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A Study of On-Chip Stacked
Multiloop Spiral Inductors

Kai Yang, Wen-Yan Yin, Senior Member, IEEE, Jinglin Shi, Kai Kang,
Jun-Fa Mao, Senior Member, IEEE, and Y. P. Zhang

Abstract—This paper proposes a new differential topology that
features a stacked multiloop inductor. Comparative studies of
stacked one- to four-loop spiral inductors with and without pat-
terned ground shields (PGSs) for silicon-based radio-frequency
integrated circuits (RFICs) were conducted, and lumped-element
circuit models were developed for these inductors. The partial-
element equivalent-circuit method that can accurately analyze
mutual inductive couplings among different spirals in these
multiloop geometries was employed for capturing the frequency-
dependent inductances and resistances of inductors at low fre-
quencies. A good agreement between numerical results and
measurements is obtained. It is demonstrated that a stacked multi-
loop spiral inductor with differential topology and PGS has a
larger inductance and a higher Q-factor as compared with the
same inductor without differential topology and PGS. This hybrid
methodology could provide a promising technique for developing
new silicon-based passive devices used in RFICs.

Index Terms—Differential topology, inductance, partial-
element equivalent-circuit (PEEC) method, patterned ground
shields (PGSs), Q-factor, resistance, stacked multiloop spiral
inductors.

I. INTRODUCTION

IN THE PAST decade, CMOS silicon-based spiral inductors
have drawn considerable attentions due to their wide ap-

plications in radio-frequency integrated circuits (RFICs). With
respect to different geometries and layouts of single-spiral in-
ductors, some frequency-dependent and frequency-independent
lumped-element circuit models (LECMs) have been developed
and further implemented in the design of circuits [1], [2]. For
a silicon-based spiral inductor, the conductive loss of all metal
tracks and the eddy-current loss in the silicon substrate [3] need
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to be reduced so as to increase its Q-factor. Differential spiral
inductors have been successfully introduced and employed [4]
to provide higher Q-factors in differential circuits.

In addition, in order to increase Q-factors, a patterned ground
shield (PGS), first proposed in [5], can be implemented be-
tween the metal spiral and the silicon substrate [6]. More
recently, Cheung and Long [7] studied shielding effects of
different PGSs used for silicon-based monolithic microwave
and millimeter-wave integrated circuits. The presence of a
PGS may cause additional parasitic capacitance, resulting in
the reduction of self-resonant frequency of the spiral inductor.
Physically, it can be predicted that the combination of the
differential topology and PGS technique may be a much better
choice for enhancing the performance of most silicon-based
passive devices. In circuit designs, on-chip spiral inductors with
larger inductance and smaller area are always highly desired,
and therefore, two- or multispiral stacked geometries may be
considered [8]–[10].

In this paper, differential topology is applied to explore high-
performance on-chip stacked multiloop inductors which were
designed and fabricated using a 0.18-μm RF CMOS process.
It is demonstrated that the differential topologies with PGS
can be an efficient solution for enhancing the performance of
multiloop inductors with the same structure.

II. TOPOLOGIES OF ON-CHIP STACKED

MULTILOOP SPIRAL INDUCTORS

Fig. 1(a) shows the stacked one-loop circular spiral inductor
represented by S1. Based on S1, the on-chip stacked multi-
loop spiral inductors can be configured. This geometry is
different from that studied in [10], where the central single
via is used to connect the top and bottom spirals. According
to Fig. 1(a), two- and three-loop circular spiral inductors can
be easily formed, as shown in Fig. 1(b)–(e), respectively. We
can categorize these geometries into two groups based on the
current directions in different spirals. One is the two-directional
(2-D) nondifferential (S2−NDIFF and S3−NDIFF) topologies of
the single spiral, and another is 2-D differential (S2−DIFF and
S3−DIFF) topologies. It must be mentioned that the concept
of differential here only indicates the different current flowing
directions.

