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Abstract. We prove relationships between the security of a function generator 
when used in an encryption scheme and the security of a function generator when 
used in a UNIX-like password scheme. 
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1. Introduction 

Our work is motivated by the question of whether or not the password scheme used 
in UNIX is secure. The following password scheme is a somewhat simplified version 
of the actual password scheme used in UNIX. We feel that this simplified version 
captures the essential features of the actual password scheme used in UNIX. The 
first time a UNIX account is used the user enters his user name together with a 
randomly chosen password, The system creates an "encryption" of the password 
using the Data Encryption Standard (DES) and stores the encryption (not the 
password) together with the user name in a password file. Thereafter, whenever the 
account is used the user enters his user name and password, the system computes 
the encryption of the password and only allows the user to successfully log in if the 
encryption matches the entry stored with the user name in the password file. 

The system model we assume allows any user to read the password file, but 
guarantees that the password file cannot be changed by unauthorized users. We do 
not attempt to justify this model of the system, but only remark that perhaps the 
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reasoning behind this model is that an unauthorized user may be able to read the 
password file when the system is unprotected (e.g., during a crash) but the system 
is able to keep enough backup copies of the password file so that even if an 
unauthorized user can write to one copy of the file, he will not be able to update all 
copies. The password scheme is secure with respect to this model if any unauthorized 
user who has a copy of the password file cannot generate a password whose 
encryption is stored in the password file. 

The following is a more complete description of the password scheme discussed 
above. The password is a bit string x of length 56 and the encryption of x is a bit 
string y of length 64, where y is DES evaluated on a standard message (which is the 
bit string consisting of 64 zeros) using key x. It is stated informally in [D] that this 
password scheme is secure if DES is secure when used as a private key cryptosystem. 
We formally investigate this question by the following approach. Since we cannot 
even prove that DES is secure in any formal sense when used in a block private key 
cryptosystem, we study the security of a UNIX-like password scheme when in place 
of DES we use a pseudorandom function generator. 

Let N be the set of positive integers. A password scheme 9 with password length 
function h N ~ N  is a family of functions 9 = {9": n ~ N} such that, for all n a N, 
g": {0, t}~t")~-~ {0, 1}". The encryption of password x ~ {0, t} "") is 9"(x). A function 
generator f with key length function h N~--*N is a family of functions such that 
for each positive integer n, every x ~ {0, 1} "") is a key that indexes a function 
fx: {0, 1}"w-~ {0, 1}". The UNIX-like password scheme 9 based on f is defined as 
follows: the encryption of password x e {0, 1} ~"~ is 9"(x) = f~(0"). 

Very informally stated, what we prove is that if a pseudorandom function gen- 
erator with key length function I satisfying l(n) <_ n + O(log n) is used in a UNIX- 
like password scheme, then the password scheme is secure. On the other hand, we 
describe a pseudorandom function generator with key length I(n) = n + h(n) (where 
h(n) is any function that grows asymptotically faster than log n, i.e., the limit as n 
goes to infinity of tog n/h(n) is zero) such that the UNIX-like password scheme using 
it is not secure. The implication of this latter result is that if the password is much 
longer than the encryption of the password, then, even if we have a function 
generator which is secure when used as a block private key crytosystem, the 
UNIX-like password scheme using the function generator may not be at all secure. 
As a more concrete example, we show that a modified version of DES, which we 
(and some other cryptographers) believe is even more secure than DES when used 
in a block private key cryptosystem, is not at all secure when used in the UNIX-like 
password scheme. This is a lesson against the blind philosophy of taking something 
which is proven secure in one setting and using it in a different setting without a 
formal investigation of its security in the different setting. 

An earlier version of this work appeared in [LR3]. 

2. Definition of a Pseudorandom Function Generator 

Let N be the set of all positive integers. For  all n ~ N, let F" be the set of all func- 
tions from {0, 1}" to {0, t}". All random choices are with the uniform probability 
distribution. 
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Function Generator Definition. A function generator f with key length function h 
N~-*N is a family of functions where, for all n E N, every key x ~ {0, 1} l(") indexes 
a function f=: {0, 1 }" ~ {0, 1 }". The additional requirements on a function generator 
are that the key is not too long, i.e., l(n) is upper bounded by a polynomial in n, and 
that the function can be evaluated in polynomial time, i.e. there is a polynomial-time 
algorithm that on input x ~ {0, 1} "~ and a ~ {0, 1}" outputs f=(c O. We denote by f "  
the set of 2 "") functions in the family from {0, 1}" to {0, 1}". Note that f "  is a very 
small subset of F". 

Intuition. We view x as a randomly chosen private key of length l(n). The function 
generator f is pseudorandom if there is no polynomial time in n algorithm which, 
for infinitely many n, is able to distinguish even slightly whether a function was 
randomly chosen from f "  or from F" after seeing polynomial in n !nput/output pairs 
of the function, even when the algorithm is allowed to choose the next input based 
on all previously seen input/output pairs. 

