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Abstract

Pre-validation is a useful technique for the analysis of microarray and other high
dimensional data. It allows one to derive a predictor for disease outcome and compare it
to standard clinical predictors on the same dataset. An important step of the analysis
is then to test if the microarray predictor has a significant effect for predicting the
disease outcome. We show that the straightforward “one degree of freedom” analytical
test is biased and we propose a permutation test to remedy this problem. In simulation
studies, we show that the permutation test has the nominal level and achieves roughly
the same power as the analytical test.

1 Introduction

An often encountered problem is to develop a prediction rule for an outcome based on a
dataset. Since there are usually other competing predictors available for prediction of the
same outcome, a comparison of the new prediction rule to the old rules is needed in order to
determine if the new rule provides any additional benefit. Doing the comparison on the same
dataset would favor the new rule as it was derived on this dataset and likely fits it very well.
Another approach would be to split the data into separate training and test datasets, build
the predictor on the training set and then fit it along with competing predictors on the test
set. However with limited data, this may severely reduce the accuracy of the new prediction
rule and/or the test set may be too small to have adequate power for the comparison.

∗Dept. of Statistics, Stanford University, Stanford, CA, 94305, USA; hhoeflin@stanford.edu
†Departments of Health, Research & Policy, and Statistics, Stanford University, Stanford, CA, 94305,

USA; tibs@stat.stanford.edu

1



Pre-validation (PV) (see Tibshirani and Efron (2002)) offers another approach to this prob-
lem. The new prediction rule is derived and compared to the old rules on the same dataset
without biased results towards the new rule or big losses of power. Pre-validation is similar
to cross-validation, except that the goal is to construct a “fairer” version of the prediction
rule, rather than to directly estimate its prediction error. Before going into more detail, we
explain how PV works on an example (see also Figure 1).

We have microarray data for n patients with breast cancer. On each array, measurements
on p genes were taken. Also available are several non-microarray based predictors, which
are commonly used in clinical practice (e.g. age, tumor size ...) to predict if the patient’s
prognosis is poor or good. We want to use the microarray data in order to predict the
prognosis of a patient. In PV, the n patients are divided into K-folds. Leaving out one fold,
a prediction rule using the microarray data for the remaining K − 1 folds is fit (the internal
model). Using this rule, the cancer types for the patients in the left out fold are predicted.
This way, the data of the left-out fold is not used in building the rule and therefore no
overfitting occurs. Repeating this procedure for every fold yields a vector of predictions for
each patient. Each patient now has a prediction using a rule for which this patient’s data was
not used. We call this vector of predictions pre-validated. The pre-validated predictor can
now be compared to the other non-microarray based predictions using a logistic regression
model (the external model). If the coefficient of the pre-validated predictor in the logistic
regression model is significant, we conclude that the new microarray-based prediction rule as
an independent contribution over the existing rules. The effect of PV is to remove much of
the bias that arises from using the same data to build the new prediction rule and compare
it to the already established ones.

The goal of pre-validation is to construct a fairer version of our predictor that can be used on
the same dataset and will act like a predictor applied to a new external dataset. That is, a
one-dimensional pre-validated predictor should behave like a one degree of freedom predictor
in a linear model. In this article, we will show that pre-validation is only partially successful
in this goal: while the coefficient estimate for the pre-validated predictor is generally good,
the one degree of freedom test can be biased, with a level differing from the target level. In
this paper we propose a permutation test to solve this problem.

In section 3, we will show this bias analytically in the simple setting with a linear internal
and a linear external model. Section 4 outlines the models that are used in the simulations,
the amount of bias of the analytical test in these models and the permutation test. Section
5 presents the results of the simulations. In section 6, the method is applied to a microarray
dataset of breast cancer patients.
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Figure 1: A schematic of the Pre-Validation process. The cases are divided up into (say)
10 equal-sized groups. Leaving out one of the groups, a prediction rule is derived from the
data of the remaining 9 groups. This prediction rule is then applied to the left out group,
giving the pre-validated predictor ỹ for the cases in the left out group. Repeating this process
for every group yields the pre-validated predictor ỹ for all cases. Finally, ỹ is included in a
logistic regression model together with the clinical predictors to assess its relative strength in
predicting the outcome.
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2 Pre-Validation

As mentioned above, deriving a prediction rule and comparing it to other rules on the same
dataset can lead to a bias in favor of the new rule due to overfitting. This bias can be very
large and an example of this effect will be shown later in section 6.