It is evident that the directions of the flowing current shown
in Fig. 1(b) and (c) or in Fig. 1(d) and (e) are different. Such
differential topology in Fig. 1(c) or (e) can provide higher
Q-factor over a broader range of frequencies than that of its
nondifferential counterpart. In these topologies, the metal track
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Fig. 1. Two-directional nondifferential and differential topologies of one-
to three-loop stacked spiral inductors. (a) S1. (b) S2−NDIFF. (c) S2−DIFF.
(d) S3−NDIFF. (e) S3−DIFF.

Fig. 2. Three-directional nondifferential and differential topologies of the
stacked four-loop spiral inductors. (a) S4−NDIFF. (b) S4−DIFF.

width is W , track spacing is S, and inner radius denoted by R
is exactly the same. On the other hand, following the similar
way as shown in Fig. 1(c) and (e), the two- and three-loop
differential topologies of stacked square and octagonal spiral
inductors can also be constructed, but their geometries are not
shown here.

Furthermore, Fig. 2(a) and (b) shows the three-directional
(3-D) nondifferential (S4−NDIFF) and differential (S4−DIFF)
topologies of stacked four-loop spiral inductors, respectively.
The top and bottom spirals are also designed to have the same
inner radius (R) as in Fig. 1(a)–(e) earlier. The current direction
shown in Fig. 2(b) is just in a reverse direction as in Fig. 2(a),
and such unique differential implementation will be useful for
the enhancement in its Q-factor, which will be demonstrated
experimentally as follows. Table I lists the area information of
all the inductors studied.

TABLE I
COMPARISON OF THE AREA OF DIFFERENT INDUCTORS

Fig. 3. (a) Top view of the fabricated on-chip stacked four-loop circular
differential spiral inductor, where the PGS, bottom, and top spirals are placed at
metal layers 1, 5, and 6, respectively. (b) Cross-sectional view of the fabricated
samples with a PGS implemented.

The earlier stacked one- to four-loop spiral inductors were
designed and fabricated using the 0.18-μm RF CMOS process,
as shown in Fig. 3, with R = 44 μm, W = 12 μm, S = 2 μm,
t1 = 2 μm, t2 = 0.54 μm, D1 = 0.9 μm, H = 6.7 μm, and
Dsi = 350 μm. These topologies will suffer from both conduc-
tive and substrate losses and, in particular, at high frequencies.
Therefore, a PGS, as proposed in [5], [6], and [7], was shown in
Fig. 3(a) and (b), so as to reduce the silicon substrate loss. The
width of all PGS metal bars (Wp) was designed to be the same
as the bar spacing (Sp), i.e., Wp = Sp = 0.4 μm.

III. MODELING OF MULTILOOP SPIRAL INDUCTORS

A circuit model is really necessary for us to design an
inductor for specific requirements. At first, Fig. 4 shows the
LECMs of the on-chip stacked one-loop spiral inductor (S1)
with and without a PGS, respectively. The elements Rs1, Ls1,
Rs2, and Ls2 in the LECMs represent the series resistances
and inductances of the top and bottom spirals [1], respec-
tively. The mutual inductance and capacitance between the
top and bottom spirals in the LECMs are denoted by MU

D ,
Ccouple 1 and Ccouple 2. Usually, Ccouple 1 is much smaller
than Ccouple 2. The mutual inductance and capacitance, which
decrease with the separation D1, need to be calculated nu-
merically. The networks involving Coxi, Rsubi, CPGSi, and
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Fig. 4. LECM of the on-chip stacked one-loop spiral inductor (S1) with a PGS.

Fig. 5. Simplified π1 model for the on-chip stacked one-loop spiral inductor (S1) with or without PGS.

