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Abstract

This paper is concerned with the complexity of proofs and of
searching for proofs in two propositional proof systems: Reso-
lution and Polynomial Calculus (PC). For the former system
we show that the recently proposed algorithm of BenSasson and
Wigderson [2] for searching for proofs cannot give better than
weakly exponential performance. This is a consequence of show-
ing optimality of their general relationship reffered to in [2] as
size-width trade-off. We moreover obtain the optimality of the size-
width trade-off for the widely used restrictions of resolution: reg-
ular, Davis-Putnam, negative, positive and linear. As for the sec-
ond system, we show that the direct translation to polynomials of a
CNF formula having short resolution proofs, cannot be refuted in
PC with degree less than
(log n). A consequence of this is that
the simulation of resolution byPC of Clegg, Edmonds and Im-
pagliazzo [11] cannot be improved to better than quasipolynomial
in the case we start with small resolution proofs. We conjecture
that the simulation of [11] is optimal.

1 Introduction

Proof Complexity Theory is concerned with proving
non-trivial lower bounds on the length of proofs of classes
of tautologies in sound and complete propositional proof
systems. This question is closely related to the main open
problem in complexity theory:P = NP? (see [12]). But
also proving superpolynomial lower bounds is very relevant
to the study of automated theorem provers. In many appli-
cations, given a possible tautology, we are faced with the
problem of finding a proof of it, if one exists. Then we en-
counter two problems. One the complexity of the smallest
possible proof, which might be exponential in the size of
the tautology, and the second the complexity of the proof
search.
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Respect to the first problem, Cook-Reckhow [12] proved
thatNP 6= Co�NP is equivalent to the statement that for
every possible propositional proof system, there is a class
of tautologies that require superpolynomial size proofs (in
the size of the tautology). This means that most probably
no propositional proof system can prove all tautologies ef-
ficiently, otherwiseP would be equal toNP , which we
believe to be false. One approach to fixing the inherent in-
efficiency of propositional proof systems, is to use the more
efficient ones. Then we are faced with the second problem.
How hard is it then to find proofs? It seems that the more
efficient a proof system is, the harder it is to find proofs in
it. In Bonet,Pitassi and Raz [5] a notion of automatizability
is defined. We say a propositional proof system isautom-
atizableif and only if there is a deterministic procedure to
find proofs in that system in polynomial time with respect to
the smallest proof in that system. In the sequence of papers
[15, 5, 6] it is proved that any propositional proof system
that simulates bounded-depth Frege is not automatizable,
unless some widely accepted cryptographic conjectures are
violated.

There are some algorithms to find proofs in some proof
systems. For instance, [2, 1] gave algorithms for resolu-
tion, and [11] for polynomial calculus. The algorithms of
[2, 1] are both weakly exponential for resolution, and [11]
is polynomial for the system of polynomial calculus. There-
fore polynomial calculus is automatizable. In this paper we
study the performance of the algorithm proposed in [2] for
finding resolution refutations. We also compare this algo-
rithm with that of [11] based on the Grobner basis algorithm
for finding proofs in Polynomial Calculus.

Ben-Sasson and Wigderson in [2] introduced a new com-
plexity measure for Resolution refutations. Thewidth of a
refutation is defined as the maximal number of literals in
any clause of the refutation. The importance of this new
measure is twofold. On one side they were able to give a
general relationship between the width and the length of a
refutation, reducing the problem of giving lower bounds on
the length to that of giving lower bounds on the width. The



width-size relation can be stated as follows: IfF , an un-
satisfiable formula overn variables, has a resolution refuta-
tion of sizeS, then it has a resolution refutation of width
O(
p
n logS). Through this relationship they obtained a

unified method to prove most of the previously known lower
bounds for Resolution. On the other side they made explicit
a new simple proof-search algorithm based on searching for
clauses of increasing size. This algorithm works in time
T (n) = nO(w) wherew is the minimal width of any refu-
tation ofF . In this paper we are faced with the following
question (also stated in [2] as an open problem). Can the
width-size trade-off be improved ? We give a negative an-
swer to this question showing that the result of [2] is opti-
mal. Namely for a given3-CNF F overO(n2) variables
we show that: (1)F has a polynomial size resolution refu-
tation; and (2) Any resolution refutation ofF requires a
clause of size
(n). The main consequence of our result
is that the proof search algorithm of [2] is not going to be
efficient for finding resolution refutations. Another interest-
ing open question is whether for some known restrictions
of Resolution (that lie between tree-like and general resolu-
tion) it is possible to improve the size-width trade-off given
for general resolution. Here we also show that it is not the
case for the following restrictions of Resolution: regular,
Davis-Putnam, positive, negative and linear Resolution. Fi-
nally, [2] also gave a width-size trade-off for tree-like reso-
lution. [3] have proved that for this restriction of resolution,
the trade-off is also optimal.

Clegg et al. [11] defined a new propositional proof sys-
tem, that later has been called polynomial calculus (PC).
This is an algebraic system for refuting CNF formulas trans-
lated to polynomial equations. In their paper they gave
an efficient proof search algorithm based on the Groebner
basis algorithm. Their proof complexity measure was the
maximum degree of the polynomials used in the proof, and
the maximum degree had to be a constant. Comparing the
work of [2] and [11] it is easy to observe that basically the
width complexity measure is for Resolution what the de-
gree complexity measure is for PC. Hence, given the opti-
mality result for the width-size trade-off, it is natural to ask
whether some polynomial formulation of the same formula
used to obtain the optimality result, requires degree
(n)
PC refutations. This would mean that there is a formula
easy to refute in Resolution but for which both the Grobner
basis algorithm and the width based algorithm fail to find
proofs quickly. We show a weaker form of the above re-
sult: namely that for a given unsatisfiableCNF with poly-
nomial size resolution refutations, its direct translation to
polynomials requires PC refutations of degree not less than

(logn). Therefore proving that the simulation of resolu-
tion in [11] cannot be bether than quasipolynomial, in the
case we start with a polynomial size resolution refutation.

