
 Open access Proceedings Article DOI:10.1109/IPDPS.2011.62

A Study of Parallel Particle Tracing for Steady-State and Time-Varying Flow Fields
— Source link

Tom Peterka, Robert Ross, Boonthanome Nouanesengsy, Teng-Yok Lee ...+3 more authors

Institutions: Argonne National Laboratory, Ohio State University, University of Tennessee

Published on: 16 May 2011 - International Parallel and Distributed Processing Symposium

Topics: Flow visualization and Domain decomposition methods

Related papers:

 Load-Balanced Parallel Streamline Generation on Large Scale Vector Fields

 Scalable computation of streamlines on very large datasets

 Parallel hierarchical visualization of large time-varying 3D vector fields

 Streamline Integration Using MPI-Hybrid Parallelism on a Large Multicore Architecture

 Optimizing Parallel Performance of Streamline Visualization for Large Distributed Flow Datasets

Share this paper:

View more about this paper here: https://typeset.io/papers/a-study-of-parallel-particle-tracing-for-steady-state-and-
4ev0x4h77t

https://typeset.io/
https://www.doi.org/10.1109/IPDPS.2011.62
https://typeset.io/papers/a-study-of-parallel-particle-tracing-for-steady-state-and-4ev0x4h77t
https://typeset.io/authors/tom-peterka-19m6f9qocc
https://typeset.io/authors/robert-ross-3t6fhwomij
https://typeset.io/authors/boonthanome-nouanesengsy-314dlvk5zm
https://typeset.io/authors/teng-yok-lee-3znb74exui
https://typeset.io/institutions/argonne-national-laboratory-lvzd08z4
https://typeset.io/institutions/ohio-state-university-2ty9afap
https://typeset.io/institutions/university-of-tennessee-10nllg79
https://typeset.io/conferences/international-parallel-and-distributed-processing-symposium-lhyhe1tq
https://typeset.io/topics/flow-visualization-3im9h137
https://typeset.io/topics/domain-decomposition-methods-kb2m3jvz
https://typeset.io/papers/load-balanced-parallel-streamline-generation-on-large-scale-4a3bi06uf6
https://typeset.io/papers/scalable-computation-of-streamlines-on-very-large-datasets-43qo3du286
https://typeset.io/papers/parallel-hierarchical-visualization-of-large-time-varying-3d-5g8ed3dpqm
https://typeset.io/papers/streamline-integration-using-mpi-hybrid-parallelism-on-a-1r9o78dlc1
https://typeset.io/papers/optimizing-parallel-performance-of-streamline-visualization-3t15v6c1b3
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-study-of-parallel-particle-tracing-for-steady-state-and-4ev0x4h77t
https://twitter.com/intent/tweet?text=A%20Study%20of%20Parallel%20Particle%20Tracing%20for%20Steady-State%20and%20Time-Varying%20Flow%20Fields&url=https://typeset.io/papers/a-study-of-parallel-particle-tracing-for-steady-state-and-4ev0x4h77t
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-study-of-parallel-particle-tracing-for-steady-state-and-4ev0x4h77t
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-study-of-parallel-particle-tracing-for-steady-state-and-4ev0x4h77t
https://typeset.io/papers/a-study-of-parallel-particle-tracing-for-steady-state-and-4ev0x4h77t

A Study of Parallel Particle Tracing for Steady-State and Time-Varying Flow Fields

Tom Peterka

Robert Ross

Argonne National Laboratory

Argonne, IL, USA

tpeterka@mcs.anl.gov

rross@mcs.anl.gov

Boonthanome Nouanesengsy

Teng-Yok Lee

Han-Wei Shen

The Ohio State University

Columbus, OH, USA

nouanese@cse.ohio-state.edu

leeten@cse.ohio-state.edu

hwshen@cse.ohio-state.edu

Wesley Kendall

Jian Huang

University of Tennessee at Knoxville

Knoxville, TN, USA

kendall@eecs.utk.edu

huangj@eecs.utk.edu

Abstract—Particle tracing for streamline and pathline gen-
eration is a common method of visualizing vector fields
in scientific data, but it is difficult to parallelize efficiently
because of demanding and widely varying computational and
communication loads. In this paper we scale parallel particle
tracing for visualizing steady and unsteady flow fields well
beyond previously published results. We configure the 4D
domain decomposition into spatial and temporal blocks that
combine in-core and out-of-core execution in a flexible way that
favors faster run time or smaller memory. We also compare
static and dynamic partitioning approaches. Strong and weak
scaling curves are presented for tests conducted on an IBM
Blue Gene/P machine at up to 32 K processes using a parallel
flow visualization library that we are developing. Datasets
are derived from computational fluid dynamics simulations of
thermal hydraulics, liquid mixing, and combustion.

Keywords-parallel particle tracing; flow visualization;
streamline; pathline

I. INTRODUCTION

Of the numerous techniques for visualizing flow fields,

particle tracing is one of the most ubiquitous. Seeds are

placed within a vector field and are advected over a period

of time. The traces that the particles follow, streamlines

in the case of steady-state flow and pathlines in the case

of time-varying flow, can be rendered to become a visual

representation of the flow field, as in Figure 1, or they can

be used for other tasks, such as topological analysis [1].

Parallel particle tracing has traditionally been difficult to

scale beyond a few hundred processes because the communi-

cation volume is high, the computational load is unbalanced,

and the I/O costs are prohibitive. Communication costs, for

example, are more sensitive to domain decomposition than

in other visualization tasks such as volume rendering, which

has recently been scaled to tens of thousands of processes

[2], [3].

An efficient and scalable parallel particle tracer for time-

varying flow visualization is still an open problem, but one

that urgently needs solving. Our contribution is a parallel

particle tracer for steady-state and unsteady flow fields on

regular grids, which allows us to test performance and scala-

Figure 1. Streamlines generated and rendered from an early time-step of
a Rayleigh-Taylor instability data set when the flow is laminar.

bility on large-scale scientific data on up to 32 K processes.

While most of our techniques are not novel, our contribution

is showing how algorithmic and data partitioning approaches

can be applied and scaled to very large systems. To do so,

we measure time and other metrics such as total number of

advection steps as we demonstrate strong and weak scaling

using thermal hydraulics, Rayleigh-Taylor instability, and

flame stabilization flow fields.

We observe that both computation load balance and com-

munication volume are important considerations affecting

overall performance, but their impact is a function of system

scale. So far, we found that static round-robin partitioning

is our most effective load-balancing tool, although adapt-

ing the partition dynamically is a promising avenue for

further research. Our tests also expose limitations of our

algorithm design that must be addressed before scaling

further: in particular, the need to overlap particle advection

with communication. We will use these results to improve

our algorithm and progress to even larger size data and

systems, and we believe this research to be valuable for

other computer scientists pursuing similar problems.