Pseudorandom function generators were first defined by Goldreich et al. [GGM],  
who prove that the existence of such a generator is implied by the existence of a 
pseudorandom bit generator IBM], [Y]. Other results and discussions about these 
generators appear in [LR1], and [-LR2]. 

Definition of a Boolean Oracle Circuit. A Boolean oracle circuit C, for f"  is an 
acyclic circuit that contains Boolean gates of type and, or, and not. In addition, C, 
also contains oracle gates. Each oracle gate has an input and an output that are 
both strings of length n. All of the oracle gates are to be evaluated using the same 
function selected from F", that for now is left unspecified and is to be thought of as 
a variable of the circuit. The output of C, is a single bit. The size of C, is the total 
number of gates plus the number of connections between gates. We let Pr[C,(F")] 
be the probability that the output bit of C, is 1 when a function is randomly chosen 
from F" and used to evaluate the oracle gates. We let P r [C , ( f " ) ]  be the prob- 
ability that the output bit of C, is 1 when a key x ~ {0, 1} "") is randomly chosen 
and fx is used to evaluate the oracle gates. The distinguishing probability for C, is 
[Pr[C.(F")] - Pr[C,(f")][ .  

Definition of a Distinguishing Circuit Family. A distinguishing circuit family for f 
is a family C = {C,: n ~ 1}, where I is an infinite subset of N and, for each n ~ I, C, 
is a Boolean oracle circuit for f" .  In addition, for some pair of constants s and c, 
for each n ~ I, the size of C, is at most n s and the distinguishing probability for C, 
is at least 1In c. 

Definition of Psendorandom. A function generator f is pseudorandom if there is no 
distinguishing circuit family for f. 

3. Definition of a Secure Password Scheme 

Password Scheme Definition. g = {g": n E N} is a password scheme with password 
length function h N ~-, N (where l(n) is upper bounded by a polynomial in n) if, for 
each n ~ N, g" is a function from l(n) bits to n bits. 
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Intuition. For each n ~ N, the password is of length l(n) and the encryption of the 
password is of length n. 

Definition of a Password Finding Circuit Family. A password finding circuit family 
for g is a family A = {A.: n ~ I}, where I is an infinite subset of N and, for each 
n ~ 1, A, is a Boolean circuit with n input bits and l(n) output bits. The success 
probability of An is the probability that A. outputs a y such that g"(y) = 9"(x) on 
input g"(x), where x ~ {0, 1} zt") is randomly chosen. There are two constants s and 
c such that, for all n e I, the size of A, is at most n s and the success probability of 
A, is at least 1/n ~. 

Security Definition. A password scheme g is secure if there is no password finding 
circuit family for g. 

Comment. Informally, we want the security of g to reflect the fact that no 
polynomial-size family of circuits, given the encryptions of a polynomial number 
of randomly chosen passwords, can produce even one password which has the same 
encryption as one of the given encryptions. It can be easily shown that if g is secure 
in the sense defined above, then 9 is secure in the following alternative sense of 
security, which reflects this informal notion of security. A password scheme g is 
secure if, for all functions b: N ~-~ N such that b(n) is upper bounded by a polynomial 
in n, there is no polynomial-size family of Boolean circuits which, for infinitely many 
values of n ~ N, on input b(n) encryptions g"(x 1) . . . . .  9"(xb<.)) of randomly chosen 
passwords xl . . . . .  xbt.~ ~ {0, 1} ") ,  produces an output y such that 9"(Y) = 9"(xi) for 
some i = 1 . . . . .  b(n) with probability greater than 1/n ~ for some constant c > O. 

UNiX-like Password Scheme. Let f be a function generator with key length 
function I. The UNIX-like password scheme for f is a password scheme g with 
password length function l, where for each n ~ N the encryption g"(x) of a password 
x ~ {0, 1} z~") is fx(O"). 

4. The Main Theorem 

Theorem. I f  f is a pseudorandom function generator with key length function t 
such that l(n) < n + d log n for some constant d and for all sufficiently large n ~ N, 
then the UNIX-like password scheme g for f is secure. 

Proof. We assume for contradiction that the password scheme e is not  secure. 
Thus, there is a password finding circuit family A = {A,: n ~ 1} for g. Let c be the 
success probability constant associated with A. For each n E I, let e(n) > 1/n c be the 
success probability for A,. We show how to construct from A a distinguishing circuit 
family C = {C,: n ~ J} for f ,  where J is an infinite subset o f / .  

