
J. Cryptology (1989) 1:151-158
Journal of Cryptology
© 1989 International Association for
Cryptologic Research

A Study of Password Security 1

Michael Luby 2
International Computer Science Institute,

Berkeley, CA 94704, U.S.A.
tu by @icsi.berkeley.edu

Charles Rackoff 3
Computer Science Department, University of Toronto,

Toronto, Ontario M5S 1A4, Canada
rackoff@theory.toronto.edu

Abstract. We prove relationships between the security of a function generator
when used in an encryption scheme and the security of a function generator when
used in a UNIX-like password scheme.

Key words. Password security, UNIX, Pseudorandom function generator.

1. Introduction

Our work is motivated by the question of whether or not the password scheme used
in UNIX is secure. The following password scheme is a somewhat simplified version
of the actual password scheme used in UNIX. We feel that this simplified version
captures the essential features of the actual password scheme used in UNIX. The
first time a UNIX account is used the user enters his user name together with a
randomly chosen password, The system creates an "encryption" of the password
using the Data Encryption Standard (DES) and stores the encryption (not the
password) together with the user name in a password file. Thereafter, whenever the
account is used the user enters his user name and password, the system computes
the encryption of the password and only allows the user to successfully log in if the
encryption matches the entry stored with the user name in the password file.

The system model we assume allows any user to read the password file, but
guarantees that the password file cannot be changed by unauthorized users. We do
not attempt to justify this model of the system, but only remark that perhaps the

t Date received: August 19, 1988. Date revised: January 9, 1989.
2 On leave of absence from the Computer Science Department, University of Toronto. Research

partially supported by the Canadian Natural Sciences and Engineering Research Council Operating
Grant A8092 and by a University of Toronto research grant.

3 Research partially supported by the Canadian Natural Sciences and Engineering Research Council
Operating Grant A3611.

151

152 M. Luby and C. Rackoff

reasoning behind this model is that an unauthorized user may be able to read the
password file when the system is unprotected (e.g., during a crash) but the system
is able to keep enough backup copies of the password file so that even if an
unauthorized user can write to one copy of the file, he will not be able to update all
copies. The password scheme is secure with respect to this model if any unauthorized
user who has a copy of the password file cannot generate a password whose
encryption is stored in the password file.

The following is a more complete description of the password scheme discussed
above. The password is a bit string x of length 56 and the encryption of x is a bit
string y of length 64, where y is DES evaluated on a standard message (which is the
bit string consisting of 64 zeros) using key x. It is stated informally in [D] that this
password scheme is secure if DES is secure when used as a private key cryptosystem.
We formally investigate this question by the following approach. Since we cannot
even prove that DES is secure in any formal sense when used in a block private key
cryptosystem, we study the security of a UNIX-like password scheme when in place
of DES we use a pseudorandom function generator.

Let N be the set of positive integers. A password scheme 9 with password length
function h N ~ N is a family of functions 9 = {9": n ~ N} such that, for all n a N,
g": {0, t}~t")~-~ {0, 1}". The encryption of password x ~ {0, t} "") is 9"(x). A function
generator f with key length function h N~--*N is a family of functions such that
for each positive integer n, every x ~ {0, 1} "") is a key that indexes a function
fx: {0, 1}"w-~ {0, 1}". The UNIX-like password scheme 9 based on f is defined as
follows: the encryption of password x e {0, 1} ~"~ is 9"(x) = f~(0").

Very informally stated, what we prove is that if a pseudorandom function gen-
erator with key length function I satisfying l(n) <_ n + O(log n) is used in a UNIX-
like password scheme, then the password scheme is secure. On the other hand, we
describe a pseudorandom function generator with key length I(n) = n + h(n) (where
h(n) is any function that grows asymptotically faster than log n, i.e., the limit as n
goes to infinity of tog n/h(n) is zero) such that the UNIX-like password scheme using
it is not secure. The implication of this latter result is that if the password is much
longer than the encryption of the password, then, even if we have a function
generator which is secure when used as a block private key crytosystem, the
UNIX-like password scheme using the function generator may not be at all secure.
As a more concrete example, we show that a modified version of DES, which we
(and some other cryptographers) believe is even more secure than DES when used
in a block private key cryptosystem, is not at all secure when used in the UNIX-like
password scheme. This is a lesson against the blind philosophy of taking something
which is proven secure in one setting and using it in a different setting without a
formal investigation of its security in the different setting.

