
A Study of Practical Deduplication
Dutch T. Meyer

*†
 and William J. Bolosky

*

*
Microsoft Research and

†
The University of British Columbia

{dmeyer@cs.ubc.edu, bolosky@microsoft.com}

Abstract
We collected file system content data from 857 desktop

computers at Microsoft over a span of 4 weeks. We

analyzed the data to determine the relative efficacy of

data deduplication, particularly considering whole-file

versus block-level elimination of redundancy. We

found that whole-file deduplication achieves about

three quarters of the space savings of the most aggres-

sive block-level deduplication for storage of live file

systems, and 87% of the savings for backup images.

We also studied file fragmentation finding that it is not

prevalent, and updated prior file system metadata stud-

ies, finding that the distribution of file sizes continues

to skew toward very large unstructured files.

1 Introduction
File systems often contain redundant copies of infor-

mation: identical files or sub-file regions, possibly

stored on a single host, on a shared storage cluster, or

backed-up to secondary storage. Deduplicating storage

systems take advantage of this redundancy to reduce the

underlying space needed to contain the file systems (or

backup images thereof). Deduplication can work at

either the sub-file [10, 31] or whole-file [5] level. More

fine-grained deduplication creates more opportunities

for space savings, but necessarily reduces the sequential

layout of some files, which may have significant per-

formance impacts when hard disks are used for storage

(and in some cases [33] necessitates complicated tech-

niques to improve performance). Alternatively, whole-

file deduplication is simpler and eliminates file-

fragmentation concerns, though at the cost of some oth-

erwise reclaimable storage.

Because the disk technology trend is toward improved

sequential bandwidth and reduced per-byte cost with

little or no improvement in random access speed, it’s

not clear that trading away sequentiality for space sav-

ings makes sense, at least in primary storage.

In order to evaluate the tradeoff in space savings be-

tween whole-file and block-based deduplication, we

conducted a large-scale study of file system contents on

desktop Windows machines at Microsoft. Our study

consists of 857 file systems spanning 162 terabytes of

disk over 4 weeks. It includes results from a broad

cross-section of employees, including software devel-

opers, testers, management, sales & marketing, tech-

nical support, documentation writers and legal staff.

We find that while block-based deduplication of our

dataset can lower storage consumption to as little as

32% of its original requirements, nearly three quarters

of the improvement observed could be captured through

whole-file deduplication and sparseness. For four

weeks of full backups, whole file deduplication (where

a new backup image contains a reference to a duplicate

file in an old backup) achieves 87% of the savings of

block-based. We also explore the parameter space for

deduplication systems, and quantify the relative bene-

fits of sparse file support. Our study of file content is

larger and more detailed than any previously published

effort, which promises to inform the design of space-

efficient storage systems.

In addition, we have conducted a study of metadata and

data layout, as the last similar study [1] is now 4 years

old. We find that the previously observed trend toward

storage being consumed by files of increasing size con-

tinues unabated; half of all bytes are in files larger than

30MB (this figure was 2MB in 2000). Complicating

matters, these files are in opaque unstructured formats

with complicated access patterns. At the same time

there are increasingly many small files in an increasing-

ly complex file system tree.

Contrary to previous work [28], we find that file-level

fragmentation is not widespread, presumably due to

regularly scheduled background defragmenting in Win-

dows [17] and the finding that a large portion of files

are rarely modified (see Section 4.4.2). For more than a

decade, file system designers have been warned against

measuring only fresh file system installations, since

aged systems can have a significantly different perfor-

mance profile [28]. Our results show that this concern

may no longer be relevant, at least to the extent that the

aging produces file-level fragmentation. Ninety-six

percent of files observed are entirely linear in the block

address space. To our knowledge, this is the first large

scale study of disk fragmentation in the wild.

We describe in detail the novel analysis optimizations

necessitated by the size of this data set.

2 Methodology
Potential participants were selected randomly from Mi-

crosoft employees. Each was contacted with an offer to

install a file system scanner on their work computer(s)

in exchange for a chance to win a prize. The scanner

ran autonomously during off hours once per week from

September 18 – October 16, 2009. We contacted 10,500

people in this manner to reach the target study size of

about 1000 users. This represents a participation rate of

roughly 10%, which is smaller than the rates of 22% in

similar prior studies [1, 9]. Anecdotally, many potential

participants declined explicitly because the scanning

process was quite invasive.

2.1 File system Scanner
The scanner first took a consistent snapshot of fixed

device (non-removable) file systems with the Volume

Shadow Copy Service (VSS) [20]. VSS snapshots are

both file system and application consistent
1
. It then

recorded metadata about the file system itself, including

age, capacity, and space utilization. The scanner next

processed each file in the snapshot, writing records to a

log. It recorded Windows file metadata [19], including

path, file name and extension, time stamps, and the file

attribute flags. It recorded any retrieval and allocation

pointers, which describe fragmentation and sparseness

respectively. It also recorded information about the

whole system, including the computer’s hardware and

software configuration and the time at which the

defragmentation tool was last run, which is available in

the Windows registry. We took care to exclude from

study the pagefile, hibernation file, the scanner itself,

and the VSS snapshots it created.

