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Phytoplankton community was analyzed for seasonal and vertical 

distribution in Lake Fayetteville. This northwest Arkansas reservoir 

maintains a stable water level and chemical input with a relatively 

constant, slow overflow. Its source is groundwater seepage through a 

calcareous substrate with little contribution from the limited drainage 

basin. Phytoplankton community development with its associations and 

assemblages, chlorophylls -a, -b and c, and biomass distribution are 

described. The seasonal cycles of the chemical parameters NH4-N, NO2-N, 

NO3-N, ortho-phosphate, silicon, pH, HCO3- and total-alkalinity plus 

oxygen are described and discussed. The physical parameters of 

temperature, light and climate are included. The interaction of these 

parameters and other factors are related to phytoplankton dynamics.

Analysis of the phytoplankton data indicates the presence of four 

distinct structural regimes. Intermediate populations intergrade between 

the regimes. The winter regime is dominated by a diatom-association which 

includes a well developed phytomonad component. A transition flora of 

green algae and chrysomonads occur in the spring prior to stratification. 

The chrysophycean-association ends abruptly with the spring regime. The 

spring regime or Aphanizomenon-association is characterized by 

Aphanizomenon, Microcystis, and Coleosphaerium. This association gradually 

intergrades into the summer flora. The sunnier period contains three 

vertical components: green algae occupy the epilimnetic zone while 

cryptomonads and euglenoids dominate the metalimnetic zone. Oscillatoria 
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and Merismopedia populations develop in the hypolimnetic zone. These 

blue-green algae, plus euglenoids, migrate to the upper waters with 

destratification and become the principal component in the fall or 

cyanophycean-association. Merismopedia gradually disappears from 

the hypolimnion prior to destratification. The transition period 

between fall and winter regimes occurs during destratification with 

the development of a green algal flora similar to the winter-spring 

transition.

Certain phytoplanktors, their development and distribution correspond 

to temperature profiles. Thermal stratification and associated 

physico-chemical parameters are important in the development of specific 

populations, while certain other phytoplanktors are limited by chemical 

factors. Chlorophyll-a, -b and -c levels are related to the 

phytoplankton community composition and concentration. Biomass data 

corresponds to the distribution and number of phytoplanktors while 

oxygen is related to the metabolic balance between photosynthesis and 

respiration. The relationship between each of the chemical parameters 

and phytoplankton association is discussed. Particular attention is 

given to limiting factors, eg. silicon, and also the role of nitrogen 

and phosphorus based ions.

DESCRIPTORS: Phytoplankton, Algae, Diatoms, Aphanizomenon, Oscillatoria 
Cyanophyta, Cryptophyta, Chrysophyta, Oxygen, Temperature, Nitrogen, 
Phosphorus, Silicon, pH, Annual Cycles, Productivity, Arkansas

IDENTIFIERS: Phytoplankton, Algae, Water Chemistry, Reservoirs, Productivity, 
Ecology, Eutrophication, Limnology

vi



A STUDY OF PHYTOPLANKTON DYNAMICS IN LAKE FAYETTEVILLE 

AS A MEANS OF ASSESSING WATER QUALITY

INTRODUCTION

Linear relationships between increase in fresh weight, chlorophyll 

and production rate during the spring phytoplankton pulse have been 

described by Rodhe, et al (1958) for Lake Erken, Sweden. Later studies 

on the same lake by Neuwerk (1963) and Pechlaner (1970) provide informa­

tion of community structure and production. Few studies, however, have 

analyzed the total phytoplankton complement with regard to the qualita­

tive, quantitative and spatial aspects. Research on Lake Fayetteville 

describes the seasonal distribution, succession of major associations, 

and community composition of the phytoplankton in relation to certain 

physico-chemical parameters. In addition to biomass, a detailed analysis 

of the biochromes, chlorophyll-a, -b and -c, are employed to describe 

the vertical and spatial distribution of the phytoplanktors.

The reservoir, Lake Fayetteville, Fayetteville, Washington County, 

Arkansas was previously studied by Hulsey (1956) in its first year of 

impoundment and Browne (1967) after fifteen years. Hulsey's study 

recorded the initial chemical, physical and biological features of 

Lake Fayetteville and noted the presence of various algal genera. Lake 

Fayetteville is a moderately eutrophic reservoir in the Ozark highlands 

of northwestern Arkansas, lying about 380 m above sea level. The lake 

covers an area of approximately 420 ha., with a maximum depth of 10.5 m 

and a mean depth of 4.3 m. At maximum capacity the lake contains about 

3 x 106 m3 of water. Its primary source is ground water seepage, springs 
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and two small vernal streams (fig. 1). The reservoir maintains a stable 

water level and chemical input with relatively constant, slow overflow. 

Intermittently, the reservoir will be drawn down about 1 m for municipal 

water use. The underlying geological strata are calcareous with an over­

lay of mix clay and broken sandstone. Detailed lake morphometry and 

drainage basin structure are recorded by Hulsey (1956).

A two year analysis of the phytoplankton composition and the 

succession of regimes is given in this report. Selected factors related 

to the succession of phytoplankton regimes are examined. The data 

obtained from this study suggests a simple methodology by which the 

composition, size of the standing crop and its photosynthetic potential 

can be determined. Prior methods of analyzing the phytoplankton popula­

tion by indices and quotients are compared to a more detailed sampling 

program. In addition, this study suggests that certain organisms, 

representing different seasonal regimes, could be selected as "indicators." 

These indicator or marker organisms might be utilized for more intensive 

studies as to their physiological requirements and tolerances with respect 

to water quality and productivity.

A detailed analysis of the data will be presented in the Ph.D. Thesis 

of J. H. Wheeler, the graduate assistant working on this project. 

However, this report presents a summary of the seasonal trends and the 

interrelationship between certain physico-chemical parameters and 

phytoplankton distribution. A review of the applicability of phyto­

plankton and compound phytoplankton quotients (Nygaard, 1949) is 

discussed. These indicator quotients as well as selected organisms, 

i.e. Desmidiaceae (Brook, 1965), diatoms (Patrick, 1948), others 

recommended by Rawson (1956) are considered with regard to their ability 

to reflect the eutrophic state of reservoirs.
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MATERIALS AND METHODS

After exploratory sampling, a single representative collection 

site was selected. Vertical samples were collected at meter intervals 

with a 2.2 liter polyvinylchloride kemmerer water bottle (Wildlife 

Supply Co.). One liter samples were contained in amber polyethylene 

bottles, immediately stored in a cold thermal chest and within one hour 

either filtered or retained at 4°. Retention time was less than 12 

hours. Measurements were made weekly during the first year and bi­

weekly during the second year. The remainder was used for phyto­

plankton identification.

Sample aliquots were fixed and preserved with "Volvox" (Cave & 

Pocock, 1956) or "M3" fixative immediately upon collection. The 
 

formula for the newly developed M3 fixative is as follows:

1 g I2 
0.5 g KI 

5 ml Glacial Acetic Acid 
25 ml Formalin 

100 ml Water

This fixative preserves cytological detail and precipitates blue-green 

algae. The flagella are retained, starch is stained and cell dimensions 

are not significantly altered. All blue-green algae, also bacteria, 

sink, including those with pseudovacuoles; a particularily important 

feature if sedimentation techniques are to be employed. The specimens 

can be used for cytological study even after storage at room temperature 

for greater than 5 years. Long storage time results in the loss of the 

yellow iodine tint, however the positive starch reaction is retained.

Oxygen was measured polarigraphically with a calibrated YSI Model 

54 Oxygen Meter. All readings were corrected for altitude and tempera­
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ture. Temperatures were obtained from the thermister readout on the 

instrument. Light readings were determined with a Secchi disc. Alka­

linity was determined by using 0.02 N sulfuric acid titrated to pH 8.3 

and 4.3 with a Corning Model 7 pH meter (APHA, 1965). Biomass was deter­

mined by filtration of a known sample volume through dry preweighed and 

reweighed Millipore HA membrane filters; zooplankton were removed after 

filtration. The membranes were dried in a vacuum desiccator. The 

filtered water was retained for chemical analysis. Chemical determina­

tions were performed with a Bauch and Lomb Spectronic 70 spectrophoto­

meter. The analysis procedures were as follows: Ammonia-nitrogen with 

Nessler's reagent, nitrite-nitrogen using NitriVer* powder, nitrate­

nitrogen with NitraVer* powder, ortho-phosphate with stannous chloride 

method, and silicon by the molybdosilicate method. Plastic ware was 

used for silicon analysis, since a significant level of contamination 

was noted when using glassware.