Our lower bound proof extends the PC lower bound tech-

nique introduced by Razborov in [17] to a formula obtained
as a modification of the pigeonhole principle defined by Go-
erdt in [13]. It is hence of independent interest since this
technique was known to work only for thePHP formula.
We moreover conjecture that our result can be improved, to
show that the simulation of [11] is the best possible in the
case the resolution proof is small. (Recall that without this
last restriction the optimality of this simulation is known
given the PC degree lower bounds of [17, 14].)

Observe that, as noticed by A. Wigderson, the perfor-
mance of the Groebner basis algorithm can be very good
if we are able to translate the initial clauses into polynomi-
als of degree 1. For instance the Tseitin graph tautologies
require exponential size resolution refutations, but, depend-
ing on the translation to polynomials, the degree of thePC
proof can beO(1), or has to be linear in the number of vari-
ables ([8]). This means that depending on the polynomial
translation, the Grobener Basis algorithm can find PC refu-
tations of formulas very quickly, even when these formulas
require exponential size Resolution refutations.

In the final section we prove that under a fixed standard
translation to polynomials the width based algorithm of [2]
cannot have a better performance than the Grobner Basis
proof search algorithm of [11]. This is a consequence of a
lemma giving a Polynomial Calculus simulation of Resolu-
tion.

In section 2 we give some preliminary definitions that
will be needed throughout the paper. In section 3 we show
the optimality of the width-size method. In section 4 we
prove that the simulation of resolution by polynomial cal-
culus cannot be bether than quasipolynomial for small res-
olution proofs. In section 5 we show how to obtain width
lower bounds for resolution from degree lower bounds for
polynomial calculus, and some applications of this observa-
tion.

2 Preliminaries

RESOLUTION is a refutation proof system for formulas
in CNF form with the following inference rule:C_x D_�x

C_D
.

A Resolution refutation for an inital set� of clauses is a
derivation of the empty clause from� using the above in-
ference rule. Several restrictions of the resolution proof sys-
tem have appeared in the literature [18]. Here we consider
the following five: (1) theREGULAR resolution system in
which the proofs are restricted in such a way that any vari-
able can be eliminated at most once in any path from an
initial clause to the empty clause; (2) the DAVIS-PUTNAM

resolution system in which the proofs are restricted in such
a way that there exists an ordering of the variables such that
if a variablex is eliminated before a variabley on any path
from an initial clause to the empty clause, thenx is beforey
in the ordering; (3) theNEGATIVE (resp.POSITIVE) resolu-



tion system, or N-resolution (resp.P -resolution) for short,
where in each application of the resolution rule one of the
premises must not contain any positive (resp. negative) lit-
eral; (4) theLINEAR resolution system in which the refu-
tation is a sequence of clauses(C0; C1; : : : ; Cn) such that
C0 is an initial clause,Cn is the empty clause and for alli,
1 � i � n in the resolution stepCi�1 Bi�1

Ci
, the clause

Bi�1 is either an initial clause or such thatBi�1 = Cj for
somej < i.

Let R ` F (resp. R `tl F ) denote thatR is a gen-
eral (resp. tree-like) resolution refutation ofF . The size
jRj of a refutationR in any of the above systems is defined
as the number of clauses used inR. The size complexity
S(` F ) (respectivelyST (` F )) of deriving aCNF for-
mulaF in general resolution (respectively in tree-like res-
olution) is defined asmin

R`F
jRj (respectively min

R`tlF
jRj).

Following [2] the width w(F ) of a CNF formula is de-
fined to be the size (i.e. the number of literals) of the largest
clauses inF . Thewidthw(R) of a refutationR is defined
as the size of the greatest clause appearing inR. The width
w(`F ) (resp.w(`tlF )) of deriving a formulaF in general
(resp. tree-like) resolution is defined asmin

R`F
w(R) (resp.

min
R`tlF

w(R)). The size-width relationship obtained in [2]

is given by the following theorem:

Theorem 2.1 ([2]) Let F be any unsatisfiable formula over
n variables. Then: (1)ST (` F ) � 2(w(`tlF )�w(F )); (2)

S(`F ) � exp(
( (w( F̀ )�w(F ))
2

n
)).

POLYNOMIAL CALCULUS (PC) is a refutation system
for formulas in CNF expressed as a sequence of polynomi-
als over a fieldK. A PCREFUTATION is a sequence of poly-
nomials ending with1 such that each line is either an initial
polynomial or is inferred from two previous polynomials
by the following rules: (1)SUM: f g

�f+�g for �; � 2 K: (2)

PRODUCT: f

xf
, for any variablex.

The DEGREE of a refutation is the maximal degree of
a polynomial used in the proof. To force0-1 solutions the
axiomsx2�x, for all x, are always included among the ini-
tial polynomials. We define astandard traductiontr from
formulas inCNF to polynomials in the following way: (1)
tr(x) = 1�x ; (2) tr(�x) = x; (3) tr(x_y) = tr(x) � tr(y).

We consider theCNF formula GTn expressing the
negation of the property that in any directed graph closed
under transitivity and with no cycles of size two there is a
source node. We obtain the following formula easily ex-
pressible as aCNF :

(1) xi;j ^ xj;k ! xi;k i; j; k 2 [n]; i 6= j 6= k
(2) xi;j ! �xj;i i; j 2 [n]; i 6= j
(3)

Wn

k=1;k 6=j xk;j j 2 [n]

where the clauses in(1) encode the transitivity closure
property, those in(2) the property that there are no cycles of
size two and those in(3) say that eachnode receives at least
an edge from some other node (i.e. there is no source node).
This formula was first formulated by Krishnamurthy in [16]
and then Stalmark in [19] gave polynomial size resolution
refutations.