During the scan, we recorded the contents of each file

first by breaking the file into chunks using each of two

chunking algorithms (fixed block and Rabin finger-

printing [25]) with each of 4 chunk size settings (8K-

64K in powers of two) and then computed and saved

hashes of each chunk. We found whole file duplicates

in post-processing by identifying files in which all

1
 “Application consistent” means that VSS-aware appli-

cations have an opportunity to save their state cleanly

before the snapshot is taken.

chunks matched. In addition to reading the ordinary

contents of files we also collected a separate set of

scans where the files were read using the Win32 Back-

upRead API [16], which includes metadata about the

file and would likely be the format used to store file

system backups.

We used salted MD5 [26] as our hash algorithm, but

truncated the result to 48 bits in order to reduce the size

of the data set. The Rabin-chunked data with an 8K

target chunk size had the largest number of unique

hashes, somewhat more than 768M. We expect that

about two thousand of those (0.0003%) are false

matches due to the truncated hash.

Another process copied the log files to our server at

midnight on a random night of the week to help smooth

the considerable network traffic. Nevertheless, the cop-

ying process resulted in the loss of some of the scans.

Because the scanner placed the results for each of the

32 parameter settings into separate files and the copying

process worked at the file level, for some file systems

we have results for some, but not all of the parameter

settings. In particular, larger scan files tended to be par-

tially copied more frequently than smaller ones, which

may result in a bias in our data where larger file sys-

tems are more likely to be excluded. Similarly, scans

with a smaller chunk size parameter resulted in larger

size scan files and so were lost at a higher rate.

2.2 Post Processing
At the completion of the study the resulting data set was

4.12 terabytes compressed, which would have required

considerable machine time to import into a database. As

an optimization, we observed that the actual value of

any unique hash (i.e., hashes of content that was not

duplicated) was not useful to our analyses.

To find these unique hashes quickly we used a novel 2-

pass algorithm. During the first pass we created a 2 GB

Bloom filter [4] of each hash observed. During this

pass, if we tried to insert a value that was already in the

Bloom filter, we inserted it into a second Bloom filter

of equal size. We then made a second pass through the

logs, comparing each hash to the second Bloom filter

only. If it was not found in the second filter, we were

certain that the hash had been seen exactly once and

could be omitted from the database. If it was in the fil-

ter, we concluded that either the hash value had been

seen more than once, or that its entry in the filter was a

collision. We recorded all of these values to the data-

base. Thus this algorithm was sound, in that it did not

impact the results by rejecting any duplicate hashes.

However it was not complete despite being very effec-

tive, in that some non-duplicate hashes may have been

added to the database even though they were not useful

in the analysis. The inclusion of these hashes did not

affect our results, as the later processing ignored them.

2.3 Biases and Sources of Error
The use of Windows workstations in this study is bene-

ficial in that the results can be compared to those of

similar studies [1, 9]. However, as in all data sets, this

choice may introduce biases towards certain types of

activities or data. For example, corporate policies sur-

rounding the use of external software and libraries

could have impacted our results.

As discussed above, the data retrieved from machines

under observation was large and expensive to generate

and so resulted in network timeouts at our server or

aborted scans on the client side. While we took

measures to limit these effects, nevertheless some

amount of data never made it to the server, and more

had to be discarded as incomplete records. Our use of

VSS makes it possible for a user to selectively remove

some portions of their file system from our study.

We discovered a rare concurrency bug in the scanning

tool affecting 0.003% of files. While this likely did not

affect results, we removed all files with this artifact.

Our scanner was unable to read the contents of Win-

dows system restore points, though it could see the file

metadata. We excluded these files from the deduplica-

tion analyses, but included them in the metadata anal-

yses.

3 Redundancy in File Contents
Despite the significant declines in storage costs per GB,

many organizations have seen dramatic increases in

total storage system costs [21]. There is considerable

interest in reducing these costs, which has given rise to

deduplication techniques, both in the academic com-

munity [6] and as commercial offerings [7, 10, 14, 33].

Initially, the interest in deduplication has centered on its

use in “embarrassingly compressible” scenarios, such

as regular full backups [3, 8] or virtual desktops [6, 13].

However, some have also suggested that deduplication

be used more widely on general purpose data sets [31].

The rest of this section seeks to provide a well-founded

measure of duplication rates and compare the efficacy

of different parameters and methods of deduplication.

In Section 3.1 we provide a brief summary of dedupli-

cation, and in Section 3.2 we discuss the performance

challenges deduplication introduces. In Section 3.3 we

share observed duplication rates across a set of work-

stations. Finally, Section 3.4 measures duplication in

the more conventional backup scenario.

3.1 Background on Deduplication
Deduplication systems decrease storage consumption

by identifying distinct chunks of data with identical

content. They then store a single copy of the chunk

along with metadata about how to reconstruct the origi-

nal files from the chunks.

Chunks may be of a predefined size and alignment, but

are more commonly of variable size determined by the

content itself. The canonical algorithm for variable-

sized content-defined blocks is Rabin Fingerprints [25].

By deciding chunk boundaries based on content, files

that contain identical content that is shifted (say be-

cause of insertions or deletions) will still result in

(some) identical chunks. Rabin-based algorithms are

typically configured with a minimum and maximum

chunk size, as well as an expected chunk size. In all

our experiments, we set the minimum and maximum

parameters to 4K and 128K, respectively while we var-

ied the expected chunk size from 8K to 64K by powers-

of-two.

3.2 The Performance Impacts of

Deduplication
Managing the overheads introduced by a deduplication

system is challenging. Naively, each chunk’s finger-

print needs to be compared to that of all other chunks.