One way to avoid overfitting is to use cross-validation, which is just K applications of the
training/test dataset approach mentioned above. For this type of problem, the procedure
works as follows:

1. Divide the data in K separate groups.

2. Leave out one group and derive the prediction rule over the remaining K − 1 groups.

3. Using the new prediction rule, predict the outcome for the left-out group.

4. Compare the strength of the prediction to the already existing predictors for the out-
come (e.g. in a linear or logistic regression model, depending on the type of outcome)
only in the left-out group. Test if the new predictor is significant.

5. Repeat steps 2-4 for every group and average the results.

However, depending on the choice of K, there are tradeoffs. If K is small, say 2 or 3, the
prediction rule is derived on a smaller set of data, thus possibly losing accuracy. In situations
as with microarray data, where the number of observations is usually small compared to the
amount of available data, the reduction of prediction strength due to the lower number of
observations can be substantial. On the other hand, if K is say 4 or larger, the comparison to
the already existing prediction rules has to be done on a very small number of observations.
If there are 5 (say) other predictors and a total of 50 observations, then with K = 5, the
comparison of the new rule to the 5 old ones would have to be done using only 10 observations
- it is very unlikely to find significant effects under these circumstances.

Pre-validation (see Figure 1) changes this procedure to avoid the for-mentioned problems:

1. Divide the data in K separate groups.

2. Leave out one group and derive the prediction rule over the remaining K − 1 groups.

3. Using the new prediction rule, predict the outcome for the left-out group.
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4. Repeat steps 2 and 3 for each group. Collect the predictions into a vector such that
one prediction exists for every observation in every group (we call this predictor “pre-
validated”).

5. Compare the strength of the prediction to the already existing predictors for the out-
come (e.g. in a linear or logistic regression model, depending on the type of outcome)
using all observations and the predictor derived above. Test if the new predictor is
significant.

For PV, the number of groups K is usually chosen to be 5 or 10. Leave-one-out PV (K = n)
leads to high variance in estimates and lower values would decrease the size of the training set
too much, as already discussed above. However, as in PV the predictions for all observations
are collected before the comparison to the existing predictors, a high value of K does not
compromise the power of this comparison.

When comparing the pre-validated predictor to the existing predictors, usually a linear or
logistic regression model is fitted (depending on the outcome). The new prediction rule is
judged to make a significant improvement over the old rules if the coefficient of the pre-
validated predictor is significantly different from 0. As the new rule predicts the outcome,
significant values for the coefficient would be positive. Therefore instead of a 2-sided test of
βPV = 0 vs βPV 6= 0, we can get more power by doing a one sided test βPV = 0 vs. βPV > 0.
For this, usually the standard analytical test for the model (i.e t-statistic or z-score) are
used. In the next section, we will prove in a simple case that this analytical test is biased.
In more complicated scenarios, simulations are used.

3 Analytical results on the bias of tests for pre-validated

predictors

An analytical treatment of the distribution of test statistics in the external model is very
difficult in the general case. However, the problem becomes tractable in a simplified setting.
Consider PV with K = n, i.e. leave-one-out PV. Assume that p < n and use a linear
regression model for building the new prediction rule. Let there be e other external predictors
for the same outcome y. Let X be the n×p matrix with the data used for the new prediction
rule.

We assume that X and y have the following distributions

Xij ∼ N(0, 1) i.i.d ∀ i = 1, . . . , n; j = 1, . . . , p
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and
yi ∼ N(0, 1) i.i.d. ∀ i = 1, . . . , n

independent also of X. So here our data X is independent of the response y and we can
therefore explore the distribution under the null in the external model (βPV = 0).

3.1 No other predictors

For simplicity, let us first consider the case with e = 0, i.e. no other predictors. As a first
step, we need an expression for the prediction using the internal linear model and leave-one-
out pre-validation. Here let H = X(XT X)−1XT be the projection matrix used in linear
regression. Let D be the matrix with the diagonal elements of H. Then the leave-one-out
pre-validated predictor is

ỹ = (I −D)−1(H −D)y =: Py,

where I is the identity matrix.

Now use ỹ as the sole predictor in the external model, which is also linear. As there are
no other predictors, this may not seem to make much sense, as the hypothesis that there
is no relationship between X and y could be tested right away in the internal model. We
apply the external model anyway, as it is very instructive as to what the problem is in more
complicated settings.