RPGSi (i = 1, 2 and 3) in the LECM shown in Fig. 4 can
be equivalently replaced by the networks only consisting of
resistance R′

pi and capacitance C ′
pi. They are given by

R′
pi =

C2
oxiRsubi+C2

PGSiRPGSi

[
e+(RPGSi+Rsubi)RsubiC

2
oxiω

2
]

a+b+C2
oxi(c+d)

(1a)

C ′
pi =

a+b+C2
oxi(c+d)

a/CPGSi+f+Coxi(c + ω2R2
PGSia)

(1b)

with

a = C2
PGSi

[
1 + (ωCsubiRsubi)2

]
(2a)

b = 2CoxiCPGSi

[
1 + (CPGSi + Csubi)CsubiR

2
subiω

2
]

(2b)

c = 1 + (2CPGSi + Csubi)CsubiR
2
subiω

2 (2c)

d = C2
PGSiω

2
[
(ωCsubiRsubiRPGSi)2 + (RPGSi + Rsubi)2

]
(2d)

e = 1 + (2Coxi + Csubi)CsubiR
2
subiω

2 (2e)

f =C2
oxiR

2
subiω

2(CPGSi + Csubi + CsubiC
2
PGSiR

2
PGSiω

2).

(2f)

By taking the shunt branches consisting of CPGSi and
RPGSi (i = 1, 2, and 3) away in Fig. 4, the LECM of the one-
loop spiral inductor (S1) without PGS can be also obtained.
Under such circumstances, the networks involving Coxi, Rsubi,
and Csubi are equivalently replaced by the shunt branches only
consisting of resistance R′

bi and capacitance C ′
bi, and

R′
bi =

Rsubi

1 + (ωCsubiRsubi)2
(3a)

C ′
bi =

Coxi

[
1 + (ωCsubiRsubi)2

]
1 + (ωCsubiRsubi)2 + CoxiCsubi(ωRsubi)2

. (3b)

Fig. 4 can be simplified to the top-left circuit shown in Fig. 5.
Using the Y−Δ network transformation, the node 4 in the
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Fig. 6. Simplified π2 model of the on-chip stacked two-loop spiral inductor with or without PGS.

top-left circuit is eliminated. Its following equivalent circuit is
the bottom-right circuit which is transformed to a simplified
π-type model denoted by π1, and

R′ = Re
{

Z23

1 + jωCcouple 1Z23

}
(4a)

L′ =
1
ω

Im
{

Z23

1 + jωCcouple 1Z23

}
(4b)

R′
1 = Re

{
(1 + jωC ′

b1R
′
b1) Z12

1 + jωC ′
b1 (R′

b1 + Z12)

}
(4c)

1
C ′

1

= − ωIm
{

(1 + jωC ′
b1R

′
b1) Z12

1 + jωC ′
b1 (R′

b1 + Z12)

}
(4d)

R′
2 = Re

{
(1 + jωC ′

b3R
′
b3) Z13

1 + jωC ′
b3 (R′

b3 + Z13)

}
(4e)

1
C ′

2

= − ωIm
{

(1 + jωC ′
b3R

′
b3) Z13

1 + jωC ′
b3 (R′

b3 + Z13)

}
(4f)

where Re{} and Im{} represent the real and imaginary parts of
the variable, respectively, and

Z1 = jω

(
MU

D − 1
ω2Cb2(Cp2)

)
+ Rb2(Rp2) (5a)

Z2 =jω
(
Ls1 − MU

D

)
+ Rs1 (5b)

Z12 =Z1 + Z2 + Z1Z2/Z3 (5c)

Z23 =Z2 + Z3 + Z2Z3/Z1 (5d)

Z13 =Z1 + Z3 + Z1Z3/Z2 (5e)

Z3 =
jω

(
Ls2 − MU

D

)
+ Rs2

1 + jωCcouple 2Rs2 − ω2Ccouple 2

(
Ls2 − MU

D

) . (5f)

The final inductance L and Q-factor of the on-chip stacked
one-loop spiral inductor (S1) can be extracted by

L = Im(1/Y11)/ω (6a)

Q = Im{Z11}/Re{Z11} (6b)

where Y11 and Z11 can be easily obtained from (5a)–(5f).
Based on the model development for the one-loop geometry,

one can further construct the LECM and transform it into a sim-
plified π-type model for the on-chip stacked multiloop spiral in-
ductor. Fig. 6 shows the LECM of two-loop geometry together
with its simplified π-type model denoted by π2. In its build-
ing, the elements of {R(1)′

s1 , L
(1′

s1 , C
(1)′

11 , C
(1)′

12 , R
(1)′

11 , R
(1)′

12 } and

{R(2)′

s2 , L
(2′

s2 , C
(2)′

21 , C
(2)′

22 , R
(2)′

21 , R
(2)′

22 } are determined accord-
ing to (5a)–(5f), where we have the following conditions.

