3 − p3 (4.5)

Further algebraic expansion of Eqn. 4.5 yields,

E3 = ρ0h3 + ρ0u1 · u2 + ρ0u0 · u3 + ρ1h2 +
1

2
ρ1u1

2 + ρ1u0 · u2

+ ρ2h1 + ρ2u0 · u1 − ρ0T0s3 − ρ1T0s2 − ρ2T0s1 − m0 · u3 − p3 (4.6)

Equal terms are canceled and the relations below are applied,

ρ0h3 + ρ1h2 + ρ2h1 + ρ3h0 = (ρe)3 + p3

ρ0h3 + ρ1h2 + ρ2h1 − p3 = (ρe)3 − ρ3h0

(4.7)
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Also, recalling the expansion for ρe3,

(ρe)3 = h0ρ3 + ρ0T0s3 +
(1 − 2γ) p1

3

6ρ0
2a0

4
+

p1p2

ρ0a0
2

+
p2s1

γR
+
p1s2

γR

− p1
2s1

2cpρ0a0
2
− p1s1

2

2cpγR
− ρ0T0s1s2

cp
+
T0ρ0s1

3

6cp2
(4.8)

We arrive at,

E3 = ρ0u1 · u2 +
1

2
ρ1u1

2 + ρ1u0 · u2 + ρ2u0 · u1

− ρ0T0s3 − ρ1T0s2 − ρ2T0s1 + ρ0T0s3 +
(1 − 2γ) p1

3

6ρ0
2a0

4
+

p1p2

ρ0a0
2

+
p2s1

γR
+
p1s2

γR
− p1

2s1

2cpρ0a0
2
− p1s1

2

2cpγR
− ρ0T0s1s2

cp
+
T0ρ0s1

3

6cp2
(4.9)

Canceling equal terms,

E3 = ρ0u1 · u2 +
1

2
ρ1u1

2 + ρ1u0 · u2 + ρ2u0 · u1 − ρ1T0s2 − ρ2T0s1 +
(1 − 2γ) p1

3

6ρ0
2a0

4

+
p1p2

ρ0a0
2

+
p2s1

γR
+
p1s2

γR
− p1

2s1

2cpρ0a0
2
− p1s1

2

2cpγR
− ρ0T0s1s2

cp
+
T0ρ0s1

3

6cp2
(4.10)

Recalling,

ρ1 =
p1

a0
2
− ρ0

cp
s1

ρ2 =
p2

a0
2
− ρ0s2

cp
− (γ − 1) p1

2

2a0
4ρ0

− p1s1

cpa0
2

+
ρ0s1

2

2cp2
(4.11)

The following term is expanded in order to convert the ρ1 term into a p1 term,

ρ1T0s2 =

(

p1

a0
2
− ρ0

cp
s1

)

T0s2 =
p1T0s2

a0
2

− ρ0T0s2s1

cp
=
p1s2

γR
− ρ0T0s2s1

cp
(4.12)
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ρ2T0s1 =

(

p2

a0
2
− ρ0s2

cp
− (γ − 1) p1

2

2a0
4ρ0

− p1s1

cpa0
2

+
ρ0s1

2

2cp2

)

T0s1 (4.13)

=
p2T0s1

a0
2

− ρ0T0s1s2

cp
− (γ − 1)T0s1p1

2

2a0
4ρ0

− p1T0s1s1

cpa0
2

+
ρ0T0s1s1

2

2cp2
(4.14)

=
p2s1

γR
− ρ0T0s1s2

cp
− (γ − 1) s1p1

2

2γRa0
2ρ0

− p1s1
2

cpγR
+
ρ0T0s1

3

2cp2
(4.15)

Using this expansion,

E3 = ρ0u1 · u2 +
1

2
ρ1u1

2 + ρ1u0 · u2 + ρ2u0 · u1 −
p1s2

γR
+
ρ0T0s2s1

cp

−
(

p2s1

γR
− ρ0T0s1s2

cp
− (γ − 1) s1p1

2

2γRa0
2ρ0

− p1s1
2

cpγR
+
ρ0T0s1

3

2cp2

)

+
(1 − 2γ) p1

3

6ρ0
2a0

4
+

p1p2

ρ0a0
2

+
p2s1

γR
+
p1s2

γR
− p1

2s1

2cpρ0a0
2

− p1s1
2

2cpγR
− ρ0T0s1s2

cp
+
T0ρ0s1

3

6cp2
(4.16)

Now several terms cancel,

E3 = ρ0u1 · u2 +
1

2
ρ1u1

2 + ρ1u0 · u2 + ρ2u0 · u1

+
ρ0T0s2s1

cp
+
ρ0T0s1s2

cp
+

(γ − 1) s1p1
2

2γRa0
2ρ0

+
p1s1

2

cpγR
− ρ0T0s1

3

2cp2

+
(1 − 2γ) p1

3

6ρ0
2a0

4
+

p1p2

ρ0a0
2
− p1

2s1

2cpρ0a0
2
− p1s1

2

2cpγR
− ρ0T0s1s2

cp
+
T0ρ0s1

3

6cp2
(4.17)
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Individual sets of terms are reduced,

ρ0T0s2s1

cp
+
ρ0T0s1s2

cp
− ρ0T0s1s2

cp
=
ρ0T0s1s2

cp
(4.18a)

T0ρ0s1
3

6cp2
− ρ0T0s1

3

2cp2
= −ρ0T0s1

3

3cp2
(4.18b)

p1s1
2

cpγR
− p1s1

2

2cpγR
=

p1s1
2

2cpγR
(4.18c)

(γ − 1) s1p1
2

2γRa0
2ρ0

− p1
2s1

2cpρ0a0
2

= 0 (4.18d)

And a small form of E3 is captured. Again, as in the derivation of E2 this equation is

ambiguous. We could have solved it with terms including ρ1. The form shown is simply the

path chosen due to the familiarity of the pressure oscillations.

E3 = ρ0u1 · u2 +
1

2
ρ1u1

2 + ρ1u0 · u2 + ρ2u0 · u1

+
(1 − 2γ) p1

3

6ρ0
2a0

4
+

p1p2

ρ0a0
2

+
ρ0T0s2s1

cp
+

p1s1
2

2cpγR
− ρ0T0s1

3

3cp2
(4.19)

4.2 Work

The work term is reasonably simple. Beginning with the work term given from the general

energy corollary,

∇ ·W = ∇ · {(m − m0) [H −H0 − T0 (s− s0)] + m0 (T − T0) (s− s0)} (4.20)

The equation for W is extracted,

W = (m − m0) [H −H0 − T0 (s− s0)] + m0 (T − T0) (s− s0) (4.21)
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Now, the algebraic expansions of the field variables are inserted,

W = (m1 + m2 + m3) [H1 +H2 +H3 − T0 (s1 + s2 + s3)]

+ m0 (T1 + T2 + T3) (s1 + s2 + s3) (4.22)

And the third order terms are gathered,

W3 = m1H2 − m1T0s2 + m2H1 − m2T0s1 + m0T1s2 + m0T2s1 (4.23)

Recalling the relations for total enthalpy,

H1 = h1 + u0 · u1

H2 = h2 +
1

2
u1

2 + u0 · u2 (4.24)

H3 = h3 + u1 · u2 + u0 · u3

We arrive at,

W3 = m1

(

h2 +
1

2
u1

2 + u0 · u2

)

− m1T0s2

+ m2 (h1 + u0 · u1) − m2T0s1 + m0T1s2 + m0T2s1 (4.25)

Finally, collecting terms conveniently, we arrive at the third order work equation.

W3 = m0 (T1s2 + T2s1) + m1

(

h2 +
1

2
u1

2 + u0 · u2 − T0s2

)

+ m2 (h1 + u0 · u1 − T0s1) (4.26)
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4.3 Sources

Beginning with the general energy corollary source term,

D = (m − m0) · [ω × u − ω0 × u0 + (s− s0)∇T0]

− (s− s0)m0 · ∇ (T − T0) + viscous+ h.t. (4.27)

Expanding the individual terms, remembering that the viscous and heat transfer terms are

kept separate,

D = (m1 + m2 + m3) · [ω × u − ω0 × u0 + (s1 + s2 + s3)∇T0]

− (s1 + s2 + s3)m0 · ∇ (T1 + T2 + T3) (4.28)

Expanding the vorticity terms separately,

ω × u − ω0 × u0 = (ω0 + ω1 + ω2) × (u0 + u1 + u2) − ω0 × u0 (4.29)

=























ω0 × u0 + ω1 × u0 + ω2 × u0

+ω0 × u1 + ω1 × u1 + ω2 × u1

+ω0 × u2 + ω1 × u2 + ω2 × u2























− ω0 × u0 (4.30)

=























ω1 × u0 + ω2 × u0

+ω0 × u1 + ω1 × u1 + ω2 × u1

+ω0 × u2 + ω1 × u2 + ω2 × u2























(4.31)

=



































ω1 × u0 + ω0 × u1

+ω2 × u0 + ω1 × u1 + ω0 × u2

+ω2 × u1 + ω1 × u2

+ω2 × u2



































(4.32)
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Using these expansions and extracting the third order terms,

D3 =







m1 · (ω2 × u0 + ω1 × u1 + ω0 × u2) + m2 · (ω1 × u0 + ω0 × u1)

+m1 · s2∇T0 + m2 · s1∇T0 − s1m0 · ∇T2 − s2m0 · ∇T1

(4.33)

Remembering that A · (A×B) = 0 for all vectors B, the vorticity terms are manipulated,

m1 · (ω2 × u0 + ω1 × u1 + ω0 × u2)

= (ρ0u1 + ρ1u0) · (ω2 × u0 + ω1 × u1 + ω0 × u2)

= ρ0u1 · ω2 × u0 + ρ0u1 · ω1 × u1 + ρ0u1 · ω0 × u2

+ ρ1u0 · ω2 × u0 + ρ1u0 · ω1 × u1 + ρ1u0 · ω0 × u2

= ρ0u1 · ω2 × u0 + ρ0u1 · ω0 × u2 + ρ1u0 · ω1 × u1 + ρ1u0 · ω0 × u2

m2 · (ω1 × u0 + ω0 × u1) = (ρ0u2 + ρ1u1 + ρ2u0) · (ω1 × u0 + ω0 × u1)

= ρ0u2 · ω1 × u0 + ρ0u2 · ω0 × u1 + ρ1u1 · ω1 × u0

+ ρ1u1 · ω0 × u1 + ρ2u0 · ω1 × u0 + ρ2u0 · ω0 × u1

= ρ0u2 · ω1 × u0 + ρ0u2 · ω0 × u1 + ρ1u1 · ω1 × u0 + ρ2u0 · ω0 × u1 (4.34)

Applying these manipulations,

D3 =























ρ0u1 · (ω2 × u0) + ρ0u1 · (ω0 × u2) + ρ1u0 · (ω1 × u1) + ρ1u0 · (ω0 × u2)

+ρ0u2 · (ω1 × u0) + ρ0u2 · (ω0 × u1) + ρ1u1 · (ω1 × u0) + ρ2u0 · (ω0 × u1)

+m1 · s2∇T0 + m2 · s1∇T0 − s1m0 · ∇T2 − s2m0 · ∇T1

(4.35)

Separating the terms into orders of ρ

D3 =























ρ0 [u1 · (ω2 × u0) + u1 · (ω0 × u2) + u2 · (ω1 × u0) + u2 · (ω0 × u1)]

+ρ1 [u0 · (ω1 × u1) + u0 · (ω0 × u2) + u1 · (ω1 × u0)]

+ρ2u0 · (ω0 × u1) + m1 · s2∇T0 + m2 · s1∇T0 − s1m0 · ∇T2 − s2m0 · ∇T1

(4.36)
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Applying triple product rules, A · (B × C) = B · (C × A) = C · (A×B) = −C · (B × A)

D3 =







ρ0 [u1 · (ω2 × u0) + u2 · (ω1 × u0)] + ρ1u0 · (ω0 × u2) + ρ2u0 · (ω0 × u1)

+m1 · s2∇T0 + m2 · s1∇T0 − s1m0 · ∇T2 − s2m0 · ∇T1

(4.37)

4.4 Third Order Viscous and Heat Transfer Terms

The viscous and heat transfer terms are treated separately. After expansion they may be

converted into a tensor form and separated into work and source terms. This is unnecessary

because both the work and source terms contribute to the change in the oscillatory energy

density. Therefore, separating them and then recombining them is fruitless.