So we now consider the model
y = βPV ỹ + ε

where ε ∼ N(0, σ2 · I). Then under these conditions, the following theorem holds

Theorem 1. Under the assumptions described above, the t-statistic for testing the hypothesis
βPV = 0 has the asymptotic distribution

t =
ˆβPV

ŝd( ˆβPV )
→d C − p√

C
as n →∞

where C ∼ χ2
p.

Proof. See Appendix A.1.

As it can be seen here, the statistic is not t-distributed as in a regular linear regression. This
can lead to biases when the t-distribution is used for testing. The size of the bias will be
explored numerically later in section 3.
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3.2 Other predictors related to the response y

Now assume that we have several outside predictors for the response. As these are usually
based on different data than X, we define the distribution of the outside predictors based
on y and not on the internal model. So let Z be a n× e matrix with

Zik = yi + γik

where γik ∼ N(0, σ2
k) i.i.d. ∀ i = 1, . . . , n; k = 1, . . . , e. Thus, the additional predictions are

perturbed versions of the true response.

The internal model for the prediction of y using X is the same as before. The external linear
model now becomes however

y = ỹβPV + Zβ + ε.

Again we want to test if βPV = 0. In a linear model, this is usually done by calculating
the t-statistic and calculating the quantile using the t-distribution with the right degrees of
freedom. The following theorem gives the asymptotic distribution of the t-statistic under
these assumptions.

Theorem 2. Under the setup described above, the t-statistic for testing βPV = 0 in the
external linear model has the asymptotic distribution

t =
β̂PV

ŝd(β̂PV )
→d (NT N − p)√

NT N
− NT A(11T + Cov(γ))−11√

NT N(1− 1T (11T + Cov(γ))−11)
as n →∞

where N ∼ N(0, Ip), A = (A1, . . . , Ae) with Ak ∼ N(0, σ2
k · Ip)), 1 = (1, . . . , 1)T ∈ Re and

Cov(γ) = diag(σ2
1, . . . , σ

2
e).

Proof. See Appendix A.2

We can see that the asymptotic distribution of the t-statistic is not a t or normal distribution,
as we already observed in the simple case above without external predictors.

In the next section, by using simulations, we will investigate the extent of the bias when the
testing is done using a t-distribution.
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4 Models, bias and permutation test

4.1 Models used in the simulations

In the section above we have seen that in the simple case where the internal and external
models are linear regressions, the t-statistic does not have its usual distribution. We expect
that same is true for more complicated scenarios, which are not tractable analytically. In
order to investigate the amount of bias in more complex settings, we used the following 3
model combinations in our simulations.

4.1.1 Linear-Linear

This is the most simple model and was also used in the analytical analysis. Here, the internal
and external models are standard linear regressions. Let n be the number of subjects and
p be the number of predictors for the internal model. Let e be the number of external
predictors. Then the internal predictors are a matrix X which is generated as

Xij ∼ N(0, 1) i.i.d. i = 1, . . . , n j = 1, . . . , p

Also βj ∼ N(0, σ2
b ). Using this, the response is generated as

y ∼ N(Xβ, I · σ2
I )

From this true response, the external predictors are derived as

Zik ∼ N(yi, σ
2
E) i.i.d. i = 1, . . . , n k = 1, . . . , e

The rationale for simulating the external predictors as a perturbation of the truth rather than
the underlying model is that the external predictors would be derived using different models
and maybe targeting other aspects of the phenomenon such that the underlying model here
would not apply to them. From this perspective, modeling them as a noisy version of the
truth seems more appropriate. For simplicity, we always choose σ2

b = σ2
I = σ2

E = 1 in the
simulations.

4.1.2 Lasso-Linear

This model is an extension of the previous one. The predictor matrix X is generated in
exactly the same way as before. However, instead of drawing all βj from N(0, σ2

b ), this is
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done only for the first r. All others are set to 0 to ensure sparseness. The external predictors
are then generated from y as described above.

For analyzing this artificial data, an internal lasso regression model will be used. The
external model is linear regression as before. The internal model will be fit using the LARS
algorithm, ensuring that the fitted model contains exactly a prespecified number l of non-zero
coefficients.