II. BACKGROUND

We summarize the generation of streamlines and path-

lines, including recent progress in parallelizing this task. We

limit our coverage of flow visualization to survey papers

that contain numerous references, and two parallel flow

visualization papers that influenced our work. We conclude

with a brief overview of load balancing topics that are

relevant to our research.

A. Computing Velocity Field Lines

Streamlines are solutions to the ordinary differential equa-

tion
d�x

ds
= �v(�x(s)) ; �x(0) = (x0, y0, z0), (1)

where �x(s) is a 3D position in space (x, y, z) as a function

of s, the parameterized distance along the streamline, and �v

is the steady-state velocity contained in the time-independent

data set. Equation 1 is solved by using higher-order nu-

merical integration techniques, such as fourth-order Runge-

Kutta. We use a constant step size, although adaptive step

sizes have been proposed [4]. In practical terms, streamlines

are the traces that seed points (x0, y0, z0) produce as they

are carried along the flow field for some desired number

of integration steps, while the flow field remains constant.

The integration is evaluated until no more particles remain

in the data boundary, until they have all stopped moving any

significant amount, or until they have all gone some arbitrary

number of steps. The resulting streamlines are tangent to the

flow field at all points.

For unsteady, time-varying flow, pathlines are solutions to

d�x

dt
= �v(�x(t), t) ; �x(0) = (x(t0), y(t0), z(t0)), (2)

where �x is now a function of t, time, and �v is the unsteady

velocity given in the time-varying data set. Equation 2 is

solved by using numerical methods similar to those for

Equation 1, but integration is with respect to time rather than

distance along the field line curve. The practical significance

of this distinction is that an arbitrary number of integration

steps is not performed on the same time-step, as in stream-

lines above. Rather, as time advances, new time-steps of data

are required whenever the current time t crosses time-step

boundaries of the dataset. The integration terminates once t

exceeds the temporal range of the last time-step of data.

The visualization of flow fields has been studied ex-

tensively for over 20 years, and literature abounds on the

subject. We direct the reader to several survey papers for an

overview [5]–[7]. The literature shows that while geometric

methods consisting of computing field lines may be the most

popular, other approaches such as direct vector field visu-

alization, dense texture methods, and topological methods

provide entirely different views on vector data.

B. Parallel Nearest Neighbor Algorithms

Parallel integral curve computation first appeared in the

mid 1990s [8], [9]. Those early works featured small PC

clusters connected by commodity networks that were limited

in storage and network bandwidth. Recently Yu et al. [10]

demonstrated visualization of pathlets, or short pathlines,

across 256 Cray XT cores. Time-varying data were treated

as a single 4D unified dataset, and a static prepartitioning

was performed to decompose the domain into regions that

approximate the flow directions. The preprocessing was ex-

pensive, however: less than one second of rendering required

approximately 15 minutes to build the decomposition.

Pugmire et al. [11] took a different approach, opting to

avoid the cost of preprocessing altogether. They chose a

combination of static decomposition and out-of-core data

loading, directed by a master process that monitors load

balance. The master determined when a process should load

another data block or when it should offload a streamline to

another process instead. They demonstrated results on up to

512 Cray XT cores, on problem sizes of approximately 20 K

particles. Data sizes were approximately 500 M structured

grid cells, and the flow was steady-state.

The development of our algorithm mirrors the comparison

of four algorithms for implicit Monte Carlo simulations in

Brunner et al. [12], [13]. Our current approach is similar to

Brunner et al.’s ”Improved KULL,” and we are working on

developing a less synchronized algorithm that is similar to

their ”Improved Milagro.” The authors reported 50% strong

scaling efficiency to 2 K processes and 80% weak scaling

efficiency to 6 K processes, but they acknowledge that these

scalability results are for balanced problems.

C. Partitioning and Load Balancing

Partitioning includes the division of the data domain into

subdomains and their assignment to processors, the goal

being to reduce overall computation and communication

cost. Partitioning can be static, performed once prior to the

start of an algorithm, or it can be dynamic, repartitioning at

regular intervals during an algorithm’s execution.

Partitioning methods can be geometry-based, such as

recursive coordinate bisection [14], recursive inertial bisec-

tion [15], and space-filling curves [16]; or they can be topo-

logical, such as graph [17] and hypergraph partitioning [18].

Generally, geometric methods require less work and can

be fulfilled quickly but are limited to optimizing a single

criterion such as load balance. Topological methods can

accommodate multiple criteria, for example, load balancing

and communication volume. Hypergraph partitioning usually

produces the best-quality partition, but it is usually the most

costly to compute [19].

!"#$%&$'($)*

+)$),,#,%-.#,/%,.0#%1'*&23)3.'0
)0/%1'**20.1)3.'0

4#.(56'$5''/
)0)(##03

7,'18%*)0)(#*#03
)0/%&)$3.3.'0.0(

9#$.),%&)$3.1,#%%)/:#13.'0

Figure 2. Software layers. A parallel library is built on top of serial
particle advection by dividing the domain into blocks, partitioning blocks
among processes, and forming neighborhoods out of adjacent blocks. The
entire library is linked to an application, which could be a simulation (in
situ processing) or a visualization tool (postprocessing) that calls functions
in the parallel field line layer.

Other visualization applications have used static and dy-

namic partitioning for load balance at small system scale.

Moloney et al. [20] used dynamic load balancing in sort-

first parallel volume rendering to accurately predict the

amount of imbalance across eight rendering nodes. Frank

and Kaufman [21] used dynamic programming to perform

load balancing in sort-last parallel volume rendering across

64 nodes. Marchesin et al. [22] and Müller et al. [23] used

a KD-tree for object space partitioning in parallel volume

rendering, and Lee et al. [24] used an octree and parallel BSP

tree to load-balance GPU-based volume rendering. Heirich

and Arvo [25] combined static and dynamic load balancing

to run parallel ray-tracing on 128 nodes.

III. METHOD

Our algorithm and data structures are explained, and

memory usage is characterized. The Blue Gene/P architec-

ture used to generate results is also summarized.

A. Algorithm and Data Structures

The organization of our library, data structures, commu-

nication, and partitioning algorithms are covered in this

subsection.

1) Library Structure: Figure 2 illustrates our program and

library structure. Starting at the bottom layer, the OSUFlow

module is a serial particle advection library, originally de-

veloped by the Ohio State University in 2005 and used in

production in the National Center for Atmospheric Research

VAPOR package [26]. The layers above that serve to paral-

lelize OSUFlow, providing partitioning and communication

facilities in a parallel distributed-memory environment. The

package is contained in a library that is called by an

application program, which can be a simulation code in

the case of in situ analysis or a postprocessing GUI-based

visualization tool.