Biochrome analysis procedures were similar to those of Richards 

with Thompson (1952) except that Whatman GF/A glass filter discs were 

employed. The filtrate was immediately lyphalized to retard pigment 

degradation. The filter was eluted for at least 12 hours in cold 90% 

Acetone and the extract analyzed with a Perkin-Elmer 202 dual-beam 

recording spectrophotometer. Chlorophyll concentrations were calculated 

with the trichrometric equations of Parsons and Strickland (1963).

The phytoplankton was identified from a 1 liter concentrate and a 

vertical tow sample. One liter of the collection was filtered through 

a 25 mesh plankton net. A species inventory was prepared for each depth 

and the integrated vertical sample. These determinations were made

*Available from Hach Chemical Co., Ames, Iowa
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with a Zeiss Photoscope II. Phytoplankton counts were made from the 

fixed samples via the sedimentation technique of Utermohl (1958) and 

a Wild inverted microscope.

RESULTS

The descriptions and conclusions are based upon data from 

approximately 700 sampling points taken between March 1969 and March 

1971. A detailed presentation of the interrelationships between tem­

perature, oxygen, biochromes, biomass and phytoplankton distribution 

has previously been presented by Meyer (1971a) for the first year of 

this study. Meyer (1969, 1971b) and Meyer, et al (1971) present an 

inventory of the algae from Lake Fayetteville and other aquatic sys­

tems. These authors include algae from the epiphytic, epi lithic, 

epipelic, neustonic, and metaphytic subcommunities, as well as, the 

euplanktonic subcommunity.

Lake Fayetteville is a dimictic temperate lake (fig. 2) with thermal 

stratification beginning in April and destratification in November. An 

inverse stratification may develop under the ice, ie. January 2, 1970, 

with a minimum of 2.8° immediately under the ice and a bottom tempera­

ture of 3.7°. The lake is ice free by mid- to late-February. Slight 

warming of the entire water column occurs during March. Stratification 

develops rapidly; in early April the temperature difference in the ten 

meter water column is only 1.5° but by mid-April the difference has 

increased to 7.6 - 7.8°. A thermocline is well developed between 4 

and 5 m in mid-April. By mid-July the water attains a maximum surface 

temperature of 32 - 35+°. The bottom water temperature during the 

period rapidly raised to 12° where it remains most of the summer. This
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lower region attains its maximum (13.8 - 14.8°) during destratifica­

tion. Destratification proceeds slowly from mid-September through early 

November. Near isothermal conditions are developed by late November at 

a temperature of approximately 11°. True isothermal conditions are 

established by mid-December with a vertical profile of 5.2°.

Slight differences can be observed in the rate of destratification 

between years 1969 and 1970. The mild autumnal weather of 1969 result­

ed in a gradual heat loss. The extended summer of 1970 plus cool 

autumn produced a delayed destratification and a more rapid heat loss. 

This resulted in a 14° change in the epilimnion between 15 September and 

15 October, as well as intrusion of warm water at greater depths. The 

bottom temperature reached a higher level in 1970 (14.8°) than in 1969 

(13.0°). The 1970 maximum was temporary incursion of warmer upper waters.

Annual oxygen isopleths (fig. 3) closely follow the thermal 

gradients with certain modifications. March and April profiles are 

essentially of the orthograde type with concentrations 11± 0.6 mg/1. 

A well established clinograde distribution is present during the 

thermally stratified summer period. Oxygen maximum occurs during the 

spring phytoplankton bloom of Aphanizomenon where concentrations as 

great as 25.4 mg/1 were recorded in 1969. A lower maximum of 13 mg/1 

was recorded during the spring bloom of 1970. This lower maximum 

demonstrates the effect of several late winter storms disrupting the 

bloom. Following its growth burst, the Aphanizomenon-association rains 

down into the upper metalimnion. This decaying population depresses 

the metalimnetic oxygen levels from June until September or October. 

A well developed oxygen gradient is present during the summer strati­

fication period. Gradients of 9 mg/1 are detectable between the 3

8



Figure 3. 
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and 4 m levels. Oxygen is undetectable in hypolimnetic waters and the 

odor of hydrogen sulfide is clearly evident. An oxygen peak of 11.2 - 

11.3 mg/1 is present during the autumnal phytoplankton burst. With 

destratification the oxygen concentration is nearly constant throughout 

the water column. The oxygen level drops to about 7.5 - 8.0 mg/1 

after destratification before it gradually rises to its winter maximum 

of 11 ± .4 mg/1. The winter maximum occurs immediately prior to freeze- 

over. Depression of oxygen concentration was observed under the ice 

and snow cover from January until March, 1970. The ice was thin and 

lacked snow cover in 1971 and therefore had little effect on the oxygen 

concentration. Complete mixing occurred after the ice cover disappeared 

with oxygen returning to the previous concentrations. The annual 

oxygen distribution is seen to be of the orthograde type during the 

spring with a transition to clinograde during thermal stratification. 

This configuration remains until destratification at which time the 

oxygen distribution returns to an orthograde configuration.

The pH profiles in Lake Fayetteville reflect the effects of photo­

synthetic activity, respiration, the chemical input by the water supply 

and the complex chemical events affecting various ions. The pH range 

observed during this study was from a minimum of 7.1 to a maximum of 

9.1, both the minimum and maximum occuring during the summer. The 

calcareous nature of the substratum and ground water as the major aquifer 

is, reflected in the pH values. As expected the highest pH values occur 

during spring and autumnal phytoplankton blooms due to the photosyn­

thetic removal of carbon dioxide. The vertical distribution of pH 

(fig. 4) corresponds with thermal events and the development of phyto­

plankton associations. During thermal destratification the pH profiles

10
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are nearly vertical with a mean pH of 7.7 ± 0.1. With the fallout of 

the winter phytoplankton (diatoms) population there is a slight bacter­

ial activity. The pH gradually rises to a peak during the spring 

Aphanizomenon bloom. This maximum certainly is due to carbon dioxide 

uptake by photosynthetic activity. This effect of the bloom is more 

evident in 1969 than in 1970. The percipitous decline of this bloom 

and the parallel increase bacterial respiration result in a sharp 

decrease in pH from 9.2 to 7.5. The lowered pH extends from May through 

the sunnier. The pH continues to decrease in late summer, reaching a 

minimum of 7.1 immediately prior to destratification. The decreased 

pH is probably due to anaerobic respiration by bacteria and blue-green 

algae. With destratification, the bottom water and flora are brought 

into the photic zone where there is a temporary autumnal burst of 

algae. This rapid growth is reflected in increase of pH, again through 

the uptake of carbon dioxide. With decreasing photoperiod and incident 

light there is a net reduction in photosynthesis. The reduced photo­

synthesis and greater solubility of carbon dioxide in cold water have 

the net effect of gradually decreasing the pH under the ice. However, 

there may be a sharp rise in pH prior to ice cover development because 

of the activity of the dense winter diatom population. The phyto­

plankton population and its photosynthetic activities, plus the 

respiratory activities of the bacteria, appear to be important factors 

in influencing pH. Employing Abreg and Rodhe (1942) terminology, the 

pH profiles can be described as orthograde during the spring with a 

transition to clinograde during thermal stratification. The clinograde 

profiles remain until autumnal destratification, at which time the 

profiles return to an orthograde configuration. The pH profiles closely

12



fit those of oxygen demonstrating an obvious relationship between 

oxygen evolution and removal of carbon dioxide through photosynthesis.