4.1.3 Linear Discriminant Analysis (LDA) - Logistic

This model is intended to simulate something very to application on microarray data. Again,
there are n observations, which are divided into 2 groups with n1 and n2 members (n1 +n2 =
n). Also, p predictors (genes) will be generated for each observation independently. However,
for the first p1 out of the p genes, the means will be different. For the first group, µij = 0 ∀i, j,
where i refers to the observation and j to the genes. For the second group of n2 observations,
the first p1 genes will have µij = µ > 0, a positive offset in the mean from the same genes
in the first group. All others genes will also have mean 0 in the second group as well. Then
we simulate the microarray data as

Xij ∼ N(µij, σ
2).

The external predictors are then generated by switching the label of the yi independently
with probability pE.

In the internal model, first a number g of predictors is selected by choosing the predictor
with the largest correlation with the response. Then an LDA model is fit to the chosen g
predictors. In the external model, standard logistic regression is used.

4.2 Simulation of the type I error under the null

In each of the scenarios described above, we simulate artificial data and perform the PV
algorithm 100, 000 times (without the permutation test). The analytical p-value of the pre-
validated predictor is used to decide if the null hypothesis is rejected (t-statistic in linear
regression model, z-score in logistic regression). Based on the simulations, the type I error
of the analytical test is estimated (see Table 1).

The analytical tests in the external models show substantial upward and downward bias in
the tested scenarios, depending on the choice of parameters. For the type I error level 0.01,
this upward bias can double the size of the test and it is also substantial at level 0.05.
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The remedy for this problem is a permutation test.

4.3 The permutation test

As we have just seen, the standard analytical test in the external models used (here linear
and logistic) do not achieve their nominal level when they are being applied to pre-validated
predictors. This can have serious consequences on the outcome of the test. A permutation
test is a procedure that is very robust with respect to this problem.

The external predictors have usually been used and validated in this context before, so we
were not concerned with evaluating their performance. In any case, extending the permu-
tation test to cover them as well is straightforward. The variables that we have as input
is the response y, the internal predictors X and the external predictors Z. As there is a
relationship between y and Z, we do not permute y but instead the rows of X. Then, the
pre-validation procedure is used and a test statistic in the external model collected (say β
or t). This permutation is repeated often enough to get a sufficiently large sample of the
test statistic (here usually 500 or 1000 permutations). The p-value is then estimated as
the fraction of the permutation test statistic larger or equal to the observed test statistic
(no randomization on the boundary). As the pre-validated predictor is a prediction for the
response y, we expect its coefficient to be positive and therefore use a one-sided p-value (as
we already did for the analytical test).

5 Simulation results

In this section we explore whether the permutation test achieves the intended level and what
effect it has on the power of the test compared to the analytical solution. For this, artificial
datasets according to the 3 scenarios described above are created and analyzed.

5.1 Level of the permutation test

For estimating the level of the test under the null hypothesis, the internal predictors X will
be independent of the response and the external predictors Z. Several different parameter
combinations will be used for this task. For each scenario and parameter choice, 1000
simulations were used where each test was based on 500 permutations.
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Scenario Parameters CV-folds
Type I error

α = 0.01 α = 0.05 α = 0.1

Linear-Linear

n = 10, p = 5, k = 1
5 0.022 0.079 0.137
10 0.024 0.080 0.139
n 0.023 0.083 0.140

n = 20, p = 5, k = 1
5 0.018 0.069 0.123
10 0.017 0.066 0.120
n 0.018 0.067 0.119

n = 50, p = 5, k = 1
5 0.016 0.064 0.115
10 0.016 0.062 0.111
n 0.015 0.060 0.109