1) {R(1)′

s1 , L
(1)′

s1 } and {R(2)′

s2 , L
(2)′

s2 } represent the series
resistances and inductances of each loop (S1) in the
S2−DIFF [Fig. 1(c)], corresponding to {R′, L′} in Fig. 5,
respectively.

2) {R(1)′

11 ,C
(1)′

11 ,R
(1)′

12 ,C
(1)′

12 } and {R(2)′

21 , C
(2)′

21 , R
(2)′

22 , C
(2)′

22 }
account for the hybrid lossy effects and capacitive cou-
pling in the double-layer substrate, corresponding to
{R′

1, C
′
1, R

′
2, C

′
2} in Fig. 5, respectively; M

(12)
LR and

C(12) are added to account for the magnetic and electric
couplings between two adjacent loops.

Fig. 7 shows the equivalent LECM of the on-chip stacked
four-loop spiral inductor and its simplified π4 model, where we
have the following conditions.

1) {R(1)
s12, L

(1)
s12} and {R(2)

s34, L
(2)
s34} are obtained based on the

derived {R′
2, L

′
2} in the π2 model in Fig. 6, respectively.

2) {R(1)
12 , C

(1)
12 , R

(2)
12 , C

(2)
12 } and {R(1)

34 , C
(1)
34 , R

(2)
34 , C

(2)
34 } are

obtained according to the elements {R(1)′

2 , C
(1)′

2 , R
(2)′

2 ,

C
(2)′

2 }, respectively.

3) M
(34)
(12) and C

(34)
(12) are added to account for the magnetic

and electric couplings among four loops, and their values
can be only calculated numerically.
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Fig. 7. Simplified π4 model of the on-chip stacked four-loop spiral inductor with or without PGS.

Fig. 8. Capacitive and inductive cells of a circular spiral; and the equivalent
PEEC model consisting of an inductive and two capacitive cells.

IV. NUMERICAL IMPLEMENTATION OF THE PEEC METHOD

The overall inductance of a single-spiral inductor can be
determined using closed-form formula [11]. However, for the
on-chip stacked one- to four-loop spiral inductors, no closed-
form formulas are available to calculate their inductances or
resistances, which will be calculated using the partial-element
equivalent-circuit (PEEC) method [12]. The PEEC method is
a numerical approach that divides metallic structures into a set
of small segments and, then, solves the equation in a discrete
manner. The equivalent PEEC model of two adjacent segments
is shown in Fig. 8. In its implementation, some key points are
explained as follows.

1) The circular spiral is treated as a regular polygon consist-
ing of S hexahedron segments with the finite thickness
and the finite conductivity. In order to get the balance be-
tween numerical accuracy and computational efficiency,
the maximum segment numbers (Smax) must be chosen
appropriately.

2) Each quadrangle segment is divided into T filaments, and
each filament is turned into a branch of series intercon-

nect consisting of self-inductance lij and self-resistance
rij {i = 1, . . . , Smax; j = 1, . . . , Tmax}. The mutual in-
ductances among different filaments are represented
by Mij .

3) Single inductive cell is divided into {12, 2} filaments,
i.e., Tmax = 24, which is validated as an appropriate
number in the next part. The partial inductance be-
tween two hexahedral segments with an arbitrary ori-
entation is calculated using the method as described
in [13].