For  each n ~ I, define e'(n) to be the probability that A. outpu ~ y ~ {0, 1} ""~ such 
that g"(y) = z when the input to A, is a randomly chosen z ~ {0, 1} ". Intuitively, 
e'(n) is equal to e(n) if the distribution g"(x) = f~(0"), defined by randomly choosing 
a password x ~ (0, 1} ~t"), is uniform on {0, 1} ~. For  each n ~ I, we consider two cases: 
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Case I: e'(n) < e(n)/2. In this case e(n) - e'(n) > 1/2n ~. T h e  idea in this case is that 
C n distinguishes fn  from F n due to the fact that the distribution fl(0n), defined by 
randomly choosing a password x • {0, 1} t(n) and setting f~ = f~, is not the uniform 
distribution on {0, 1 }n, whereas the distribution f i  ((P), defined by randomly choos- 
ingf~ • F n, is the uniform distribution on {0, 1} n. Moreover, An is used to distinguish 
between these two distributions. The Boolean oracle circuit Cn is defined as follows: 

Circuit Cn. There is one oracle gate in Cn, which is to be evaluated using a 
function denoted f l .  The input to the oracle gate is 0 n. Let z denote the output of 
the oracle gate. Cn simulates An on input z and the simulation produces an output 
y. Circuit Cn computes e = fy(0n). If z = e, then Cn outputs 1, otherwise Cn outputs 
0. 

If x is randomly chosen from {0, 1} ~tn) and f l  = fx, then the probability that C n 
outputs 1 is e(n). On the other hand, if f l  is randomly chosen from F n, then the 
probability that C outputs 1 is e'(n). Thus, the distinguishing probability of Cn is at 
least ~(n) - ~'(n) > 1/2n ~. 

Case 2: e'(n) > e(n)/2. In this case e'(n) > 1/2n c. The Boolean oracle circuit Cn is 
defined as follows: 

Circuit Cn. There are two oracle gates in Cn, one with input 0 n and output z and 
the other with input 1 n and output z' (any fixed input different than 0 n for the second 
oracle gate suffices), which are to be evaluated with the same function denoted f l .  
Circuit Cn simulates An on input z and the simulation produces an output y. Then 
Cn computes fy(1 n) and outputs 1 if this is equal to z' and 0 otherwise. 

As we prove in the claim below, because of the length restriction on passwords 
(l(n) < n + d log n), if f l  is chosen by randomly choosing x • {0, 1) ltn) and setting 
f l  = fx, then, with probability at least 1/2n c÷a, y = x. If y = x, then it is also the 
case that fy(1 n) = fl(1 n) = z', in which case Cn outputs 1. On the other hand, i f f i  
is chosen randomly from F n, then z = fi((P) and z' = fl(1 n) are independent and 
uniformly distributed in {0, i} n. Thus, independent of the value y produced by An 
on input z, it is only with probability i/2 n that fy(1 n) = z' and Cn outputs i. Thus, Cn 
distinguishes between F n and fn  with probability at least 1/2n c÷d - 1/2 n > 1/4n c+d 
for sufficiently large n. 

Claim. When x • {0, 1} z(n) is randomly chosen, then the probability that An on input 
z = fx((P) outputs a y such that y = x is at least 1/2n c+a. 

Proof of Claim. Let S be the set of strings x e {0, 1} z~"~ such that A, on input 
z = fx(0") outputs y such that y = x. Then ISI/2 "n~ is the probability in question. Let 
M be the set of strings z • {0, 1}" such that An on input z outputs a y such that 
fy(0 n) = z. Thus, for each z • M, An on input z outputs a unique y e S, and every 
y • S is the output of An for some z • M. Thus, An defines a one-to-one onto map 
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from M to S and ISI = IMt. Clearly, IMI/2 ~ = e'(n). Thus, since l(n) < n + d log n, 

ISI tMI> e'(n) 1 
2ltn ) = ~ - 2~-7%-~-og~ > 2n¢÷---- 7 .  [] 

From Case 1 and Case 2 it is easy to see that there is an imqnite J _q I such that, 
for all n ~ J, C~ distinguishes f~  from F n with probability at least 1/4n c+d. Thus, the 
function generator f is not pseudorandom. [] 

Comment. There is another definition of security where "probabilistic polynomial- 
time algorithm" is substituted for "polynomial-size family of circuits" in the defini- 
tion. Our theorem is true (using a similar proof) with respect to this definition 
when "probabilistic polynomial-time algorithm" is substituted for "polynomial-size 
family of circuits" in the definition of pseudorandom function generator. 

5. The Password Should Not Be Too Long 

In this section we give examples which show that the theorem proved in the previous 
section is the strongest general theorem possible with respect to the length of the 
password and the encryption of the password. Our first example shows why a 
pseudorandom function generator with a long key length cannot necessarily be used 
to produce a secure UNIX-like password scheme. The second example, which is a 
very practical example, demonstrates that a cryptosystem which we (and some other 
cryptographers) believe to be even more secure than DES when used as a private 
key block cryptosystem is totally insecure when used as a UNIX-like password 
scheme. 