Total alkalinity (fig. 5) date reflects major changes in photo­

synthetic and respiratory activities within the ecosystem. Minimum 

total alkalinities are reached during blooms of algae as a result of 

carbon dioxide and bicarbonate ion uptake. The minimums 24 and 38 mg/1 

as CaCO3 were detected during the fall blooms in 1969 and 1970 respec­

tively. The total alkalinity remained relatively low in the epi lim­

netic zone during the summer. In the hypolimnion a gradual increase 

is noted, with the maximum of 141 - 155 mg CaCO3 mg/1 being attained 

immediately before destratification. The metalimnion is a transition 

zone reflecting a region of compensation between photosynthesis and 

respiration. During the destratified winter period the total alkalinity 

values are typically of the orthograde type. The slightly higher winter 

value of 1969 as compared with 1970 reflects decreased photosynthetic 

activity due to the longer, thicker ice and snow cover. Minor differ­

ences are noted between the two sample years, reflecting the range in 

variation from one year to the next; however, the basic patterns remain.

"Phenolphthalein" alkalinity (fig. 6) was measured in 1970. Only 

during the spring, summer and fall was there sufficient photosynthetic 

activity to raise the pH above 8.3. The spring algal burst, with its 

dense concentrations of Aphanizomenon, caused the "p" alkalinity maxi­

mum of 24 mg CaCO3/l. With the die-off of the spring algal bloom "p" 

alkalinity rapidly decreased. The summer algal flora was photosynthe­

tically active in the uptake of carbon dioxide. The shift in CO2 - 

HCO-3 - CO-3 balance results in a gradual increase of "p" alkalinity. A 

second, but lower, maximum occurred during the autumnal blue-green algal

13
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peaks. It should be noted that all of the "p' alkalinity values are 

recorded from the upper 3 - 4 m of the water column. This, of course, 

reflects effects of insolation and the interrelations between photo­

synthesis and respiration.

Ammonia-nitrogen (fig. 7) varies markedly from undetectable amounts 

in the summer epilimnion to 16.1 mg/1 in the hypolimnion. At vernal and 

autumnal circulation and, also winter periods, the ammonia-nitrogen is 

very low, 1 ± 0.5 mg/1. As summer stratification develops ammonia may 

disappear from the epilimnion and accumulate in the anaerobic hypolimnion. 

The accumulation is the result of bacterial and blue-green algae activity 

on debris. This concentration decreases immediately upon destratifica­

tion.

Nitrite-nitrogen, as shown in figure 8, is present in signficant 

concentrations only after the die-off of the spring Aphanizomenon bloom; 

the buildup occurs in the anaerobic bottom water. This accumulation 

parallels an observed increase in the number of bacteria. A maximum of 

0.064 ug/1 is recorded within the debris rain. The nitrite found in the 

summer surface waters and from November through February is the result 

of the phytoplankton activity. These maxima are much lower than the 

hypolimnetic peak, approximately 1/4 - 1/5 as great. Syrett (1962) 

reports that diatoms and green algae are capable of reducing nitrate 

to nitrite in unpolluted, well oxygenated waters. The observed increase 

during the winter diatom regime substantiate Hutchinson's (1967) 

conclusions that it is reasonable to expect minute amounts of nitrite to 

occur in unpolluted and oxygenated waters.

Nitrate-nitrogen (fig. 9) profiles do not disclose patterns of 

stratification. Only during the month of May, 1969, are any zones of
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concentration observable. The nitrate-nitrogen profiles are nearly 

vertical throughout most of the year. The maximum concentration of 

1.77 mg NO3-N/l was associated with the debris rain from the unusually 

large Aphanizomenon bloom. A concentration of 1.30 - 1.60 mg NO3-N 

is typical immediately after ice-out and the winter diatom die-off. 

The nitrate concentration is reduced approximately 0.25 mg/1 during 

the development of the intense spring blue-green algal burst. This 

dying population however, contributes to increased levels in the 

hyoplimnion. Following the blue-green burst there is a dramatic de­

crease in nitrate, down to 0.11 mg/1. The nitrate remains at these 

low levels until destratification. Beginning with destratification 

there is an immediate doubling of the nitrate concentration. The 

nitrate concentration increases rapidly until the winter regimen is 

established. During the winter regimen there is little net increase 

of nitrate, only minor flucuation. There may be a minor increase in 

nitrate level under the ice but usually the observed concentrations are 

nearly the same prior to, during and immediately after ice formation. 

The nitrate annual cycle is unique, in that it lacks expected strati­

fication. Specific areas of concentration are more probably related 

to bacterial action as noted in the nitrites. A comparison of nitrate­

nitrogen and phytoplankton distributions suggest that green algae are 

the principal organisms responsible for the uptake of this nitrogen 

source. There appears to be little relationship between nitrate-n 

nitrogen utilization and blue-green algae.

The annual orthophosphate distribution (fig. 10) is quite different 

from that of other chemical constituents. Trace levels are detected in 

March and under the ice cover. Typically there is a net increase during
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April and May with maximum surface concentration in June of approxi­

mately 0.05 - 0.06 mg/1. Maxima ten times greater, 0.56 - 0.68 mg/l, 

are recorded from the anaerobic bottom waters. These maxima are asso­

ciated with the debris rain from the vernal blue-green algal bloom. The 

maxima appear to support large bacterial populations. During the summer 

there is a gradual decline to a minimum of about 0.0. - 0.02 mg/1. Iso­

lated islands of higher concentrations can be found during this period. 

These islands accompany certain algal-bacteria associations. With de­

stratification a sharp rise in ortho-phosphate can be noted, ie. up to 

0.15 mg/1. This autumnal maximum gradually disappears with the develop­

ment of the winter diatom population. Ortho-phosphate decreases to 

trace levels under the cover of ice. At the ice-water interface concen­

trations as great as 0.14 mg/1 have been observed. The high concentra­

tions are due to lysis of diatoms in contact with the ice. The contact 

probably results in freezing and rupturing of the cells.

The distribution of silicon (fig. 11) appears to be intimately 

associated with its utilization by diatoms and, also, thermal phenomena. 

The minimum concentrations of silicon, below detectable amounts, are 

noted after the winter diatom regime in March and April. The dying 

population releases some silicon and the level again rises. A popula­

tion of silicon metabolizing chrysophycean algae develops which reduces 

the silicon concentration to trace levels. Figure 11 indicates, with a 

dotted line, the 0.3 mg/1 isopleth at which silicon may be considered 

as limiting. This level is similar to that observed by Jorgensen (1957) 

in his study of Lakes Fureso and Lyngby So. Silicon levels remain quite 

low during most of the summer in the epilimnion and metalimnion. How­

ever, in the hypolimnion silicon accumulates up to 8.30 mg/1. The
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enriched hypolimnetic strata are thoroughly mixed with the upper layers 

during autumnal destratification resulting in 8.8 - 4.7 mg Si/1 evenly 

distributed throughout the water column in October or November. This 

silicon is rapidly utilized by the developing winter diatom population. 

There is a precipitous decline to about 0.4 mg Si/1 prior to icing. With 

the advent of freezing over the silicon levels recover temporarily before 

gradually reducing under the ice cover. The recovery is associated with 

the die-off of certain diatom species in the early winter. The silicon 

cycle has a single mode which occurs in conjunction with destratifica­

tion. The peak is rapidly reduced with the winter diatom bloom to trace 

levels. The minimum slowly increases during the spring and summer to a 

peak in the hypolimnion. This later concentration is distributed 

throughout the water column at turnover. The concentration ranges from 

trace or undetectable levels to 8.3 mg Si/1.