While techniques such as caches and Bloom filters can

mitigate overheads, the performance of deduplication

systems remains a topic of research interest [32]. The

I/O system also poses a performance challenge. In addi-

tion to the layer of indirection required by deduplica-

tion, deduplication has the effect of de-linearizing data

placement, which is at odds with many data placement

optimizations, particularly on hard-disk based storage

where the cost for non-sequential access can be orders

of magnitude greater than sequential.

Other more established techniques to reduce storage

consumption are simpler and have smaller performance

impact. Sparse file support exists in many file systems

including NTFS [23], XFS [29], and ext4 [15] and is

relatively simple to implement. In a sparse file a chunk

of zeros is stored notationally by marking its existence

in the metadata, removing the need to physically store

it. Whole file deduplication systems, such as the Win-

dows SIS facility [5] operate by finding entire files that

Extension
% of Dupli-

cate Space

Mean File

Size (bytes)

dll 20% 521K

lib 11% 1080K

pdb 11% 2M

<none> 7% 277K

exe 6% 572K

cab 4% 4M

msp 3% 15M

msi 3% 5M

iso 2% 436M

<a guid> 1% 604K

hxs 1% 2M

xml 1% 49K

jpg 1% 147K

wim 1% 16M

h 1% 23K

Table 1: Whole File Duplicates by Extension

Figure 4: CDF of File System Capacity

Extension Fixed % Extension Rabin %

vhd 3.6% vhd 5.2%

pch 0.5% lib 1.6%

dll 0.5% obj 0.8%

pdb 0.4% pdb 0.6%

lib 0.4% pch 0.6%

wma 0.3% iso 0.6%

pst 0.3% dll 0.6%

<none> 0.3% avhd 0.5%

avhd 0.3% wma 0.4%

mp3 0.3% wim 0.4%

pds 0.2% zip 0.3%

iso 0.2% pst 0.3%

Table 2: Non-whole File, Non-Zero Duplicate

Data as a Fraction of File System Size by File

Extension, 8K Fixed and Rabin Chunking

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 100 200 300 400 500 600 700

Capacity (GB)

2009 2004 2000

Figure 1: Deduplication vs. Chunk Size for Various

Algorithms

Figure 2: Deduplication vs. Deduplication Domain

Size

Figure 3: CDF of Bytes by Containing File Size for

Whole File Duplicates and All Files

0%

10%

20%

30%

40%

50%

60%

64K 32K 16K 8K

D
e

d
u

p
e

d
/u

n
d

e
d

u
p

e
d

 s
iz

e

Chunk Size

Whole File Fixed-Block Rabin

0%

10%

20%

30%

40%

50%

60%

70%

80%

D
e

d
u

p
e

d
/u

n
d

e
d

u
p

e
d

 s
iz

e

Deduplication Domain Size (file systems)

Whole File 64 KB Fixed 8KB Fixed

64KB Rabin 8KB Rabin

0%

20%

40%

60%

80%

100%

16K 128K 1M 8M 64M 512M 4G

Containing File Size (bytes)

Duplicates All files

are duplicates and replacing them by copy-on-write

links. Although SIS does not reduce storage consump-

tion as much as a modern deduplication system, it

avoids file allocation concerns and is far less computa-

tionally expensive than more exhaustive deduplication.

3.3 Deduplication in Primary Storage
Our data set includes hashes of data in both variable

and fixed size chunks, and of varying sizes. We chose a

single week (September 18, 2009) from this dataset and

compared the size of all unique chunks to the total con-

sumption observed. We had two parameters that we

could vary: the deduplication algorithm/parameters and

the set of file systems (called the deduplication domain)

within which we found duplicates; duplicates in sepa-

rate domains were considered to be unique contents.

The set of file systems included corresponds to the size

of the file server(s) holding the machines’ file systems.

A value of 1 indicates deduplication running inde-

pendently on each desktop machine. “Whole Set”

means that all 857 file systems are stored together in a

single deduplication domain. We considered all power-

of-two domain sizes between 1 and 857. For domain

sizes other than 1 or 857, we had to choose which file

systems to include together into particular domains and

which to exclude when the number of file systems

didn’t divide evenly by the size of the domain. We did

this by using a cryptographically secure random num-

ber generator. We generated sets for each domain size

ten times and report the mean of the ten runs. The

standard deviation of the results was less than 2% for

each of the data points, so we don’t believe that we

would have gained much more precision by running

more trials
2
.

Rather than presenting a three dimensional graph vary-

ing both parameters, we show two slices through the

surface. In both cases, the y-axis shows the deduplicat-

ed file system size as a percentage of the original file

system size. Figure 1 shows the effect of the chunk size

parameter for the fixed and Rabin-chunked algorithms,

and also for the whole file algorithm (which doesn’t

depend on chunk size, and so varies only slightly due to

differences in the number of zeroes found and due to

variations in which file systems scans copied properly;

see Section 3.2). This graph assumes that all file sys-

tems are in a single deduplication domain; the shape of

the curve is similar for smaller domains, through the

space savings are reduced.

2
 As it was, it took about 8 machine-months to do the

analyses.

Figure 2 shows the effect changing the size of the

deduplication domains. Space reclaimed improves

roughly linearly in the log of the number of file systems

in a domain. Comparing single file systems to the

whole set, the effect of grouping file systems together is

larger than that from the choice of chunking algorithm

or chunk size, or even of switching from whole file

chunking to block-based.