(m − m0) · (ψ − ψ0) + (T − T0) (Q−Q0)

= (m1 + m2) · (ψ1 + ψ2) + (T1 + T2) (Q1 +Q2) (4.38)

Upon expansion, these terms are separated into second order terms, V HT2 = m1 ·ψ1 +T1Q1

and third order terms,

V HT3 = m1 · ψ2 + m2 · ψ1 + T1Q2 + T2Q1 (4.39)

4.5 Third Order Summary

In summary, for the third order the energy corollary is:

∂E3

∂t
+ ∇ ·W3 = V HT3 −D3 (4.40)

E3 =















ρ0u1 · u2 +
1

2
ρ1u1

2 + ρ1u0 · u2 + ρ2u0 · u1

+
(1 − 2γ) p1

3

6ρ0
2a0

4
+

p1p2

ρ0a0
2

+
ρ0T0s2s1

cp
+

p1s1
2

2cpγR
− ρ0T0s1

3

3cp2

(4.41)
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W3 = m0 (T1s2 + T2s1) + m1

(

h2 +
1

2
u1

2 + u0 · u2 − T0s2

)

+ m2 (h1 + u0 · u1 − T0s1) (4.42)

D3 =







ρ0 [u1 · (ω2 × u0) + u2 · (ω1 × u0)] + ρ1u0 · (ω0 × u2) + ρ2u0 · (ω0 × u1)

+m1 · s2∇T0 + m2 · s1∇T0 − s1m0 · ∇T2 − s2m0 · ∇T1

(4.43)

V HT3 = m1 · ψ2 + m2 · ψ1 + T1Q2 + T2Q (4.44)

These equations can then be added to the second order relations to generate an improved

system of equations. In order to use these equations, assumptions on the pressure and

velocity field will be employed. This analysis is shown in the following Chapter.

4.6 Second Order Field Variables

Is is to be noted that in the final 3rd order equation there exists field variables of 2nd order.

These variables, known as secondary flow phenomena, are notoriously difficult to calculate.

Because of that fact it is tempting to neglect them all together. Also, it may be tempting

to attempt to reduce these terms to a product of first order terms. This method cannot

be implemented due to the fact that the second order thermodynamic relations, which are

displayed in Chapter 2.4, show that all the second order variables are functions of two other

second order variables. Some fundamental physical problems have been worked to second

order, these examples are noteworthy for further investigation of the importance of these

terms in the stability analysis. For example, see Morse and Ingard’s “Theoretical Acoustics”

pages 863 to 874 (9). In the current analysis these terms are neglected. However, their

influence on nonlinear behavior is a recommended subject of further work.
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Chapter 5

Results of the Energy Growth Model

5.1 Outline

The process of analyzing the energy growth consists of four parts. First, the fluctuating

energy, E2 or E3, is expanded using Galerkin spectral decomposition (68). Second, a volume

integral is performed on the total energy equation, yielding the net system energy balance.

Third, the mode shapes and subsequent orthogonality is evaluated. And finally, a time

average is performed yielding the change in the pressure amplitudes. This final equation can

then be numerically analyzed yielding time dependant oscillation amplitudes.

5.2 Second Order Energy Growth

The process outlined is applied to the second order oscillatory energy growth.

∂E2

∂t
+ ∇ ·W2 = D2 (5.1)
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If we assume the flow to be isentropic (s1 = 0) the second order equations reduce down to,

E2 =
p1

2

2ρ0a0
2

+ ρ1u0 · u1 +
1

2
ρ0u1

2 (5.2a)

W2 = m1 (h1 + u0 · u1) + T1

( q

T

)

1
−m1j

(

Pij

ρ

)

1

(5.2b)

D2 = −ρ0u0 · (u1 × ω1) − ρ1u1 · (u0 × ω0)

−
(

Pij

ρ

)

1

∂m1j

∂xi

+m1j

(

Pij

ρ2

∂ρ

∂xi

)

1

+ T1

(

φ

T

)

1

+
( q

T

)

1
· ∇T1 − T1

(

q · ∇T
T 2

)

1

(5.2c)

5.2.1 Volume Integral

A volume integral is performed over the entire volume in order to solve for the total system

energy flux. This produces,

∫

V

∂E2

∂t
dV =

∫

V

D2dV −
∫

V

∇ ·W2dV (5.3)

The work integral is transformed into a surface integral,

∫

V

∂E2

∂t
dV =

∫

V

D2dV −
∫

S

n̂ ·W2dS (5.4)

Where the left hand side represents the change in the fluctuating energy, and the right hand

side represents the volumetric energy production and surface energy flux. The right hand

side yields the definition of α, the linear growth rate, or the change in oscillatory energy in

time.

5.2.2 Galerkin Spectral Decomposition

The left hand side energy fluctuation is analyzed via a Galerkin expansion (68). This assumes

that the oscillatory pressure is a superposition of all harmonics with varying amplitude as
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motivated by experimental evidence. The amplitudes are scaled by P0.

p1 (r, t) = P0 (t)
∞
∑

m=1

ηm (t)ψm (r) (5.5)

Beginning with pressure summation the irrotational velocity is derived from the linear

acoustics. Velocity is split into irrotational and rotational parts. Vorticity is the curl of the

rotational velocity. The derivation below shows the relationship between p1 and irrotational

u1, or û1

From the linearized momentum equation,

ρ0
∂û1

∂t
+ ∇p1 = 0. (5.6)

Inserting the pressure summation,

ρ0
∂û1

∂t
+ ∇

[

P0 (t)
∞
∑

m=1

ηm (t)ψm (r)

]

= 0. (5.7)

Pulling the gradient inside the summation,

∂û1

∂t
= −P0 (t)

ρ0

∞
∑

m=1

ηm (t)∇ψm (r) . (5.8)

Remembering that,
a0

2

γ
=
γRT0

γ
=
P0

ρ0

(5.9)

∂û1

∂t
= −a0

2

γ

∞
∑

m=1

ηm (t)∇ψm (r) = −
∞
∑

m=1

a0
2ηm (t)

γ
∇ψm (r) (5.10)

Then, with km = wm

a0

∂û1

∂t
= −

∞
∑

m=1

wm
2ηm (t)

γkm
2 ∇ψm (r) (5.11)
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Then since, ηm (t) = Rm (t) sin (wmt) and Rm is a slow function in time,

η̇m (t) = Rm (t)wm cos (wmt) (5.12)

η̈m (t) = −Rm (t)wm
2 sin (wmt) = −wm

2ηm (t) (5.13)

∂û1

∂t
=

∞
∑

m=1

η̈m (t)

γkm
2 ∇ψm (r) (5.14)

∂û1

∂t
=

∞
∑

m=1

η̈m (t)

γkm
2 ∇ψm (r) =

∂

∂t

[

∞
∑

m=1

η̇m (t)

γkm
2 ∇ψm (r)

]

(5.15)

Thus, solving for the irrotational velocity, û1,

û1 (r, t) =
∞
∑

m=1

η̇m (t)

γkm
2 ∇ψm (r) (5.16)

5.2.3 Algebraic Expansion

The product of the decomposed field variables are needed in the expansion of E2 and they

are shown below,

p1
2 = P0

2 (t)
∞
∑

m=1

ηm (t)ψm (r)
∞
∑

n=1

ηn (t)ψn (r) = P0
2

∞
∑

m=1

∞
∑

n=1

ηmηnψmψn

= P0
2

∞
∑

m=1

∞
∑

n=1

Rm sin (wmt)Rn sin (wnt)ψmψn (5.17)
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û1 · û1 =

[

∞
∑

m=1

η̇m (t)

γkm
2 ∇ψm (r)

]

·
[

∞
∑

n=1

η̇n (t)

γkn
2 ∇ψn (r)

]

=
∞
∑

m=1

∞
∑

n=1

η̇mη̇n

γ2km
2kn

2∇ψm · ∇ψn

=
∞
∑

m=1

∞
∑

n=1

wmwn

γ2km
2kn

2 [Rm cos (wmt)] [Rn cos (wnt)]∇ψm · ∇ψn

=
∞
∑

m=1

∞
∑

n=1

a0
2

γ2kmkn

[Rm cos (wmt)] [Rn cos (wnt)]∇ψm · ∇ψn (5.18)

û1 · û1 =
P0

γρ0

∞
∑

m=1

∞
∑

n=1

1

kmkn

[Rm cos (wmt)] [Rn cos (wnt)]∇ψm · ∇ψn (5.19)

5.2.4 E2 Expanded

If s1 = 0 then, ρ1 = p1/a0
2,

E2 =
p1

2

2ρ0a0
2

+
p1

a0
2
u0 · u1 +

1

2
ρ0u1

2 (5.20)

Each term is treated separately, beginning with the pressure squared term,

p1
2

2ρ0a0
2

=
P0

2

2ρ0a0
2

∞
∑

m=1

∞
∑

n=1

Rm sin (wmt)Rn sin (wnt)ψmψn (5.21)

Additionally, the velocity squared term,

1

2
ρ0u1

2 =
1

2
ρ0
P0

γρ0

∞
∑

m=1

∞
∑

n=1

1

kmkn

[Rm cos (wmt)] [Rn cos (wnt)]∇ψm · ∇ψn (5.22)

The remaining term (p1/a0
2)u0·u1 is left as it is because it will drop out in the time averaging

analysis.
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5.2.5 Orthogonality

The volume integral can be brought inside the summations since the remaining terms are all

time dependant and not spatially dependant. Thus, the first and third terms are evaluated

as,
∫

V

p1
2

2ρ0a0
2
dV =

P0
2

2ρ0a0
2

∞
∑

m=1

∞
∑

n=1

Rm sin (wmt)Rn sin (wnt)

∫

V

ψmψndV (5.23)

∫

V

1

2
ρ0u1

2dV =
P0

2γ

∞
∑

m=1

∞
∑

n=1

1

kmkn

[Rm cos (wmt)] [Rn cos (wnt)]

∫

V

∇ψm · ∇ψndV (5.24)

The two volume integrals are evaluated knowing that ψm = cos (kmz) and km = mπ/L,

∫

V

ψmψndV = A

∫ L

0

ψmψndz = A

∫ L

0

cos (kmz) cos (knz) dz =











AL

2
for (m = n)

0 for (m 6= n)

(5.25)

∫

V

∇ψm · ∇ψndV = A

∫ L

0

∇ψm · ∇ψndz

= A

∫ L

0

kmkn sin (kmz) sin (knz) dV =











k2
m

AL

2
for (m = n)

0 for (m 6= n)

(5.26)

Where A = πR2, is the cross sectional chamber area and R is the chamber radius.

5.2.6 Time Average

The definition of the time average is,

〈f(t)〉 =
1

τ

∫ τ

0

f(t)dt (5.27)
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Where in the longitudinal case, ωm = mπa0/L and τ = 2π/ω1 thus,

〈f(t)〉 =
ω1

2π

∫ 2π/ω1

0

f(t)dt (5.28)

Applying this definition to the term (p1/a0
2)u0 · u1 yields,

u0ω1ψm∇ψn

2πa2
0

∫ 2π/ω1

0

d

dt
[sin (ωmt) cos (ωnt)] dt = 0 (5.29)

And therefore the term disappears. The remaining terms are algebraically manipulated.

Now that m = n, because of orthogonality, and P0
2

2ρ0a0
2 = P0

2γ
, the two remaining terms are

combined.