An earlier version of this work appeared in [LR3].

2. Definition of a Pseudorandom Function Generator

Let N be the set of all positive integers. For all n ~ N, let F" be the set of all func-
tions from {0, 1}" to {0, t}". All random choices are with the uniform probability
distribution.

A Study of Password Security 153

Function Generator Definition. A function generator f with key length function h
N~-*N is a family of functions where, for all n E N, every key x ~ {0, 1} l(") indexes
a function f=: {0, 1 }" ~ {0, 1 }". The additional requirements on a function generator
are that the key is not too long, i.e., l(n) is upper bounded by a polynomial in n, and
that the function can be evaluated in polynomial time, i.e. there is a polynomial-time
algorithm that on input x ~ {0, 1} "~ and a ~ {0, 1}" outputs f=(c O. We denote by f "
the set of 2 "") functions in the family from {0, 1}" to {0, 1}". Note that f " is a very
small subset of F".

Intuition. We view x as a randomly chosen private key of length l(n). The function
generator f is pseudorandom if there is no polynomial time in n algorithm which,
for infinitely many n, is able to distinguish even slightly whether a function was
randomly chosen from f " or from F" after seeing polynomial in n !nput/output pairs
of the function, even when the algorithm is allowed to choose the next input based
on all previously seen input/output pairs.

Pseudorandom function generators were first defined by Goldreich et al. [GGM],
who prove that the existence of such a generator is implied by the existence of a
pseudorandom bit generator IBM], [Y]. Other results and discussions about these
generators appear in [LR1], and [-LR2].

Definition of a Boolean Oracle Circuit. A Boolean oracle circuit C, for f" is an
acyclic circuit that contains Boolean gates of type and, or, and not. In addition, C,
also contains oracle gates. Each oracle gate has an input and an output that are
both strings of length n. All of the oracle gates are to be evaluated using the same
function selected from F", that for now is left unspecified and is to be thought of as
a variable of the circuit. The output of C, is a single bit. The size of C, is the total
number of gates plus the number of connections between gates. We let Pr[C,(F")]
be the probability that the output bit of C, is 1 when a function is randomly chosen
from F" and used to evaluate the oracle gates. We let P r [C , (f ")] be the prob-
ability that the output bit of C, is 1 when a key x ~ {0, 1} "") is randomly chosen
and fx is used to evaluate the oracle gates. The distinguishing probability for C, is
[Pr[C.(F")] - Pr[C,(f")][.

Definition of a Distinguishing Circuit Family. A distinguishing circuit family for f
is a family C = {C,: n ~ 1}, where I is an infinite subset of N and, for each n ~ I, C,
is a Boolean oracle circuit for f" . In addition, for some pair of constants s and c,
for each n ~ I, the size of C, is at most n s and the distinguishing probability for C,
is at least 1In c.

Definition of Psendorandom. A function generator f is pseudorandom if there is no
distinguishing circuit family for f.

3. Definition of a Secure Password Scheme

Password Scheme Definition. g = {g": n E N} is a password scheme with password
length function h N ~-, N (where l(n) is upper bounded by a polynomial in n) if, for
each n ~ N, g" is a function from l(n) bits to n bits.

154 M. Luby and C. Rackoff

Intuition. For each n ~ N, the password is of length l(n) and the encryption of the
password is of length n.

Definition of a Password Finding Circuit Family. A password finding circuit family
for g is a family A = {A.: n ~ I}, where I is an infinite subset of N and, for each
n ~ 1, A, is a Boolean circuit with n input bits and l(n) output bits. The success
probability of An is the probability that A. outputs a y such that g"(y) = 9"(x) on
input g"(x), where x ~ {0, 1} zt") is randomly chosen. There are two constants s and
c such that, for all n e I, the size of A, is at most n s and the success probability of
A, is at least 1/n ~.

Security Definition. A password scheme g is secure if there is no password finding
circuit family for g.