The most aggressive chunking algorithm (8K Rabin)

reclaimed between 18% and 20% more of the total file

size than did whole file deduplication. This offers weak

support for block-level deduplication in primary stor-

age. The 8K fixed block algorithm reclaimed between

10% and 11% more space than whole file. This ca-

pacity savings represents a small gain compared to the

performance and complexity of introducing advanced

deduplication features, especially ones with dynamical-

ly variable block sizes like Rabin fingerprinting.

Table 1 shows the top 15 file extensions contributing to

duplicate content for whole file duplicates, the percent-

age of duplicate space attributed to files of that type,

and the mean file size for each type. It was calculated

using all of the file systems in a single deduplication

domain. The extension marked <a guid> is a particular

globally unique ID that’s associated with a widely dis-

tributed software patch. This table shows that the sav-

ings due to whole file duplicates are concentrated in

files containing program binaries: dll, lib, pdb, exe, cab,

msp, and msi together make up 58% of the saved space.

Figure 3 shows the CDF of the bytes reclaimed by

whole file deduplication and the CDF of all bytes, both

by containing file size. It shows that duplicate bytes

tend to be in smaller files than bytes in general. Anoth-

er way of looking at this is that the very large file types

(virtual hard disks, database stores, etc.) tend not to

have whole-file copies. This is confirmed by Table 1.

Table 2 shows the amount of duplicate content not in

files with whole-file duplicates by file extension as a

fraction of the total file system content. It considers the

whole set of file systems as a single deduplication do-

main, and presents results with an 8K block size using

both fixed and Rabin chunking. For both algorithms,

by far the largest source of duplicate data is VHD (vir-

tual hard drive) files. Because these files are essentially

disk images, it’s not surprising both that they contain

duplicate data and also that they rarely have whole-file

duplicates. The next four file types are all compiler

outputs. We speculate that they generate block-aligned

duplication because they have header fields that con-

tain, for example, timestamps but that their contents is

otherwise deterministic in the code being compiled.

Rabin chunking may find blocks of code (or symbols)

that move somewhat in the file due to code changes that

affect the length of previous parts of the file.

3.4 Deduplication in Backup Storage
Much of the literature on deduplication to date has re-

lied on workloads consisting of daily full backups [32,

33]. Certainly these workloads represent the most at-

tractive scenario for deduplication, because the content

of file systems does not change rapidly. Our data set

did not allow us to consider daily backups, so we con-

sidered only weekly ones.

With frequent and persistent backups, the size of histor-

ical data will quickly out-pace that of the running sys-

tem. Furthermore, performance in secondary storage is

less critical than in that of primary, so the reduced se-

quentiality of a block-level deduplicated store is of

lesser concern. We considered the 483 file systems for

which four continuous weeks of complete scans were

available, starting with September 18, 2009, the week

used for the rest of the analyses.

Our backup analysis considers each file system as a

separate deduplication domain. We expect that com-

bining multiple backups into larger domains would

have a similar effect to doing the same thing for prima-

ry storage, but we did not run the analysis due to re-

source constraints.

In practice, some backup solutions are incremental (or

differential), storing deltas between files, while others

use full backups. Often, highly reliable backup policies

use a mix of both, performing frequent incremental

backups, with occasional full backups to limit the po-

tential for loss due to corruption. Thus, the meaning of

whole-file deduplication in a backup store is not imme-

diately obvious. We ran the analysis as if the backups

were stored as simple copies of the original file sys-

tems, except that the contents of the files was the output

from the Win32 BackupRead [16] call, which includes

some file metadata along with the data. For our pur-

poses, imagine that the backup format finds whole file

duplicates and stores pointers to them in the backup

file. This would result in a garbage collection problem

for the backup files when they’re deleted, but the details

of that are beyond the scope of our study and are likely

to be simpler than a block-level deduplicating store.

Using the Rabin chunking algorithm with an 8K ex-

pected chunk size, block-level deduplication reclaimed

83% of the total space. Whole file deduplication, on

the other hand, yielded 72%. These numbers, of

course, are highly sensitive to the number of weeks of

scans used in the study; it’s no accident that the results

were around ¾ of the space being claimed when there

were four weeks of backups. However, one should not

assume that because 72% of the space was reclaimed by

whole file deduplication that only 3% of the bytes were

in files that changed. The amount of change was larger

than that, but the deduplicator found redundancy within

a week as well and the two effects offset.

4 Metadata
This paper is the 3

rd
 major metadata study of Windows

desktop computers [1, 9]. This provides a unique per-

spective in the published literature, as we are able to

track more than a decade of trends file and file system

metadata. On a number of graphs, we took the lines

from 2000 and 2004 from an earlier study [1] and plot-

ted them on our graphs to make comparisons easier.

Only the 2009 data is novel to this paper. Some graphs

contain both CDF and histogram lines. In these graphs,

the CDF should be read from the left-hand y-scale and

the histogram from the right. We present much of our

data in the form of cumulative density function plots.

These plots make it easy to determine the distributions,

but do not easily show the mean. Where appropriate,

we list the mean of the distribution in the text.