∫

V

d

dt

[

p1
2

2ρ0a0
2

+
1

2
ρ0u1

2

]

dV =
P0

2γ

∞
∑

m=1

d

dt

[

R2
m

(

sin2 (wmt) + cos2 (wmt)
) L

2

]

=
LP0

4γ

∞
∑

m=1

d

dt

[

R2
m

]

(5.30)

The time average is not needed since the term Rm changes slowly in time and is nearly

constant over one period. Putting these results back into the total energy equation,

∫

V

∂E2

∂t
dV =

LP0

4γ

∞
∑

m=1

R2
m =

∫

V

D2dV −
∫

S

n̂ ·W2dS (5.31)

5.2.7 Linear Alpha

The terms which make up alpha are individually complicated in of themselves, each requiring

their own analysis. For demonstration of the linear differential alpha and its relation we

expand upon the surface work term, assuming no heat wall heat transfer, isentropic and

inviscid flow,

W2 = m1

(

p1

ρ0

+ u0 · u1

)

= u1p1 + ρ0u1(u0 · u1) +
u0p

2
1

ρ0a2
0

+ ρ1u0(u0 · u1) (5.32)
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Each algebraic group yields an individual mechanism. These terms are evaluated at the

surface. For instance the first term, u1p1 is evaluated over the volume. The volume integral

of ∇ · W2 reduces down to a surface integral. This surface integral is evaluated over the

entire surface. The surface of the rocket is split into three categories: inert surfaces, burning

surfaces and nozzle entrance planes. For example, for the first term,

∫

S

n̂ · u1p1dS =

∫

Sb

n̂ · u1p1dS +

∫

S

Nn̂ · u1p1dS +

∫

S

in̂ · u1p1dS (5.33)

Where on inert surfaces, n̂ · û1 = 0 and on the burning surface,

n̂ · û1 = −a0MbAb
p′

γP0

(5.34)

And on the nozzle entrance plane,

n̂ · û1 = −a0MNAN
p′

γP0

(5.35)

Where Ab and AN are the burning and nozzle acoustic admittance which are typically found

experimentally or computationally. Mb and MN are the Mach numbers of the flow at the

burning surface and at the nozzle entrance plane. Each term in W2 is evaluated on each

portion of the surface each yielding a different α. The summation of these α’s is the total

system growth rate. Where, αT = α1 + α2 + ... for each mode.

As an example, for the first term on the burning propellant, the solution expanded yields,

∫

Sb

n̂ · u1p1dS =

∫

Sb

−a0MbAb
p1

γP0

p1dS (5.36)

This solution is then expanded upon as before,

∫

Sb

−a0MbAb
p1

γP0

p1dS = − a0

γP0

∫

Sb

MbAbp
2
1dS

= −a0P0

γ

∫

Sb

MbAbRmRn sin(wmt) sin(wnt) cos(kmz) cos(knz)dS (5.37)
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Once time averaged, m = n and 〈sin(wmt) sin(wnt)〉 = 1
2
,

− a0P0

γ

∫

Sb

MbAbRmRn sin(wmt) sin(wnt) cos(kmz) cos(knz)dS

= −a0P0R
2
m

2γ

∫

Sb

MbAb cos2(kmz)dS = −a0P0R
2
m

2γ
α1,m (5.38)

In previous analysis α is defined in the form,

αpast =
a0

2E2
m

∫

Sb

MbAbψ
2
mdS (5.39)

Where E2
m = πR2L/2 for a cylindrical chamber. Comparing past notation verses the current

derivation yields.

αm = αpast
AL

a0

(5.40)

The past notation is preferred in order to compare to previous analysis.

5.2.8 Second Order Wave Growth Equations

The results from the second order equations are summarized in that for an individual mode,

d

dt

[

R2
m

]

= 2R2
mαm (5.41)

Where all the length and area parameters cancel each other out. By expanding the time

derivative and reducing a simple linear differential equation is found.

d

dt
[Rm] = RmαT,m (5.42)

This equation describes the growth as a linear differential equation with an exponential

solution. The result is that amplitudes will grow to infinity which is clearly not physical. In

order to capture the wave steepening process, third order effects must be retained. Figure

5.1 shows the exponential growth of the first mode given a positive α1 and negative α’s of
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Figure 5.1: Second Order Exponential Growth

higher order. The first mode grows exponentially where the higher modes stay at zero. No

energy cascading is seen, and the exponential growth is unphysical.

5.3 Third Order Energy Growth

A similar process is used in the analysis of the third order energy, E3. The terms W3 and

D3 lead to third order alpha terms. If we still assume the flow is isentropic and now that all

secondary flow effects are small we yield,

E3 =
1

2
ρ1u1

2 +
(1 − 2γ) p1

3

6ρ0
2a0

4
(5.43)

These terms provide the nonlinear relationship between the modes most importantly seen

as wave steepening.
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5.3.1 E3 Expanded

If s1 = 0 then, ρ1 = p1/a0
2,

dE3

dt
=

d

dt

[

p1

2a2
0

u1
2 +

(1 − 2γ) p1
3

6ρ0
2a0

4

]

(5.44)

dE3

dt
=

1

2a2
0

dp1

dt
u1

2 +
p1u1

a2
0

du1

dt
+

(1 − 2γ) p1
2

2ρ0
2a0

4

dp1

dt
(5.45)

Each term is individually expanded,

1

2a2
0

dp1

dt
u1

2

=
P0

2a2
0

∞
∑

l=1

wlRl cos (wlt)ψl
P0

γρ0

∞
∑

m=1

∞
∑

n=1

1

kmkn

Rm cos (wmt)Rn cos (wnt)∇ψm · ∇ψn

=
P0

2γ2

∞
∑

l=1

∞
∑

m=1

∞
∑

n=1

wl

kmkn

Rl cos (wlt)Rm cos (wmt)Rn cos (wnt)ψl∇ψm · ∇ψn (5.46)

p1

a2
0

u1
du1

dt
= −P0

a2
0

∞
∑

l=1

Rl sin (wlt)ψl

∞
∑

m=1

Rmwmcos (wmt)

γkm
2 ∇ψm

∞
∑

n=1

Rna
2
0 sin (wnt)

γ
∇ψn

= − P0

a2
0γ

2

∞
∑

l=1

∞
∑

m=1

∞
∑

n=1

RlRmRn
wmw

2
n

km
2kn

2 sin (wlt) cos (wmt) sin (wnt)ψl∇ψm∇ψn (5.47)

(1 − 2γ) p1
2

2ρ0
2a0

4

dp1

dt

=
(1 − 2γ)P0

2γ2

∞
∑

m=1

∞
∑

n=1

∞
∑

l=1

wnRlRmRn sin (wlt)sin (wmt)cos (wnt)ψmψnψl (5.48)

5.3.2 Orthogonality

The third order equations are evaluated over the volume just as in the second order.

This produces a more complicated solution showing the interconnectedness of the wave
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amplitudes. Since all other terms are not functions of space, the volume integral can be

brought inside the summations and evaluated on the mode shapes, ψ.

A

∫ L

0

ψmψnψldz = A

∫ L

0

cos (kmz) cos (knz) cos (klz) dz

=
AL

4
Am,n,l =

AL

4























δ(l −m− n)

+δ(l +m− n)

+δ(l −m+ n)

(5.49)

Where, δ is the Kronecker Delta.

A

∫ L

0

ψl∇ψm · ∇ψndz = A

∫ L

0

kmkn sin (kmz) sin (knz) cos (klz) dz

= kmkn
AL

4
Bm,n,l = kmkn

AL

4























−δ(l −m− n)

+δ(l +m− n)

+δ(l −m+ n)

(5.50)

5.3.3 Time Average

Several time averages are needed. The following list will be used in the time averaging the

the above three terms and combined with the volume integral of the spatial terms.

〈cos(wlt) cos(wmt) cos(wnt)〉 = Cm,n,l =























δ(l −m− n)

+δ(l +m− n)

+δ(l −m+ n)

(5.51)

〈cos(wnt) sin(wlt) sin(wmt)〉 = Dm,n,l =























δ(l −m− n)

−δ(l +m− n)

+δ(l −m+ n)

(5.52)
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〈cos(wmt) sin(wlt) sin(wnt)〉 = Em,n,l =























δ(l −m− n)

+δ(l +m− n)

−δ(l −m+ n)

(5.53)

〈cos(wlt) sin(wnt) sin(wmt)〉 = Fm,n,l =























−δ(l −m− n)

+δ(l +m− n)

+δ(l −m+ n)

(5.54)

For completeness it is noted that,

〈sin(wlt) cos(wmt) cos(wnt)〉 = 0 (5.55)

〈sin(wlt) sin(wmt) sin(wnt)〉 = 0 (5.56)

5.3.4 Combined Time Average and Orthogonality

The results from orthogonality and time averaging are joined for each term. The indices

used above are not in any way important, that is, m can be interchanged for n and so on,

as long as it is done consistently. It is important the the correct time average is used in

conjunction with the volume integral. For instance in the third term, wn came from the

differentiation of sin(wnt) which yields wn cos(wnt), therefore it is important to maintain the

consistent notation between the two terms.

In the first term the wave numbers are eliminated by the volume integral and the remainder

is LBmnl/4. The time average is given by Bmnl as well, since Fmnl = Bmnl. Because of the

properties of delta functions, Bmnl ∗Bmnl = Bmnl. Therefore the first term reduces down to,

1

2a2
0

dp1

dt
u1

2 =
AP0

2γ2

∞
∑

l=1

∞
∑

m=1

∞
∑

n=1

wlRlRmRn
L

4
Bmnl (5.57)
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The second term has an unusual character, but it reduces down nicely as well. The volume

integral yields kmkn
L
4
Bm,n,l and the time average yields Emnl

p1

a2
0

u1
du1

dt
= −AP0

γ2

∞
∑

l=1

∞
∑

m=1

∞
∑

n=1

RlRmRnwnEmnl
L

4
Fmnl (5.58)

The third term reduces simply. The time average yields Dmnl and the volume integral is

L
4
Amnl and then because Amnl ∗Dmnl = Dmnl,

(1 − 2γ) p1
2

2ρ0
2a0

4

dp1

dt
=

(1 − 2γ)AP0

2γ2

∞
∑

m=1

∞
∑

n=1

∞
∑

l=1

wnRlRmRnDmnl
L

4
(5.59)

Indices Rotation

The indices of each equation are now rotated to allow for easier manipulation. For the first

term rotate about n (switch l with m,)

∞
∑

l=1

∞
∑

m=1

∞
∑

n=1

wlRlRmRnBmnl →
∞
∑

l=1

∞
∑

m=1

∞
∑

n=1

wmRlRmRnEmnl (5.60)

In the second equation m is switched with n,

−
∞
∑

l=1

∞
∑

m=1

∞
∑

n=1

RlRmRnwnEmnlFmnl → −
∞
∑

l=1

∞
∑

m=1

∞
∑

n=1

RlRmRnwmDmnlFmnl (5.61)

And knowing that Dmnl ∗ Fmnl = −Emnl we have,

−
∞
∑

l=1

∞
∑

m=1

∞
∑

n=1

RlRmRnwmDmnlFmnl =
∞
∑

l=1

∞
∑

m=1

∞
∑

n=1

RlRmRnwmEmnl (5.62)

The third equation is rotated about l as well (switch m and n,)

∞
∑

m=1

∞
∑

n=1

∞
∑

l=1

wnRlRmRnDmnl →
∞
∑

m=1

∞
∑

n=1

∞
∑

l=1

wmRlRmRnEmnl (5.63)

84



And now all terms have the same combined delta functions, wmEmnl and all three equations

can be combined.

Summation of Summations

The summation of the three terms yields,

dE3

dt
=
AP0L

4

(

1

2γ2
+

1

γ2
+

(1 − 2γ)

2γ2

) ∞
∑

m=1

∞
∑

n=1

∞
∑

l=1

wmRlRmRnEmnl

=
AP0L

4

(

2 − γ

γ2

) ∞
∑

m=1

∞
∑

n=1

∞
∑

l=1

wmRlRmRnEmnl (5.64)

5.3.5 Third Order Alpha

The third order alpha is not used at this point. It is easily derived from the third order

relations. At the present moment the second order growth rate is still being determined and

it is likely that the third order corrects will be small.