!"#$

!%
!&

!'

()*+$,-./+0

1$2!"+$(

()*+$
3$"45-/25//6

()*+$

!"#$,-./+0

!"#$
3$"45-/25//6

!"#$,(!$)(

Figure 3. The data structures for nearest-neighbor communication of 4D
particles are overlapping neighborhoods of 81 4D blocks with (x, y, z, t)
dimensions. Space and time dimensions are separated in the diagram above
for clarity. In the foreground, a space block consisting of vertices is shown
surrounded by 26 neighboring blocks. The time dimension appears in the
background, with a time block containing three time-steps and two other
temporal neighbors. The number of vertices in a space block and time-steps
in a time block is adjustable.

2) Data Structure: The primary communication model in

parallel particle tracing is nearest-neighbor communication

among blocks that are adjacent in both space and time.

Figure 3 shows the basic block structure for nearest-neighbor

communication. Particles are 4D massless points, and they

travel inside of a block until any of the four dimensions of

the particle exceeds any of the four dimensions of the block.

A neighborhood consists of a central block surrounded by

80 neighbors, for a total neighborhood size of 81 blocks.

That is, the neighborhood is a 3x3x3x3 region comprising

the central block and any other block adjacent in space and

time. Neighbors adjacent along the diagonal directions are

included in the neighborhood.

One 4D block is the basic unit of domain decomposi-

tion, computation, and communication. Time and space are

treated on an equal footing. Our approach partitions time and

space together into 4D blocks, but the distinction between

time and space arises in how we can access blocks in our

algorithm. If we want to maintain all time-steps in memory,

we can do that by partitioning time into a single block; or, if

we want every time-step to be loaded separately, we can do

that by setting the number of time blocks to be the number of

time-steps. Many other configurations are possible besides

these two extremes.

Sometimes it is convenient to think of 4D blocks as 3D

space blocks × 1D time blocks. In Algorithm 1, for example,

the application loops over time blocks in an outer loop and

then over space blocks in an inner loop. The number of

space blocks (sb) and time blocks (tb) is adjustable in our

library. It is helpful to think of the size of one time block (a

number of time-steps) as a sliding time window. Successive

time blocks are loaded as the time window passes over

them, while earlier time blocks are deleted from memory.

Thus, setting the tb parameter controls the amount of data

to be processed in-core at a time and is a flexible way

to configure the sequential and parallel execution of the

program. Conceptually, steady-state flows are handled the

same way, with the dataset consisting of only a single time-

step and tb = 1.

3) Communication Algorithm: The overall structure of

an application program using our parallel particle tracer is

listed in Algorithm 1. This is a parallel program running

on a distributed-memory architecture; thus, the algorithm

executes independently at each process on the subdomain

of data blocks assigned to it. The structure is a triple-nested

loop that iterates, from outermost to innermost level, over

time blocks, rounds, and space blocks. Within a round,

particles are advected until they reach a block boundary

or until a maximum number of advection steps, typically

1000, is reached. Upon completion of a round, particles are

exchanged among processes. The number of rounds is a user-

supplied parameter; our results are generated using 10 and

in some cases 20 rounds.

Algorithm 1 Main Loop

partition domain

for all time blocks assigned to my process do

read current data blocks

for all rounds do

for all spatial blocks assigned to my process do

advect particles

end for

exchange particles

end for

end for

The particle exchange algorithm is an example of sparse

collectives, a feature not yet implemented in MPI, although

it is a candidate for future release. The pseudocode in Algo-

rithm 2 implements this idea using point-to-point nonblock-

ing communication via MPI Isend and MPI Irecv among

the 81 members of each neighborhood. While this could

also be implemented using MPI Alltoallv, the point-to-point

algorithm gives us more flexibility to overlap communication

with computation in the future, although we do not currently

exploit this ability. Using MPI Alltoallv also requires more

memory, because arrays that are size O(# of processes) need

to be allocated; but because the communication is sparse,

most of the entries are zero.

4) Partitioning Algorithms: We compare two partition-

ing schemes: static round-robin (block-cyclic) assignment

and dynamic geometric repartitioning. In either case, the

granularity of partitioning is a single block. We can choose

Algorithm 2 Exchange Particles

for all processes in my neighborhood do

pack message of block IDs and particle counts

post nonblocking send

end for

for all processes in my neighborhood do

post nonblocking receive

end for

wait for all particle IDs and counts to transmit

for all processes in my neighborhood do

pack message of particles

post nonblocking send

end for

for all processes in my neighborhood do

post nonblocking receive

end for

wait for all particles to transmit

to make blocks as small or as large as we like, from a

single vertex to the entire domain, by varying the number of

processes and the number of blocks per process. In general,

a larger number of smaller blocks results in faster distributed

computation but more communication. In our tests, blocks

contained between 83 and 1283 grid points.

Our partitioning objective in this current research is to

balance computational load among processes. The number of

particles per process is an obvious metric for load balancing,

but as Section IV-A2 shows, not all particles require the

same amount of computation. Some particles travel at high

velocity in a straight line, while others move slowly or

along complex trajectories, or both. To account for these

differences, we quantify the computational load per particle

as the number of advection steps required to advect to the

boundary of a block. Thus, the computational load of the

entire block is the sum of the advection steps of all particles

within the block, and the computational load of a process is

the sum of the loads of its blocks.

The algorithm for round-robin partitioning is straightfor-

ward. We can select the number of blocks per process, bp;

if bp > 1, blocks are assigned to processes in a block-

cyclic manner. This increases the probability of a process

containing blocks with a uniform distribution of advection

steps, provided that the domain dimensions are not multiples

of the number of processes such that the blocks in a process

end up being physically adjacent.

Dynamic load balancing with geometric partitioning is

computed by using a recursive coordinate bisection algo-

rithm from an open-source library called the Zoltan Paral-

lel Data Services Toolkit [27]. Zoltan also provides more

sophisticated graph and hypergraph partitioning algorithms

with which we are experimenting, but we chose to start

with a simple geometric partitioning for our baseline per-

formance. The bisection is weighted by the total number of

advection steps of each block so that the bisection points are

shifted to equalize the computational load across processes.

We tested an algorithm that repartitions between time

blocks of an unsteady flow (Algorithm 3). The computation

load is reviewed at the end of the current time block, and

this is used to repartition the domain for the next time block.

The data for the next time block are read according to the

new partition, and particles are transferred among processes

with blocks that have been reassigned. The frequency of

repartitioning is once per time block, where tb is an input

parameter. So, for example, a time series of 32 time-steps

could be repartitioned never, once after 16 time-steps, or

every 8, 4, or 2 time-steps, depending on whether tb = 1, 2,

4, 8, or 16, respectively. Since the new partition is computed

just prior to reading the data of the next time block from

storage, redundant data movement is not required, neither

over the network nor from storage. For a steady-state flow

field where data are read only once, or if repartitioning

occurs more frequently than once per time block in an

unsteady flow field, then data blocks would need to be

shipped over the network from one process to another,

although we did not implement this mode yet.