Lasso-Linear

n = 10, p = 100, k = 1, l = 5
5 0.008 0.033 0.062
10 0.011 0.040 0.072

n = 10, p = 100, k = 1, l = 10
5 0.010 0.040 0.074
10 0.016 0.053 0.091

n = 30, p = 100, k = 1, l = 5
5 0.012 0.040 0.071
10 0.014 0.046 0.076

n = 30, p = 100, k = 1, l = 10
5 0.016 0.054 0.092
10 0.021 0.065 0.105

n = 30, p = 100, k = 1, l = 20
5 0.020 0.065 0.112
10 0.030 0.081 0.128

LDA-Logistic
n = 20, p = 1000, k = 1, l = 10

5 0.003 0.025 0.076
10 0.0096 0.047 0.100

n = 40, p = 1000, k = 1, l = 10
5 0.018 0.072 0.122
10 0.036 0.106 0.158

n = 80, p = 1000, k = 1, l = 10
5 0.019 0.071 0.122
10 0.053 0.126 0.179

Table 1: Type I error in various scenarios. Each estimate is based on 100000 simulations,
giving an SD of ≤ .005. The most extreme values for each scenario are in bold.
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The levels of the permutation tests can be found in Tables 5, 6 and 7. The standard error
for the α = .01 estimate is 0.003, for α = .05 it is 0.007 and for α = 0.1, the standard error
is 0.009. All the estimates in the tables are well within 2 standard deviations of their target
value, so we see that the permutation tests are unbiased.

5.2 Power

The same scenarios that were used for estimating the level of the permutation tests will
also be used to estimate the power under the alternative. As there is no distinct alternative
hypothesis, several different choices will be used, depending on the specific scenario.

One of the most interesting aspects of this simulation is to compare the power of the per-
mutation test to the power of the standard analytical test. However, as the analytical test
is biased (usually upward), a straightforward comparison using the nominal test levels is
inappropriate. In order to adjust for the bias, the simulations in the same scenario and
parameters under the null hypothesis will be used. For each nominal level, a new cutoff for
the p-values will be estimated such that the level of the analytical test is equal to its nominal
level. This cutoff will then also be used to estimate its power.

The results can be seen in Tables 8, 9 and 10. As before, the estimates are based on 1000
simulations, each of which used 500 permutations for the tests. Here, the maximum standard
deviation for the test is achieved for a power of 0.5, in which case the SD is 0.016. The power
of the permutation test is in most cases very close to the power of the analytical test and
sometimes even higher (although this may be a random occurrence). So, there does not
seem to be a serious problem with loss of power when comparing the permutation tests to
the analytical test.

However, the picture as to which choice of test statistic and number of folds to use for the
permutation test is not very clear. For the Linear-Linear model, we used 5-fold PV, 10-fold
PV, leave-on-out PV and permutation tests without PV (K = 1). For the other model, due
to computation time constraints, we only used 5- and 10-fold PV as well as no PV. In the
Linear-Linear scenario, leave-one-out PV performs slightly better than 5-fold and 10-fold
PV. However, in all but the simplest models, performing leave-one-out PV comes with a
serious increase in computation time so that just using 5- or 10-fold PV may be considered
appropriate.

In some instances, the permutation test using no PV showed a lot more power than 5- or 10-
fold PV permutation tests. However, especially in the LDA-Logistic model, the test without
PV had power even below the nominal level of the test. This can be explained by overfitting
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the data, leading to perfect separation of the classes even if there is no relationship between
the class labels y and the internal predictors X. In these cases, the permutation test without
PV does not give useable results.

Therefore, using 5-fold (or 10-fold) PV permutation test is the most reliable procedure,
achieving the nominal level of the test without compromising power with respect to the
analytical test. The choice of test statistic depends on the specific application, but all
standard statistics we used had acceptable performance.

5.3 Performance of the estimator for the pre-validated coefficient

When the new prediction rule turns out to be a significant improvement over the performance
of the old prediction rules, the value of the coefficient of the new predictor compared to the
coefficients of the old predictors indicates how well the new predictor performs. Therefore it
is important to know how well PV estimates the coefficient of the new prediction rule.

In order to have a comparison that is fair and relevant with respect to the amount of data
available, we estimate the coefficient using PV over 1000 simulation runs in the scenarios
presented above. As a benchmark method, we treat the dataset the PV was performed
on as a training set to estimate the new prediction rule and do the comparison to the
other prediction rules on an independently simulated test dataset of the same size as the
training data. Our primary concern is that the coefficient estimated using PV is roughly
unbiased w.r.t. the benchmark. The most straightforward approach would be to compare the
mean over the simulations of the estimated coefficient using PV and using the benchmark.
However, in the LDA-Logistic scenario, occasionally perfect separation occurs which makes
the estimated coefficients extremely large. Mean-unbiasedness is not applicable in this case
and we decided to use median-unbiasedness instead. As the difference between mean and
median is quite small in all other scenarios and the median is more robust, we used the
median in the remaining scenarios as well (Results see Table 14).