Figure 5: CDF of File Systems by Fullness

0%

20%

40%

60%

80%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

% Full

2009 2004 2000

Figure 9: CDF of Directories by Count of Subdi-

rectories

Figure 10: Files by Directory Depth

Figure 11: Bytes by Directory Depth

60%

65%

70%

75%

80%

85%

90%

95%

100%

0 5 10

Subdirectories/Directory

2009 2004 2000

0%

2%

4%

6%

8%

10%

12%

14%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20

Directory Depth

CDF Histogram

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20

Directory Depth

CDF Histogram

Figure 6: CDF of File Systems by Count of Files

Figure 7: CDF of File Systems by Count of Direc-

tories

Figure 8: CDF of Directories by Count of Files

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 250 500 750 1000 1250

Files (1000s)

2009 2004 2000

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 25 50 75 100 125 150 175 200

Directories (1000s)

2009 2004 2000

0%

20%

40%

60%

80%

100%

0 10 20 30 40

Files/Directory

2009 2004 2000

4.1 Physical Machines
Our data set contains scans of 857 file systems hosted

on 597 computers. 59% were running Windows 7, 20%

Windows Vista, 18% Windows Server 2008 and 3%

Windows Server 2003. They had a mean and median

physical RAM of about 4GB, and ranged from 1-10GB.

5% had 8 processors, 44% 4, 49% 2 and 3% were

uniprocessors
3
.

4.2 File systems
We analyze file systems in terms of their age, capacity,

fullness, and the number of files and directories. We

present our results, interpretations, and recommenda-

tions to designers in this section.

4.2.1 Capacity

The mean file system capacity is 194GB. Figure 4

shows a cumulative density function of the capacities of

the file systems in the study. It shows a significant in-

crease in the range of commonly observed file system

sizes and the emergence of a noticeable step function in

the capacities. Both of these trends follow from the

approximately annual doubling of physical drive capac-

ity. We expect that this file system capacity range will

continue to increase, anchored by smaller SSDs on the

left, and continuing step wise towards larger magnetic

devices on the right. This will either force file systems

to perform acceptably on an increasingly wide range of

media, or push users towards more highly tuned special

purpose file systems.

4.2.2 Utilization

Although capacity has increased by nearly two orders

of magnitude since 2000, utilization of capacity has

dropped only slightly, as shown in Figure 5. Mean uti-

lization is 43%, only somewhat less than the 53% found

in 2000. No doubt this is the result of both users adapt-

ing to their available space and hard drive manufactur-

ers tracking the growth in data. The CDF shows a near-

ly linear relationship, with 50% of users having drives

no more than 40% full, 70% at less than 60% utiliza-

tion, and 90% at less than 80%. Proposals to take ad-

vantage of the unused capacity of file systems [2, 11]

must be cautious that they only assume scaling of the

magnitude of free space, not the relative portion of the

disk that is free. System designers also must take care

not to ignore the significant contingent (15%) of all

users with disks more than 75% full.

3
 The total is 101% due to rounding error.

4.3 File system Namespace
Recently, Murphy and Seltzer have questioned the mer-

its of hierarchical file systems [22], based partly on the

challenge of managing increasing data sizes. Our analy-

sis shows many ways in which namespaces have be-

come more complex. We have observed more files,

more directories, and an increase in namespace depth.

While a rigorous comparison of namespace organiza-

tion structures is beyond the scope of this paper, the

increase in namespace complexity does lend evidence

to the argument that change is needed in file system

organization. Both file and directory counts show a

significant increase from previous years in Figures 6

and 7 respectively, with a mean of 225K files and 36K

directories per file system.

The CDF in Figure 8 shows the number of files per

directory. While the change is small, it is clear – even

as users in 2009 have more files, they have fewer files

per directory, with a mean of 6.25 files per directory.

Figure 9 shows the distribution of subdirectories per

directory. Since the mean subdirectories per directory

is necessarily one
4
, the fact that the distribution is more

skewed toward smaller sizes indicates that the directory

structure is deeper with a smaller branching factor.

However, the exact interpretation of this result warrants

further study. It is not clear if this depth represents a

conscious organization choice, is the result of users

being unable effectively to organize their hierarchical

data or is simply due to the design of the software that

populates the tree. Figure 10 shows the histogram and

CDF of files by directory depth for the 2009 data; simi-

lar results were not published in the earlier studies.

The histogram in Figure 11 shows how the utilization

of storage is related to namespace depth. There is a

steep decline in the number of bytes stored more than 5

levels deep in the tree. However, as we will see in Sec-

tion 4.4, this does not mean the deeply nested files are

unimportant. Comparing it with Figure 10 shows that

files higher in the directory tree are larger than those

deeper.

4.4 Files
Our analysis of files in the dataset shows distinct clas-

ses of files emerging. The frequently observed fact that

most files are small and most bytes are in large files has

intensified. The mean file size is now 318K, about three

times what it was in 2000. Files can be classified by

4
 Ignoring that the root directory isn’t a member of any

directory.

their update time as well. A large class of files is writ-

ten only once (perhaps at install time).

4.4.1 File Size

In one respect, file sizes have not changed at all. The

median file size remains 4K (a result that has been re-

markably consistent since at least 1981 [27]), and the

distribution of file sizes has changed very little since

2000. Figure 12 shows that the proportion of these

small files has in fact increased with fewer files both

somewhat larger and somewhat smaller than 4K. There

is also an increase in larger files between 512K and

8MB.

Figure 13 shows a histogram of the total number of

bytes stored in files of various sizes. A trend towards

bi-modality has continued, as predicted in 2007 [1],

though a third mode above 16G is now appearing. Fig-

ure 14 shows that more capacity usage has shifted to the

larger files, even though there are still few such files in

the system. This suggests that optimizing for large files

will be increasingly important.