Biomass measurements (fig.112) aid in assessing the quantity and 

distribution of phytoplanktons. A review of biomass profiles between 

years 1969-1970 and 1970-1971 shows the impact of variations in weather 

on a year to year basis. The effect of violent storms or sustained 

windy conditions may cause a mixing of the upper few meters of the water 

column and result in a dispersed population. Typically this type of 

weather usually has intense cloud cover associated with it. The calm 

weather of March, 1969, provided conditions for a bulk fall-out of the 

winter diatom population, whereas the more turbulant conditions of 

March, 1970, produced a more even rain of diatom debris. With onset of 

stratification in 1969 the diatom association began to settle and 

temporarily accumulated in the region of the developing thermocline 

before it precipitously fell to the lake sediments. The variation in
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the biomass profiles of the Aphanizomenon bloom in May, 1969, and May, 

1970, reflects difference in weather patterns. Late April and early 

May of 1969 were marked by warm, cloudless days interspersed with a few 

mild spring showers. In contrast April and May of 1970 were noted for 

intense, sullen weather which included extended periods of heavy cloud 

cover and strong winds. The biomass of the blue-green algal bloom in 1969 

remained compacted and near the surface with components falling out or 

floating to the surface when it dissapated. In 1970 the population was 

evenly dispersed in the upper layers with only minor concentration in 

mid-water. These events are reflected in the maxima and its vertical 

distribution profiles. In 1969, the bloom developed a maximum concentra­

tion of 33 mg/1 at 2 meters, and decreased to 20 mg/1 at both 1 and 3 

meters, while only 6 mg/1 occurred at the surface. The 1970 more homogenous 

bloom contained 10 mg/1 at the surface, 13 mg/1 at 1 meter and 17-18 mg/1 

from 2 to 6 meters. Portions of this Aphanizomenon-association float to 

the surface, of. late May to early June, 1969, but the major fraction 

settles to the metalimnion where it disperses. Concomitant with summer 

stratification several isolated associations are evident. The epi limnetic 

waters contain a relatively low level stable biomass of 5 - 2 mg/1. However 

distinct populations are noted in the metalimnion and hypolimnion. The 

metalimnetic zone contains a succession of populations. This succession 

is probably related to the utilization of large quantities of organic 

matter injected into the metalimnion by the decomposing Aphanizomenon- 

association. The metalimnetic associations usually reach maxima of 

about 20 mg/1 against a background of 10 mg/1. These associations are 

short lived and probably reflect rapid changes in the composition of the 

organic debris resting at the metalimnion. In the hypolimnetic zone a
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gradually increasing biomass develops during the summer which then declines 

until September. This hypolimnetic biomass attains a maximum of 16 - 

17 mg/1 but much of this increase is due to the accumulation of debris. 

Microscopic and pigment examinations indicate a paucity of living photo­

synthetic organisms. A second hypolimnetic maximum of greater magnitude 

is reached in October with maximum concentrations as great as 38 mg/1. 

This increase in biomass is the result of the development of a Merismo­

pedia-association. At the onset of destratification the Merismopedia­- 

association extends into the metalimnetic zone and a portion may be 

transported to the surface. Destratification typically occurs in late 

October or early November. Certain components from the admixture of 

epi-, meta- and hypolimnetic floras grow rapidly to produce the temproary 

autumnal phytoplankton peak — the Oscillatoria-association. This Oscilla­

toria-association may attain concentrations as great as 15 mg/1 in the 

surface layers. With complete destratification this association quickly 

dissipates with a parallel decrease in biomass. The winter regime 

supports a low biomass, 6-10 mg/1, with diatoms as the chief component. 

The diatom-association remains at a minimum until the lake is ice free. 

With increasing spring temperature this association reaches its maximum. 

The biomass data suggests four distinct regimes; a slowly developing 

winter regime reaching a maximum in March; a spring bloom in May and a 

stable, stratified summer regime terminated by a burst of blue-green 

algae in the fall before returning to the winter condition.

The incidence and concentration of the various biochromes provide 

a means of identifying seasonal distributions of phytoplankton regimes 

and association structure. These biochromes have quantitative as well 

as qualitative value. Chlorophyll-a is common to all photosynthetic 

organisms while chlorophylls-b and -c are limited to certain taxa (Bo-
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gorad, 1962). Chlorophyll-b is present in the Chlorophyta as well as 

the Euglenophyta. Certain of the Chrysophyceae and Bacillaricophyceae 

contain Chlorophyll-c. This latter biochrome has also been reported for 

the Cryptophyceae by Haxo and Forks (1959), Jeffrey (1969) and others. 

Analysis of these pigments and their distributional pattern provides a 

technique for describing the contribution of specific phytoplankton taxa 

in the aquatic ecosystem. The technique supplies information for de­

scribing community structure of the standing crop, the recognition of 

major regimes and successional events within the phytoplankton compliment. 

The succession of regimes is recognizable and frequently dynamic events 

within regimes are recognizable. Primary production can be assessed when 

this technique is used in conjunction with the oxygen data. Particular 

attention should be given to Chlorophyll-a, since it is the chromo­

enzyme responsible for oxygen production.

The analysis of Chlorophyll-a distribution profiles (fig. 13) suggests 

four separate regimes with interconnecting transition periods. These 

regimes are identified by the season in which they occur, ie. winter, 

spring, summer, and fall. However, during the discussion of the phyto­

plankton these regimes will be identified by certain dominant taxa. The 

transition will also be characterized by specific algal types.

The use of algal identifiers provides a better means of comparing similar­

ities and differences between various lakes. The winter regime is 

characterized by a nearly uniform vertical distribution with a slight 

increase in concentration near the surface. With calm, clear bright 

days this regime achieves a concentration of 110 µg chlorophyll-a/l.

This maximum was found in January of 1970 just prior to the lake icing 

over, but a parallel high concentration did not occur in 1971. A sharp
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increase in Chlorophyll-a concentration was noted in December, 1970, 

and January, 1971, with a maximum of only 43 ug/1. This low peak was 

undoubtedly due to the reduced insolation caused by long term inclement 

weather. The winter regime may contain some of the highest chlorophyll- 

a values recorded during the annual cycle. Even though the temperature 

remains quite stable during this period light levels decrease drama­

tically. Thus these high peaks occur during the period of minimum 

temperature and least insolation. With the advent of icing-over and 

the accumulation of snow, light may become limiting. Chlorophyll-a 

levels drop precipitously to 3 or 4 ug/1. The 1969-70 winter had the 

greatest accumulation of ice and snow. The ice attained a maximum 

thickness of 20 cm plus an added 30 cm layer of snow. These combined 

layers effectively attenuated the light and reduced photosynthesis. 

This reduction in photosynthesis is reflected in the reduced chlorophyll 

and oxygen concentration at depth, of. fig. 2. The ice cover was much 

thinner in 1970-71, approximately 8 cm, without significant snow 

accumulation. Although Chlorophyll-a values were reduced the light 

levels were adequate to maintain the photosynthesis-respiration balance. 

In March the winter regime very rapidly degenerates and much of the 

population rains to the sediments.

The transition between winter and spring regimes is marked by 

reduced Chlorophyll-a levels. This transition flora is evenly 

distributed throughout the water column, concentrations of 5 - 10 µg 

chlorophyll-a/1 are typical of this period.

In the spring there is a rapid burst of phytoplankton growth in 

the upper few meters. This second regime is short lived with Chloro­

phyll-a levels approximately one-half that of the winter regime,
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42 - 53 ug/1. The duration and concentration of this regime is depen­

dent upon the weather. The water is nearly isothermal, with some slight 

warming at the surface, thus the lake is very susceptible to wind action. 

The effects of the wind is evident in the differences between 1969 and 

1970 spring regimes. In May 1969 a very compact cell or Chlorophyll-a 

rapidly developed, whereas in April and May 1970 a broad well mixed 

band developed. In both instances the spring regime dissipated quickly 

with the onset of stratification. The terminus occurs at about the 

10 µg chlorophyll-a/1 isopleth.

The summer distribution is complex since it develops when the lake 

is physio-chemically stratified. Three distinct vertical regions, with 

parallel transition zones, can be recognized. The Chlorophyll-a 

concentration in the epilimnion is greatly reduced, with little varia­

tion. It contains a mean Chlorophyll-a concentration of 7 ug/1. In the 

metalimnion and hypolimnion several separate, distinct concentrations 

develop with each of these concentrations representing a unique popula­

tion. Three concentrations are detectable in the metalimnion as the 

season progresses. In the summer of 1969 the first reached a maximum 

Chlorophyll-a concentration of 53 ug/1 between 5 and 6 meters. The 

second, approximately one meter lower and at mid-summer, contains a 

similar quantity of Chlorophyll-a. The last, occurring just prior to 

destratification, contains Chlorophyll-a in concentrations greater 

than 75 ug/1. In the summer of 1970 the separate populations are less 

distinct, however these zones are still present but the development 

of the metalimnetic zones is markedly reduced when compared to those 

of 1969. The reduction in chlorophyll-a level is probably due to the 

reduced quantity of spring regime debris. As will be described later,
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these metalimnetic concentrations are the results of pigmented, hetero­

trophic algae. These organisms require substantial amounts of organic 

substrate for their growth and development. In the hypolimnion a separ­

ate community slowly develops reaching a maximum of 55 - 60 ug/1 just 

prior to destratification. This community develops near the water sub­

stratum interface, gradually expands upward until it is carried toward 

the surface and is dissipated during autumnal destratification.