In general, PV tends to underestimate the coefficient compared to the Benchmark. The
size of the underestimation depends on the scenario and the number of folds used in PV.
The performance in the Linear-Linear model is very good with hardly any bias at all. For
the Lasso-Linear and the LDA-Logistic scenario, the bias is bigger. The difference of the
estimates for 5-fold and 10-fold PV show that at least part of the bias is due to the smaller
training set used for deriving the prediction rule in PV. The bias also decreases with in-
creasing number of observations, which can also be explained this way, as removing a certain
percentage of observations has a smaller perturbing effect on the prediction rule when the to-
tal number of observations is large. Overall, PV does a good job of estimating the coefficient
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of the new prediction rule.

6 Analysis of breast cancer data

Here we apply the permutation test to the dataset in van’t Veer et al. (2002) and compare it
to the analytical results. The data consists of microarray measurements on 4918 genes over
78 patients with breast cancer. 44 of these belong to the good prognosis group, 34 have a
poor prognosis. Apart from the microarray data, a number of other clinical predictors exist:

• Tumor grade

• Estrogen receptor (ER) status

• Progestron receptor (PR) status

• Tumor size

• Patient age

• Angioinvasion

Based on the microarray data, a predictor for the cancer prognosis was constructed:

1. Select the 70 genes that have the highest correlation with the 78 class labels.

2. Find the centroid vector of the good prognosis group.

3. Compute the correlation of each case with the centroid of the good prognosis group.
Find the cutoff such that only 3 cases in the poor prognosis group are misclassified.

4. Classify any new case as good prognosis if their correlation with the centroid is larger
than the cutoff.

The result of the model fitting with and without using Pre-Validation can be found in Tables
2 and 3. We can immediately see how the significance of the microarray predictor is reduced
when 10-fold PV is being used and thus the effect of fitting and testing the model on the
same data removed. However, as PV chooses random folds, the results depend on the choice
of folds. In order to get a clearer picture of the significance of the microarray predictor, we
repeated the 10-fold PV 100 times and averaged the resulting p-values for the analytical and
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Predictor Coefficient SD Z-score p-Value ∆ Deviance p-Value (dev)
Microarray 4.0961 1.0921 3.751 0.000088a 25.016 5.6 · 10−7

Grade -0.6974 1.0035 -0.695 0.487105 0.510 0.4750
ER -0.5536 1.0444 -0.530 0.596041 0.282 0.5956
Angio 1.2085 0.8160 1.481 0.138613 2.290 0.1302
PR 1.2141 1.0569 1.149 0.250642 1.394 0.2378
Age -1.5926 0.9113 -1.748 0.080549 3.478 0.0622
Size 1.4830 0.7322 2.026 0.042812 4.374 0.0365

aOne sided test for pre-validated predictors and z-score

Table 2: Summary of the coefficients in the external Logistic model without Pre-Validation.
For each coefficient a test for β = 0 based on the z-score and the deviance is given. All
p-values are for two-sided tests except for the z-score p-value of the Microarray predictor,
which is a one-sided p-value for testing β = 0 versus β > 0.

the permutation tests (see Table 4). The analytical test declares the microarray predictor to
be significant, however all 3 permutation test statistics do not give significant results, though
the difference of the analytical test to the z-score permutation test is quite small. A possible
explanation for these different results is the bias of the analytical test.

7 Discussion

The problem often arises that, with a limited amount of data, one wants to find a prediction
rule and verify its usefulness on the same dataset. Often, due to lack of power, doing full
cross-validation is not feasible and pre-validation is a useful method to fill this gap, especially
for finding reliable parameter estimates in the external model. However, we have found that
using the standard analytical tests with the pre-validated predictor can yield a test with
level above the nominal level.

The permutation test approach to the pre-validated predictor addresses the bias problem
of the analytical test without compromising power and is therefore a more reliable way for
assessing whether the new prediction rule is an improvement over previously established
predictors. Its main drawback is that it is very computer-intensive, requiring us to refit
the pre-validation model for every permutation. This can be a problem for especially large
datasets. However, this will not often be a significant problem and the simple structure of
the algorithm makes it easily accessible to parallelization to reduce computation time.