Viewed a different way, we can see that trends towards

very large files being the principle consumers of storage

have continued smoothly. As discussed in Section 4.5,

this is a particular challenge because large files like

VHDs have complex internal structures with difficult to

predict access patterns. Semantic knowledge to exploit

these structures, or file system interfaces that explicitly

support them may be required to optimize for this class

of data.

4.4.2 File Times

File modifications time stamps are usually updated

when a file is written. Figure 15 shows a histogram and

CDF of time since file modification with log scaling on

the x-axis
5
. The same data with 1 month bins is plotted

in Figure 16. Most files are modified between one

month and a year ago, but about 20% are modified

within the last month.

5
 Unlike the other combined histogram/CDF graphs,

this one has both lines using the left y-axis due to a bug

in the graphing package.

Figure 12: Histogram of Files by Size

Figure 13: Histogram of Bytes by Containing File

Size

Figure 14: CDF of Bytes by Containing File Size

0%

2%

4%

6%

8%

10%

12%

14%

0 8 128 2K 32K 512K 8M 128M

File Size (bytes), power-of-two bins

2009 2004 2000

0%

2%

4%

6%

8%

10%

12%

1K 16K 256K 4M 64M 1G 16G 256G

Containing File Size (bytes), power-of-two bins

2009 2004 2000

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1K 16K 256K 4M 64M 1G 16G 256G

Containing File Size (bytes)

2009 2004 2000

Figure 17 relates file modification time to the age of the

file system. The x-axis shows the time since a file was

last modified divided by the time since the file system

was formatted. This range exceeds 100% because

some files were created prior to installation and were

subsequently copied to the file system, preserving their

modification time. The spike around 100% mostly con-

sists of files that were modified during the system in-

stallation. The area between 0% and 100% shows a

relatively smooth decline, with a slight inflection

around 40%.

NTFS has always supported a last access time field for

files. We omit any analysis because updates to it are

disabled by default as of Windows Vista [18].

4.5 Extensions
Figure 18 shows only modest change in the extensions

for the most popular files. However, the extension

space continues to grow. The ten most popular files

extensions now account for less than 45% of the total

files compared with over 50% in 2000.

Figure 19 shows the top storage consumers by file ex-

tension. Several changes are apparent here. First, there

is a significant increase in storage consumed by files

with no extension, which have moved from 10
th

 place

in all previous years to be the largest class of files to-

day, replacing DLLs. VHD and ISO files are virtual

disks and images for optical media. They have in-

creased in relative size, but not as quickly as LIB files.

Finally, the portion of storage space consumed by the

Figure 18: Popularity of Files by Extension

h ø
gif

dll gif

dll
manifest h

h xml dll

htm
ø

htm

ø
cs txt

exe
cpp xml

cpp
txt cpp

c
gif

jpg

jpg

lib
exe

txt

0%

10%

20%

30%

40%

50%

60%

2009 2004 2000

Figure 15: Time Since Last File Modification

Figure 16: Time Since Last File Modification

Figure 17: Time Since Last File Modification as a

Fraction of File System Age.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 10 100 1000

Time since last modification (days), power-of-two
bins

CDF Histogram

0%

2%

4%

6%

8%

10%

12%

14%

16%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 12 24 36 48

Time since last modification (months), one month
bins

CDF Histogram

0%

1%

1%

2%

2%

3%

3%

4%

4%

5%

5%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 20% 40% 60% 80% 100% 120%

Time Since File Modification/FS Age
(%), 1% bins

CDF Histogram

top extensions has increased by nearly 15% from previ-

ous years.

5 On-disk Layout
The behavior and characteristics of magnetic disks con-

tinue to be a dominant concern in storage system opti-

mization. It has been shown that file system perfor-

mance changes over time, largely due to fragmentation

[28]. While we have no doubt that the findings were

true in 1997, our research suggests that this observation

no longer holds in practice.

We measure fragmentation in our data set by recording

the files’ retrieval pointers, which point to NFTS’s data

blocks. Retrieval pointers that are non-linear indicate a

fragmented file. We find such fragmentation to be rare,

occurring in only 4% of files. This lack of fragmenta-

tion in Windows desktops is due to the fact that a large

fraction of files are not written after they are created

and due to the defragmenter, which runs weekly by

default
6
. However, among files containing at least one

fragment, fragments are relatively common. In fact,

25% of fragments are in files containing more than 170

fragments. The most highly fragmented files appear to

be log files, which (if managed naively) may create a

6
 This is true for all of our scans other than the 17 that

came from machines running Windows Server 2003.

new fragment for each appending write.

6 Related Work
Studies of live deployed system behavior and usage

have long been a key component of storage systems

research. Workload studies [30] are helpful in deter-

mining what file systems do in a given slice of time, but

provide little guidance as to the long term contents of

files or file systems. Prior file system content studies

[1, 9] have considered collections of machines similar

to those observed here. The most recent such study

uses 7 year old data, while data from the study before it

is 11 years old, which we believe justifies the file sys-

tem portion of this work. However, this research also

captures relevant results that the previous work does

not.

Policroniades and Pratt [24] studied duplication rates

using various chunking strategies on a dataset about

0.1% of the size of ours, finding little whole-file dupli-

cation and a modest difference between fixed-block and

content-based chunking. Kulkarni et al. [12] found

combining compression, eliminating duplicate identi-

cal-sized chunks and delta-encoding across multiple

datasets to be effective. Their corpus was about 8GB.