5.3.6 Nonlinear Wave Growth Equations

Adding the third order corrections to the second order terms and moving to the right hand

side yields,
d

dt
[Rm] = RmαT,m −

(

2 − γ

2γ

)

wm

∞
∑

n=1

∞
∑

l=1

RlRnEmnl (5.65)

This equation can be numerically evaluated using fourth order Runge-Kutta. The advantage

of this whole method over a CFD simulation is that the complicated interactions between

modes and mechanisms is reduced down to a simple code which takes only minutes, instead

of days for a CFD simulation, to evaluate while retaining the full physics. The origin

of individual effects are preserved for analysis instead of being clumped together in one

numerical solution. As we will see, a simple numerical solution is still capable of capturing

the important physics of the problem.
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5.4 First Mode Driving and Wave Steepening

The first mode is driven with α1 = 200 with negative values for higher modes. These values

for α are on the same order as those seen in practice. An initial first mode amplitude of 0.05

is used, all other modes start at zero. 15 modes were used. The results are shown in Figure

5.2.

Just as in the experimental data the first mode amplitude increases to a limit cycle. As

the wave amplitude grows energy cascades down to the lower modes. Summing the modes

generates the pressure waveform which is shown in Figure 5.3.

The waveform starts out as a sinusoidal wave given by the initial conditions shown in Figure

5.4(a). By time the limit cycle is reached the waveform has steepened into a shock like

waveform shown in Figure 5.4(b). The phenomena of wave steepening is captured just as in

the physical experiment shown in Figure 1.20(b).

Figure 5.2: First Mode Driving Wave Amplitudes
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Figure 5.3: First Mode Driving Waveform

(a) First Mode Driving Waveform Beginning (b) First Mode Driving Waveform Steepened

Figure 5.4: Steepening of a Longitudinal Wave
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5.5 Second and Third Mode Driving

When the second mode is driven a similar process occurs as in the first mode driving and

model correctly captures the physics as shown in the shock tube experiments as shown in

section 1.7.4. The second mode is driven with α2 = 200 and all other modes are given

negative values. A initial condition of 0.05 for the second mode is used, all other modes start

at zero. 15 modes were used. The results are shown in Figure 5.5

The second mode amplitude increases and converges to a limit cycle and just as in the shock

tube experiments, only the second, fourth, sixth, etc. modes are driven just as in Figure

1.23. No energy is drawn back into the first mode. Also, given the same value for alpha the

limit cycle is much smaller for the second mode. This is expected as it is harder to drive

higher harmonics. The resulting second harmonic steepened waveform is shown in Figure

5.6.

To further show the fact that no energy goes back into the first mode, Figure 5.7 shows an

initial first mode amplitude of 0.01 started alongside the initial 0.05 second mode amplitude.

The second mode is driven and reaches a limit cycle, and because no energy is given to the

first mode it quickly reduces back to zero.

5.6 Initial Condition Sensitivity

The initial conditions are varied, keeping all other things equal. The effect is shown in Figure

5.8. 15 modes were used. The initial conditions have very little effect on the limit cycle.

Interestingly there is a small change when the initial amplitude is near to the limit cycle,

however this variation is very small and beyond the expectations of error in an engineering

solution.
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Figure 5.5: Second Mode Driving Wave Amplitudes

Figure 5.6: Second Mode Driving Steepened Waveform
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Figure 5.7: Second Mode Driving Wave Amplitudes

Figure 5.8: Effect of the Initial Conditions on the Limit Cycle Amplitude
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5.7 Limit Cycle Alpha Sensitivity

The sensitivity of the limit cycle to alpha is tested. The first mode is driven with a positive

value shown in Figure 5.9, all other modes are held at constant negative values, and the

resulting limit cycle amplitude is shown.

The limit cycle varies significantly with the value of the driving alpha. This is well known;

the harder the mode is driven, the harder it will oscillate. It is interesting to note how

sensitive the solution is to alpha. Small changes can make large differences. Because alpha

is an intrinsically hard value to calculate and there are multiple alpha’s all adding and

subtracting, the total error can become quite large as compared to the value of alpha. This

in turn can drastically change the value of the limit cycle. Therefore it is important to

accurately calculate alpha and know the total error in alpha so as to know the possibly large

variation in pressure amplitudes.

Figure 5.9: Effect of α1 on the Limit Cycle Amplitude
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5.8 Nonlinear Correction Sensitivity

In order to judge the sensitivity of the nonlinear term (2 − γ)/(2γ), it was multiplied by a

factor, NF , varying from 0.1 to 2.0. The code was ran for each case capturing the first mode

limit cycle amplitude. α1 = 200 and the other terms are set to negative values just as in the

first mode driving case. The results are shown in Figure 5.10.

This plot shows the sensitivity of the solution to the nonlinear factor. As the nonlinear factor

goes to zero the limit cycle will go to infinity just as the linear model predicts. The limit

cycle is approximately inversely proportional to the nonlinear factor, or A ∼ A0

NF
where A is

the limit cycle, A0 is the original limit cycle and NF is a factor multiplying the nonlinear

correction. The maximum pressure amplitude was also calculated for each case. This value

comes from the maximum of the pressure waveform which is found by summing of all the

harmonics with their respective amplitudes. The results are shown in Figure 5.11. The

conclusion is similar to the first mode limit cycle amplitude. The energy is swept from

the first mode to higher modes, and there the energy is dissipated thereby decreasing the

amplitude of the pressure oscillations.

5.9 Mode Number Sensitivity

The number of modes used in the numerical simulation is important to the creation of a

limit cycle. The value of the first mode limit cycle as compared to the number of modes

used is shown in Figure 5.12.

Before five modes the solution is very unstable and the solution does not always converge.

After that point the solution stabilizes to a slightly decreasing limit cycle amplitude. As

more modes are introduced, slightly more energy is drawn from the system which decreases

the limit amplitude of the first mode. The total amplitude, which is the summation of the

modes may then go nearly unchanged. The instability when using only a few modes can be

minimized by picking appropriate initial conditions and using a small time step. However,

92



Figure 5.10: Effect of the Nonlinear Factor on the Limit Cycle

Figure 5.11: Effect of the Nonlinear Factor on the Normalized Maximum Pressure Amplitude
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Figure 5.12: Effect of the Number of Modes Used in Simulation

because the solution is very compact, it is simply easier to run with greater than 10 modes.

In previous typical motor simulations up to 30 modes have been used.

5.10 Time Dependant Alpha

When a change in alpha is observed the oscillations change to meet the new limit cycle.

This process takes some length of time, therefore, if alpha is changing faster than the wave

amplitude can change, the system might never be at it’s limit cycle. This idea is tested

using a time variable alpha. First, if α1 = 200 cos(π ∗ t/τ) where t is the nondimensional

time, t = time ∗ a0/L, and τ is α’s oscillatory period. Figure 5.13, 5.14, and 5.15 show

the change in the individual modes amplitudes with a changing alpha with a varying period

of τ = 50, 100, and200 respectively. These figures show the delay in arriving at the limit

amplitude. Also, since α is changing from negative to positive values the oscillations are

driven to zero and then increase back to a temporary maximum.
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Figure 5.13: Time Dependant Alpha, τ = 50

Figure 5.14: Time Dependant Alpha, τ = 100
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Figure 5.15: Time Dependant Alpha, τ = 200

In Figure 5.16, 5.17, and 5.18 α = 100 + 100 ∗ cos(π ∗ t/τ) where now τ = 200, 50, and10

respectively. In these cases the wave grows to a quasi steady state with a mean first mode

amplitude of slightly greater that 0.05. The maximum amplitude is diminished by the rapidly

varying alpha, where in the highest frequency case the maximum amplitude is far less than in

the lower frequency case. These facts reinforce the premise that the time dependant solution

needs to be solved. Also, in the reduction of data, it is important to note that, if these

phenomena were lost in the noise, the limit cycle amplitude, and therefore the estimated

total alpha, may be underestimated if α is oscillatory. Fortunately, the changing α shown

in these numerical tests were changing much more rapidly than seen in tests, so it is not a

significant concern.
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Figure 5.16: Time Dependant Alpha, τ = 200

Figure 5.17: Time Dependant Alpha, τ = 50
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Figure 5.18: Time Dependant Alpha, τ = 10

5.11 Tangential Steepening

A similar process as done with the longitudinal modes can be performed with tangential

modes. The difference lies in the volume integral performed on the modes. As a result for

tangential modes the matrix Amnl which previously multiplied the matrix Emnl is changed

to,

Amnl =

∫

V
Jm(kmr)Jn(knr)Jl(klr) cos(mθ) cos(nθ) cos(lθ)rdrdθdz

J2
m(kmn)

(

1 − m2

kmn2

) (−δ1 + δ2 + δ3) (5.66)

Then, using the modified Amnl matrix we arrive at a similar physical process shown in

Figure 5.19. The wave amplitude grows, Figure 5.20, and it is limited as energy transfers

to higher modes. Figure 5.21 shows the transition of the waveform from sinusoidal to a

steeped tangential wave. This result is compared to Figure 1.28, and the model is shown to

accurately model the physics seen in actual motor tests.
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Figure 5.19: Limit Amplitudes with Tangential Modes

Figure 5.20: Limit Amplitudes with Tangential Modes
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(a) Initial Tangential Waveform (b) Steepened Tangential Waveform

Figure 5.21: Steepening of a Tangential Wave
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Chapter 6

Summary

In summary, this dissertation shows the application of third order nonlinear modeling of

acoustic energy applied to the problem of combustion instability. Second order results

produce unphysical exponential growth, while the inclusion of the third order reproduces

nonlinear behavior seen in recently performed experiments. This nonlinear behavior is

characterized as the steepening of the waveform as energy cascades from low modes to high

modes. The model also accurately predicts the interesting experimental result that when

the second mode is driven in an acoustic system the fluctuating energy cascades only to

subsequent even harmonics and as in the experiment the waveform still maintains a shock

like character.

The solution depends on multiple parameters. Firstly, the number of modes used in the

numerical solution is important. A minimum number of modes is needed to correctly model

the system. This is generally not a problem because the numerical solutions are arrived

at quickly. Running a numerical solution with up to 30 modes does not present a problem.

Secondly, the final limit cycle amplitude is not affected by the initial conditions, as one would

expect. The system simply grows until it finds an equilibrium and that equilibrium is not

dependant on the initial conditions.

The solution is affected greatly by the use of different values of α, the second order growth

rate. These values were assumed in the numerical experiments; however, in actual motor
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simulations the value of α is calculated using complicated experimental and numerical means.

Given the error in mechanism’s α calculation, the value for the total α has a significant total

error. This variation in α leads to a significant error in the limit cycle amplitude. This

clearly shows the need for rigorous alpha calculations and error estimations.

The solution is also significantly affected by the third order nonlinear parameter, found to be

(2−γ)/(2γ). This value is larger than previous estimations. A numerical test was performed

varying the value of this nonlinear parameter and the limit cycle amplitude is shown to

be nearly inversely proportional to its value. This sensitivity shows the need for further

analysis on the nonlinear terms. In this case, the solution was assumed to be isentropic

and irrotational, the removal of these assumptions may modify the nonlinear parameter to

a significant degree.

6.1 Recommendations

In the process of performing this task many topics for future investigation are uncovered.

The importance of the third order nonlinear components are demonstrated and shown to

capture the physics seen in combustion instability. However, the numerical solution is

shown to be very sensitive to this nonlinear parameter as the limit cycle amplitude is

inversely proportional to its value. In this analysis the flow field was assumed isentropic

and irrotational. Generally, these additions are small, but given the large sensitivity of the

solution to the nonlinear parameter, their inclusion in future combustion instability models

is likely important.