The autumnal regime is short lived and typically occurs immediately 

after destratification. The population producing the fall peak has its 

origin in the summer hypolimnion and metalimnion. The autumnal maximum 

occurs in the upper layers during the months of October and/or November. 

Maxima of 31 to 36 ug/1 occur at the surface and concentrations greater 

than 30 ug/1 may be found as deep as two meters with the remainder of 

the water volume being well mixed. This autumnal concentration quickly 

decreases prior to the return of the winter regime.

Chlorophyll-b is limited to green algal and euglenoid phytoplanktons, 

therefore this biochrome can be used to identify populations of these 

organisms. The chlorophyll-b levels reflected in the profiles shown in 

figure 14 indicate not only presence or absence of specific phytoplanktons 

but locate their position and abundance. This biochrome is essentially 

absent during the winter regime. However in the later stages of winter 

and before the development of the spring regime a transition flora can 

be recognizable. Chlorophyll-b levels of 5 ug/1 are recorded during the 

transition and continue through the spring regime. It should be noted 

that low levels of chlorophyll-b indicate that neither green algae nor 

euglenoids are the principal phytoplanktons involved in the spring 

bloom. Even though Chlorophyll-a increases dramatically in May no
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significant parallel increase in Chlorophyll-b is observed. The summer 

regime contains vertical regions similar to those of Chlorophyll-a. An 

even distribution of 1 - 3 ug/1 is characteristic of the upper layer of 

the epilimnion with only trace levels in the remainder. Three distinct 

zones are identifiable in the metalimnion which can be superimposed upon 

similar Chlorophyll-a zones. The maxima in the three successive meta­

limnetic zones are 43, 51 and 38 ug/1, respectively in 1969. Slightly 

higher concentrations were noted in 1970, ie. 60, 70 and 52 ug/1. As 

will be discussed later in further detail, these annual variations are 

caused by shifts in dominants within the associations. Chlorophyll-b 

was detectable at lower quantities in the hypolimnion with a single 

region occurring in September prior to destratification. Concurrent 

with destratification there is an even distribution throughout the 

water column. This pattern represents remnants of the redistributed 

terminal metalimnion concentration and a transitional flora component. 

The autumnal regime may contain traces of Chlorophyll-b but these are 

transitory. This biochrome is undetectable from the first of November 

through January. An analysis of the annual distribution of Chlorophyll-b 

suggests that the green algae and/or euglenoids only make a significant 

contribution during the summer and are in low numbers or are absent the 

remainder of the year.

Chlorophyll-c is limited to the cryptomonads, chrysomonads and 

diatoms in the freshwater environment. The annual distribution of this 

biochrome is illustrated in figure 15. Chlorophyll-c may be found in 

great abundance during the winter regime with its diatom-association. 

Two different winter profiles were observed during the research period 

with the most typical present in the years 1969-70 and 1970-71. In
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these winter, regimes a maximum of 13 µg chlorophyll-c/1 was observed 

prior to the lake icing over. With ice and snow cover light was atten­

uated, also the cover reduced turbulence. Light is necessary for 

chlorophyll synthesis and maintenance; and without turbulence many 

of the organisms sank to greater depth with even lower light intensity. 

These two effects resulted in a net loss of Chlorophyll-c. By the time 

ice and snow disappears in February or March Chlorophyll-c has dropped 

to the 2.5 ± 0.5 ug/1 level. The winter proceeding the experimental 

period was mild and the lake lacked ice cover. The milder weather with 

greater insolation resulted in a tremendous diatom population. This 

out-of-the ordinary population resulted in gradually increasing concen­

trations until it reached a maximum of 67 ug/1 in March, 1969. The 

precipitous decline of the winter community can be traced by the accumu­

lation of the biochrome in the deeper  layers. Traces of the pigment are 

present throughout the water column until late May, but were undetectable 

until after thermal stratification. The summer regime usually lacks 

Chlorophyll-c in the epilimnion, however it is present in the metalimnion 

and hypolimnion. In the summer of 1969 the metalimnion contained 

three isolated concentrations which succeeded one another and occupied 

different positions. The first and second maxima attained concentrations 

up to 40 ug/1, while the third contained only 10 ug/1. Microscopic 

examination of the organisms within these concentrations indicate the 

presence of a cryptomonad component with diatoms lacking. Three Chloro­

phyll-a and -b concentrations were also previously noted during the 

summer of 1970 however only one Chlorophyll-c concentration was de­

tected and only one area containing cryptomonads was found in the 

plankton analysis. This area corresponded to the observed Chlorophyll-c
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peak of 4.5 µg/1 at 7 m in August. In 1969 the hypolimnion contained 

two transitory concentrations. The earliest represents a partial 

regrowth of the large winter diatom flora and the second, a distinct 

concentration which dissipates with fall destratification. With autum­

nal destratification Chlorophyll-c is reduced to trace or undectable 

levels. Low levels of 1 - 3 µg chlorophyll-c/1 are collected from the 

upper 4 meters during the autumn-winter transition. The annual Chloro­

phyll-c distribution was characterized by a biomodal distribution, 

one mode representing the winter regime and the second occurring in 

several units in the metalimnion during the summer. Each of these modes 

are produced by different phytoplanktons.

The phytoplankton complex contains greater than one hundred fifty 

species during the annual cycle. An inventory of the taxa present in 

the plankton is given in Table 1. Certain of these taxa are major 

contributors to specific regimes and transitions. Table 2 presents 

a compilation of the spatial and vertical distribution of dominant 

contributors. The vertical water column is divided into three depth 

zones based upon the summer stratification pattern. These depth zones 

are equivalent to the epilimnion, surface to 3 meters; metalimnion, 4 

to 6 meters; and hypolimnion, 7 meters to the bottom. This table only 

notes the presence or absence of the alga but not its quantity.

The phytoplankton complex may be divided into four major regimes 

with interconnecting transition floras. The winter regime is dominated 

by the diatoms Cyclotella, Melosira, Asterionella, Synedra and Fragill­

aria. The maximum concentration of Cyclotella is approximately 10 

million cells/1 while Synedra, and Asterionella maxima are only one- 

tenth that amount. Fragillaria may reach twice the Asterionella
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Table 1. Inventory of Phytoplanktons from Lake Fayetteville

Chlorophyceae 
Volvocales 

Chlamydomonas spp. 
Carteria spp. 
Dysmorphococcus variabilis 
Peteromonas lenticularis 
Gonium sociale 
G. pectorale 
Pandorina morum 
Eudorina elegans 
Volvox spp.

Tetrasporales
Asterococcus limneticus 
Gloeocystis vesiculosum 
Paulschulzia pseudovol vox 
Sphaerocystis schroeteri 
Radiococcus nimbatus 

Chlorococcales
Actinastrum hantschii 
Ankistrodesmus falcutus 
Botryococcus braunii 
Chodatella sp. 
Chlorella sp. 
Closteriopsis longissima 
Coelastrum microporum 
C. scabra 
C. sphaericum 
Dactylococcopsis raphidioides 
Dictyosphaeridium pulchellum 
Kirchneriella lunaris 
Micractinium pusilium 
Nephrocytium agardhianum 
Oocystis solitarea
O. spp.
Pediastrum duplex
P. simplex 
Planktosphaera gelatinosa 
Quadriqula chodati 
Scenedesums bifaga
S. quadracauda
S. spp.
Tetraedron constrictum
T. minimum 
T. multi cum
Tetrallantos lagerheimii 
Tetrastrum staurogeniforme

Conjugatophyceae 
Zygnematales 

Closterium spp. 
Cosmarium spp. 
Desmidium baileyi 

staurastrum chaetoceros 
S. furcigerum 
S. spp. 
Staurodesmus dickii
S. spp.