Example 1. Let f be a pseudorandom function generator with key length l, where, 
for all n e N ,  l(n) = n. We define a function generator g in terms o f f  as follows. The 
key length function for g is l', where, for all n ~ N ,  l'(n) = n + log2n. (Any function 
h(n) such that 2 h~n) is not upper bounded by a polynomial in n can be substituted 
for log 2 n.) For each n ~ N, let x be a string of length l'(n), which is the concatenation 
of a string x I of length log 2 n and a string x 2 of length n. For all strings ct ~ On of 
length n, gx(~) = fx2(~). Define g~(tY') to be f~((P) if x 1 ~ 01°~2n and to be x2 if 
xl = 0 ~°82~. It is not hard to prove that g is pseudorandom, because the only time 
g is any different than f is in the event that xl just happens to be equal to 0 ~°g2n, 
which only happens with the tiny probability 1/n ~°~ ~. On the other hand, if g is used 
in a UNIX-like password scheme, then the resulting password scheme is totally 
insecure. To see this, note that for any encrypted password y of length n, the 
password consisting of 0 ~°~2" concatenated with y always encrypts to y. 

Example 2. The key for DES is 56 bits long. This key is expanded in a predeter- 
mined way into 16 keys each of length 48, and the 16 keys are used in the 16 levels 
ofencryption in DES. Let MDES (mnemonic for Modified Data Encryption Stan- 
dard) be the same as DES except that it uses 16 independent keys of length 48, and 
these 16 keys are used in the 16 levels of DES, i.e., MDES can be thought of as fxl, 
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composed with f ~ ,  composed wi th . . ,  composed with f~,, where x 1 . . . .  , x16 are 16 
independently chosen keys each of length 48 and fx, is a very simple function. We 
believe that MDES is at least as secure as DES when used in a block private key 
cryptosystem. On the other hand, it is easy to see that if MDES is used in a 
UNIX-like password scheme, then the resulting password scheme is totally insecure. 
To see this, suppose that we want to find a password which encrypts to a particular 
string y of length 64. Let yl  be the first half of y and let Y2 be the second half of y. 
The password is chosen by first choosing xt  . . . . .  x14 arbitrarily. Let the output  of 
f~l, composed wi th . . ,  composed with f~, on input 064 be s, where s is a bit string 
of length 64. Let u be the output of fq,(s)  and let u~ be the left half of u and u 2 be 
the right half of u. Let v be the output  of f~6(u) and let v 1 be the left half of v and 
v2 be the right half of v. By the way MDES works, the left half of the final output  at 
level 16 is simply the right half of the output  at level 15, i.e., vx = u2. Thus, our first 
task is, given an arbitrary s, fix x15 so that y~ = v~ = u 2. Our second task is, given 
an arbitrary u, fix x16 so that Y2 = v2. Both of these tasks are of the same type, i.e., 
given an arbitrary bit string ~ of length 64 and an arbitrary bit string fl of length 
32, find an x of length 48 such that the right half of fx(a) is equal to ft. This turns 
out to be a straightforward task for the simple functions defined by MDES. 

6. Additional Results and Observations 

What if f is a pseudorandom function generator, but l(n) is too large, so that our 
theorem does not apply? We can still obtain a secure password scheme as follows: 
let re(n) = [l(n)/n] and, for password x, store in the password file f~"(al), f~"(az) . . . . .  
f~"(~m~,j) where al,  az . . . . .  a,,~,) are re(n) fixed distinct strings in {0, 1}". This can be 
proven secure using ideas similar to the ones used in the proof of the main theorem. 
In fact, this construction works as long as m is any function that satisfies, for some 
constant d and for all sufficiently large n, l(n) < n. re(n) + d log n. 

Now let us assume that f and I satisfy the conditions of the main theorem. What 
about alternative password schemes? The following password scheme can also be 
shown to be secure. For password x, a random string a is chosen and the pair 
(7, f,(~)) is stored in the password file. However, consider the following password 
scheme where l(n) = n. For password x, f~(x)  is stored in the password file. It can 
be shown (by techniques similar to those used in Example 1 above) that, even i f f  
is a pseudorandom function generator, this password scheme may be very insecure. 
The point of these examples is to emphasize further that the blind application of 
crytographic tools in situations where they are seemingly secure, but have not been 
proven secure, is dangerous. 

Lastly we raise the well-known point that, contrary to our implicit assumptions, 
passwords are not chosen randomly in practice. We therefore have to model how 
users really choose passwords. Any version of our main theorem which we can prove 
under an alternative probability distribution assumption about the choice of pass- 
words (alternative to the assumption that passwords are chosen uniformly at 
random) will involve f being pseudorandom when keys are chosen according to 
this alternative probability distribution. 
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