We consider a modification of the pigeon hole principle
defined in [13]. Letn be of the form2k, for somek and let
m = log2 n (all thelog are in base2). For eachj = 1; : : :m
let Part(j) the partition of[n] induced byj the following
way:

Part(j) :=
ffi; i+ 1; : : : ; i+ (2j � 1)g j

i = 1; 1 + 2j; 1 + 2 � 2j; : : : ; 1 + ( n2j � 1) � 2jg

Definition 2.1 We say that i and i0, in [n] are j-
COMPATIBLE if and only if they are in different elements
ofPart(j).

The CNF formula defining the modified pigeon hole
principleMPHPn is given by the following clauses, where
xi;j means that the pigeoni is sitting in the holej:

Wm

j=1 xi;j i 2 [n]

�xi;j _ �xi0;j j 2 [m]; i 6= i0 2 [n] , notj-compatible
�xi;j _ �xi;k i 2 [n]; j 6= k 2 [m]

Observe that the clauses defining ourMPHPn are a su-
perset of the clauses defining theMPHPn of [13]. Go-
erdt gave in [13] polynomial size unrestricted refutations
for MPHPn.

3 Optimality of the width-size Method and its
Consequences

In this section we show the optimality of the size-width
trade-off of [2]. As formulated in [2] the question is the
following: can one find an unsatisfiablek-CNF formula
F overn variables such thatw(F ) is constant,S(` F ) =
O(nO(1)) andw(` F ) � 
(

p
n) ? We show that a modi-

fication of theGTn formula verifies the properties required
to answer the above question not only for unrestricted res-
olution but also for various other restrictions. We start by
giving a resolution refutation forGTn that fullfills all the
considered restrictions (all but N-resolution), and then we
discuss how to modifyGTn to obtain our result.

We sligthly modify the proof of [19] in order to show that
the upper bound also works for the following restrictions of
resolution: regular, positive, Davis-Putnam and linear reso-
lution.



Theorem 3.1 There are polynomial size refutations ofGTn
in the following proof systems: (i) general resolution, (ii)
Davis-Putnam resolution, (iii) regular resolution, (iv) posi-
tive resolution, (v) linear resolution.

Proof. We start by giving the general resolution refutation,
then we discuss why this proof falls in any of the restricted
versions of resolutions We adopt the following abbrevia-
tions. Let:

A(i; j; k) := xi;j ^ xj;k ! xi;k i 6= j 6= k 2 [n]
B(i; j) := (xi;j ! �xj;i) i 6= j 2 [n]

Cm(j) :=

m_
i=1;i6=j

xi;j

�
j 2 [n]
m 2 [n]

Cm :=

n^
j=1

Cm(j) m 2 [m]

Dj
k�1(i) := Ck�1(j) _ �xi;k

(
k 2 [n]=f1g
i 2 [k � 1]
j 2 [n]

Ej
k�1(i) := (Ck�1(j) _

n_
`=i

x`;k)

(
k 2 [n]=f1g
i 2 [k � 1]
j 2 [n]

The proof proceeds by steps downward fromn to 2. At the
k-th step, for eachj = 1; : : : ; n, we proveCk�1(j) using
the inital clausesA(1; k; j), B(k; j) and the clausesCk(j)
andCk(k) obtained at the previous step. At the end we
have provedC2 from which a contradiction is obtained in
2 steps usingB(1; 2). Now we give a description of how
to perform thek-th step obtaining in parallel the clauses
Ck�1(1); Ck�1(2); : : : ; Ck�1(n). For a generic valuej 2
[n] we obtainCk�1(j) by the following steps:
(a): Perform in parallel the followingresolutions steps, each
one resolving the variablexk;j:

(1) Ck(j) A(1;k;j)

D
j

k�1
(1)

(2) Ck(j) A(2;k;j)

D
j

k�1
(2)

...
(j � 1) Ck(j) A(j�1;k;j)

D
j

k�1
(j�1)

(j) Ck(j) B(j;k)

D
j

k�1
(j)

(j + 1) Ck(j) A(j+1;k;j)

D
j

k�1
(j+1)

: : : (n) Ck(j) A(n;k;j)

D
j

k�1
(n)

(b): Ck�1(j) is obtained by the following tree-like
refutation in which we are resolving along the variables
x1;k; x2;k; : : : ; xk�1;k:

(1)
Ck(k) D

j

k�1
(1)

E
j

k�1
(1)

(2)
E
j

k�1
(1) D

j

k�1
(2)

E
j

k�1
(2)

: : : : : : : : : (k� 1)
E
j

k�1
(n) D

j

k�1
(k�1)

Ck�1(j)

It is easy to see that such a refutation is a Positive reso-
lution, indeed at each resolution step one of the involved
clauses is always made by positive literals.
It is also easy to see that the following order of elimination
of the variables is respected:
xn;1; xn;2; : : : ; xn;n�1

x1;n; x2;n; : : : ; xn�1;n

xn�1;1; xn�1;2; : : : ; xn�1;n

x1;n�1; x2;n�1; : : : ; xn�2;n�1

...
x2;1
x1;2
Therefore the refutation is Davis-Putnam as well as Regu-
lar.
To see that the refutation is Linear observe that the follow-
ing sequence of clauses defines the order of the linear elim-
ination:

Cn(n),
Cn(1),B(n; 1);A(2; n; 1); : : : ;A(n�1;n; 1)
D1
n(1); : : : ;D

1
n(n); E

1
n(1); : : : ; E

1
n(n),

Cn(2),A(1; n; 2);B(n; 2); : : : ;A(n�1;n; 2),
D2
n(1); : : : ;D

2
n(n); E

2
n(1); : : : ; E

2
n(n),

...
Cn(n�1);A(1; n;n�1); : : : ;A(n�2;n;n�1);B(n;n�1)
Dn�1
n (1); : : : ;Dn�1

n (n�1);En�1
n (1); : : : ; En�1

n (n�1),
Cn�1(n� 1),
Cn�1(1);B(n � 1; 1);A(2;n�1; 1); : : : ;A(n�2;n�1;1),
D1
n�1(1); : : : ; D

1
n�1(n�1);E1

n�1(1); : : : ; E
1
n�1(n�1),

Cn�1(2);A(1;n�1; 2);B(n�1; 2); : : : ;A(n�2;n�1;2),
D2
n�1(1); : : : ; D

2
n�1(n�1);E2

n�1(1); : : : ; E
2
n�1(n�1)

...
Cn�1(n�2); : : : ;A(n�3;n�1;n�2);B(n�1;n�2)
Dn�2
n�1(1); : : : ; D

n�2
n�1(n�1);En�2

n�1 (1); : : : ; E
n�2
n�1(n�1);

Cn�2(n� 2);
...
fg 2

It is easy to observe that in the above refutation there
are clauses of sizeO(n). We show below that in fact any
refutation ofGTn must have clauses of such width. But
unfortunately the initial clauses ofGTn are also of linear
size inn so that we cannot obtain optimality of the size-
width trade-off. We consider a modification of the for-
mulaGTn, MGTn, with approximately the same number
of variables asGTn, such that: (1)w(MGTn) = 3 ; (2)
from a refutation ofGTn we can easily find a refutation
of MGTn, and (3)w(` MGTn) � 
(n). To define
MGTn, we introduce foreachj 2 [n], n new variables
y0;j; : : : yj�1;j; yj+1;j; : : : yn;j and substitute the clauses in
(3) by the following clauses:

(30) �y0;j ^
Vn

i=1;i6=j(yi�1;j _ xi;j _ �yi;j) ^ yn;j

Theorem 3.2 There are polynomial size refutations for the
formula MTGn in any of the following proof systems:
(i) general resolution, (ii) positive resolution, (iii) Davis-
Putnam resolution, (iv) regular resolution, (v) linear reso-
lution.



Proof. The proof proceeds the following way. From the
clauses in(30) obtain the clauses in(3) eliminating they
variables. Then we apply the polynomial size proof for
GTn to these new clauses. Observe that the first part of
the proof is in fact a tree-like proof of size quadratic inn
and, since they variables are different for differentj 2 [n],
the regularity of the proof is preserved. It is also easy to
see that the new first part of the proof is a Davis-Putnam
resolution since the following order of elimination of they
variables is respected:
y0;1; : : : ; yn;1,
y0;2; : : : ; yn;2,
...
y0;n; : : : ; yn;n,

Moreover if for eachj 2 [n] we start by eliminating
the yj;n variable it is easy to see that the new first part is
also a positive resolution. Finally, to prove that this proof
is a linear resolution proof, consider forj = 1; : : : ; n the
following definition:

Gj(i)=

(
yn;j if i = n
(xn;j_xn�1;j: : :xi;j_yi�1;j) i=1;: : :;n�1
Cn(j) if i = 0

Then the order of the clauses in the linear resolution of
MTGn is obtained from the order of the linear resolution
for GTn by putting foreachj = 1; : : : ; n the sequence of
clausesGj(n); : : :Gj(1) just before the clauseCn(j). 2

Theorem 3.3 There is a3�CNF formulaF onO(n2) vari-
ables verifying the followingtwo properties: (1)F has poly-
nomial size resolution refutations; (2) any resolution refuta-
tion ofF contains a clause having at least
(n) variables.

This theorem is an immediate consequence of Theorem 3.2
and the following theorem.

Theorem 3.4 Any resolution proof ofMTGn must have a
clause of size
(n).

First we introduce the notion of critical truth assignment
for the formulaGTn. A critical truth assignment is alin-
ear directed acyclic graph overn distinct nodes and closed
under transitivity. The idea is that if the variablexi;j corre-
ponds to whether there is a directed edge(i; j) in the graph,
then such a linear graph falsifies only one among the initial
clauses in(3). This is because the graph is closedunder
transitivity, there are no cycles, and every node except for
the first one in the line has a predecessor. A critical truth
assignment can be also defined by the adjacency matrix of
such linear graphs (observe that the diagonal elements are
not present). The assignments can be obtained by the fol-
lowing algorithm: chose an indexj1 2 [n] and put0s in all
the positions of columnj1 and all1s in the empty positions

of row j1 of the matrix. ¿From the remaining indexes of[n]
choose another indexj2 and put all0s in the empty posi-
tions of the columnj2 and all1s in the empty positions of
the rowj2. Repeat this process until the matrix is full. We
call such an assignment aj1-critical assignment.

Let Bj be the formula in(30). A j-critical assignment
for MTGn is defined the following way: first we give aj-
critical assignment for thex’s variables and then we assign
values to they’s in such a way as to make false only the
formulaBj and true all the otherBk ’s for k 6= j .