The application of other methods may be applied to this problem as well. FFT analysis is

already performed on experimental data. A more modern approach would be to use wavelet

analysis to capture time dependence as well. Additionally, other numerical techniques will

be investigated to potentially allow for the removal of time averaging.

In the third order analysis the second order field variables were neglected. They are generally

small compared to first order effects and require complex mathematical calculations. A study
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of their impact on the nonlinear solution is important in order to justify their removal. This

task would be a complex, yet important future task.

Finally, given the sensitivity of the solution to the linear growth rate and the desire to

accurately predict these oscillations, it is imperative that more work is performed to more

accurately calculate the second order growth rate. This future work will take the form

of additional analytical, numerical, and most importantly, experimental efforts. Further

experiments are currently being performed and more are planned to quantify all individual

alpha’s to improve analytical and numerical efforts.
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Appendix A

The appendix contains details of the derivations not shown in chapters two though four.

A.1 Common Vector Identities:

Several vector identities are useful in the manipulation of vector equations.

∇× (∇s) = 0

∇ · (∇× v) = 0

∇ · (∇s) = ∇2s

∇×∇× v = ∇ (∇ · v) −∇2v

∇ · (u + v) = ∇ · u + ∇ · v

∇× (u + v) = ∇× u + ∇× v

∇ (u · v) = (u · ∇)v + (v · ∇)u + u × (∇× v) + v × (∇× u)

∇ · (u × v) = v · ∇ × u − u · ∇ × v

∇× (u × v) = u (∇ · v) − v (∇ · u) + (v · ∇)u − (u · ∇)v

∇ · (sv) = v · ∇s+ s∇ · v

∇× (sv) = s∇× v − v ×∇s

∇ (sa) = s∇a+ a∇s
1

2
∇
(

v2
)

= v × (∇× v) + (v · ∇)v

(A.1)
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A.2 Acoustic Wave Equation Derivation

Shown below is a derivation of the acoustic wave equation. Beginning with the continuity

equation with mass sources,
1

ρ

Dρ

Dt
+ ∇ · u = q (r, t) (A.2)

And the momentum equation with body forces,

∂ (ρu)

∂t
+ (ρu) · (∇u) + u∇ · (ρu) = −∇p− µ∇× ω +

(

η + 4
3
µ
)

∇ (∇ · u) + ρb + F (A.3)

Linearize equations,

1

ρ0

∂ρ′

∂t
+ ∇ · u′ = q (r, t) (A.4)

ρ0
du′

dt
+ ∇p′ = F (A.5)

Applying the isentropic relation, ρ′ = p′

a2 , to A.4,

1

ρ0a2

∂p′

∂t
+ ∇ · u′ = q (r, t) (A.6)

Take the divergence of A.5

∇ ·
{

ρ0
du′

dt
+ ∇p′ = F

}

= ρ0
d (∇ · u′)

dt
+ ∇2p′ = ∇ · F (A.7)

Multiply A.5 by ρ0
∂
∂t

,

ρ0
∂

∂t

{

1

ρ0a2

∂p′

∂t
+ ∇ · u′ = q (r, t)

}

=
1

a2

∂2p′

∂t2
+ ρ0

∂ (∇ · u′)

∂t
= ρ0q

′ (r, t) (A.8)

Subtracting A.8 from A.7 to arrive that the acoustic wave equation including sources,

∇2p′ − 1

a2

∂2p′

∂t2
= ∇ · F − ρ0q

′ (r, t) (A.9)
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Remembering that this equation is valid for small amplitudes and is isentropic.

A.3 Manipulating ρe terms

Shown below are the details used in the manipulation of the thermodynamic expansions in

section 2.4.2. With the relation for ρ2
1, we insert it into the expansion for (ρe)2.

ρ1
2 =

(

p1

a0
2
− ρ0

cp
s1

)2

=
p1

2

a0
4
− 2

p1ρ0s1

a0
2cp

+
ρ0

2

cp2
s1

2 (A.10)

A.3.1 Second Order ρe

(ρe)2 = h0ρ2 + ρ0T0s2 +

(

p1
2

2ρ0a0
2
− p1s1

cp
+
a0

2ρ0

2cp2
s1

2

)

+ γT0ρ1s1 +
γρ0T0s1

2

2cp
(A.11)

(ρe)2 = h0ρ2 + ρ0T0s2 +
p1

2

2ρ0a0
2
−

(

a0
2ρ1 + a0

2ρ0

cp
s1

)

s1

cp

+ γT0ρ1s1 +
a0

2ρ0

2cp2
s1

2 +
γρ0T0s1

2

2cp
(A.12)

(ρe)2 = h0ρ2 + ρ0T0s2 +
p1

2

2ρ0a0
2
− a0

2ρ1s1

cp
− a0

2ρ0

cp2
s1

2

+ γT0ρ1s1 +
a0

2ρ0

2cp2
s1

2 +
γρ0T0s1

2

2cp
(A.13)
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Reducing the terms including ρ1s1,

−a0
2ρ1s1

cp
+ γT0ρ1s1 = ρ1s1

(

−a0
2

cp
+ γT0

)

= ρ1s1

(

−γRT0

cp
+ γT0

)

= ρ1s1T0 (− (γ − 1) + γ)

= ρ1s1T0 (A.14)

Reducing the terms including s2,

a0
2ρ0

2cp2
s1

2 +
γρ0T0s1

2

2cp
− a0

2ρ0

cp2
s1

2 = ρ0T0s1
2

(

γR

2cp2
+

γ

2cp
− γR

cp2

)

=
ρ0T0s1

2

2cp

(

γ − γR

cp

)

=
ρ0T0s1

2

2cp
(A.15)

Insert these back into the previous equation and we end up with the form shown below which

is the same as Myers (42). This puts the terms back into a more classical form which can

be compared to traditional acoustic analysis.

(ρe)2 = h0ρ2 + ρ0T0s2 +
p1

2

2ρ0a0
2

+ T0ρ1s1 +
ρ0T0s1

2

2cp
(A.16)

A.3.2 Third Order

To start, the ρ2
1 and the ρ3

1 cube terms are manipulated. First, some algebra,

ρ1
2 =

(

p1

a0
2
− ρ0

cp
s1

)2

=
p1

2

a0
4
− 2

p1ρ0s1

a0
2cp

+
ρ0

2

cp2
s1

2 (A.17)
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ρ1
3 =

(

p1

a0
2
− ρ0

cp
s1

)3

=

(

p1

a0
2

)3

− 3

(

p1

a0
2

)2
ρ0

cp
s1 + 3

(

ρ0

cp
s1

)2
p1

a0
2
−
(

ρ0

cp
s1

)3

=
p1

3

a0
6
− 3

ρ0p1
2s1

a0
4cp

+ 3
ρ0

2p1s1
2

a0
2cp2

− ρ0
3s1

3

cp3
(A.18)

Recalling 2.36c,

ρ2 =
p2

a0
2
− ρ0s2

cp
− (γ − 1) p1

2

2a0
4ρ0

− p1s1

cpa0
2

+
ρ0s1

2

2cp2
(A.19)

Now, taking Equations A.17, A.17, 2.36b, and 2.36c into Eqn. 2.36d,

(ρe)3 = h0ρ3 + ρ0T0s3

+
a0

2

ρ0

(

p1

a0
2
− ρ0

cp
s1

)(

p2

a0
2
− ρ0s2

cp
− (γ − 1) p1

2

2a0
4ρ0

− p1s1

cpa0
2

+
ρ0s1

2

2cp2

)

+ γT0









(

p1

a0
2
− ρ0

cp
s1

)

s2

+

(

p2

a0
2
− ρ0s2

cp
− (γ − 1) p1

2

2a0
4ρ0

− p1s1

cpa0
2

+
ρ0s1

2

2cp2

)

s1









+
ρ0γT0

cp
s1s2 +

(γ − 2)

6ρ0
2
a0

2

(

p1
3

a0
6
− 3

ρ0p1
2s1

a0
4cp

+ 3
ρ0

2p1s1
2

a0
2cp2

− ρ0
3s1

3

cp3

)

+
γa0

2

2cpρ0

(

p1
2

a0
4
− 2

p1ρ0s1

a0
2cp

+
ρ0

2

cp2
s1

2

)

s1

+
γ2T0

2cp

(

p1

a0
2
− ρ0

cp
s1

)

s1
2 +

γ2ρ0T0s1
3

6cp2
(A.20)

Several terms are unaffected by this insertion,

h0ρ3 + ρ0T0s3 +
ρ0γT0

cp
s1s2 +

γ2ρ0T0s1
3

6cp2
(A.21)
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Expanding the affected terms,

a0
2

ρ0



































p1

a0
2

p2

a0
2
− p1

a0
2

ρ0s2

cp
− p1

a0
2

(γ − 1) p1
2

2a0
4ρ0

− p1

a0
2

p1s1

cpa0
2

+
p1

a0
2

ρ0s1
2

2cp2
− ρ0

cp
s1
p2

a0
2

+
ρ0

cp
s1
ρ0s2

cp

+
ρ0

cp
s1

(γ − 1) p1
2

2a0
4ρ0

+
ρ0

cp
s1
p1s1

cpa0
2
− ρ0

cp
s1
ρ0s1

2

2cp2



































+ γT0















p1s2

a0
2
− ρ0

cp
s1s2 +

p2s1

a0
2
− ρ0s2s1

cp

−(γ − 1) p1
2s1

2a0
4ρ0

− p1s1
2

cpa0
2

+
ρ0s1

3

2cp2















+
(γ − 2) a0

2

6ρ0
2

(

p1
3

a0
6
− 3

ρ0p1
2s1

a0
4cp

+ 3
ρ0

2p1s1
2

a0
2cp2

− ρ0
3s1

3

cp3

)

+
γa0

2

2cpρ0

(

p1
2s1

a0
4

− 2
p1ρ0s1

2

a0
2cp

+
ρ0

2

cp2
s1

3

)

+
γ2T0

2cp

(

p1s1
2

a0
2

− ρ0

cp
s1

3

)

(A.22)

(ρe)3 = h0ρ3 + ρ0T0s3 +
ρ0γT0

cp
s1s2 +

γ2ρ0T0s1
3

6cp2

+















p1p2

ρ0a0
2
− p1s2

cp
− (γ − 1) p1

3

2a0
4ρ0

2
− p1

2s1

ρ0cpa0
2

+
p1s1

2

2cp2

−p2s1

cp
+
ρ0a0

2s1s2

cp2
+

(γ − 1) p1
2s1

2cpρ0a0
2

+
p1s1

2

cp2
− a0

2ρ0s1
3

2cp3















+















γT0
p1s2

a0
2
− γT0

ρ0

cp
s1s2 + γT0

p2s1

a0
2
− γT0

ρ0s2s1

cp

−γT0
(γ − 1) p1

2s1

2a0
4ρ0

− γT0
p1s1

2

cpa0
2

+ γT0
ρ0s1

3

2cp2















+

{

(γ − 2)

6ρ0
2

p1
3

a0
4
− (γ − 2)

2ρ0

p1
2s1

a0
2cp

+
(γ − 2)

2

p1s1
2

cp2
− (γ − 2) a0

2

6

ρ0s1
3

cp3

}

+

{

γ

2cpρ0

p1
2s1

a0
2

− γp1s1
2

cp2
+
γa0

2

2

ρ0

cp3
s1

3

}

+

{

γ2T0

2cp

p1s1
2

a0
2

− γ2T0

2

ρ0

cp2
s1

3

}

(A.23)
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Now gathering the similar terms, preparing to simplify them individually,

(ρe)3 = h0ρ3 + ρ0T0s3

+

{

−(γ − 1) p1
3

2a0
4ρ0

2
+

(γ − 2)

6ρ0
2

p1
3

a0
4

}

+

{

p1p2

ρ0a0
2

}

+

{

γT0
p2s1

a0
2
− p2s1

cp

}

+

{

−p1s2

cp
+ γT0

p1s2

a0
2

}

+















− p1
2s1

ρ0cpa0
2

+
(γ − 1) p1

2s1

2cpρ0a0
2

− γT0
(γ − 1) p1

2s1

2a0
4ρ0

−(γ − 2)