It might be possible to develop an analytical test that accounts for the special structure of
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Predictor Coefficient SD z-score p-Value (z) ∆ Deviance p-Value (dev)
Microarray 1.5449 0.7116 2.171 0.0150a 5.001 0.02533
Grade 0.5614 0.7473 0.751 0.4526 0.563 0.45299
ER -0.6401 0.8967 -0.714 0.4754 0.517 0.47204
Angio 1.3466 0.6477 2.079 0.0376 4.568 0.03257
PR 0.4266 0.8336 0.512 0.6089 0.266 0.60603
Age -1.4569 0.6925 -2.104 0.0354 4.817 0.02817
Size 0.8433 0.6026 1.400 0.1617 1.960 0.16156

aOne sided test for pre-validated predictors and z-score

Table 3: Summary of the coefficient in the external Logistic model using 10-Fold Pre-
Validation. For each coefficient a test for β = 0 based on the z-score and the deviance
is given. All p-values are for two-sided tests except for the z-score p-value of the Microarray
predictor, which is a one-sided p-value for testing β = 0 versus β > 0.

Statistic Mean % < 0.01 % < 0.05 % < 0.1
Analytical z-score 0.046 15 66 91
Permutation with β 0.095 1 27 57
Permutation with z-score 0.050 17 62 86
Permutation with deviance 0.139 0 21 42

Table 4: P-values for the microarray predictor over 100 runs of the Pre-Validation procedure.
The mean values are reported as well as the percentage below the levels 0.01, 0.05 and 0.1.
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the pre-validated predictor. However, it is unclear if an analytical solution exists that holds
for a large number of models. Since the internal models are usually tailored to the specific
problem at hand, having to derive analytical solutions on a case by case basis would be very
difficult. We believe that the permutation test is the best method currently available for the
problem.
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A Proofs

A.1 Case of no outside predictors

For the proof, we first need a lemma:

Lemma 1. Let Xij be i.i.d. N(0, 1) for i = 1, . . . , n and j = 1, . . . , p. Let H = Proj(X) =
X(XT X)−1XT and D = diag(H). Then dii ∼ OP (n−1).

Proof. By the strong law of large numbers,

1

n
XT X → Ip a.s.

and as taking the inverse of a matrix is a continuous operation

n(XT X)−1 → Ip a.s.

Therefore
ndii = nxi(X

T X)−1xT
i →d χ2

p

by continuous mapping, where xi is the i-th row of X.

Also note that as trace(H) =
∑

i dii = p we have that Cov(dii, djj) < 0 ∀i 6= j.

Now let us move on to the proof of Theorem 1.

17



Proof. Let the SVD of X be
X = UEV T

with U ∈ Rn×p orthogonal, E ∈ Rp×p diagonal and V ∈ Rp×p orthogonal. Then we can
write H = UUT , therefore the leave-one-out pre-validated predictor is

ỹ = (I −D)−1(UUT −D)y

and

β̂PV =
ỹT y

ỹT ỹ
.

Evaluating the numerator we get

ỹT y = yT (UUT −D)(I −D)−1y =

= yT UUT y + yT (UUT
(
(I −D)−1 − I

)
y − yT D((I −D)−1 − I)y − yT Dy →d

→d NT N + 0− p as n →∞

where N ∼ N(0, Ip). This holds as UT y ∼ N(0, Ip). The second term converges to 0
as ((I −D)−1 − I) ∼ OP (n−1) and UT y = N is bounded in probability. The third term
converges to 0 in probability as D((I −D)−1 − I) ∼ OP (n−2). For the fourth term observe
that E(yT Dy) = E(E(yT Dy|X)) = E(

∑
dii) = p. As Cov(dii, djj) < 0 for i 6= j, it is easy

to show that yT Dy →P p.

For the denominator we get

ỹT ỹ = yT (UUT −D)(I −D)−2(UUT −D)y =

= NT N + NT UT ((I −D)−2 − I)UN − 2yT D(I −D)−2UN + yT D2(I −D)−2y.

Here, the first term is NT N as above and the other terms converge to 0. The second and
third summand converge to 0 as (I − d)−2 − I ∼ OP (n−1) and D(I −D)−2 ∼ OP (n−1) and
for the fourth term we use that D2(I −D)−2 ∼ OP (n−2).

Now that we have the distribution of the numerator and denominator of β̂PV , consider
ŝd(β̂PV ). This is estimated as

ŝd(β̂PV 0) = σ̂
√

ỹT ỹ.

Only σ̂ is left to treat, for which we can write

σ̂2 =
1

n− 1
(y − β̂PV ỹ)T (y − β̂PV ỹ) =

=
1

n− 1

(
yT y − 2β̂PV Ỹ ty + β̂2

PV ỹT ỹ
)

.
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We know that 1
n−1

yT y → 1 a.s.. The other terms go to 0 as it has been shown above that
the second and third summand inside the bracket is bounded in probability.