Euglenophyceae 
Euglenales 

Anisonema truncatum 
Astasia curvata 
A. klebsii 
Cyclidi opsis sp. 
Euglena ehrenbergii 
E. klebsii 
E. oxyuris 
E. pisciformis 
E. schmitzii 
E. torta 
E. tripteris 
Eutreptia viridis 
Lepocinclis ovum 
L. radiata 
Petalomenas sp. 
Phacus brevicaudata 
P. longicaudata 
P. pyrum 
P. suecica 
Sphenomonas quadrangularis 
Strombomonas deflandrei 
Trachelomonas bernardinensis
T. granulosa var. oblonga 
T. hispidis
T. hystrix 
T. raciborskii 
T. raciborskii var. rossiea 
T. rugosa 
T. syndnensis 
T. volvocina

Pyrrhophyceae 
Gymnodiniales 

Gymnodinium lacustre 
Peridiniales

Ceratium hirundinella 
Peridinium cinctum 
P. cunningtonii

Cryptomonadophyceae 
Cryptomonadales

Chilomonas paramaecium 
Cryptochrysis sp. 
Cryptomonas caudata
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C. erosa
C. marsonii
C. ovata
C. tetraphyrenoidosa

Chrysophyceae 
Chrysomonadales

Chrysochromulia parvula 
Chrysococcus diaphonus 
C. minutus
C. rufesceus
Dinobryon divergens
D. sertularia
Kephyrion cupuliforne
K. rubi-claustri
K. schmid
Kephyriopsis ovum
K. cineta
Mallomonas acaroides
M. candata
M. coronata
M. helvetica
M. pseudocoronata
M. tousurata
M. sp.
Pseudokephyrion pilidum
P. schilleri
P. spirale
p. undulitissimum 

Stenokalyx inconstans
S. laticallis
Synura petersenii 
Uroglenopsis sp.

Bacillariophyceae 
Centrales

Coscinodiscus lacustris 
Cyclotel la chaetoceras 
C. meneghiniana 
C. stelligera 
Melosira ambigua 
M. granulata 
M. islandica
M. italica
Rhizosolenia eriengis
Stephanodiscus niagare 

Pennales
Asterionella formosa 
Cymbella spp. 
Fragillaria crotonensis 
Gomphonema spp. 
Navicula spp. 
Surirella sp.
Synedra acus

Cyanophyceae
Chroococcales

Aphanocapsa sp.
Coleoaphaerium keutzingianum
C. naeglianum 
Chroococcus turgidus 
Cyanodictyon sp. 
Dactylococcopsis smithii 
Gomphosphaera aponina 
Merismopedia trolleri 

(incl. M. marsonii)
M. sp.
Microcystis aeruginosa
M. pulvera
M. spp.
Rhabdoderma lineare

Oscillatoriales
Anabaena circinalis
A. flos-aquae
Aphanizomenon flos-aquae 
Lyngbya birgeii 
Oscillatoria agardhii 
O. augustania 
O. tenera 
O. spp.
Spirulina okensis
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Table 2. Seasonal Distribution of selected Phytoplanktors
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concentration, 2 million cells/1 and Melosira approximately one-third. 

Maximum concentration of the diatom flora is attained immediately prior 

to ice cover formation and at the terminus of the winter regime. Ice 

with snow cover interferes with the expending diatom population by re­

ducing insolation and turbulence. Lacking adequate light, growth is 

reduced or halted. Without turbulence to provide the necessary bouy­

ancy the diatoms sink out of the water column. The precipitation from 

the surface layers places the diatoms in a less desirable habitat with 

even lower light levels and reduces turbulence. For comparative pur­

poses this winter regime would be best identified as a "diatom associa­

tion." During the last phase of this association, a transition flora 

develops containing Planktosphaera, Scenedesmus, Staurastrum, Oscill­

atoria tenera, Coelosphaerium and certain golden-brown algae. The browns 

are represented by the Chrysophytes Mallomonas, Dinobryon, Synura and 

Uroglena as well as the dinoflagellates Ceratium and Peridinium. The 

winter-spring (diatom-Aphanizomenon) transition can be identified by the 

presence of motile Chrysophyceae. Therefore the vernal transition is 

named the chrysomonad-transition. Aphanizomenon and Anabaena grow very 

rapidly in May to form the spring regime. At its peak Aphanizomenon may 

contribute 7 million and Anabaena 1.6 million trichomes/1. These two 

genera constitute 98 ± 1% of the spring blue-green algal bloom. Because 

of its dominances Aphanizomenon is used as the identifier of this asso­

ciation. By early June much of the remants of the Aphanizomenon- 

association has settled into the metalimnion and hypolimnion. The green 

algae are observed during the summer. This epi limnetic flora is composed 

of the typical planktonic chlorococcalean and tetrasporalean genera. 

Pediastrum, Scenedesmum, Oocystis and Coelastrum are important members
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of this flora as are Sphaeracystis and Gloeocystis. These organisms 

occur at concentrations of one- to ten-thousand colonies per liter. In 

June the metalimnetic zone contains numerous euglenoids, particularly 

Trachelomonas (80,000 cells/1), however greater numbers of colorless 

euglenoids and cryptomonads eg. Sphenomonas and Chilomonas, are present. 

These and other species appear after the debris from the Aphanizomenon- 

association collects in the metalimnion. Cryptomonas spp. also increase 

in number during this period up to a maximum of 200,000 cells/1 in 1969 

while only one-tenth this number appeared in 1970. The second associa­

tion develops in July and is typified by a marked increase in Cryptomonas 

marsonii and Mallomonas pseudocoronata; Scenedesmus coenobia are also 

common. Scenedesmus attains quantities of 44,000 coenobia/1, E. marsonii 

and M. pseudocoronata at 52,000 and 72,000 cells/1 respectively in 1969. 

These organisms were present in about one-fifth this quantity in 1970. 

The lower concentrations of the 1970 metalimnetic floras are related 

to the reduced amount of debris available from the Aphanizomenon bloom. 

The third association develops at the end of the summer regime. Its compo­

sition is characterized by well developed Euglena variabilis (14,000 

cells/1) plus Cryptomonas marsonii and C. ovata (57,000 and 43,000 cells 

/I, respectively) populations. The hypolimnetic flora developed slowly 

after vernal stratification until it is dispersed by autumnal destrati­

fication. Prior to destratification the population raises above the 

water-substrate interface to invade the lower region of the metalimnion. 

This lowermost flora contains Merismopedia trolleri, Oscillatoria agardhii, 

Rhabdoderma, the colorless euglenoids Sphenomonas and Cyclidiopsis, plus 

the green algae Pediastrum simplex and Tetraedron minimum. Merismopedia 

attains a concentration of 25.5 million cells/1 and the filamentous blue­

green algae Oscillatoria and Rabdoderma are present in quantities of 
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900,000 and 11,700,000 trichomes/1. The green algae occur in much 

lower quantities of 9.5 to 15 thousand organisms/1. With destratifi­

cation the summer flora is dispersed throughout the water, bringing 

an end to the complex summer regime. The summer-autumn transition is 

represented by survival and expansion of selected members of the sum­

mer flora, eg. Pediastrum increases to 220,000 coenobia/1 and Sphaeso­

cystis to 200,000 colonies/1. The summer-autumn transition is dominated 

by green algae, thus is titled the chlorophycean-transition. The 

autumnal regime contains remnants of the transition flora plus some 

members of the summer flora re-introduced into the upper waters. Ana­

baena, Aphanizomenon and other Cyanophyceae dominate this regime. 