2ρ0

p1
2s1

a0
2cp

+
γ

2cpρ0

p1
2s1

a0
2















+















p1s1
2

2cp2
+
p1s1

2

cp2
− γT0

p1s1
2

cpa0
2

+
(γ − 2)

2

p1s1
2

cp2
− γp1s1

2

cp2
+
γ2T0

2cp

p1s1
2

a0
2















+

{

ρ0γT0

cp
s1s2 +

ρ0a0
2s1s2

cp2
− γT0

ρ0s2s1

cp
− γT0

ρ0

cp
s1s2

}

+















γ2ρ0T0s1
3

6cp2
− a0

2ρ0s1
3

2cp3
+ γT0

ρ0s1
3

2cp2

−(γ − 2) a0
2

6

ρ0s1
3

cp3
+
γa0

2

2

ρ0

cp3
s1

3 − γ2T0

2

ρ0

cp2
s1

3















(A.24)

Reducing the terms remembering that γ = Cp/Cv and R = Cp − Cv,

(ρe)3 = h0ρ3 + ρ0T0s3

+
(1 − 2γ) p1

3

6ρ0
2a0

4
+

p1p2

ρ0a0
2

+
p2s1

γR
+
p1s2

γR
− p1

2s1

2cpρ0a0
2

− p1s1
2

2cpγR
− ρ0T0s1s2

cp
+
T0ρ0s1

3

6cp2
(A.25)

This is a simplified version of ρe3. The final form is flexible since at any point one of the

many first, second or third order relations could be reinserted which would change the look

of the equation. This form is preferred over others since it opts to use p1 and p2 terms instead

of ρ1 and ρ2, because in general the pressure fluctuations are the only fluctuations measured

in a real system.
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A.4 First Order Energy

Shown below are details not shown in Section 3.2. First order energy equation,

∂

∂t
(ρH − p)1 + ∇ · (m0H1 + m1H0) − m0 · ψ1 − m1 · ψ0 − T0Q1 − T1Q0 = 0 (A.26)

To start, the expansion of the first term is needed. Inserting the definition of the total

enthalpy and expanding,

(ρH − p)1 =

(

ρ

(

h+
1

2
u2

)

− p

)

1

=

(

ρ

(

e+
p

ρ
+

1

2
u2

)

− p

)

1

=

(

ρe+
1

2
ρu2

)

1

= (ρe)1 +
1

2
ρ1u0

2 + ρ0u0 · u1

= h0ρ1 + ρ0T0s1 +
1

2
ρ1u0

2 + ρ0u0 · u1

(ρH − p)1 = ρ1H0 + ρ0T0s1 + ρ0u0 · u1

(A.27)

The results of Equation (A.27) are placed back into the first order energy equation.

∂

∂t
(ρ1H0 + ρ0T0s1 + ρ0u0 · u1) + ∇ · (m0H1 + m1H0)

− m0 · ψ1 − m1 · ψ0 − T0Q1 − T1Q0 = 0 (A.28)

Expand the time derivative term remembering that mean flow variables time dependency is

neglected.

H0
∂ρ1

∂t
+ ρ0T0

∂s1

∂t
+ ρ0u0 ·

∂u1

∂t
+H1∇ · m0 + m0 · ∇H1

+H0∇ · m1 + m1 · ∇H0 − m0 · ψ1 − m1 · ψ0 − T0Q1 − T1Q0 = 0 (A.29)
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At this point a similar process is performed as before. Terms are manipulated to include

C0,L0,andS0. Manipulating L0,

∇H0 = L0 − ζ0 + T0∇s0 = ψ0 − ζ0 + T0∇s0 (A.30)

Insert into (A.29) and collect terms.

H0

(

∂ρ1

∂t
+ ∇ · m1

)

+ ρ0T0
∂s1

∂t
+ m0 ·

(

∂u1

∂t
+ ∇H1 − ψ1

)

+ m1 · (T0∇s0 − ζ0) − T0Q1 − T1Q0 = 0 (A.31)

C1 is then identified multiplying H0 in the first term on the left,

H0C1 + ρ0T0
∂s1

∂t
+ m0 ·

(

∂u1

∂t
+ ∇H1 − ψ1

)

+ m1 · (T0∇s0 − ζ0) − T0Q1 − T1Q0 = 0 (A.32)

Remembering that,

L1 =
∂u1

∂t
+ ζ1 + ∇H1 − T0∇s1 − T1∇s0 (A.33)

Thus,
∂u1

∂t
+ ∇H1 − ψ1 = L1 − ζ1 + T0∇s1 + T1∇s0 − ψ1 (A.34)

And then,

H0C1 + ρ0T0
∂s1

∂t
+ m0 · (L1 − ζ1 + T0∇s1 + T1∇s0 − ψ1)

+ m1 · (T0∇s0 − ζ0) − T0Q1 − T1Q0 = 0 (A.35)

Now add,

T0s0C1 = T0s0

(

∂ρ1

∂t
+ ∇ · m1

)

= 0 (A.36)
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and expand the time derivative terms remembering that the time dependency of the mean

flow values is neglected. This allows us to take,

T0s0
∂ρ1

∂t
= T0

∂s0ρ1

∂t
, (A.37)

for example.

(H0 − T0s0)C1 + T0
∂

∂t
(s0ρ1 + s1ρ0) + T0s0∇ · m1

+ m0 · (L1 − ζ1 + T0∇s1 + T1∇s0 − ψ1)

+ m1 · (T0∇s0 − ζ0) − T0Q1 − T1Q0 = 0 (A.38)

T0S1 = T0
∂(ρ0s1 + ρ1s0)

∂t
+ T0∇ · (m0s1 + m1s0)

= T0
∂(ρ0s1 + ρ1s0)

∂t
+ T0s1∇ · m0

+ T0m0 · ∇s1 + T0s0∇ · m1 + T0m1 · ∇s0

(A.39)

Insert,

(H0 − T0s0)C1 + T0S1 − T0s1∇ · m0 + m0 · (L1 − ζ1 + T1∇s0 − ψ1)

− m1 · ζ0 − T0Q1 − T1Q0 = 0 (A.40)

And,

T1S0 = T1m0 · ∇s0 + T1s0∇ · m0 = T1m0 · ∇s0 (A.41)

(H0 − T0s0)C1 + T0S1 + m0 · (L1 − ζ1 − ψ1) − m1 · ζ0 − T0Q1 + T1(S0 −Q0) = 0 (A.42)

Rearrange and separate out vorticity terms,

(H0 − T0s0)C1 + T0(S1 −Q1) + m0 · (L1 − ψ1) − m1 · ζ0 − m0 · ζ1 = 0 (A.43)
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Now the vorticity terms need to be dealt with. Remembering that,

m1 = ρ0u1 + ρ1u0

ζ1 = ω0 × u1 + ω1 × u0

(A.44)

Apply these definitions to the vorticity terms,

m1 · ζ0 + m0 · ζ1 = (ρ0u1 + ρ1u0) · (ω0 × u0)

+ ρ0u0 · (ω0 × u1 + ω1 × u0)

= ρ0u1 · (ω0 × u0) + ρ1u0 · (ω0 × u0)

+ ρ0u0 · (ω0 × u1) + ρ0u0 · (ω1 × u0)

(A.45)

ρ1u0 · (ω0 × u0) = 0

ρ0u0 · (ω1 × u0) = 0
(A.46)

Recalling scalar triple product rules we find that there is no vorticity contribution to the

first order energy balance.

m1 · ζ0 + m0 · ζ1 = ρ0u1 · (ω0 × u0) + ρ0u0 · (ω0 × u1) = 0 (A.47)

So as before in the base order energy equation, regardless of entropy or vorticity fluctuations,

the energy equation for the first order reduces to zero.

(H0 − T0s0)C1 + T0(S1 −Q1) + m0 · (L1 − ψ1) = 0 (A.48)

A.5 Second Order Energy Expansions

Below are details not shown in Section 3.3. The second order process follows exactly as the

first order process did. Each term is expanded with the thermodynamic expansions and then
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simplified.

∂

∂t
(ρH − p)2 + ∇ · (m0H2 + m1H1 + m2H0)

− m0 · ψ2 − m1 · ψ1 − m2 · ψ0 − T0Q2 − T1Q1 − T2Q0 = 0 (A.49)

We need an additional expansion:

(ρH − p)2 =

(

ρe+
1

2
ρu2

)

2

= (ρe)2 +
1

2
ρ2u0

2 + ρ1u0 · u1 +
1

2
ρ0u1 · u1 + ρ0u0 · u2 (A.50)

Recalling,

(ρe)2 = h0ρ2 + ρ0T0s2 +
p1

2

2ρ0a0
2

+ T0ρ1s1 +
ρ0T0s1

2

2cp
(A.51)

It follows that,

(ρH − p)2 = h0ρ2 + ρ0T0s2 +
p1

2

2ρ0a0
2

+ T0ρ1s1 +
ρ0T0s1

2

2cp

+
1

2
ρ2u0

2 + ρ1u0 · u1 +
1

2
ρ0u1 · u1 + ρ0u0 · u2 (A.52)

Using, H0 = h0 + 1
2
u0

2,

(ρH − p)2 = H0ρ2 + ρ0T0s2 +
p1

2

2ρ0a0
2

+ T0ρ1s1 +
ρ0T0s1

2

2cp

+ ρ1u0 · u1 +
1

2
ρ0u1 · u1 + ρ0u0 · u2 (A.53)

Collecting terms,

(ρH − p)2 = H0ρ2 + T0(ρ1s1 + ρ0s2) +
p1

2

2ρ0a0
2

+
ρ0T0s1

2

2cp

+ ρ1u0 · u1 +
1

2
ρ0u1

2 + m0 · u2 (A.54)
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The expanded form of the time derivative term is inserted into Eqn. (A.49),

∂

∂t









H0ρ2 + T0(ρ1s1 + ρ0s2) +
p1

2

2ρ0a0
2

+
ρ0T0s1

2

2cp

+ρ1u0 · u1 +
1

2
ρ0u1

2 + m0 · u2









+ ∇ · (m0H2 + m1H1 + m2H0) − m0 · ψ2 − m1 · ψ1

− m2 · ψ0 − T0Q2 − T1Q1 − T2Q0 = 0 (A.55)

To assist in the bookkeeping the following terms in the time derivative are defined as,

E2 =
p1

2

2ρ0a0
2

+
ρ0T0s1

2

2cp
+ ρ1u0 · u1 +

1

2
ρ0u1

2 (A.56)

We will see the motivation for this definition as the mathematics progresses.