So putting all this together yields the desired result.

A.2 Case with outside predictors

The proof of Theorem 2 is along the lines of the proof for Theorem 1, but with more
complicated algebra.

First recall a well known fact about the inverse of matrices. Assume we have a matrix with
blocks of the form

M =

(
A B
C D

)
where A and D are non-singular square-matrices. Then we can write the inverse M−1 as

M−1 =

(
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 + D−1C(A−BD−1C)−1BD−1

)
.

The proof of Theorem 2 is then:

Proof. Let β = (βPV , βT
1 )T and W = (ỹ, Z). Then

β̂ = (W T W )−1W T y

where

W T W =

(
ỹT ỹ ỹT Z
ZT ỹ ZT Z

)
and as we are only interested in β̂PV , this can be written as

β̂PV = (ỹT ỹ − ỹT Z(ZT Z)−1ZT ỹ)−1(ỹT y − ỹT Z(ZT Z)−1ZT y),

using the formula for inverses of block matrices. Also define 1 = (1, . . . , 1)T ∈ Re. Then

1

n
ZT Z =

1

n
(y · 1T + Γ)T (y · 1T + Γ) =

=
1

n
(yT y11T + 2 · 1yT Γ + ΓT Γ) →P

→P 11T + 0 + Cov(γ)
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where Γik = γik is the matrix of random errors of the external predictors and the convergence
follows by the weak law of large numbers.

Also
1

n
ZT y =

1

n
(1yT y + ΓT y) →P 1 + 0

again using the weak law of large numbers and the independence of Γ and y. Furthermore

ZT ỹ = 1yT ỹ + ΓT ỹ.

As we already know that yT ỹ →d NT N − p where N ∼ N(0, Ip), we only have to determine
the distribution of

ΓT ỹ = ΓT (I −D)−1(H −D)y = ΓT (I −D)−1UUT y − ΓT (I −D)−1Dy →d

→d AT N − 0

where N = UT y ∼ N(0, Ip) and UT (I−D)−1Γ →d A = (A1, . . . , Ae) with Ak ∼ N(0, σ2
k ·Ip))

i.i.d. So ZT ỹ converges in distribution to

ZT ỹ →d NT N − p + AT N.

So combining the previous results we have

ỹT Z(ZT Z)−1ZT ỹ =
1

n

(
ỹT Z

(
1

n
ZT Z

)−1

ZT ỹ

)
→P 0

as the term inside the brackets is bounded in probability. Also

ỹT Z(ZT Z)−1ZT y = ỹT Z

(
1

n
ZT Z

)−1
1

n
ZT y →d

→d (1T (NT N − p) + NT A)(11T + Cov(γ))−11.

Combining all this, we have that

β̂PV →d NT N − p− (1T (NT N − p) + NT A)(11T + Cov(γ))−11

NT N
=

=
(NT N − p)(1− 1T (11T + Cov(γ))−11)−NT A(11T + Cov(γ))−11

NT N
.

In order to get the distribution of the t-statistic, the distribution of

ŝd(β̂PV ) =
√

(W T W )−1
11 σ̂

20



is needed. First, consider (W T W )−1
11 :

(W T W )−1
11 = (ỹT ỹ − ỹT Z(ZT Z)−1ZT ỹ)−1 →d (NT N)−1

as

ỹT Z(ZT Z)−1ZT ỹ =
1

n
ỹT Z

(
1

n
ZT Z

)−1

ZT ỹ →P 0.

Next determine the asymptotic distribution of σ̂:

σ̂ =
1

n− e− 1
(y − ŷ)T (y − ŷ) =

1

n− e− 1

(
yT y − yT W (W T W )−1W T y

)
.

As before, 1
n−e−1

yT y →P 1. For the second term, first observe that

1

n
W T y →P

(
0
1

)

For 1
n
(W T W )−1 it is simple to show that all elements are asymptotically bounded in proba-

bility. For σ̂, only the bottom right block is needed where

1

n
(W T W )−1

22 →P (11T + Cov(γ))−1 as n →∞.

Therefore
σ̂ →d 1− 1T (11T + Cov(γ))−11.

Combining these results yields the claim.
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