Comment. Informally, we want the security of g to reflect the fact that no
polynomial-size family of circuits, given the encryptions of a polynomial number
of randomly chosen passwords, can produce even one password which has the same
encryption as one of the given encryptions. It can be easily shown that if g is secure
in the sense defined above, then 9 is secure in the following alternative sense of
security, which reflects this informal notion of security. A password scheme g is
secure if, for all functions b: N ~-~ N such that b(n) is upper bounded by a polynomial
in n, there is no polynomial-size family of Boolean circuits which, for infinitely many
values of n ~ N, on input b(n) encryptions g"(x 1) 9"(xb<.)) of randomly chosen
passwords xl xbt.~ ~ {0, 1} ") , produces an output y such that 9"(Y) = 9"(xi) for
some i = 1 b(n) with probability greater than 1/n ~ for some constant c > O.

UNiX-like Password Scheme. Let f be a function generator with key length
function I. The UNIX-like password scheme for f is a password scheme g with
password length function l, where for each n ~ N the encryption g"(x) of a password
x ~ {0, 1} z~") is fx(O").

4. The Main Theorem

Theorem. I f f is a pseudorandom function generator with key length function t
such that l(n) < n + d log n for some constant d and for all sufficiently large n ~ N,
then the UNIX-like password scheme g for f is secure.

Proof. We assume for contradiction that the password scheme e is not secure.
Thus, there is a password finding circuit family A = {A,: n ~ 1} for g. Let c be the
success probability constant associated with A. For each n E I, let e(n) > 1/n c be the
success probability for A,. We show how to construct from A a distinguishing circuit
family C = {C,: n ~ J} for f , where J is an infinite subset o f / .

For each n ~ I, define e'(n) to be the probability that A. outpu ~ y ~ {0, 1} ""~ such
that g"(y) = z when the input to A, is a randomly chosen z ~ {0, 1} ". Intuitively,
e'(n) is equal to e(n) if the distribution g"(x) = f~(0"), defined by randomly choosing
a password x ~ (0, 1} ~t"), is uniform on {0, 1} ~. For each n ~ I, we consider two cases:

A Study of Password Security 155

Case I: e'(n) < e(n)/2. In this case e(n) - e'(n) > 1/2n ~. T h e idea in this case is that
C n distinguishes fn from F n due to the fact that the distribution fl(0n), defined by
randomly choosing a password x • {0, 1} t(n) and setting f~ = f~, is not the uniform
distribution on {0, 1 }n, whereas the distribution f i ((P), defined by randomly choos-
ingf~ • F n, is the uniform distribution on {0, 1} n. Moreover, An is used to distinguish
between these two distributions. The Boolean oracle circuit Cn is defined as follows:

Circuit Cn. There is one oracle gate in Cn, which is to be evaluated using a
function denoted f l . The input to the oracle gate is 0 n. Let z denote the output of
the oracle gate. Cn simulates An on input z and the simulation produces an output
y. Circuit Cn computes e = fy(0n). If z = e, then Cn outputs 1, otherwise Cn outputs
0.

If x is randomly chosen from {0, 1} ~tn) and f l = fx, then the probability that C n
outputs 1 is e(n). On the other hand, if f l is randomly chosen from F n, then the
probability that C outputs 1 is e'(n). Thus, the distinguishing probability of Cn is at
least ~(n) - ~'(n) > 1/2n ~.

Case 2: e'(n) > e(n)/2. In this case e'(n) > 1/2n c. The Boolean oracle circuit Cn is
defined as follows:

Circuit Cn. There are two oracle gates in Cn, one with input 0 n and output z and
the other with input 1 n and output z' (any fixed input different than 0 n for the second
oracle gate suffices), which are to be evaluated with the same function denoted f l .
Circuit Cn simulates An on input z and the simulation produces an output y. Then
Cn computes fy(1 n) and outputs 1 if this is equal to z' and 0 otherwise.

As we prove in the claim below, because of the length restriction on passwords
(l(n) < n + d log n), if f l is chosen by randomly choosing x • {0, 1) ltn) and setting
f l = fx, then, with probability at least 1/2n c÷a, y = x. If y = x, then it is also the
case that fy(1 n) = fl(1 n) = z', in which case Cn outputs 1. On the other hand, i f f i
is chosen randomly from F n, then z = fi((P) and z' = fl(1 n) are independent and
uniformly distributed in {0, i} n. Thus, independent of the value y produced by An
on input z, it is only with probability i/2 n that fy(1 n) = z' and Cn outputs i. Thus, Cn
distinguishes between F n and fn with probability at least 1/2n c÷d - 1/2 n > 1/4n c+d
for sufficiently large n.