We are able to track file system fragmentation and data

placement, which has not been analyzed recently [28]

or at large scale. We are also able to track several

forms of deduplication, which is an important area of

current research. Prior work has used very selective

data sets usually focusing either on frequent full back-

ups [3, 8], virtual machine images [6, 13], or simulation

[10]. In the former case, data not modified between

backups can be trivially deduplicated, and in the latter

disk images start from a known identical storage, and

diverge slowly over time. In terms of size, only the

DataDomain [33] study rivals ours. It is less than half

the size presented here and was for a highly self-

selective group. Thus, we not only consider a more

general, but also a larger dataset than comparable stud-

ies. Moreover, we include a comparison to whole-file

deduplication, which has been missing in much of the

deduplication research to date. Whole file deduplica-

tion is an obvious alternative to block-based deduplica-

tion because it is light-weight and as we have shown,

nearly as effective at reclaiming space.
Figure 19: Bytes by File Extension

ø
dll

dll

dll

vhd

pdb

lib

pdb

exe

vhd

exe

pst

pdb

wma

pch

exe

lib

mp3

pch

cab

lib

cab

pst

chm

wma

mp3

cab

iso

ø

ø

0%

10%

20%

30%

40%

50%

60%

2009 2004 2000

7 Conclusion
We studied file system data, metadata, and layout on

nearly one thousand Windows file systems in a com-

mercial environment. This new dataset contains

metadata records of interest to file system designers,

data content findings that will help create space effi-

ciency techniques, and data layout information useful in

the evaluation and optimization of storage systems.

We find that whole-file deduplication together with

sparseness is a highly efficient means of lowering stor-

age consumption, even in a backup scenario. It ap-

proaches the effectiveness of conventional deduplica-

tion at a much lower cost in performance and complexi-

ty. The environment we studied, despite being

homogeneous, shows a large diversity in file system

and file sizes. These challenges, the increase in un-

structured files, and an ever-deepening and more popu-

lated namespace pose significant challenge for future

file system designs. However, at least one problem –

that of file fragmentation, appears to be solved, provid-

ed that a machine has periods of inactivity in which

defragmentation can be run.

Acknowledgements
We would like to thank the hundreds of Microsoft em-

ployees who were willing to allow us to install software

that read the entire contents of their disks, Richard

Draves for helping us with the Microsoft bureaucracy,

Microsoft as whole for funding and enabling this kind

of research, our program committee shepherd Keith

Smith and the anonymous reviewers for their guidance

as well as detailed and helpful comments, and Fred

Douglis for some truly last-minute comments and

proof-reading.

References
[1] N. Agrawal, W. Bolosky, J. Douceur and J. Lorch.

A five-year study of file-system metadata. In Proc. 5
th

USENIX Conference on File and Storage Technologies,

2007.

[2] M. Bhadkamkar, J. Guerra, L. Useche, S. Burnett, J.

Liptak, R. Rangaswami, and V. Hristidis. Borg: block-

reorganization for self-optimizing storage systems. In

Proc. 7
th

 USENIX Conference on File and Storage

Technologies, 2009.

[3] D. Bhagwat, K. Eshghi, D. Long, and M.

Lillibridge, Extreme binning: scalable, parallel

deduplication for chunk-based file backup, In Proc. 17
th

IEEE International Symposium on Modeling, Analysis,

and Simulation of Computer and Telecommunication

Systems, 2009.

[4] B. Bloom. Space/time trade-offs in hash coding

with allowable errors. Communications of the ACM

13(7): 422—426, 1970.

[5] W. Bolosky, S. Corbin, D. Goebel and J. Douceur.

Single instance storage in Windows 2000. In Proc. 4
th

USENIX Windows Systems Symposium, 2000.

[6] A. Clements, I. Ahmad, M. Vilayannur, J. Li.

Decentralized deduplication in SAN cluster file

systems. In Proc. USENIX Annual Technical

Conference, 2009.

[7] W. Dong, F. Douglis, K. Li, H. Patterson, S. Reddy,

and P. Shilane. Tradeoffs in scalable data routing for

deduplication clusters. In Proc. 9
th

 USENIX

Conference on File and Storage Technology, 2011.

[8] S. Dorward and S. Quinlan. Venti: A new approach

to archival data storage. In Proc. 1
st
 USENIX

Conference on File and Storage Technologies, 2002.

[9] J. Douceur and W. Bolosky. A large-scale study of

file-system contents. In Proc. 1999 ACM

SIGMETRICS International Conference on

Measurement and Modelling of Computer Systems,

1999.

[10] C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk,

W. Kilian, P. Strzelczak, J. Szczepkowski, C.

Ungureanu, and M. Welnicki. Hydrastor: a scalable

secondary storage. In Proc. 7
th

 USENIX Conference on

File and Storage Technologies, 2009.

[11] H. Huang, W. Hung, and K. G. Shin. Fs2:

dynamic data replication in free disk space for

improving disk performance and energy consumption.

In Proc. 20
th

 ACM Symposium on Operating Systems

Principles, 2005.

[12] P. Kulkarni, F. Douglis, J. LaVoie, and J. Tracey.

Redundancy elimination within large collections of

files. In Proc. USENIX 2004 Annual Technical

Conference, 2004.