Algorithm 3 Dynamic Repartitioning

start with default round-robin partition

for all time blocks do

read data for current time block according to partition

advect particles

compute weighting function

compute new partition

end for

A comparison of static round-robin and dynamic geomet-

ric repartitioning appears in Section IV-A2.

B. Memory Usage

All data structures needed to manage communication

between blocks are allocated and grown dynamically. These

data structures contain information local to the process, and

we explicitly avoid global data structures containing infor-

mation about every block or every process. The drawback of

a distributed data structure is that additional communication

is required when a process needs to know about another’s

information. This is evident, for instance, during reparti-

tioning when block assignments are transferred. Global data

structures, while easier and faster to access, do not scale in

memory usage with system or problem size.

The memory usage consists primarily of the three compo-

nents in Equation 3 and corresponds to the memory needed

to compute particles, communicate them among blocks, and

store the original vector field.

Mtot = Mcomp +Mcomm +Mdata

= O(pp) +O(bp) +O(vp)

= O(pp) +O(1) +O(vp)

= O(pp) +O(vp) (3)

The components in Equation 3 are the number of particles

per process pp, the number of blocks per process bp, and the

number of vertices per process vp. The number of particles

per process, pp, decreases linearly with increasing number of

processes, assuming strong scaling and uniform distribution

of particles per process. The number of blocks per process,

bp, is a small constant that can be considered to be O(1).
The number of vertices per process is inversely proportional

to process count.

C. HPC Architecture

The Blue Gene/P (BG/P) Intrepid system at the Argonne

Leadership Computing Facility is a 557-teraflop machine

with four PowerPC-450 850 MHz cores sharing 2 GB RAM

per compute node. 4 K cores make up one rack, and the

entire system consists of 40 racks. The total memory is 80

TB.

BG/P can divide its four cores per node in three ways.

In symmetrical multiprocessor (SMP) mode, a single MPI

process shares all four cores and the total 2 GB of mem-

ory; in coprocessor (CO) mode, two cores act as a single

processing element, each with 1 GB of memory; and in

virtual node (VN) mode, each core executes an MPI process

independently with 512 MB of memory. Our memory usage

is optimized to run in VN mode if desired, and all of our

results were generated in this mode.

The Blue Gene architecture has two separate intercon-

nection networks: a 3D torus for interprocess point-to-point

communication and a tree network for collective operations.

The 3D torus maximum latency between any two nodes is

5 µs, and its bandwidth is 3.4 gigabits per second (Gb/s) on

all links. BG/P’s tree network has a maximum latency of 5

µs, and its bandwidth is 6.8 Gb/s per link.

IV. RESULTS

Case studies are presented from three computational fluid

dynamics application areas: thermal hydraulics, fluid mixing,

and combustion. We concentrate on factors that affect the in-

terplay between processes: for example, how vortices in the

subdomain of one process can propagate delays throughout

the entire volume. In our analyses, we treat the Runge-Kutta

integration as a black box and do not tune it specifically to

the HPC architecture. We include disk I/O time in our results

but do not further analyze parallel I/O in this paper; space

limitations dictate that we reserve I/O issues for a separate

work.

The first study is a detailed analysis of steady flow in

three different data sizes. The second study examines strong

and weak scaling for steady flow in a large data size. The

third study investigates weak scaling for unsteady flow. The

results of the first two studies are similar because they are

both steady-state problems that differ mainly in size. The

unsteady flow case differs the first two, because blocks’

temporal boundaries restrict particles’ motion and force

more frequent communication.

For strong scaling, we maintained a constant number of

seed particles and rounds for all runs. This is not quite

the same as a constant amount of computation. With more

processes, the spatial size of blocks decreases. Hence, a

smaller number of numerical integrations, approximately

80% for each doubling of process count, is performed in

each round. In the future, we plan to modify our termination

criterion from a fixed number of rounds to a total number

of advection steps, which will allow us to have finer control

over the number of advection steps computed. For weak

scaling tests, we doubled the number of seed particles with

each doubling of process count. In addition, for the time-

varying weak scaling test in the third case study, we also

doubled the number of time-steps in the dataset with each

doubling of process count.

A. Case Study: Thermal Hydraulics

The first case study is parallel particle tracing of the

numerical results of a large-eddy simulation of Navier-

Stokes equations for the MAX experiment [28] that recently

has become operational at Argonne National Laboratory. The

model problem is representative of turbulent mixing and

thermal striping that occurs in the upper plenum of liquid

sodium fast reactors. The understanding of these phenomena

is crucial for increasing the safety and lowering the cost of

the next generation power plants. The dataset is courtesy of

Aleksandr Obabko and Paul Fischer of Argonne National

Laboratory and is generated by the Nek5000 solver. The

data have been resampled from their original topology onto

a regular grid. Our tests ran for 10 rounds. The top panel of

Figure 4 shows the result for a small number of particles,

400 in total. A single time-step of data is used here to model

static flow.

1) Scalability: The center panel shows the scalability

of larger data size and number of particles. Here, 128 K

particles are randomly seeded in the domain. Three sizes of

the same thermal hydraulics data are tested: 5123, 10243,

and 20483; the larger sizes were generated by upsampling

the original size. All of the times represent end-to-end time

including I/O. In the curves for 5123 and 10243, there is a

steep drop from 1 K to 2 K processes. We attribute this to a

cache effect because the data size per process is now small

enough (6 MB per process in the case of 2 K processes and

a 10243 dataset) for it to remain in L3 cache (8 MB on

BG/P).

!
"

#
"

$
"

!
"
"

#
"
"

!"#$%&'!()*+%&',$#'-)#+$./'0)")'!+12/

%&'()*+,-+.*,/)00)0

1
2'
)
+3
0
4

!#5 #$6 $!# !"#7 #"75 7"86 5!8# !6957

#"75:9

!"#7:9

$!#:9

!

!

!

! !

!
!

1
2

5
1

0
2

0
5

0
1

0
0

2
0

0

Component Time For 1024^3 Data Size

Number of Processes

T
im

e
 (

s
)

256 512 1024 2048 4096 8192 16384

! Total

Comp+Comm

Comp.

Comm.

Figure 4. The scalability of parallel nearest-neighbor communication for
particle tracing of thermal hydraulics data is plotted in log-log scale. The
top panel shows 400 particles tracing streamlines in this flow field. In the
center panel, 128 K particles are traced in three data sizes: 5123 (134
million cells), 10243 (1 billion cells), and 20483 (8 billion cells). End-to-
end results are shown, including I/O (reading the vector dataset from storage
and writing the output particle traces.) The breakdown of computation and
communication time for 128 K particles in a 10243 data volume appears
in the lower panel. At smaller numbers of processes, computation is more
expensive than communication; the opposite is true at higher process counts.