Claim. When x • {0, 1} z(n) is randomly chosen, then the probability that An on input
z = fx((P) outputs a y such that y = x is at least 1/2n c+a.

Proof of Claim. Let S be the set of strings x e {0, 1} z~"~ such that A, on input
z = fx(0") outputs y such that y = x. Then ISI/2 "n~ is the probability in question. Let
M be the set of strings z • {0, 1}" such that An on input z outputs a y such that
fy(0 n) = z. Thus, for each z • M, An on input z outputs a unique y e S, and every
y • S is the output of An for some z • M. Thus, An defines a one-to-one onto map

156 M. Luby and C. Rackoff

from M to S and ISI = IMt. Clearly, IMI/2 ~ = e'(n). Thus, since l(n) < n + d log n,

ISI tMI> e'(n) 1
2ltn) = ~ - 2~-7%-~-og~ > 2n¢÷---- 7 . []

From Case 1 and Case 2 it is easy to see that there is an imqnite J _q I such that,
for all n ~ J, C~ distinguishes f~ from F n with probability at least 1/4n c+d. Thus, the
function generator f is not pseudorandom. []

Comment. There is another definition of security where "probabilistic polynomial-
time algorithm" is substituted for "polynomial-size family of circuits" in the defini-
tion. Our theorem is true (using a similar proof) with respect to this definition
when "probabilistic polynomial-time algorithm" is substituted for "polynomial-size
family of circuits" in the definition of pseudorandom function generator.

5. The Password Should Not Be Too Long

In this section we give examples which show that the theorem proved in the previous
section is the strongest general theorem possible with respect to the length of the
password and the encryption of the password. Our first example shows why a
pseudorandom function generator with a long key length cannot necessarily be used
to produce a secure UNIX-like password scheme. The second example, which is a
very practical example, demonstrates that a cryptosystem which we (and some other
cryptographers) believe to be even more secure than DES when used as a private
key block cryptosystem is totally insecure when used as a UNIX-like password
scheme.

Example 1. Let f be a pseudorandom function generator with key length l, where,
for all n e N , l(n) = n. We define a function generator g in terms o f f as follows. The
key length function for g is l', where, for all n ~ N , l'(n) = n + log2n. (Any function
h(n) such that 2 h~n) is not upper bounded by a polynomial in n can be substituted
for log 2 n.) For each n ~ N, let x be a string of length l'(n), which is the concatenation
of a string x I of length log 2 n and a string x 2 of length n. For all strings ct ~ On of
length n, gx(~) = fx2(~). Define g~(tY') to be f~((P) if x 1 ~ 01°~2n and to be x2 if
xl = 0 ~°82~. It is not hard to prove that g is pseudorandom, because the only time
g is any different than f is in the event that xl just happens to be equal to 0 ~°g2n,
which only happens with the tiny probability 1/n ~°~ ~. On the other hand, if g is used
in a UNIX-like password scheme, then the resulting password scheme is totally
insecure. To see this, note that for any encrypted password y of length n, the
password consisting of 0 ~°~2" concatenated with y always encrypts to y.

Example 2. The key for DES is 56 bits long. This key is expanded in a predeter-
mined way into 16 keys each of length 48, and the 16 keys are used in the 16 levels
ofencryption in DES. Let MDES (mnemonic for Modified Data Encryption Stan-
dard) be the same as DES except that it uses 16 independent keys of length 48, and
these 16 keys are used in the 16 levels of DES, i.e., MDES can be thought of as fxl,