Let Aj be the conjunction of the clauses�xi;j _ �xj;i for
all i 2 [n]; i 6= j. Consider the formulaCj defined as
the conjunction ofAj ^ Bj and letV ars(j) be the set of
variables ofCj, that is, inV ars(j) we have all the variables
that mention the nodej.
Proof of Theorem 3.4
For eachI � [n], let CI be defined as

V
i2I

Ci. For any
clauseC in a resolution proof ofMTGn,�(C) is the size of
the minimalI � [n] such that all critical truth assignments
satisfyingCI also satisifyC. �(Ci) � 1, �(fg) = n, and�
is obviously subadditive w.r.t. the resolution rule, therefore
in any resolution proof ofMTGn there is a clause, sayC
such thatn3 � �(C) � 2n

3 . We show that this clause will
contain� n

6 literals. Assume for the sake of contradiction
that jCj < n

6 . First of all notice that since�(C) � n
3 the

following claim holds:

Claim 3.1 There exists at least anl 2 I such that no vari-
able fromV ars(l) belongs toC.

Proof of the Claim
Each variablexi;j belongs to two differents setsV ars(i)
andV ars(j). In the worst case all the variables inC men-
tion different nodes so that we capture at most2n

6 different
setsV ars(�). SinceI > n

3 , then there is at least an index in
I verifying the claim.2
Consider any critical assignment� such that�(Cl) =
0; �(C) = 0 and for allj 2 I=flg �(Cj) = 1. This assign-
ment must exist by the minimality ofI and moreover it sat-
isfies all the clausesCi for i 2 [n]=flg. DefineJ = [n]=I.
We have thatjJ j > n

3 (sincejIj � 2n
3 ). Therefore by the

same argument used in Claim 3.1 for the setI we deduce
that there is at least aj 2 J such that no variable from
V ars(j) appears inC. We build an assignment� from �
such that�(Ci) = 1 for all i 2 I and�(C) = 0, and this is
a contradiction.� is built the following way: change allxi;j
such that�(xi;j) = 1 to 0. Change all the symmetric val-
uesxj;i such that�(xj;i) = 0 to 1. This first change does
not affect the value ofC since no variable fromV ars(j)
appears inC. Observe that after this change the variable
xj;l will have the value1. Therefore it remains to change
consistently the values of the variablesyi;l in such a way to
satisfyCl (i.e. such that�(Cl) = 1). This last change will
not affect the value ofC since no variable fromV ars(l)



appears inC. Also notice that the variablesyi;s for s 6= l
don’t need to change value in�. The existence of this�
leads to a contradiction.2

Our result has several consequences. First of all the
width-size relationship of [2] for tree-like resolution to-
gether with Theorem 3.4 give a lower bound of2
(n) for
tree-like resolution proofs ofMTGn. Theorem 3.2 gives
another exponential separation between unrestricted resolu-
tion and tree-like resolution as in [4, 2].

Theorem 3.5 Any tree like resolution proof ofMTGn must
have size
(2n).

We also obtain other consequences with respect to other
restrictions of resolution. As we have seen in Section 2, the
width-size trade-off is more powerful in the tree-like case
than in the unrestricted one. This fact lead us to think that
(possibly) restricting some way the resolution system it is
possible to give better trade-off results than in the unre-
stricted case. We show that this is not the case for regu-
lar, positive, negative, Davis-Putnam and linear resolution.
As we have seenMTGn has also polynomial size refuta-
tions in all the considered restrictions. By Theorem 3.4 any
resolution refutation ofMTGn (in particular in any of the
considered restrictions) must have a clause of size
(n).
This immediately implies that the width-size trade-off for
general resolution cannot be improved for regular, positive,
Davis-Putnam and linear resolution. In the case of negative
resolution, we consider the unsatisfiable formulaMTGn in
which thexi;j variables are replaced by�zi;j whose intended
meaning is opposite to that of thex variables. It is easy to
see that the positive resolution proof forMTGn is in fact
a negative resolution proof forMTGn and that the lower
bound technique can also be applied. Therefore also in the
case of negative resolution we cannot improve the width-
size trade-off obtained for unrestricted resolution by [2].

4 Lower Bounds for the Polynomial Calculus

In this section we show that any polynomial calculus
refutation of theMPHPn requires degree
(logn). We
will use the same technique as [17, 14]. Recall from Sec-
tion 2 thatm = logn, and the definition ofj-compatible
pigeons. GivenQi := 1 �Pj2[m] xi;j we adopt the fol-
lowing polynomial formulation of theMPHPn:

(1) Qi = 0 i 2 [n]
(2) xi;jxi;k = 0 i 2 [n]; j; k 2 [m]
(3) xi;jxk;j = 0 j 2 [m]; i; k 2 [n] not j-compatible
(4) x2i;j � xi;j = 0 i 2 [n]; j 2 [m]

For a polynomialx which is a product ofxi;j, let
Pigeons(x; j) be the set ofi’s such thatxi;j is a factor in
x.

Definition 4.1 T is the set of the polynomialsx =
xi1;j1 : : : xil;jl such that allik are distinct and for alljk 2
[m] and for all i and i0 in Pigeons(x; jk) i and i0 are jk-
compatible.

Using the identities(2), (3) and(4) any polynomial can
be represented as a linear combination of polynomials in
T . Therefore any polynomial calculus refutation carried on
modulo the idealI generated from the polynomials(2), (3)
and(4), is in the vector spaceSpan(T ) generated fromT .
From now on we assume that all the computations are mod-
ulo the idealI.

We want to build a basisBd for the vector space
Span(T ) such that the elements ofBd are products of the
form

Q
i;j xi;j

Q
iQi. As in [14] (and [17]) the definition of

Bd is obtained from a process that maps partial assignments
into partial assignments: the pigeon dance. We consider a
dummy hole0, and we represent elements ofBd as partial
assignments according to the following definition

Definition 4.2 A is the set of the partial mappingsa from
[n] to [m] [ f0g such that for alli; i0 2 [n], i 6= i0, if
a(i) = a(i0) = j 6= 0 theni andi0 are j-compatible.