The lower panel of Figure 4 shows these results broken

down into component times for the 10243 dataset, with

round-robin partitioning of 4 blocks per process, and 128

K particles. The total time (Total), the total of communica-

tion and computation time (Comp+Comm), and individual

computation (Comp) and communication (Comm) times are

shown. In this example, the region up to 1 K processes is

dominated by computation time. From that point on, the

fraction of communication grows until, at 16 K processes,

communication requires 50% of the total time.

2) Computational Load Balance and Partitioning: Figure

5 shows in more detail the computational load imbalance

among processes. The top panel is a visualization using

a tool called Jumpshot [29], which shows the activity of

individual processes in a format similar to a Gantt chart.

Time advances horizontally while process are stacked ver-

tically. This Jumpshot trace is from a run of 128 processes

of the 5123 example above, 128 K particles, 4 blocks per

process. It clearly shows one process, number 105, spending

all of its time computing (magenta) while the other processes

spend most of their time waiting (yellow). They are not

transmitting particles at this time, merely waiting for process

105; the time spent actually transmitting particles is so small

that it is indistinguishable in Figure 5.

This nearest-neighbor communication pattern is extremely

sensitive to load imbalance because the time that a process

spends waiting for another spreads to its neighbors, causing

them to wait, and so on, until it covers the entire process

space. The four blocks that belong to process 105 are

highlighted in red in the center panel of Figure 5. Zooming

in on one of the blocks reveals a vortex. This requires

the maximum number of integration steps for each round,

whereas other particles terminate much earlier. The particle

that is in the vortex tends to remain in the same block from

one round to the next, forcing the same process to compute

longer throughout the program execution.

We modified our algorithm so that a particle that is in the

same block at the end of the round terminates rather than

advancing to the next round. Visually there is no difference

because a particle trapped in a critical point has near-zero

velocity, but the computational savings are significant. In

this same example of 128 processes, making this change

decreased the maximum computational time by a factor of

4.4, from 243 s to 55 s, while the other time components

remained constant. The overall program execution time

decreased by a factor of 3.8, from 256 s to 67 s. The lower

panel of Figure 5 shows the improved Jumpshot log. More

computation (magenta) is distributed throughout the image,

with less waiting time (yellow), although the same process,

105, remains the computational bottleneck.

Figure 6 shows the effect of static round-robin partitioning

with varying the number of blocks per process, bp. The

problem size is 5123 with 8 K particles. We tested bp =
1, 2, 4, 8, and 16 blocks per process. In nearly all cases, the

Figure 5. Top: Jumpshot is used to present a visual log of the time spent
in communication (yellow) and computation (magenta). Each horizontal
row depicts one process in this test of 128 processes. Process 105 is
computationally bound while the other processes spend most of their time
waiting for 105. Middle: The four blocks belonging to process 105 are
highlighted in red, and one of the four blocks contains a particle trapped
in a vortex. Bottom: The same Jumpshot view when particles such as this
are terminated after not making progress shows a better distribution of
computation across processes, but process 105 is still the bottleneck.

performance improves as bp increases; load is more likely to

be distributed evenly and the overhead of managing multiple

blocks remains small. There is a limit to the effectiveness

of a process having many small blocks as the ratio of

blocks’ surface area to volume grows, and we recognize that

round-robin distribution does not always produce acceptable

load balancing. Randomly seeding a dense set of particles

throughout the domain also works in our favor to balance

load, but this need not be the case, as demonstrated by Pug-

mire et al. [11], requiring more sophisticated load balancing

!

!

!

!
!

!

!

!

!

5
1

0
2

0
5

0
1

0
0

Round−Robin Partitioning With Varying Blocks Per Process

Number of Processes

T
im

e
 (

s
)

16 32 64 128 256 512 1024 2048 4096

! bp = 1

bp = 2

bp = 4

bp = 8

bp = 16

Figure 6. The number of blocks per process is varied. Overall time for 8
K particles and a data size of 5123 is shown in log-log scale. Five curves
are shown for different partitioning: one block per process and round-robin
partitioning with 2, 4, 8, and 16 blocks per process. More blocks per process
improve load balance by amortizing computational “hot spots” in the data
over more processes.

strategies.

In order to compare simple round-robin partitioning with

a more complex approach, we implemented Algorithm 3

and prepared a test “time-varying” dataset consisting of 32

repetitions of the same thermal hydraulics time-step, with a

5123 grid size. Ordinarily, we assume that a time series is

temporally coherent with little change from one time-step to

the next; this test is a degenerate case of temporal coherence

where there is no change at all in the data across time-steps.

The total number of advection steps is an accurate mea-

sure of load balance, as explained in Sections III-A4 and

confirmed by the example above, where process 105 indeed

computed the maximum number of advection steps, more

than three times the average. Table I shows that the result

of dynamic repartitioning on 16, 32, and 64 identical time-

steps using 256 processes. The standard deviation in the

total number of advection steps across processes is better

with dynamic repartitioning than with static partitioning of

4 round-robin blocks per process.

While computational load measured by total advection

steps is better balanced with dynamic repartitioning, our

overall execution time is still between 5% and 15% faster

with static round-robin partitioning. There is additional cost

associated with repartitioning (particle exchange, updating

of data structures), and we are currently looking at how to

optimize those operations. If we only look at the Runge-

Kutta computation time, however, the last two columns in

Table I show that the maximum compute time of the most

heavily loaded process improves with dynamic partitioning

by 5% to 25%.

Table I
STATIC ROUND-ROBIN AND DYNAMIC GEOMETRIC PARTITIONING

Time-
Steps

Time
Blocks

Static
Std.Dev.
Steps

Dynamic
Std.Dev.
Steps

Static
Max.Comp.
Time(s)

Dynamic
Max.Comp.
Time(s)

16 4 31 20 0.15 0.14
16 8 57 28 1.03 0.99
32 4 71 42 0.18 0.16
32 8 121 52 1.12 1.06
64 4 172 103 0.27 0.21
64 8 297 109 1.18 1.09

In our approach, repartitioning occurs between time

blocks. This implies that the number of time blocks, tb,

must be large enough so that repartitioning can be performed

periodically, but tb must be small enough to have sufficient

computation to do in each time block. Another subtle point

is that the partition is most balanced at the first time-step of

the new time block, which is most similar to the last time-

step of the previous time block when the weighting function

was computed. The smaller tb is (in other words, the more

time-steps per time block) the more likely the new partition

will “go out of balance” before it is recomputed.