[13] K. Jin and E. Miller. The effectiveness of

deduplication on virtual machine disk images. In Proc.

SYSTOR 2009: The Israeli Experimental Systems

Conference, 2009.

[14] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deola-

likar, G. Trezise, and P. Camble. Sparse indexing:

large scale, inline deduplication using sampling and

locality. In Proc. 7
th

 USENIX Conference on File and

Storage Technologies, 2009.

[15] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A.

Tomas, and L. Vivier. The new ext4 filesystem: current

status and future plans. In Proc. of the Linux

Symposium, June, 2007.

[16] Microsoft Corporation. BackupRead Function.

MSDN. [Online] 2010. [Cited: August 17, 2010.]

http://msdn.microsoft.com/en-

us/library/aa362509(VS.85).aspx.

[17] Microsoft Corporation. Description of the

scheduled tasks in Widows Vista. Microsoft Support.

[Online] July 8, 2010. [Cited: August 9, 2010.]

http://support.microsoft.com/kb/939039.

[18] Microsoft Corporation. Disabling Last Access

Time in Windows Vista to Improve NTFS Perfomance.

The Storage Team Blog. [Online] 2006. [Cited

November 2, 2010.]

http://blogs.technet.com/b/filecab/archive/2006/11/07/d

isabling-last-access-time-in-windows-vista-to-improve-

ntfs-performance.aspx.

[19] Microsoft Corporation. File systems. Microsoft

TechNet. [Online] 2010. [Cited: August 9, 2010.]

http://technet.microsoft.com/en-

us/library/cc938929.aspx.

[20] Microsoft Corporation. Volume Shadow Copy

Service. MSDN. [Online] 2010. [Cited August 31,

2010.] http://msdn.microsoft.com/en-

us/library/bb968832(VS.85).aspx

[21] D. R. Miller. Storage Economics: Four Principles

for Reducing Total Cost of Ownership. Hitachi

Corporate Web Site. [Online] May 2009. [Cited:

August 17, 2010.] http://www.hds.com/assets/pdf/four-

principles-for-reducing-total-cost-of-ownership.pdf.

[22] N. Murphy and M. Seltzer. Hierarchical file

systems are dead. In Proc. 12
th

 Workshop on Hot

Topics in Operating Systems, 2009.

[23] R. Nagar. Windows NT File System Internals.

O’Reilly, 1997

[24] C. Policroniades and I. Pratt. Alternatives for

detecting redundancy in storage systems. In Proc.

USENIX 2004 Annual Technical Conference, 2004.

[25] M. Rabin. Fingerprinting by Random Polynomials.

Harvard University Center for Research In Computing

Technology Technical Report TR-CSE-03-01, 1981.

Boston, MA.

[26] R. Rivest. The MD5 Message-Digest Algorithm.

[Online] April 1992. [Cited: August 17, 2010.]

http://tools.ietf.org/rfc/rfc1321.txt.

[27] Satyanarayanan, M. A study of file sizes and

functional lifetimes. In Proc. 8
th

 ACM Symposium on

Operating Systems Principles, 1981.

[28] M. Seltzer and K. Smith. File system aging:

increasing the relevance of file system benchmarks. In

Proc. 1997 ACM SIGMETRICS, June 1997.

[29] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M.

Nishimoto, and G. Peck. Scalability in the XFS file

system. In Proc. 1996 USENIX Annual Technical

Conference, 1996.

[30] W. Vogels. File system usage in windows NT 4.0.

In Proc. 17
th

 ACM Symposium on Operating Systems

Principles, 1999.

[31] C. Ungureanu, B. Atkin, A. Aranya, S. Gokhale, S.

Rago, G. Cakowski, C. Dubnicki, and A. Bohra.

Hydrafs: A high-throughput file system for the

Hydrastor content-addressable storage system. In Proc.

8
th

 USENIX Conference on File and Storage

Technologies, 2010.

[32] E. Ungureanu and C. Kruus. Bimodal content

defined chunking for backup streams, In Proc. 8
th

USENIX Conference on File and Storage Technologies,

2010.

[33] B. Zhu, K. Li, and H. Patterson. Avoiding the disk

bottleneck in the Data Domain deduplication file

system. In Proc. 6
th

 USENIX Conference on File and

Storage Technologies, 2008, pp. 1-14.

http://msdn.microsoft.com/en-us/library/aa362509(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa362509(VS.85).aspx
http://support.microsoft.com/kb/939039
http://blogs.technet.com/b/filecab/archive/2006/11/07/disabling-last-access-time-in-windows-vista-to-improve-ntfs-performance.aspx
http://blogs.technet.com/b/filecab/archive/2006/11/07/disabling-last-access-time-in-windows-vista-to-improve-ntfs-performance.aspx
http://blogs.technet.com/b/filecab/archive/2006/11/07/disabling-last-access-time-in-windows-vista-to-improve-ntfs-performance.aspx
http://technet.microsoft.com/en-us/library/cc938929.aspx
http://technet.microsoft.com/en-us/library/cc938929.aspx
http://msdn.microsoft.com/en-us/library/bb968832(VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb968832(VS.85).aspx
http://www.hds.com/assets/pdf/four-principles-for-reducing-total-cost-of-ownership.pdf
http://www.hds.com/assets/pdf/four-principles-for-reducing-total-cost-of-ownership.pdf
http://tools.ietf.org/rfc/rfc1321.txt