4) We notice that a capacitive-cell model is proposed in [14]
to calculate the capacitance of some passive RF devices
with finite metal thickness. Therefore, we extend it to
be applicable for each segment with four surfaces. In
Fig. 8, the capacitances Ci

t , Ci
b, Ci

s1, and Ci
s2 represent

the top-, bottom-, and side-surface capacitances of the
ith segment, respectively.

According to the Ohm’s law, the voltages and currents of all
segments are expressed by

⎡
⎢⎢⎣

V1

V2
...

VS

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Z11 Z12 · · · Z1S

Z21 Z22 · · · Z2S
...

...
. . .

...
ZS1 ZS2 · · · ZSS

⎤
⎥⎥⎦

⎡
⎢⎢⎣

I1

I2
...
IS

⎤
⎥⎥⎦ (7)

where the T -dimensional vector Vi and Ii represent the voltage
and current of the filaments in the ith segment; Zij is a T × T
impedance matrix and given by

Zij(p, q) =
{

ri
p + jωlip, (i = j, p = q)

jωM ij
pq, otherwise

(1 ≤ p, q ≤ Tmax; 1 ≤ i, j ≤ Smax) (8)

where ri
p and lip represent the inductance and resistance of the

pth filament in the ith segment, respectively; while M ij
pq stands

for the mutual inductance between the pth filament in the ith
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segment and the qth filament in the jth segment. Equation (7)
can be converted into

⎡
⎢⎢⎣

I1

I2
...
IS

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Z11 Z12 · · · Z1S

Z21 Z22 · · · Z2S
...

...
. . .

...
ZS1 ZS2 · · · ZSS

⎤
⎥⎥⎦
−1 ⎡

⎢⎢⎣
V1

V2
...

VS

⎤
⎥⎥⎦

≡

⎡
⎢⎢⎣

Y11 Y12 · · · Y1S

Y21 Y22 · · · Y2S
...

...
. . .

...
YS1 YS2 · · · YSS

⎤
⎥⎥⎦

⎡
⎢⎢⎣

V1

V2
...

VS

⎤
⎥⎥⎦ . (9)

For each branch, we have

Vi =Vi(p) (10a)

Ii =
Tmax∑
p=1

Ii(p) (10b)

where Vi and Ii denote the voltage and current of the ith
segment, respectively. Therefore, we further have

⎡
⎢⎢⎣

I1

I2
...

IS

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Y11 Y12 · · · Y1S

Y21 Y22 · · · Y2S
...

...
. . .

...
YS1 YS2 · · · YSS

⎤
⎥⎥⎦

⎡
⎢⎢⎣

V1

V2
...

VS

⎤
⎥⎥⎦ (11)

Yij =
Tmax∑
p=1

Tmax∑
q=1

Yij(p, q). (12)

From (11), we can obtain all elements in the [Z]-matrix. The
series resistance and inductance are thus calculated by

Rs =Re

⎧⎨
⎩

Smax∑
i=1

Smax∑
j=1

Zij

⎫⎬
⎭ (13a)

Ls =
1
ω

Im

⎧⎨
⎩

Smax∑
i=1

Smax∑
j=1

Zij

⎫⎬
⎭ . (13b)

The mutual inductive coupling plays an important role in the
enhancement of the total inductance earlier. Taking the four-
loop geometry as an example, each spiral is divided into Smax

segments. Thus, the mutual inductance between spirals p and
q (p, q = 1, 2, 3, 4, and p �= q) can be calculated by

Mpq =
1
ω

Im

⎧⎨
⎩

pSmax∑
i=1+(p−1)Smax

qSmax∑
j=1+(q−1)Smax

Zij

⎫⎬
⎭ . (14)

To check the effectiveness of the earlier modified PEEC
method, we developed a program to compute the perfor-
mance parameters of multiloop stacked spiral inductors. At
first, Fig. 9 shows the comparisons between the simulated
and measured inductances and Q-factors of the geometries
in Fig. 1(a)–(e), respectively. It is shown that good agree-
ments are obtained for these parameters. Furthermore, we have

Fig. 9. Comparison in the simulated and measured frequency responses of
stacked multiloop inductors. (a) Inductance. (b) Q-factor.