A Study of Password Security 157

composed with f ~ , composed wi th . . , composed with f~,, where x 1 , x16 are 16
independently chosen keys each of length 48 and fx, is a very simple function. We
believe that MDES is at least as secure as DES when used in a block private key
cryptosystem. On the other hand, it is easy to see that if MDES is used in a
UNIX-like password scheme, then the resulting password scheme is totally insecure.
To see this, suppose that we want to find a password which encrypts to a particular
string y of length 64. Let yl be the first half of y and let Y2 be the second half of y.
The password is chosen by first choosing xt x14 arbitrarily. Let the output of
f~l, composed wi th . . , composed with f~, on input 064 be s, where s is a bit string
of length 64. Let u be the output of fq,(s) and let u~ be the left half of u and u 2 be
the right half of u. Let v be the output of f~6(u) and let v 1 be the left half of v and
v2 be the right half of v. By the way MDES works, the left half of the final output at
level 16 is simply the right half of the output at level 15, i.e., vx = u2. Thus, our first
task is, given an arbitrary s, fix x15 so that y~ = v~ = u 2. Our second task is, given
an arbitrary u, fix x16 so that Y2 = v2. Both of these tasks are of the same type, i.e.,
given an arbitrary bit string ~ of length 64 and an arbitrary bit string fl of length
32, find an x of length 48 such that the right half of fx(a) is equal to ft. This turns
out to be a straightforward task for the simple functions defined by MDES.

6. Additional Results and Observations

What if f is a pseudorandom function generator, but l(n) is too large, so that our
theorem does not apply? We can still obtain a secure password scheme as follows:
let re(n) = [l(n)/n] and, for password x, store in the password file f~"(al), f~"(az)
f~"(~m~,j) where al, az a,,~,) are re(n) fixed distinct strings in {0, 1}". This can be
proven secure using ideas similar to the ones used in the proof of the main theorem.
In fact, this construction works as long as m is any function that satisfies, for some
constant d and for all sufficiently large n, l(n) < n. re(n) + d log n.

Now let us assume that f and I satisfy the conditions of the main theorem. What
about alternative password schemes? The following password scheme can also be
shown to be secure. For password x, a random string a is chosen and the pair
(7, f,(~)) is stored in the password file. However, consider the following password
scheme where l(n) = n. For password x, f~(x) is stored in the password file. It can
be shown (by techniques similar to those used in Example 1 above) that, even i f f
is a pseudorandom function generator, this password scheme may be very insecure.
The point of these examples is to emphasize further that the blind application of
crytographic tools in situations where they are seemingly secure, but have not been
proven secure, is dangerous.

Lastly we raise the well-known point that, contrary to our implicit assumptions,
passwords are not chosen randomly in practice. We therefore have to model how
users really choose passwords. Any version of our main theorem which we can prove
under an alternative probability distribution assumption about the choice of pass-
words (alternative to the assumption that passwords are chosen uniformly at
random) will involve f being pseudorandom when keys are chosen according to
this alternative probability distribution.

158 M. Luby and C. Rackoff

Acknowledgments

We thank Paul Beame, Johan Hastad, and Gilles Brassard for some helpful discus-
sions and simplifications to this work. We would also like to thank both referees
for their very careful reading of the submitted paper and for making many very
helpful clarifying and simplifying suggestions.

References

[BM]

[D3
[GGM]

[LRI]

[LR2]

[LR3]

Iv]

Blum, M., and Micali, S., How to generate cryptographically strong sequences of pseudo-
random bits, SIAM J. Compur Vol. 13, 1984, pp. 850-864.
Denning, D., Cryptography and Data Security, Addison-Wesley, Reading, MA, 1983.
Goldreich, O., Goldwasser, S., and Micali, S., How to construct random functions, J. Assoc.
Compur Mach., Vol. 33, No. 4, October 1986, pp. 792-807.
Luby, M., and Rackoff, C., Pseudo-random permutation generators and cryptographic com-
position, Proceedings of the 18th ACM Annual Symposium on Theory of Computing, May 28-30,
1986, pp. 356-363.
Luby, M., and Rackoff, C., How to construct pseudo-random permutations from pseudo-
random functions, SIAM J. Comput., Vol. 17, 1988, pp. 373-386.
Luby, M., and Rackoff, C., A study of password security, Proceedings of Crypto "87, Lecture
Notes in Computer Science, Vol. 293, Springer-Verlag, Berlin 1988, pp. 392-397.
Yao, A. C, Theory and applications of trapdoor functions, Proceedings of the 23rd Symposium
on the Foundations of Computer Science, 1982, pp. 80-91.