Let Ad := fa 2 A : jaj � dg. For a 2 A
with a = f(i1; j1); : : : (ik; jk); (i01; 0); : : : ; (i0l; 0)g, â de-
note the restrictionf(i1; j1); : : : (ik; jk)g of a. Any ele-
menta of A defines a polynomialxa the following way:
xa =

Q
a(i)=j;j 6=0 xi;j

Q
a(i)=0Qi. Therefore by definition

of T any polynomialxâ associated tôa 2 Ad is in Td.
Our pigeon dance differs from that of [17, 14] since

sometimes a pigeon can be sent to an occupied hole. Con-
sider the following definition:

Definition 4.3 Givena 2 A, we say that a holej IS GOOD

FOR THE PIGEONi IN a and we writej 2 Good(i; a) if j >
a(i) and the following condition hold: (1) either there is no
i0 2 [n] such thata(i0) = j (i.e. the hole is unoccupied), or
(2) for all i0 2 a�1(j), i andi0 are j-compatible.

Our pigeon dance acts the following way: given ana 2
A and starting from the first pigeon indom(a) we try to
move all the pigeonsi in dom(a) into a holej different and
strictly greater thana(i) which is good fori in a.

Definition 4.4 (Dance) Leta 2 A and considerdom(a). A
pigeon dance ona is a sequence of mappingsa0; a1; : : :an
in A with the same domain asa, defined the following way:
a0 = a and for all 0 < t � n, if a(t) is undefined, then
at = at�1, otherwise

�
at(j) = at�1(j) j 6= t
at(t) 2 Good(t; at�1)



Definition 4.5 (Minimal Dance) Let a 2 A be given and
let t be a pigeon index in[n]. ByDt(a) we denote a map-
ping b 2 A such thatdom(b) = dom(a), and defined as
follows:

b(i) = a(i) i 2 dom(a); i 6= t
b(t) = minj2[m][j 2 Good(t; a)]

If minj2[m][j 2 Good(t; a)] does not exists, thenb(t)
is undefined. TheMINIMAL PIGEON DANCE on a is:
Dn(Dn�1(� � � (D1(a)) � � �)

The minimal dance has two main properties. It can be
always defined whenever a dance is defined, and it defines a
one-to-one mapping from partial assignments to partial as-
signments. We show these properties in the following lem-
mas.

Lemma 4.1 If there exists a dance ona, then there always
exists a minimal dance ona.

Proof. We prove by induction ont = 1; : : : ; n that there is
danceb = b0; b1; : : : ; bn whereb0 = a such that its firstt
steps correpond to the firstt steps of the minimal dance on
a. The lemma hence follows fort = n. Assume to have
proved the claim fort � 1, and letb = b0; b1; : : : ; bn the
correct dance having the firstt � 1 steps as in the minimal
dance. We show how to build a new correct dancec =
c0; c1; : : : ; cn having its firstt steps as in the minimal dance.
Let jmin = minj2[m][j 2 Good(t; bt�1)] and supposej =
bt(t). Observe that that sinceb is a correct dance, thenjmin

always exists and moreoverjmin � j. Now if j = jmin,
thenb is making the right choice at thet-th step. In this
case we definec = b. Otherwisejmin < j. In this case
we definec the following way: for alli, i = 1; : : : ; t � 1,
ci = bi; for all i � t we define firstci(i) the following way:

ci(i) =

8>><
>>:

jmin i = t
j i > t s.tbi(i) = jmin^

i, t are notjmin-compatible
bi(i) otherwise

We complete the definition of theci for i � t as follows
ci(j) = ci�1(j) for j 6= i.

We have to prove thatc is a correct dance, since the min-
imality is given by the definition ofjmin. To prove thatc is
a correct dance we claim that:

Claim 4.1 (1) there is noi < t such thatbt(i) = jmin and
i and t are not jmin-compatible; (2) there could be only
onei > t such thatbi(i) = jmin andi andt are notjmin-
compatible; (3) If there is such ani > t (as described in
(2)), thenj is inGood(i; ci�1).

The correctness of the dancec then follows by its definition.
Proof. (of Claim4.1)

The first point holds since otherwisejmin 62 Good(bt�1; t)
(recall thatbt�1(i) = bi(i) for all i � t � 1). The sec-
ond point is also easy. Indeed if there exist two different
pigeonsi andi0 both notjmin-compatible witht then, they
are all three in the same elements of the partition of[n] in-
duced byjmin. But this is not possible sinceb is a correct
dance and thereforei andi0 must bejmin-compatibles. For
the third point, we have to show thatj 2 Good(i; ci�1). If
c�1
i�1(j) = ;, then the result is immediate. Otherwise as-

sume thatc�1
i�1(j) 6= ;. We show that for anyi0 2 c�1

i�1(j)
(i.e ci0(i0) = j), i andi0 arej-compatible, from which the
claim follows. Assume for sake of contradiction thati andi0

are notj-compatible, we show the contradiction thatb was
not a correct dance. Sincei andi0 are notj-compatible, then
they are in the same groupB of Part(j). By the point (2)
i is the only node (except fort) for which we will modify
b(i). Thereforei0 was already sent toj in b, i.e. bi0(i0) = j.
We show thatt 2 B from which follows the contradiction
since inb we would havebt(t) = j and bi0(i0) = j for
two element inB i.e. notj-compatible. Finally to see that
t 2 B only observe thatt and i are jmin-compatible and
jmin < j. Thereforet andi must be in the same group of
Part(j). Sincei 2 B 2 Part(j) thent 2 B. 2

Lemma 4.2 The minimal dance is a one-to-one mapping.