We expect that the infrastructure we have built into our

library for computing a new partition using a variety of

weighting criteria and partitioning algorithms will be useful

for future experiments with static and dynamic load balanc-

ing. We have only scratched the surface with this simple

partitioning algorithm, and we will continue to experiment

with static and dynamic partitioning, for both steady and

unsteady flows using our code.

B. Case Study: Rayleigh-Taylor Instability

The Rayleigh-Taylor instability (RTI) [30] occurs at the

interface between a heavy fluid overlying a light fluid, under

a constant acceleration, and is of fundamental importance

in a multitude of applications ranging from astrophysics

to ocean and atmosphere dynamics. The flow starts from

rest. Small perturbations at the interface between the two

fluids grow to large sizes, interact nonlinearly, and eventually

become turbulent. Visualizing such complex structures is

challenging because of the extremely large datasets involved.

The present dataset was generated by using the variable

density version [31] of the CFDNS [32] Navier-Stokes solver

and is courtesy of Daniel Livescu and Mark Petersen of Los

Alamos National Laboratory. We visualized one checkpoint

of the largest resolution available, 2304 × 4096 × 4096, or

432 GB of single-precision, floating-point vector data.

Figure 7 shows the results of parallel particle tracing of

the RTI dataset on the Intrepid BG/P machine at Argonne

National Laboratory. The top panel is a screenshot of 8 K

particles, traced by using 8 K processes, and shows turbulent

areas in the middle of the mixing region combined with

laminar flows above and below. The center and bottom

panels show the results of weak and strong scaling tests,

!

! ! !

! !

5
1

0
2

0
5

0
1

0
0

2
0

0
5

0
0

1
0

0
0

Weak Scaling

Number of Processes

T
im

e
 (

s
)

4096 8192 12288 16384 24576 32768

! Total

Comp+Comm

Comp.

!

! ! !

! !

5
1

0
2

0
5

0
1

0
0

2
0

0
5

0
0

1
0

0
0

Strong Scaling

Number of Processes

T
im

e
 (

s
)

4096 8192 12288 16384 24576 32768

! Total

Comp+Comm

Comp.

Figure 7. Top: A combination of laminar and turbulent flow is evident
in this checkpoint dataset of RTI mixing. Traces from 8 K particles are
rendered using illuminated streamlines. The particles were computed in
parallel across 8 K processes from a vector dataset of size 2304× 4096×
4096. Center: Weak scaling, total number of particles ranges from 16 K to
128 K. Bottom: Strong scaling, 128K total particles for all process counts.

respectively. Both tests used the same dataset size; we in-

creased the number of particles with the number of processes

in the weak scaling regime, while keeping the number of

particles constant in strong scaling.

Overall weak scaling is good from 4 K through 16 K

processes. Strong scaling is poor; the component times

indicate that the scalability in computation is eclipsed by

the lack of scalability in communication. In fact, the Total

and Comp+Comm curves are nearly identical between the

weak and strong scaling graphs. This is another indication

that at these scales, communication dominates the run time,

and the good scalability of the Comp curve does not matter.

A steep increase in communication time after 16 K

processes is apparent in Figure 7. The size and shape of

Intrepid’s 3D torus network depend on the size of the job;

in particular, at process counts >16 K, the partition changes

from 8× 16× 32 nodes to 8× 32× 32 nodes. (Recall that 1

node = 4 processes in VN mode.) Thus, it is not surprising

for the communication pattern and associated performance

to change when the network topology changes, because

different process ranks are located in different physical

locations on the network.

The RTI case study demonstrates that our communication

model does not scale well beyond 16 K processes. The

main reason is a need for processes to wait for their

neighbors, as we saw in Figure 5. Although we are using

nonblocking communication, our algorithm is still inherently

synchronous, alternating between computation and commu-

nication stages. We are investigating ways to relax this

restriction based on the results that we have found.

C. Case Study: Flame Stabilization

Our third case study is a simulation of fuel jet combustion

in the presence of an external cross-flow [33], [34]. The

flame is stabilized in the jet wake, and the formation of

vortices at the jet edges enhances mixing. The presence of

complex, unsteady flow structures in a large, time-varying

dataset make flow visualization challenging. Our dataset

was generated by the S3D [35] fully compressible Navier-

Stokes flow solver and is courtesy of Ray Grout of the

National Renewable Energy Laboratory and Jacqueline Chen

of Sandia National Laboratories. It is a time-varying dataset

from which we used 26 time-steps. We replicated the last

six time-steps in reverse order for our weak scaling tests

to make 32 time-steps total. The spatial resolution of each

time-step is 1408 × 1080 × 1100. At 19 GB per time-step,

the dataset totals 608 GB.

Figure 8 shows the results of parallel particle tracing of

the flame dataset on BG/P. The top panel is a screenshot of

512 particles and shows turbulent regions in the interior of

the data volume. The bottom panel shows the results of a

weak scaling test. We increased the number of time-steps,

from 1 time-step at 128 processes to 32 time-steps at 4 K

processes. The number of 4D blocks increased accordingly,

!
"
#

$
#

!
#

"
#
#

$
#
#

!"#$%&'#()*+

%&'()*+,-+.*,/)00)0

1
2'
)
+3
0
4

"$5 $!6 !"$ "#$7 $#75 7#86

1,9:;

<,'=><,''

Figure 8. Top: A region of turbulent flow is of interest to combustion
scientists in a dataset of flame mixing in the presence of a cross-flow.
Traces from 512 particles are rendered using illuminated stream tubes. The
particles were computed from a vector dataset of size 1408×1080×1100.
Bottom: Weak scaling is shown in log-log scale. Both the number of time-
steps as well as the number of particles are increased with the number of
processes. In this test, the majority of time is spent reading in the time-
steps from storage, because the Comp+Comm is a relatively small fraction
of the total time.

at a rate of 4 blocks per process, from 512 blocks at 128

processes to 16 K blocks at 4 K processes. We seeded each

block with one particle, so the number of particles grew

accordingly. These tests were run with one time block; that

is, all of the time-steps are loaded into memory at once,

and the temporal extent of each 4D block is the entire time

series.

As Section III-A explained, however, we are able to

partition the temporal domain as well as the spatial domain,

so that the time series is composed of several time blocks.