Aphanizomenon, however, attains a lower maximum than in the spring, 50­

TS thousand vs. 7 million trichomes/1. Coleosphaerium and Anabaena 

reach peaks of ca. 50,000 colonies or trichomes/1. These blue-green 

algae comprise about 80% of the autumnal phytoplankton population. The 

cyanophycean-association terminates dramatically by the lysing of most 

of the blue-greens and the die-off of the remainding phytoplankton. Very 

low levels of phytoplankton mark the transition between the autumnal 

cyanophycean-association and the winter diatom-association. By late 

November the total number of phytoplanktons is only about 40,000 org­

anisms/1. The transition is the period of precipitous decline of the 

cyanophyte population and a gradual increase in the diatoms. The 

photoplankton sequence is repeated with four regimes of winter-diatoms, 

a vernal Aphanizomenon-association, a complex, stratified summer regime, 

and an autumnal cyanophycean-association. These regimes are inter­

spersed with transitional flora composed of Chrysophytes, dinoflagellates 

or tetrasporalean and chlorococcalean green algae.
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The assessment of lake trophic status has led to certain methods 

of classification. Early investigators recognized that relative domin­

ance of selected phytoplankton might be used to identify the trophic 

status. Lemmerman's (1904) and Wesenberg-Lund's (1905) results were 

used by Teiling (1916) to apply to terms Caledonian and Baltic, respec­

tively to lakes poor and rich in nutrients. Naumamm (1917, 1919) applied 

the nomenclature, eutrophic and oligotrophic to nutrient rich and de­

ficient lakes. Thurnmark (1945) suggested that the number of species 

of the Chlorococcales vs. Desmidianceae was a reliable indicator of 

trophic status in Swedish lakes. Nygaard (1949) expanded Thurnmark’s 

concept of developing five different quotients which were applied to 

Danish lakes and pounds. The quotients of both Thurnmark and Nygaard 

were applied to Lake Fayetteville data. The quotients were determined 

for the standard throw-net, 5 meter to surface and 10 meter to surface 

vertical haul and, also, with the data from the inverted microscope 

technique. With each of these methods the caution discussed by Brook 

(1965) were employed.

Nygaard's (1949) compound quotient was applied to the data from the 

enumeration method for the preparation of figure 16. The enumeration 

data was employed since it presented the most complete inventory of the 

plankton. The integrated 5- and 10-meter-to-surface frequently did not 

contain a complete inventory of the species, thus were of less value. 

Replicate tows or hauls may result in a wide range of values. It should 

be noted that the values for the surface at one meter interval are 

comparable to those of Thurnmark, Nygaard and Brook. The typical throw- 

net technique employed by the three researchers would seldom sink below 

1 or 2 meters thus limiting their sample to a very small portion of the
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lake. Also each of these researchers assumes the continual presence 

of the indicator species, however, this assumption cannot be supported 

by any of the sampling techniques employed in this study. Surface 

values from Lake Fayetteville varied from zero in September, 1970, 

through infinity for most of the remainder of the year. Summer surface 

values varied from 4.3 to 18 within one week. When compared with 

Nygaard (1955), studies of Lake Fayetteville vary from chlhoniotrophic 

to strongly eutrophic. Similar ranges are expressed at the lower 

depth. Table 2 demonstrates the major source of error in the applica­

tion of the quotients. Only two of the forty organisms are present on 

a perennial basis. The remainder are absent or sink to greater depth 

where they would not be collected by the throw-net or vertical haul 

methods. They may also be in such low numbers that they would not be 

observed with the eunumeration technique. The profiles shown in 

figure 16 do not express a pattern which is applicable to known phyto­

plankton associations. In retrospect, the various quotients do not 

reflect a correct view of the trophic status of the lake and, also, 

cannot be applied to identify annual successional phases. At present 

it appears that specific algae may suggest point-in-time events 

but do not represent the trophic or pollution status of the lake.

DISCUSSION

Certain patterns and relationships emerge from the results of this 

research. The distribution of these "natural" communities provide a 

basis from which changes in water quality can be judged. The algae 

respond rapidly to slight changes in water quality, i.e. the algae are 

continually monitoring water quality. An understanding of the algal 

component of the aquatic ecosystem provides an integrated approach for
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detecting and suggesting means of causing changes in water quality. The 

interrelations of the organisms and various parameters are to be 

expanded and refined with the aid of computer analysis. However, 

anticipating the support of the mathematical treatment, certain correl­

ations are present and discussed, as well as, a comparison with other 

lakes and reservoirs.

The euphytoplankton community is subdivided into principal, 

succeeding regimes. These successive regimes follow one another in a 

predictable pattern. Fortunately the aquatic biologist has the oppor­

tunity to observe the patterns of succession several times since they 

occur on an annual basis. The annual pattern observed in Lake Fayette­

ville is unique, principally because of the lake's geographic position. 

This geographic position places this lake in an ideal climatic location, 

and is clearly reflected in the thermal cycle. In the winter Lake Fay­

etteville reaches the minimum temperatures observed in northern North 

American and European lakes while in the summer the thermal patterns are 

similar to subtropical and tropical lakes. These extremes, from 2.8° 

with 20 cm ice plus snow cover to 37°, provide a wide range of termper­

ature. The rapid change provides temperature stresses which produce 

clearly deliniated survival and growth configurations.

Temperature profiles (fig. 2) and phytoplankton regimes (table 2) 

suggest certain interrelationships, however these relationships are 

usually not simple but multivariate. This interrelationship includes 

not only temperature tolerance but also the transport of various chemi­

cal and biological components. The transport is modified by wind action, 

thermal stability and density gradients. In the winter diatoms dominate 

almost to the exclusion of all other algae, with the exception of a few
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Chrysophyceae and dinoflagellates. These later algae, with the addition 

of certain green algae, increase innnumber as the diatoms disappear. The 

diatom regime incorporates silicon in the production of the silicous dia­

tom frustule resulting in a net reduction of this ion. Silicon may be a 

limiting factor in sustaining the regime but also the ammonium-nitrogen 

concentration is depressed. Ammonium is the principle nitrogen source 

for the diatom since neither nitrate nor nitrite concentrations change 

significantly. Phosphate is actively taken up by the diatoms and only 

trace amounts are detectable by the terminus of the association. Peak 

concentration may occur immediately prior to and during icing. It should 

be noted that the phosphate concentration rises dramatically with the 

decline of the diatom bloom. These peaks appear to be the results of 

cell lysis. The biomass, chlorophylls-a and -c clearly define the 

development, maintainance and decline of the association. These latter 

three analyses are extremely useful in following the dynamics of 

phytoplankton populations.

The Chrysophycean-association, which succeeds the diatom-associa­

tion, is composed of armored Chrysophytes, dinoflagellates and certain 

green algae. These plankton increase in number as the diatoms disappear. 

The silicous armored members of this association further depress the 

silicon concentration but have little effect on the other chemical 

parameters sampled. This population has a high growth and photosynthetic 

rate. The photosynthetic rate is high enough to modify the pH upward 

through the utilization of the bicarbonate ion. This association, as 

well as the winter diatom association, is vertically dispersed along the 

equally vertical thermal profile.

At the onset of stratification an Aphanizomenon-association develops
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in the upper 5 meters. This population is large enough to produce the 

typical pea soup or green paint appearance. During this bloom the lake 

may be misinterpreted as polluted. This is in deference to its appear­

ance two weeks prior to and after the bloom peak. During the bloom, 

oxygen concentration temporarily increases to 247% saturation. With the 

rapid growth and photosynthetic capacity of this population carbon dioxide 

and bicarbonate levels drop with a concomitant increase of pH to 9.2. 

Nitrate level decreases rapidly from 1.08 mg/1 immediately before to 0.5 

mg/1 after the bloom. The other nitrogen sources appear not to be signi­

ficantly altered. The profiles of phosphate suggest that it is not 

limiting. The levels of phosphate occurring in Lake Fayetteville are 

similar to other lakes. Our data suggests that nitrate and carbon- 

source are probably the more important and may become limiting. Con­

sidering the size of the Aphanizomenon bloom, ie. 7 - 9 million tri- 

chomes/1 with a biomass of 33 - 65 mg/1, the phosphates are remarkebly 

only slightly changed. With the lysing of the bloom, however, there 

are increases of phosphates near the bottom and in the metalimnion. 

Microscopic examination confirms the presence of disrupted trichomes 

in these concentration regions. The fate of this association can be 

traced via biomass concentrations. A portion of the dying Aphanizomenon 

sinks into the developing metalimnion and another fraction floats to 

the surface. Chlorophyll data is useful for determining the physio­

logical state of the organisms. Comparison between the biomass (fig.

12) and Chlorophyll-a (fig. 13) discloses the usefulness of the biochrome 

method. The islands of biomass lack a corresponding island of Chloro­

phyll-a therefore the biomass island is dead and incapable of photo­

synthesis and contributing to further primary production. A note of
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caution: it is important that chlorophyll degradation products, eg. 

phaeophytin, etc., not be included in chlorophyll determination. 

Phaeophytin was isolated from the islands of Aphanizomenon floating to 

the surface and sinking into the metalimnion suggesting the origin of 

the biomass but indicating that it is non-functional. Chlorophylls -b 

and -c showed little change in this association since blue-green algae 

contain only Chlorophyll-a and constituted 97 - 99% of the population. 