Proof. We show that for allt = 1; : : : ; n, Dt(�) is a 1-1
mapping. The result then follows since the minimal dance
is a composition of theDt mappings. We show that if
Dt(a) = Dt(a0) thena = a0. SupposeDt(a) = Dt(a0).
Thendom(a) = dom(a0) and in particulara(i) = a0(i) for
all i 2 dom(a); i 6= t. It remains to show thata(t) = a0(t).
We show that neithera(t) < a0(t) nor a0(t) < a(t). Sup-
pose the former. We show the following contradiction:

Dt(a)(t) � a0(t) < Dt(a
0)(t) = Dt(a)(t)

To justify the first equality observe thata0(t) 2 Good(a; t)
sinceGood(a0; t) = Good(a; t) (this is sincea(i) = a0(i)
for all i 6= t) andDt(a)(t) = minj2[m][j 2 Good(a; t)].
The second inequality holds by definition of minimal dance.
The other casea0(t) < a(t) is completely symmetric.2

A property of any pigeon dance which ends succesfully
on ana 2 A is that the polynomial associated to the dance is
in T (this is because we are moving to strictly greater holes
and therefore at the end the dummy hole0 has disappeared).

Lemma 4.3 If d � logn
3 anda 2 Ad, then there exists a

dance ona if and only if there exists a dance onâ.

Proof. If there is a dance fora then obviously there is a
dance for̂a, so that one implication is easy. For the other
implication assume that the number ofQ factors inxa is
different from0 since otherwise there is nothing to prove.



Now, the worst case for the dance onâ is when all the holes
referred to in̂a are different and the dance is assigning al-
ways a new hole to each pigeon indom(â). Since there
arem = logn holes and sinced � logn

3 , then the dance
on â leaves at leastlogn3 holes unused. These holes are the
nodes we will use to define a dance on the wholea. That
is, if the pigeoni is in dom(a), thena(i) = â(i). If the
pigeoni 2 dom(a) � dom(â), then we assign one of the
unused holes toa(i). Since these are new holes and since
jdom(a)j � jdom(â)j � d � logn

3 , then the dance ona is
well defined.2

We can now proceed to the definition of the basisBd.

Definition 4.6

Bd = fxa : a 2 Ad there is a dance on̂ag

It is easy to prove that the following monotonicity pro-
porties hold forBd: (1)Bd�1 � Bd; (2) xa 2 Bd�1 if and
only if for all i 62 dom(a), xaQi 2 Bd. In order to show
thatBd is a basis forSpan(Td) we need to define an order
� on polynomials inTd. We will do it as in [14].

Definition 4.7 Let xa and xb be two polynomials inTd.
then x � y if and only if deg(xa) < deg(xb), or if
deg(xa) = deg(xb), then for the largest pigeoni such that
a(i) 6= b(i), we have thata(i) < b(i).

Lemma 4.4 Bd is a basis forSpan(Td) for anyd � logn
3 .

Proof. Under the hypothesis of the Lemma, we show: (1)
thatjBdj � jTdj and (2) that anyxa 2 Td can be expressed
as a linear combination of elements ofBd, from which the
Lemma follows. The first property is a consequence of the
fact that the setBd is in 1-1 correspondence with the setTd
via the minimal dance. More precisely, ifxa 2 Bd then
we have a dance on̂a and sinced � logn

3 , then by Lemma
4.3, there is dance ona and therefore by Lemma 4.1 there
is a minimal dance ona that by Lemma 4.2 is a 1-1 map-
ping. By the property discussed above of the dance that
ends correctly we then obtain the first part. For the sec-
ond part we work by induction on�. Assume that for all
x0 � xa x

0 2 Span(Bd), we show thatxa 2 Span(Bd).
If there is a dance ona thenxa is in Bd. Otherwise we
show how to expressxa as a linear combination of the el-
ements ofBd. Let Pt be the set of all possible correct first
t steps of the dance ona. We prove thatxa 2 Span(Bd)
iff
P

b2Pt
xb 2 Span(Bd) by induction ont = 0; : : : ; n.

Since there is no dance ona, thenPn = ; and therefore the
claim follows. The base of the inductiont = 0 follows since
P0 = a. For the induction step observe that ift 62 dom(a)
thenPt = Pt�1 and so the claim follows by induction ont.
Otherwise for anyb 2 Pt�1, xb is of the formxt;jxc. We
rewritext;j with respect to the relationQt, so thatxb can

be rewritten as

(1) xc � xcQt �
X
j0 6=j

xcxt;j0

Observe that all the termsxcxt;j0 such thatj0 is not in
Good(t; b) are equals0 so that the above sum can be written
as

xc�xcQt�
X

j0<j;j02Good(t;b)

xcxt;j0�
X

j0>j;j02Good(t;b)

xcxt;j0

Observe that the first three terms in the above sum are
in Span(Bb). The first by induction on�. The second by
induction on� and by the monotonicity property ofBd and
the third by (the second case of the definition)�. The fourth
term correspond exactly to all the possible correctt-th steps
of b. Therefore if we sum over allxb for b 2 Pt�1 we have
that
P

b2Pt
xb 2 Span(Bd) iff

P
b2Pt�1

xb 2 Span(Bd).
This concludes the proof of the Lemma.2

Theorem 4.1 Any polynomial calculus refutation of
MPHPn has degree not less thanlogn3 .

Proof. The proof is as in [14]. That is we prove by induction
on the length of the proof that each line in a refutation of
MPHPn can be expressed as a polynomial inBd � Td.
Therefore since1 2 Td and it has a unique representation
in each basis, then we cannot derive the polynomial1 with
a proof of degree less than or equal tod.