By sequencing through time blocks and reading into memory

Table II
OUT-OF-CORE PERFORMANCE FOR TIME-VARYING FLAME DATASET

No. of
Time
Blocks

Total
Time(s)

I/O
Time(s)

Comp+Comm
Time(s)

1 356.19 343.27 12.08
2 607.51 574.10 32.48
4 706.00 658.97 46.29
8 756.42 662.80 92.80

only the data in the current time block, we can combine

parallelism within a time block with out-of-core loading

between time blocks. Because we are not required to fit

the entire time series into memory at once, we do not need

to allocate as many processors in order to have enough

aggregate memory. For example, where 1 K processes were

used for 8 time-steps with tb = 1 in Figure 8, we also

were able to use 512 processes to run the same 8 time-

steps with tb = 4. Likewise, where we ran 16 time-steps

on 2048 processes and 32 time-steps on 4096 processes

with tb = 1, with multiple time blocks we successfully

ran the same number of time-steps with half the number

of processes.

Table II demonstrates the corresponding increase in execu-

tion time when tb increases. We used 2 K processes for this

test, and 16 time-steps. Each process contains four spatial

blocks; the number of time blocks appears in Table II. More

time is required to execute a higher number of time blocks,

but with less memory. The Comp+Comm time shows this

trend, roughly doubling with each doubling of time blocks,

although the I/O time and Total time are less than double

with each row. We are being helped here by optimizations

in our I/O library that take advantage of time-varying data.

V. SUMMARY

As fluid dynamics computations grow in size, we des-

perately need parallel particle tracing algorithms to analyze

and visualize the resulting flows. Being able to access the

full temporal resolution of the simulation without having

to write each time-step to disk argues for in situ parallel

particle tracing, which in turn demands that these algorithms

scale with the simulation code, to the full extent of the

largest supercomputers in the world. Efficiently parallelizing

an algorithm whose load balance is highly data dependent

and whose communication requirements can dominate run

time remains an open challenge, but we believe that our

research can move the community one step nearer to that

goal.

Our algorithm is built on full 4D data structures (vertices,

particles, and blocks) that treat the spatial and temporal

domains similarly. At times it is helpful to decompose 4D

blocks into 3D spatial blocks × 1D temporal blocks, as

in our algorithm for sequencing through time blocks. This

approach affords the flexibility to combine serial execution

of time blocks with parallel execution of space blocks, for

a combination of in-core and out-of-core performance.

For steady-state flows, we demonstrated strong scaling

to 4 K processes in Rayleigh-Taylor mixing and to 16

K processes in thermal hydraulics, or 32 times beyond

previously published literature. Weak scaling in Rayleigh-

Taylor mixing was efficient to 16 K processes. In unsteady

flow, we demonstrated weak scaling to 4 K processes over

32 time-steps of flame stabilization data. These results

are benchmarks against which future optimizations can be

compared.

A. Conclusions

We learned several valuable lessons during this work. For

steady flow, computational load balance is critical at smaller

system scale, for instance up to 2 K processes in our thermal

hydraulics tests. Beyond that, communication volume is the

primary bottleneck. Computational load balance is highly

data-dependent: vortices and other flow features requiring

more advection steps can severely skew the balance. Round-

robin domain decomposition remains our best tool for load

balancing, although dynamic repartitioning has been shown

to improve the disparity in total advection steps and reduce

maximum compute time.

In unsteady flow, usually fewer advection steps are re-

quired because the temporal domain of a block is quickly

exceeded. This situation argues for researching ways to

reduce communication load in addition to balancing com-

putational load. Moreover, less synchronous communication

algorithms are needed that allow overlap of computation

with communication, so that we can advect points already

received without waiting for all to arrive.

B. Future Work

One of the main benefits of this study for us and,

we hope, the community is to highlight future research

directions based on the bottlenecks that we uncovered. A

less synchronous communication algorithm is a top priority.

Continued improvement in computational load balance is

needed. We are also pursuing other partitioning strategies to

reduce communication load. We intend to port our library

to other high-performance machines, in particular Jaguar

at Oak Ridge National Laboratory, as well as to smaller

clusters. We are also completing an AMR grid component of

our library for steady and unsteady flow in adaptive meshes.

We will be investigating shared-memory multicore and GPU

versions of parallel particle tracing in the future as well.

ACKNOWLEDGMENT

We gratefully acknowledge the use of the resources of

the Argonne Leadership Computing Facility at Argonne

National Laboratory. This work was supported by the Of-

fice of Advanced Scientific Computing Research, Office of

Science, U.S. Department of Energy, under Contract DE-

AC02-06CH11357. Work is also supported by DOE with

agreement No. DE-FC02-06ER25777.

We thank Aleks Obabko and Paul Fischer of Argonne

National Laboratory, Daniel Livescu and Mark Petersen

of Los Alamos National Laboratory, Ray Grout of the

National Renewable Energy Laboratory, and Jackie Chen of

Sandia National Laboratories for providing the datasets and

descriptions of the case studies used in this paper.

REFERENCES

[1] C. Garth, F. Gerhardt, X. Tricoche, and H. Hagen, “Efficient
computation and visualization of coherent structures in fluid
flow applications,” IEEE Transactions on Visualization and
Computer Graphics, vol. 13, no. 6, pp. 1464–1471, 2007.

[2] T. Peterka, H. Yu, R. Ross, K.-L. Ma, and R. Latham, “End-
to-end study of parallel volume rendering on the ibm blue
gene/p,” in Proceedings of ICPP 09, Vienna, Austria, 2009.

[3] H. Childs, D. Pugmire, S. Ahern, B. Whitlock, M. Howison,
Prabhat, G. H. Weber, and E. W. Bethel, “Extreme scaling of
production visualization software on diverse architectures,”
IEEE Comput. Graph. Appl., vol. 30, no. 3, pp. 22–31, 2010.

[4] P. Prince and J. R. Dormand, “High order embedded runge-
kutta formulae,” Journal of Computational and Applied Math-
ematics, vol. 7, pp. 67–75, 1981.

[5] R. S. Laramee, H. Hauser, H. Doleisch, B. Vrolijk, F. H. Post,
and D. Weiskopf, “The state of the art in flow visualization:
Dense and texture-based techniques,” Computer Graphics
Forum, vol. 23, no. 2, pp. 203–221, 2004.

[6] R. S. Laramee, H. Hauser, L. Zhao, and F. H. Post,
“Topology-based flow visualization: The state of the art,” in
Topology-Based Methods in Visualization, 2007, pp. 1–19.

[7] T. McLoughlin, R. S. Laramee, R. Peikert, F. H. Post, and
M. Chen, “Over two decades of integration-based, geometric
flow visualization,” in Eurographics 2009 State of the Art
Report, Munich, Germany, 2009, pp. 73–92.

[8] D. A. Lane, “Ufat: a particle tracer for time-dependent
flow fields,” in VIS ’94: Proceedings of the conference on
Visualization ’94. Los Alamitos, CA, USA: IEEE Computer
Society Press, 1994, pp. 257–264.

[9] D. Sujudi and R. Haimes, “Integration of particles and stream-
lines in a spatially-decomposed computation,” in Proceedings
of Parallel Computational Fluid Dynamics, 1996.