Oxygen (fig. 3) decreases with depth since circulation is reduced and 

the Aphanizomenon attenuates the light. Oxygen decreases immediately 

after the bloom as bacteria begin metabolizing the dying population. 

The debris rain supports an algal population in the metalimnion and 

during late summer a hypolimnetic population. The oxygenated zone 

extends to greater depth as summer progresses. This is due to the 

growth of Euglena, Trachelomonas, Cryptomonas and other algae in the 

metalimnion. These and their colorless equivalents are capable of 

metabolizing the organic debris from the spring bloom and the bacteria. 

The hypolimnion is devoid of oxygen; however, certain blue-green 

algae and bacteria are capable of growing under these anaerobic con­

ditions. These include: Merismopedia trolleri, Oscillatoria agardhii, 

Spirulina, and others.

During the summer several associations develop both vertically and 

horizontally. Vertical distribution follows thermal stratification with 

epi-, meta- and hypolimnetic associations. The epi limnetic flora con­

sists almost exclusively of green algae. These organisms occur in low 

numbers but are photosynthetically active. Their activity is reflected 

in the high pH values (fig. 4), the reduced bicarbonate levels (fig. 5) 

and increase "P" alkalinity levels (fig. 6). The organisms in this strata
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are capable of withstanding temperature above 35° and intense insola­

tion. Thus thermal enrichment may provide sufficient stress to select 

more desirable populations. Chlorophyll -a and -b data indicates that 

most of the population is near the surface receiving the greatest 

thermal and light stress. The nitrogen and phosphorus levels are not 

effected by this association. The metalimnetic flora consists of 

three distinct subassociations or assemblages. These subassociations 

are primarily composed of heterotrophic euglenoids and cryptomonads. 

Similar assemblages are found in a lake in northern Sweden and in Class 

B lakes in the Experimental Lake Area of Canada (Schindler and Holm­

gren, 1971). Pigmented and colorless genera are present. These 

organisms are osmotrophic; certain species may be phagotrophic. Thus 

they live on the organic milieu resulting from the decay of the spring 

bloom. Indications of the decay are evident by the drop in pH, 

increasing bicarbonate, and the accumulation of nitrite and ammonium 

ions. The biomass data also suggests the presence of these succeeding 

subassociations. Biochrome (figs. 13, 14, 15) analysis indicates the 

photosynthetic capacity and the taxonomic position of the planktons. 

Microscopic examination is necessary in order to differentiate the 

contribution of the debris and/or colorless organisms to the biomass. 

The hypolimnion has very little algae present in its early development 

as indicated by the almost total absence of chlorophyll. The early 

phases contain high levels of ammonium and phosphate which have accumu­

lated by degradation of the debris rain from the spring bloom. As the 

summer progresses, a blue-green algal population develops which is capable 

of living under anaerobic conditions. The development of this popula­

tion can be observed in the increase in biochromes. The increase in
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chlorophyll -b and -c indicates the presence of certain green algae 

and diatoms. Ammonium continues to accumulate as does phosphate and 

silicon while nitrate and nitrite are little changed. The hypolimnetic, 

along with the metalimnetic flora, is distributed throughout the water 

column at thermal destratification. It is interesting to note that the 

blue-green algae in this association have little effect on phosphate 

level.

An Oscillatoria-association develops in the autumn following thermal 

destratification. Its extensive growth is probably limited by low light 

levels, cold temperatures and turbulence. The water is thermally un­

stable and susceptible to circulation by the wind. Members of the 

association are quickly transported to lower, more stable depths below 

the photic zone. The composition of this association can be deduced 

from the biochrome data. Figures 13, 14, and 15 disclose that Chloro­

phyll-a is the major pigment present with only trace amounts of chloro­

phylls -b and -c. Nitrates tend to increase during the autumnal bloom 

and there is little, if any, change in the phosphate level. Again a 

blue-green algal flora has essentially no effect on the phosphate 

concentration.

The winter diatom-association develops after the decay of the 

Oscillatoria-association. This change in phytoplankton composition is 

clearly reflected in the rapid increase in Chlorophyll-c (fig. 15). Two 

ions, ammonium and silicate, are utilized during the growth of the diatom 

population. The pH, alkalinity, phosphorus and nitrate are unaffected. 

There is however, an increase in the nitrates to 1.25 mg/1 by spring.

The basic pattern of the phytoplankton in Lake Fayetteville is that 

of four seasons: winter, spring, summer and fall. A review of phyto-
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plankton in several world lakes is discussed by Lund (1965) and Hutch­

inson (1967). These sources plus the information derived from this 

study suggest a certain basic pattern from which notable deviations 

are known. These exceptions are usually the result of human inter­

vention. The "typical" small lake is usually described as one which 

contains the following pattern: a winter diatom bloom followed by a 

chrysophyte-chlorophycean spring flora and the development of a blue­

green bloom in late summer or early fall. Schleinsee in Bavaria (Vet­

ter, 1937), Lake Erken in Sweden (Perchlaner, 1970), Lake Mendota in 

Wisconsin, USA, (Hasler, 1947) and Experimental Lakes Area of Canada 

(Schindler and Holmgren, 1971) are representative of a diverse series 

of lakes from which a basic pattern can be derived. I would suggest 

that the "typical" lake type is one of a series of generalized lake types. 

These generalized lake types follow a longitudinal gradient which re­

flects the integrated effects of duration and intensity of insolation, 

thermal properties, etc. Arctic lakes possess a long term diatom associa­

tion followed by a chrysophycean peak. Subarctic lakes contain the above 

components plus a dinoflagellate and green algal component. North 

temperates are characterized by a winter diatom peak followed by an 

enlarged Chrysophycean-association mixed with green algae and dino­

flagellates. The assemblages intergrade into a late summer maximum of 

blue-green algae. Frequently Aphanizonemon, Anabaena, Microcystis, 

Coleosphaerium, Merismopedia and others dominate the bloom. Temperate 

lakes contain four pulses as previously described for Lake Fayetteville. 

South temperate or sub-tropical lakes tend to have diminished diatom 

and chrysophycean associations and expanded green and blue-green 

associations. Few tropical lakes have been well studied but an expansion
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of the summer green algal flora might be expected. This summary 

suggests that arctic and subarctic lakes contain only portions 

of the total cycle; the diatom, chrysophycean- and chlorophycean- 

associations. The north-temperate lakes include, in addition to 

the above associations, both the vernal and autumnal cyanophycean 

peaks. However, these peaks are combined into a single broad bloom. 

Temperate lakes contain an epi limnetic green algae flora which separ­

ates the two blue-green peaks. It is interesting to note that the 

blue-green peaks occur at nearly the same temperatures in north- 

temperate and temperate lakes. The temperate lakes reach higher summer 

temperatures for a longer period of time, thus permitting a unique 

summer flora to develop. More tropical lakes lose the winter and spring 

fraction of the cycle resulting in alternating peaks of green and blue­

green algae.

The annual phytoplankton cycle is based upon the availability 

of certain chemical and physical parameters. Quantitative increases 

or decreases will result in a greatly modified cycle. As previously 

noted algae have specific nutrient and physical requirements and 

deviations from these requirements places stress on population causing 

the loss of certain members and the development of others. Manipulation 

of certain parameters provides a means by which specific populations can 

be selected or eliminated. In contrast to other reports orthophosphate-P 

appears to have little impact on blue-green algal blooms. With certain 

blue-green populations nitrate-nitrogen concentration has minor impact. 

Conversely, with the lysing of these blooms there is an apparent increase 

of these ions, however, no regrowth was noted. These particular ions are 

taken up readily by the subsequent green algal population. As previously
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noted, control of the temperature regime may be of great value in select­

ing desirable photoplankton.

The various phytoplankton quotients are apparently of minor use.

The quotient values vary markedly with season, the quotient used and the 

sampling technique. In addition, a thorough knowledge of the algal 

species and their habits is a pre-requisite. The use of a single indica­

tor organism or class of organisms contains the same problems. This 

research indicates that many species are in extremely low numbers or 

absent most of the year and would be missed by many sampling routines 

and therefore, only those organisms that are perennial should be used 

as indicators or in the computation of quotients.
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