Recall that we are considering refutations modulo I.
Therefore if a line is an axiom it isQi for somei 2 [n],
and the claim follows. If a line is inferred by the sum rule
the result is immediate. For the case of product, say we have
xa

xaxi;j
. Thereforejaj � d�1 andxa 2 Bd�Td. By induc-

tion we have thatxa is of the formxbQk for someb andk,
with xb 2 Bd�2. To prove thatxaxi;j = xbxi;j

Q
kQk is in

Bd � Td, observe thatxbxi;j 2 Span(Bd�1) and therefore
we can rewrite it as a sum of elements ofBd�1. Now if we
multiply each of these terms forQk we obtain either0 (if k
is in dom(b)) or, by the monotonicity property an element
of Bd. Therefore the whole sum is inSpan(Bd). 2

So far we have proved a
(logn) degree lower bound
for the polynomials (1)-(4) defined at the beginning of this
section. The same degree lower bound can be obtained for
a different set of polynomals,3-MPHPn, expressing the
same principle. This new set of polynomials is obtained
substituting the polynomials1 � Qi in MPHPn by the
polynomials obtained from the translationtr (see section
2) applied to the set of clauses�yi;0^

Vm

j=1(yi;j�1 _ xi;j _
�yi;j) ^ yi;m, whereyi;j for i = 1; : : : ; n, andj = 0; : : : ;m
wherem = logn are new variables.

Theorem 4.2 Any polynomial calculus refutation of3-
MPHPn has degree not less thanlogn3 .



Proof. We will prove thatMPHPn is (1,3)-reducible to
3-MPHPn following the definitions of(d1; d2)-reductions
from [8]. Define yi;j = 1 � Pm

k>j xi;k. We prove
that all the initial polynomials of3-MPHPn (with y
substituted as defined above) are derivable with a3-degree
polynomial calculus refutations from initial polynomials of
MPHPn. Observe thatyi;0 = 1 � Qi = 0 andyi;m = 1.
So we can proveyi;0 = 0 and 1 � yi;m = 0. Now a
generic initial polynomial of3-MPHPn of the form
(1 � yi;j�1)(1 � xi;j)(yi;j) for 2 < j < n, is equivalent
to (
Pm

k>j�1 xi;k)(1 � xi;j)(
Pm

k>j xi;k). This can be

rewritten as(1 �Pj�1
k=1 xi;k)(1 � xi;j)(1 �

Pm

k>j). By
simple calculations (using the initial axioms ofMPHPn)
this is equal to(1 � Qj) +

Pn

k=1;k 6=j xi;kxi;j + (1 �
xi;j)

Pj�1
k=1 xi;k

Pm

k=j+1 xi;k. Using the inital axioms of
MPHPn it is easy to see that each of the three terms of
this polynomial is equal to0. 2

We have found a principle,3-MPHPn, that has poly-
nomial size resolution refutations, but such that its direct
polynomial translation requires
(logn) degree. Observe
that this result can also be obtained using the pigeonhole

principle, PHPm
n , wherem = 2

p
n logn. It is known

thatPHPm
n has polynomial size (inm) resolution refuta-

tions (see [10]), and on the other hand there is anO(n) de-
gree lower bound for polynomial calculus proofs of it (see
[14, 17]).

Our conjecture is that the simulation of [11] is optimal
for small resolution proofs. We think that some polynomial
version of the formulaGTn should require
(n) degree in
PC for some field.

5 Resolution lower bounds via degree lower
bounds

The following Lemma shows that degree lower bounds
imply width lower bounds as long as the initial polynomias
of thePC proofs are a direct translation of the inital clauses
of the resolution proofs.

Lemma 5.1 Given a set of unsatisfiable clausesF and a
resolution refutation ofF , there is a polynomial calculus
refutation oftr(F ) of degree less than or equal tow(` F ).

Proof. For a generic clauseA = A+ _ A� whereA+ =
(ai1_ : : :_aik) andA� = (�aj1_ : : :_�ajl), letpoly(A+) =Qik

`=1(1� a`) andpoly(A�) =
Qjl

`=1 a`. Thenpoly(A) =
poly(A+)�poly(A�). Observe that given two clausesA and
B, it is easy to obtain a PC derivation ofPoly(A) = 0;`
Poly(A)Poly(B) = 0 with a degree less than or equal to
w(A) + w(B). We show that for each lineA in the res-
olution proof we find a PC refutation ofPoly(A) = 0.

If A is a initial clause the result follows by definition of
tr. Now assume that at a resolution step we are in the fol-
lowing situationA_x �x_B

A_B
by induction we have derived

Poly(A)(1 � x) = 0 andPoly(B)x = 0. By the previous
observation we can obtainPoly(A)Poly(B)(1 � x) = 0
andPoly(A)Poly(B)x = 0. Finally by an applycation of
addition we obtainPoly(A)Poly(B) = 0. 2

The previous lemma also shows that the degree lower
bound obtained for3-MPHPn cannot be improved. In fact
[13] shows how to obtain a superpolynomial size resolu-
tion refutation of3-MPHPn of widthO(logn), and by the
lemma there is also a polynomial calculus refutation of the
direct translation of degreeO(logn).

As a consequence of the previous lemma and the width-
size trade-off [2] (see theorem 2.1), a linear (in the number
of variables) degree lower bound in polynomial calculus can
give us an exponential lower bound in resolution size.

Finally observe that the previous lemma is better (in the
sense that it gives a smaller degree PC refutations) than the
correponding simulation lemma of [11] in the case we have
constant width polynomial Resolution refutations of formu-
las having initial clauses of constant size. Moreover it im-
plies that under thetr translation the width base algorithm
of [2] cannot be better than the Grobner basis algorithm of
[11].

It would be interesting to obtain the opposite direction of
lemma 5.1. Buresh-Oppenheim and Pitassi [7] have a sim-
ulation of polynomial calculus by resolution when we start
with binomial equations as initial polynomials. The simu-
lation has the property that the width is twice the degree.
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