Fig. 10. Frequency-dependent series inductances of S3−DIFF with different
filaments chosen.

checked the convergence in the segmentation of all spirals,
and Fig. 10 shows the frequency-dependent inductance of
S3−DIFF but with different number of the filaments of {a, b} =
{2, 2}, {4, 2}, {8, 2}, {12, 2}, and {14, 2} in the segmentation
of the spirals, respectively. It is shown that fast convergence
is obtained in the computed series inductance of S3−DIFF as
{a, b} is increased from {12, 2} and {14, 2}, respectively.

The current density distribution within the cross section of
metal track at a given frequency can be described by a depth-
dependent exponential function, which is approximated by a
staircase function in the PEEC method instead. Therefore,
the error between the exponential and the approximation of
staircase function will be reduced. Correspondingly, the ap-
proximated current distribution will be more accurate when
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Fig. 11. Frequency-dependent inductances and resistances of the topologies
S1, S3−(N)DIFF, and S4−(N)DIFF without a PGS implemented, respectively.
(a) Inductances. (b) Resistances.

more filaments segmented are meshed. In our numerical com-
putations, we keep {a, b} = {12, 2} so as to capture frequency-
dependent inductance and resistance of the multiloop stacked
spiral inductors, as shown in Figs. 11–13 as follows.

Fig. 11 shows a comparison of the computed inductances
and resistances as a function of frequency for the on-chip
stacked one-, three-, and four-loop spiral inductors without
PGS, respectively, and some phenomena can be observed.

1) The inductance increases with the loop number and so
does the resistance. As expected, the inductances of the
three- and four-loop geometries are three and four times
larger than their one-loop counterpart.

2) Due to the skin effect, the inductance decreases with
frequency slightly. However, the resistance increases with
frequency significantly and, in particular, for the four-
loop geometry.

3) The S4−DIFF has the largest inductance among the five
studied geometries, and the relative increase in induc-
tance is defined by

RE
(L)
(n)diff = (Ldiff − Lndiff)/Lndiff × 100% (15)

where RE
(L)
(n)diff = 8.26% for S3−DIFF and 9.55% for

S4−DIFF at 2.85 GHz, respectively. Most of the mutual
inductances between different spirals in Figs. 1 and 2
are negative in nondifferential type, such as MS1−S2 and
MS3−S4; while they are positive in differential inductors,
such as MS1−S2, MS1−S3, and MS1−S4. Although some
of the mutual inductances are positive in nondifferen-
tial type and negative in differential type, the values of

Fig. 12. Mutual inductances between different spiral partners in S2−DIFF,
S4−DIFF, and S4−NDIFF versus frequency.

Fig. 13. Effects of proximity effect on the series resistance of single spiral.

these inductive coupling are smaller than those dominant
mutual inductances. It leads the total inductances of the
differential inductors larger than those of nondifferential
counterparts.
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Fig. 14. Experimentally extracted equivalent inductance as a function of

frequency for topologies of S
(PGS)
4−DIFF and S

(NPGS)
4−NDIFF.

4) There is very little difference in the computed resistance
between S3−DIFF and S3−NDIFF or between S4−DIFF

and S4−NDIFF over a wide frequency range, because the
overall metal-track length in the differential topology is
nearly the same as that in its nondifferential counterpart.

Fig. 12(a) and (b) shows the computed mutual inductances
between different spiral partners in S2−DIFF and S4−DIFF,
respectively, where MSi−Sj represents the mutual inductance
between the spirals (i = 1 and 2) and (j = 3 and 4), as shown
in Fig. 12. It is obvious that the mutual inductance between
spirals one and two is much larger than those of other cases
[Fig. 12(a)].

Fig. 13 shows the proximity effects on the frequency-
dependent series resistance of single spiral denoted by Spiral 1
with neighborhoods of three spirals in Case 1 and four spirals in
Case 2, respectively. The spirals are not physically connected in
the inlets in Fig. 13. The arrows represent the fictitious current
direction which are independent in different spirals.