[10] H. Yu, C. Wang, and K.-L. Ma, “Parallel hierarchical vi-
sualization of large time-varying 3d vector fields,” in SC
’07: Proceedings of the 2007 ACM/IEEE conference on
Supercomputing. New York, NY: ACM, 2007, pp. 1–12.

[11] D. Pugmire, H. Childs, C. Garth, S. Ahern, and G. H.
Weber, “Scalable computation of streamlines on very large
datasets,” in SC ’09: Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis.
New York, NY: ACM, 2009, pp. 1–12.

[12] T. A. Brunner, T. J. Urbatsch, T. M. Evans, and N. A.
Gentile, “Comparison of four parallel algorithms for domain
decomposed implicit monte carlo,” J. Comput. Phys.,
vol. 212, pp. 527–539, March 2006. [Online]. Available:
http://dx.doi.org/10.1016/j.jcp.2005.07.009

[13] T. A. Brunner and P. S. Brantley, “An efficient, robust,
domain-decomposition algorithm for particle monte carlo,” J.
Comput. Phys., vol. 228, pp. 3882–3890, June 2009.
[Online]. Available: http://portal.acm.org/citation.cfm?id=
1519550.1519810

[14] M. J. Berger and S. H. Bokhari, “A partitioning strategy
for nonuniform problems on multiprocessors,” IEEE Trans.
Comput., vol. 36, no. 5, pp. 570–580, 1987.

[15] H. D. Simon, “Partitioning of unstructured problems for par-
allel processing,” Computing Systems in Engineering, vol. 2,
no. 2-3, pp. 135–148, 1991.

[16] J. R. Pilkington and S. B. Baden, “Partitioning with space-
filling curves,” in CSE Technical Report Number CS94-349,
La Jolla, CA, 1994.

[17] G. Karypis and V. Kumar, “Parallel multilevel k-way par-
titioning scheme for irregular graphs,” in Supercomputing
’96: Proceedings of the 1996 ACM/IEEE conference on
Supercomputing (CDROM). Washington, DC, USA: IEEE
Computer Society, 1996, p. 35.

[18] U. Catalyurek, E. Boman, K. Devine, D. Bozdag, R. Heaphy,
and L. Riesen, “Hypergraph-based dynamic load balancing
for adaptive scientific computations,” in Proceedings of of
21st International Parallel and Distributed Processing Sym-
posium (IPDPS’07). IEEE, 2007.

[19] K. D. Devine, E. G. Boman, R. T. Heaphy, B. A. Hendrickson,
J. D. Teresco, J. Faik, J. E. Flaherty, and L. G. Gervasio, “New
challanges in dynamic load balancing,” Appl. Numer. Math.,
vol. 52, no. 2-3, pp. 133–152, 2005.

[20] B. Moloney, D. Weiskopf, T. Moller, and M. Strengert,
“Scalable sort-first parallel direct volume rendering with
dynamic load balancing,” in Eurographics Symposium on
Parallel Graphics and Visualization EG PGV’07, Prague,
Czech Republic, 2007.

[21] S. Frank and A. Kaufman, “Out-of-core and dynamic pro-
gramming for data distribution on a volume visualization
cluster,” Computer Graphics Forum, vol. 28, no. 1, pp. 141–
153, 2009.

[22] S. Marchesin, C. Mongenet, and J.-M. Dischler, “Dynamic
load balancing for parallel volume rendering,” in Proceed-
ings of Eurographics Symposium of Parallel Graphics and
Visualization 2006, Braga, Portugal, 2006.

[23] C. Müller, M. Strengert, and T. Ertl, “Adaptive load balancing
for raycasting of non-uniformly bricked volumes,” Parallel
Comput., vol. 33, no. 6, pp. 406–419, 2007.

[24] W.-J. Lee, V. P. Srini, W.-C. Park, S. Muraki, and T.-D. Han,
“An effective load balancing scheme for 3d texture-based sort-
last parallel volume rendering on gpu clusters,” IEICE - Trans.
Inf. Syst., vol. E91-D, no. 3, pp. 846–856, 2008.

[25] A. Heirich and J. Arvo, “A competitive analysis of load
balancing strategiesfor parallel ray tracing,” J. Supercomput.,
vol. 12, no. 1-2, pp. 57–68, 1998.

[26] J. Clyne, P. Mininni, A. Norton, and M. Rast, “Interactive
desktop analysis of high resolution simulations: application
to turbulent plume dynamics and current sheet formation,”
New J. Phys, vol. 9, no. 301, 2007.

[27] K. Devine, E. Boman, R. Heapby, B. Hendrickson, and
C. Vaughan, “Zoltan data management service for parallel
dynamic applications,” Computing in Science and Engg.,
vol. 4, no. 2, pp. 90–97, 2002.

[28] E. Merzari, W. Pointer, A. Obabko, and P. Fischer, “On the
numerical simulation of thermal striping in the upper plenum
of a fast reactor,” in Proceedings of ICAPP 2010, San Diego,
CA, 2010.

[29] A. Chan, W. Gropp, and E. Lusk, “An efficient format for
nearly constant-time access to arbitrary time intervals in large
trace files,” Scientific Programming, vol. 16, no. 2-3, pp. 155–
165, 2008.

[30] D. Livescu, J. Ristorcelli, M. Petersen, and R. Gore, “New
phenomena in variable-density rayleigh-taylor turbulence,”
Physica Scripta, 2010, in press.

[31] D. Livescu and J. Ristorcelli, “Buoyancy-driven variable-
density turbulence,” Journal of Fluid Mechanics, vol. 591,
pp. 43–71, 2008.

[32] D. Livescu, Y. Khang, J. Mohd-Yusof, M. Petersen, and
J. Grove, “Cfdns: A computer code for direct numerical
simulation of turbulent flows,” Tech. Rep., 2009, technical
Report LA-CC-09-100, Los Alamos National Laboratory.

[33] R. W. Grout, A. Gruber, C. Yoo, and J. Chen, “Direct
numerical simulation of flame stabilization downstream of a
transverse fuel jet in cross-flow,” Proceedings of the Combus-
tion Institute, 2010, in press.

[34] T. F. Fric and A. Roshko, “Vortical structure in the wake of
a transverse jet,” Journal of Fluid Mechanics, vol. 279, pp.
1–47, 1994.

[35] J. H. Chen, A. Choudhary, B. de Supinski, M. DeVries,
E. R. Hawkes, S. Klasky, W. K. Liao, K. L. Ma, J. Mellor-
Crummey, N. Podhorszki, R. Sankaran, S. Shende, and C. S.
Yoo, “Terascale direct numerical simulations of turbulent
combustion using S3D,” Comput. Sci. Disc., vol. 2, p. 015001,
2009.