∂

∂t
(H0ρ2 + T0(ρ1s1 + ρ0s2) + E2 + m0 · u2) +

+ ∇ · (m0H2 + m1H1 + m2H0) − m0 · ψ2 − m1 · ψ1

− m2 · ψ0 − T0Q2 − T1Q1 − T2Q0 = 0 (A.57)

Terms are collected into subsets which correspond to the three governing equations,

∂E2

∂t
+H0

(

∂ρ2

∂t
+ ∇ · m2

)

+ T0
∂

∂t
(ρ1s1 + ρ0s2)

+ m0 ·
(

∂u2

∂t
+ ∇H2 − ψ2

)

+ ∇ · (m1H1) − m1 · ψ1

+ m2 · (∇H0 − ψ0) − T0Q2 − T1Q1 − T2Q0 = 0 (A.58)

Recalling the base order momentum equation,

ζ0 + ∇H0 − T0∇s0 = ψ0 (A.59a)

∇H0 − ψ0 = T0∇s0 − ζ0 (A.59b)
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The base order momentum equation is used,

∂E2

∂t
+H0

(

∂ρ2

∂t
+ ∇ · m2

)

+ T0
∂

∂t
(ρ1s1 + ρ0s2)

+ m0 ·
(

∂u2

∂t
+ ∇H2 − ψ2

)

+ ∇ · (m1H1) − m1 · ψ1

+ m2 · (T0∇s0 − ζ0) − T0Q2 − T1Q1 − T2Q0 = 0 (A.60)

Recall the second order governing equations,

C2 =
∂ρ2

∂t
+ ∇ · m2 (A.61a)

L2 =
∂u2

∂t
+ ζ2 + ∇H2 − T0∇s2 − T1∇s1 − T2∇s0 = ψ2 (A.61b)

S2 =
∂(ρ0s2 + ρ1s1 + ρ2s0)

∂t
+ ∇ · (m0s2 + m1s1 + m2s0) = Q2 (A.61c)

Manipulating the second order momentum equation,

∂u2

∂t
+ ∇H2 = L2 − ζ2 + T0∇s2 + T1∇s1 + T2∇s0 (A.62)

Identify C2 and L2,

∂E2

∂t
+H0C2 + T0

∂

∂t
(ρ1s1 + ρ0s2)

+ m0 · (L2 − ζ2 + T0∇s2 + T1∇s1 + T2∇s0 − ψ2) + ∇ · (m1H1)

− m1 · ψ1 + m2 · (T0∇s0 − ζ0) − T0Q2 − T1Q1 − T2Q0 = 0 (A.63)

Subtract T0s0 time the second order continuity equation,

T0s0C2 = T0s0
∂ρ2

∂t
+ T0s0∇ · m2 (A.64)
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To arrive at,

∂E2

∂t
+ (H0 − T0s0)C2 + T0

∂

∂t
(ρ1s1 + ρ0s2 + s0ρ2) + T0s0∇ · m2

+ m0 · (L2 − ζ2 + T0∇s2 + T1∇s1 + T2∇s0 − ψ2)

+ ∇ · (m1H1) − m1 · ψ1 + m2 · (T0∇s0 − ζ0)

− T0Q2 − T1Q1 − T2Q0 = 0 (A.65)

Now identify the second order entropy equation,

T0S2 = T0
∂(ρ0s2 + ρ1s1 + ρ2s0)

∂t
+ T0∇ · (m0s2 + m1s1 + m2s0) (A.66)

Rearrange and expand the divergence term,

T0S2 − T0 (m0 · ∇s2 + ∇ · (m1s1) + s0∇ · m2 + m2 · ∇s0)

= T0
∂(ρ0s2 + ρ1s1 + ρ2s0)

∂t
(A.67)

And insert,

∂E2

∂t
+ (H0 − T0s0)C2 + T0 (S2 −Q2)

− T0 (m0 · ∇s2 + ∇ · (m1s1) + s0∇ · m2 + m2 · ∇s0) + T0s0∇ · m2

+ m0 · (L2 − ζ2 + T0∇s2 + T1∇s1 + T2∇s0 − ψ2)

+ ∇ · (m1H1) − m1 · ψ1 + m2 · (T0∇s0 − ζ0) − T1Q1 − T2Q0 = 0 (A.68)

Cancel equal terms,
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∂E2

∂t
+ (H0 − T0s0)C2 + T0 (S2 −Q2) − T0∇ · (m1s1)

+ m0 · (L2 − ζ2 + T1∇s1 + T2∇s0 − ψ2)

+ ∇ · (m1H1) − m1 · ψ1 − m2 · ζ0 − T1Q1 − T2Q0 = 0 (A.69)

Eliminate T2S0,

∂E2

∂t
+ (H0 − T0s0)C2 + m0 · (L2 − ψ2) + T0 (S2 −Q2)

− T0∇ · (m1s1) − m0 · ζ2 + T1∇ · (m0s1) + ∇ · (m1H1)

− m1 · ψ1 − m2 · ζ0 − T1Q1 = 0 (A.70)

Now the vorticity terms are dealt with similar to the first order energy balance, remembering

that, ζ2 = ω0 × u2 + ω1 × u1 + ω2 × u0 and m2 = ρ0u2 + ρ1u1 + ρ2u0

m0 · ζ2 + m2 · ζ0 = ρ0u0 · (ω0 × u2 + ω1 × u1 + ω2 × u0)

+ (ρ0u2 + ρ1u1 + ρ2u0) · (ω0 × u0)

= ρ0u0 · (ω1 × u1) + ρ1u1 · (ω0 × u0) (A.71)

In the second order case, all of the terms in the energy equation do not fall out. Thus we

get some more information from it. By removing the redundant information and simplifying

the vorticity terms we arrive at,

∂E2

∂t
+ (H0 − T0s0)C2 + m0 · (L2 − ψ2) + T0 (S2 −Q2)

− T0∇ · (m1s1) − m0 · ζ2 + T1∇ · (m0s1)

+ ∇ · (m1H1) − m1 · ψ1 − m2 · ζ0 − T1Q1 = 0 (A.72)
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Now removing the second order relations which equal zero,

∂E2

∂t
− T0∇ · (m1s1) − m0 · ζ2 + T1∇ · (m0s1)

+ ∇ · (m1H1) − m1 · ψ1 − m2 · ζ0 − T1Q1 = 0 (A.73)

Apply the vector expansion for the vorticity terms,

∂E2

∂t
− T0∇ · (m1s1) + T1∇ · (m0s1) + ∇ · (m1H1) − m1 · ψ1

− T1Q1 − ρ0u0 · (ω1 × u1) − ρ1u1 · (ω0 × u0) = 0 (A.74)

Terms are arranged into three parts: the time derivative energy terms, the work or ∇· terms,

and the remaining source terms. This collection is motivated by recalling the energy balance

form of ∂E
∂t

+ ∇ ·W = D.

∂E2

∂t
+ ∇ · [m1 (H1 − T0s1) + m0T1s1] + m0s1 · ∇T0 − m0s1 · ∇T1

− m1 · ψ1 − T1Q1 − ρ0u0 · (ω1 × u1) − ρ1u1 · (ω0 × u0) = 0 (A.75)

Now the terms m1 · ψ1 and T1Q1 are expanded upon. These terms are in tensor form and

cannot be written in purely vector form. Thus, it is required to split them and leave them

in tensor form,

m1 · ψ1 = m1j

(

1

ρ

∂Pij

∂xi

)

1

(A.76)

=
∂

∂xi

[

m1j

(

Pij

ρ

)

1

]

−
(

Pij

ρ2

)

1

∂m1j

∂xi

+m1j

(

Pij

ρ

∂ρ

∂xi

)

1

(A.77)

T1Q1 = T1

(

φ−∇ · q
T

)

1

(A.78)

= T1

(

φ

T

)

1

−∇ ·
[

T1

( q

T

)

1

]

+
( q

T

)

1
· ∇T1 − T1

(

q · ∇T
T 2

)

1

(A.79)
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A.6 General Energy Corollary

Shown below are the details of the derivation of the general energy corollary shown in Section

3.4. Starting with the energy equation,

∂

∂t
[ρH − p] + ∇ · (mH) − m · ψ − TQ = 0, (A.80)

subtract the general relations,

(H0 − T0s0) = 0 (A.81a)

T0 (S −Q) = 0 (A.81b)

m0 · (L− ψ) = 0 (A.81c)

Remembering that,

C =
∂ρ

∂t
+ ∇ · m = 0 (A.82a)

L =
∂u

∂t
+ ω × u + ∇H − T∇s = ψ (A.82b)

S =
∂ρs

∂t
+ ∇ · (ms) = Q (A.82c)

Using the base order equations we rearrange into,

∂

∂t
[ρH − p− ρ (H0 − T0s0) − T0ρs− m0 · u] + ∇ · (mH)

− m · ψ − TQ− (H0 − T0s0)∇ · m − T0∇ · (ms) + T0Q

− m0 · [ζ + ∇H − T∇s− ψ] = 0 (A.83)
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Rearrange the time derivative term,

∂

∂t
[ρ (H −H0) − T0ρ (s− s0) − m0 · u − p] + ∇ · (mH)

− m · ψ − TQ− (H0 − T0s0)∇ · m − T0∇ · (ms) + T0Q

− m0 · [ζ + ∇H − T∇s− ψ] = 0 (A.84)

Effort is placed into rearranging the divergence terms,

∇ · [m (H0 − T0s0)] = m · ∇ (H0 − T0s0) + (H0 − T0s0)∇ · m

− (H0 − T0s0)∇ · m

= m · ∇ (H0 − T0s0) −∇ · [m (H0 − T0s0)] (A.85)

inserting back,

∂

∂t
[ρ (H −H0) − T0ρ (s− s0) − m0 · u − p] + ∇ · (mH)

− m · ψ − TQ+ m · ∇ (H0 − T0s0) −∇ · [m (H0 − T0s0)]

− T0∇ · (ms) + T0Q− m0 · [ζ + ∇H − T∇s− ψ] = 0 (A.86)

expand this term,

∇ · [msT0] = T0∇ · (ms) + ms · ∇T0 − T0∇ · (ms)

= ms · ∇T0 −∇ · [msT0] (A.87)

∂

∂t
[ρ (H −H0) − T0ρ (s− s0) − m0 · u − p] + ∇ · (mH) − m · ψ

− TQ+ m · ∇ (H0 − T0s0) −∇ · [m (H0 − T0s0)] + ms · ∇T0

−∇ · [msT0] + T0Q− m0 · [ζ + ∇H − T∇s− ψ] = 0 (A.88)
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chain rule and base order continuity,

∇ · [m0H] = m0 · ∇H +H∇ · m0 = m0 · ∇H (A.89)

back in,

∂

∂t
[ρ (H −H0) − T0ρ (s− s0) − m0 · u − p] + ∇ · (mH) − m · ψ

− TQ+ m · ∇ (H0 − T0s0) −∇ · [m (H0 − T0s0)] + ms · ∇T0

−∇ · [msT0] + T0Q−∇ · [m0H] − m0 · [ζ − T∇s− ψ] = 0 (A.90)

Pulling out the entropy gradient term from the momentum equation,

∂

∂t
[ρ (H −H0) − T0ρ (s− s0) − m0 · u − p] + ∇ · (mH) − m · ψ

− TQ+ m · ∇ (H0 − T0s0) −∇ · [m (H0 − T0s0)] + ms · ∇T0

−∇ · [msT0] + T0Q−∇ · [m0H] + m0 · T∇s− m0 · [ζ − ψ] = 0 (A.91)

further manipulating individual terms,

∇ · [m0Ts] = m0T · ∇s+ s∇ · (Tm0)

= m0T · ∇s+ sT∇ · m0 + sm0 · ∇T

= m0T · ∇s+ sm0 · ∇T

= m0T · ∇s+ sm0 · ∇T

m0T · ∇s = ∇ · [m0Ts] − sm0 · ∇T (A.92)
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and inserting the chain rule expansion,

∂

∂t
[ρ (H −H0) − T0ρ (s− s0) − m0 · u − p] + ∇ · (mH)

− m · ψ − TQ+ m · ∇ (H0 − T0s0) −∇ · [m (H0 − T0s0)]

+ ms · ∇T0 −∇ · [msT0] + T0Q−∇ · [m0H] + ∇ · [m0Ts]

− sm0 · ∇T − m0 · [ζ − ψ] = 0 (A.93)

Collecting the terms,

∂

∂t
[ρ (H −H0) − T0ρ (s− s0) − m0 · u − p]

+ ∇ · [mH − m (H0 − T0s0) − msT0 − m0H + m0Ts]

− (m − m0) · ψ − (T − T0)Q+ m · ∇ (H0 − T0s0)

+ ms · ∇T0 − sm0 · ∇T − m0ζ = 0 (A.94)

Then, manipulating the 4th and 3rd to last terms, expand and chain rule,

m · ∇ (H0 − T0s0) + ms · ∇T0 = m · ∇H0 − m · ∇ (T0s0) + ms · ∇T0

= m · ∇H0 − ms0 · ∇T0

− mT0 · ∇s0 + ms · ∇T0 (A.95)