It is evident that proximity effects on the series resistance
cannot be excluded at high frequencies, and the relative increase
in series resistance between Cases 1 and 2 is defined by

RER = (Rcase 2 − Rcase 1)/Rcase 1 × 100% (16)

where RER = 9.15% at f = 4.85 GHz and 18.39% at f =
10.05 GHz approximately. With the increase in frequency, the
proximity effect on the series resistance in Case 2 will be much
more significant than that in Case 1. The main reason is that the
mutual magnetic coupling between the vertically neighboring
spirals is much larger than that between the laterally neigh-
boring spirals. In Fig. 12(a), the mutual inductance between
vertically neighboring spirals MS1−S2 is around ten times larger
than those between lateral neighboring spirals, such as MS1−S4

and MS2−S3 in all frequencies. The more significant the mutual
inductive coupling is, the more dominant the proximity effect
will be.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

As shown in Section II, several on-chip multiloop stacked
inductors with and without a PGS were designed and fabricated.
Measurements of their two-port S-parameters were carried
out so as to capture their performance parameters, with an
equivalent inductance and Q-factor extracted using (6a) and
(6b), respectively. Fig. 14 shows the extracted inductance of

TABLE II
COMPARISON OF THE MAXIMUM Q-FACTORS OF DIFFERENT TOPOLOGIES

WITH AND WITHOUT A PGS, RESPECTIVELY

Fig. 15. Comparisons of the measured Q-factors versus frequency among
different topologies with PGS and without PGS, respectively.

the topologies of S(PGS)
4−DIFF and S(NPGS)

4−NDIFF , respectively. It is
shown that the differential topology with a PGS implemented
is effective for the increase in inductance. On the other hand,
it is noted that its implementation will result in the decrease
in self-resonance frequency of the spiral inductor slightly as a
PGS will produce additional capacitive coupling between metal
spirals and silicon substrate.

Table II shows the comparison of the maximum Q-factors for
four pairs of nondifferential and differential topologies with and
without a PGS, respectively, and the S1 case is also included.
The relative increase in the maximum Q-factor is defined by a
set of equations as follows:

I
(DIFF)
Q =

[
Q(DIFF)

max − Q(NDIFF)
max

]/
Q(NDIFF)

max × 100%

(17a)

I
(PGS)
Q =

[
Q(PGS)

max − Q(NPGS)
max

]/
Q(PGS)

max × 100%. (17b)

It is indicated that differential topology is also an effective
way to enhance the Q-factor of a silicon-based inductor. For
example, even for the case of no PGS implemented, I

(DIFF)
Q =

3.68% for S3−DIFF as compared with its counterpart S3−NDIFF;
and 12.5% for S4−DIFF as compared with its counterpart
S4−NDIFF. Furthermore, when we have combined differential
topology with a PGS, such as in S(PGS)

4−DIFF , the enhancement
in its maximum of the Q-factor is very significant, as shown in
Fig. 15.

The negative effect caused by a PGS is mainly due to
additional capacitive coupling. When the PGS is closer to the
inductor, the loss effect is alleviated while the resonant fre-
quency is lower. Therefore, its embedding depth in the silicon-
oxide layer should be chosen appropriately.
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VI. CONCLUSION

New differential multiloop topologies that features stacked
structure were proposed first. A comparative study on one- to
four-loop inductors with and without PGSs were conducted
in this paper. To handle these multiloop stacked configu-
rations, LECMs were developed for enhancing our analy-
sis. Furthermore, PEEC method was employed for predicting
the frequency-dependent inductances and resistances of these
inductors. Good agreements between numerical results and
on-chip measurements were observed. They showed that a
differential multiloop stacked spiral inductor with a PGS can
increase the inductance and Q-factor significantly and only re-
duce self-resonant frequency slightly. Therefore, the proposed
differential multiloop stacked spiral inductors are very suitable
for the design of RFICs with high quality.
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