And base momentum,

∇H0 = ψ0 + T0∇s0 − ζ0 (A.96)
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Now into original,

m · ∇H0 − ms0 · ∇T0 − mT0 · ∇s0 + ms · ∇T0

= m · (ψ0 + T0∇s0 − ζ0) + m (s− s0) · ∇T − mT0 · ∇s0

= m · (ψ0 − ζ0) + m (s− s0) · ∇T − mT0 · ∇s0 + mT0 · ∇s0

= m · (ψ0 − ζ0) + m (s− s0) · ∇T (A.97)

(A.98)

And back into the energy equation,

∂

∂t
[ρ (H −H0) − T0ρ (s− s0) − m0 · u − p]

+ ∇ · [mH − m (H0 − T0s0) − msT0 − m0H + m0Ts]

− (m − m0) · ψ − (T − T0)Q+ m · (ψ0 − ζ0)

+ (s− s0)m · ∇T0 − sm0 · ∇T − m0ζ = 0 (A.99)

Looking at the divergence term,

∇ · [mH − m (H0 − T0s0) − msT0 − m0H + m0Ts]

= ∇ · [m (H −H0) − mT0 (s− s0) − m0H + m0Ts]

= ∇ ·





m (H −H0) − mT0 (s− s0) − m0H − m0H0

+m0H0 + m0Ts− m0Ts0 + m0Ts0





= ∇ ·





m (H −H0) − mT0 (s− s0) − m0 (H −H0)

−m0H0 + m0T (s− s0) + m0Ts0





= ∇ ·





(m − m0) (H −H0) − mT0 (s− s0)

+m0T (s− s0) − m0H0 + m0Ts0



 (A.100)
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Base momentum and entropy,

∇ · (m0H0) = m0ψ0 + T0Q0 (A.101a)

∇ · (m0s0) = Q0 (A.101b)

Manipulating,

∇ · (m0Ts0) = T∇ · (m0s0) + m0s0 · ∇T

= TQ0 + m0s0 · ∇T (A.102)

And we put the previous divergence equation into the form,

∇ · [(m − m0) (H −H0) − mT0 (s− s0) + m0T (s− s0)] − m0ψ0

− T0Q0 + TQ0 + m0s0 · ∇T

= ∇ · [(m − m0) (H −H0) − mT0 (s− s0) + m0T (s− s0)]

− m0ψ0 + (T − T0)Q0 + m0s0 · ∇T (A.103)

We substitute this back into our energy equation.

∂

∂t
{ρ (H −H0) − T0ρ (s− s0) − m0 · u − p}

+ ∇ · [(m − m0) (H −H0) − mT0 (s− s0) + m0T (s− s0)]

− m0ψ0 + (T − T0)Q0 + m0s0 · ∇T − (m − m0) · ψ − (T − T0)Q

+ m · (ψ0 − ζ0) + (s− s0)m · ∇T0 − sm0 · ∇T − m0ζ = 0 (A.104)
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Add in time derivatives of base order since they equal zero, rearrange the source and

divergence terms

∂

∂t
{ρ [H −H0 − T0 (s− s0)] − m0 · (u − u0) − (p− p0)}

+ ∇ · [(m − m0) [H −H0 + T0 (s− s0)] + m0 (T − T0) (s− s0)]

− (m − m0) · (ψ − ψ0) − (T − T0) (Q−Q0)

− m · ζ0 − m0ζ + (s− s0)m · ∇T0 − (s− s0)m0 · ∇T = 0 (A.105)

The heat transfer and viscous terms have to be split into work and source terms. Beginning

with the stress terms, we expand them with their tensor form.

(m − m0) · (ψ − ψ0) = (mj −m0j
)

(

1

ρ

∂Pij

∂xi

− 1

ρ0

∂P0ij

∂xi

)

=
∂

∂xi

[

(mj −m0j
)

(

Pij

ρ
− P0ij

ρ0

)]

−
(

Pij

ρ
− P0ij

ρ0

)

∂

∂xi

(mj −m0j
)

+ (mj −m0j
)

(

1Pij

ρ2

∂ρ

∂xi

− P0ij

ρ2
0

∂ρ0

∂xi

)

(A.106)

(T − T0)(Q−Q0) = (T − T0)

(

φ

T
− φ0

T0

− ∇ · q
T

+
∇ · q0

T0

)

= (T − T0)

(

φ

T
− φ0

T0

)

−∇ ·
[

(T − T0)

(

q

T
− q0

T0

)]

+

(

q

T
− q0

T0

)

· ∇(T − T0) − (T − T0)

(

q · ∇T
T 2

− q0 · ∇T0

T 2
0

)

(A.107)
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These relations are separated into work and source terms. Inserting them back into Eqn.

(A.105) and separating Energy, Work and Source terms with the form, ∂E
∂t

+ ∇ ·W = D.

E = ρ [H −H0 − T0 (s− s0)] − m0 · (u − u0) − (p− p0) (A.108)

W = (m − m0) [H −H0 + T0 (s− s0)] + m0 (T − T0) (s− s0)

− (mj −m0j
)

(

Pij

ρ
− P0ij

ρ0

)

+ (T − T0)

(

q

T
− q0

T0

)

(A.109)

D = m · ζ0 + m0ζ − (s− s0)m · ∇T0 + (s− s0)m0 · ∇T

−
(

Pij

ρ
− P0ij

ρ0

)

∂

∂xi

(mj −m0j
) + (mj −m0j

)

(

1Pij

ρ2

∂ρ

∂xi

− P0ij

ρ2
0

∂ρ0

∂xi

)

+ (T − T0)

(

φ

T
− φ0

T0

)

+

(

q

T
− q0

T0

)

· ∇(T − T0)

− (T − T0)

(

q · ∇T
T 2

− q0 · ∇T0

T 2
0

)

(A.110)
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Appendix B

B.1 Second Order from the Full Energy Corollary

Recreating the second order expansion from Chapter 3 using the exact energy corollary.

B.1.1 Energy

Starting with the energy term from the general energy corollary in Section 3.4

E = ρ [H −H0 − T0 (s− s0)] − m0 · (u − u0) − (p− p0) (B.1)

Expanding each individual term.

E = (ρ0 + ρ1 + ρ2) [H1 +H2 − T0 (s1 + s2)] − m0 · (u1 + u2) − (p1 + p2) (B.2)

Collecting the second order terms,

E2 = ρ0H2 + ρ1H1 − T0ρ1s1 − T0ρ0s2 − m0 · u2 − p2 (B.3)
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Total Enthalpy,

H = h+
1

2
u2 (B.4a)

H1 = h1 + u0 · u1 (B.4b)

H2 = h2 +
1

2
u1

2 + u0 · u2 (B.4c)

Applying these relations,

E2 = ρ0

(

h2 +
1

2
u1

2 + u0 · u2

)

+ ρ1 (h1 + u0 · u1) − T0ρ1s1 − T0ρ0s2 − m0 · u2 − p2 (B.5)

E2 = ρ0h2 +
1

2
ρ0u1

2 + ρ0u0 · u2 + ρ1h1 + ρ1u0 · u1 − T0ρ1s1 − T0ρ0s2 − m0 · u2 − p2 (B.6)

Now, m0 · u2 = ρ0u0u2, canceling terms,

E2 = ρ0h2 +
1

2
ρ0u1

2 + ρ1h1 + ρ1u0 · u1 − T0ρ1s1 − T0ρ0s2 − p2 (B.7)

Recalling, h = e+ p
ρ
, ρh = ρe+ p, and collecting the second order terms,

ρ0h2 + ρ1h1 + ρ2h0 = (ρe)2 + p2

ρ0h2 + ρ1h1 − p2 = (ρe)2 − ρ2h0

(B.8)

Recalling,

(ρe)2 = h0ρ2 + ρ0T0s2 +
p1

2

2ρ0a0
2

+ T0ρ1s1 +
ρ0T0s1

2

2cp
(B.9)

Insert into Eqn B.8,

ρ0h2 + ρ1h1 − p2 = ρ0T0s2 +
p1

2

2ρ0a0
2

+ T0ρ1s1 +
ρ0T0s1

2

2cp
(B.10)
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Then back into Eqn B.6,

E2 =
1

2
ρ0u1

2 + ρ1u0 · u1 − T0ρ1s1 − T0ρ0s2 + ρ0T0s2 +
p1

2

2ρ0a0
2

+ T0ρ1s1 +
ρ0T0s1

2

2cp
(B.11)

Canceling equal terms,

E2 =
1

2
ρ0u1

2 + ρ1u0 · u1 +
p1

2

2ρ0a0
2

+
ρ0T0s1

2

2cp
(B.12)

And we arrive at the same results as Eqn. 3.24, but with significantly less work than that

shown in Chapter 5.

B.1.2 Work

Now the work terms are derived, starting with the general work term,

∇ ·W = ∇ · {(m − m0) [H −H0 − T0 (s− s0)] + m0 (T − T0) (s− s0)} (B.13)

Solving for W ,

W = (m − m0) [H −H0 − T0 (s− s0)] + m0 (T − T0) (s− s0) (B.14)

Using the expanded terms,

W = (m1 + m2 + m3) [H1 +H2 +H3 − T0 (s1 + s2 + s3)]

+ m0 (T1 + T2 + T3) (s1 + s2 + s3) (B.15)

Taking only the second order terms,

W2 = m1H1 − m1T0s1 + m0T1s1 (B.16)
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using B.4b, arriving at the second order work term quickly.

W2 = m1 (h1 + u0 · u1 − T0s1) + m0T1s1 (B.17)

And similarly, the same work term is derived, neglecting viscous and heat transfer effects.

B.1.3 Sources

And to finish, the source terms are recreated as well,

D = (m − m0) · [ω × u − ω0 × u0 + (s− s0)∇T0]

− (s− s0)m0 · ∇ (T − T0) + viscous+ h.t. (B.18)

D = (m1 + m2 + m3) · [ω × u − ω0 × u0 + (s1 + s2 + s3)∇T0]

− (s1 + s2 + s3)m0 · ∇ (T1 + T2 + T3) (B.19)
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The expansion of the terms involving vorticity is given by,

ω × u − ω0 × u0 = (ω0 + ω1 + ω2) × (u0 + u1 + u2) − ω0 × u0

=























ω0 × u0 + ω1 × u0 + ω2 × u0

+ω0 × u1 + ω1 × u1 + ω2 × u1

+ω0 × u2 + ω1 × u2 + ω2 × u2























− ω0 × u0

=























ω1 × u0 + ω2 × u0

+ω0 × u1 + ω1 × u1 + ω2 × u1

+ω0 × u2 + ω1 × u2 + ω2 × u2




















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=
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































ω1 × u0 + ω0 × u1

+ω2 × u0 + ω1 × u1 + ω0 × u2

+ω2 × u1 + ω1 × u2
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












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










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(B.20)

Only the first order terms will continue into the second order equation by multiplying by

m1. All other terms are of a higher order.

D2 = m1 · (ω1 × u0 + ω0 × u1) + m1 · s1∇T0 − s1m0 · ∇T1 (B.21)

D2 = (ρ0u1 + ρ1u0) · (ω1 × u0 + ω0 × u1) + m1 · s1∇T0 − s1m0 · ∇T1 (B.22)

Remembering that A · (A×B) = 0 for all vectors B.

u0 · ω1 × u0 = 0 (B.23a)

u1 · ω0 × u1 = 0 (B.23b)
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Applying to B.22 yields,

D2 = ρ0u1 · (ω1 × u0) + ρ1u0 · (ω0 × u1) + m1 · s1∇T0 − s1m0 · ∇T1 (B.24)

Recalling the triple product rules, A · (B × C) = B · (C × A) = C · (A×B) = −C · (B × A),

putting D2 into a more traditional form,

D2 = ρ0u0 · (u1 × ω1) + ρ1u1 · (u0 × ω0) + m1 · s1∇T0 − s1m0 · ∇T1 (B.25)

Note that Myers has −D in his total energy term. Instead of D as in the formula used, so

as with the other terms, the second order energy balance is recreated with significantly less

work. This method is reproduced to generate the third order terms as well.
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