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Abstract Respect to the first problem, Cook-Reckhow [12] proved
thatV P # Co— NP is equivalent to the statement that for
This paper is concerned with the complexity of proofs and of every possible propositional proof system, there is a class
searching for proofs in two propé®nal proof systems: Reso- Of tautologies that require superpolynomial size proofs (in
lution and Polynomial CalculusRC). For the former system the size of the tautology). This means that most probably
we show that the recently proposed algorithm of BenSasson andn0 propositional proof system can prove all tautologies ef-
Wigderson [2] for searching for proofs cannot give better than ficiently, otherwiseP would be equal taV P, which we
weakly exponential performance. This is a consequence of showbelieve to be false. One approach to fixing the inherent in-
ing optimality of their general relationship reffered to in [2] as  efficiency of propositional proof systems, is to use the more
size-width trade-off. We moreover obtain the optimality of the size- efficient ones. Then we are faced with the second problem.
width trade-off for the widely used restrictions of resolution: reg- How hard is it then to find proofs? It seems that the more
ular, Davis-Putnam, negative, positive and linear. As for the sec- efficient a proof system is, the harder it is to find proofs in
ond system, we show that the direct translation to polynomials of ait. In Bonet,Pitassi and Raz [5] a notion of automatizability
C'N F formula having short resolution proofs, cannotbe refutedin is defined. We say a propositional proof systerausom-
PC with degree less thaft(log n). A consequence of this is that ~ atizableif and only if there is a deterministic procedure to
the simulation of resolution bC of Clegg, Edmonds and Im-  find proofs in that system in polynomial time with respect to
pagliazzo [11] cannot be improved to better than quasipolynomial the smallest proof in that system. In the sequence of papers
in the case we start with small resolution proofs. We conjecture [15, 5, 6] it is proved that any propositional proof system
that the simulation of [11] is optimal. that simulates bounded-depth Frege is not automatizable,
unless some widely accepted cryptographic conjectures are
violated.

There are some algorithms to find proofs in some proof
systems. For instance, [2, 1] gave algorithms for resolu-
tion, and [11] for polynomial calculus. The algorithms of

Proof Complexity Theory is concerned with proving [2 1] are both weakly exponential for resolution, and [11]
non-trivial lower bounds on the length of proofs of classes s polynomial for the system of polynomial calculus. There-
of tautologies in sound and complete propositional proof fore polynomial calculus is automatizable. In this paper we
systems. This question is closely related to the main openstydy the performance of the algorithm proposed in [2] for
problem in complexity theory? = N P? (see [12]). But  finding resolution refutations. We also compare this algo-
also proving superpolynomial lower bounds is very relevant rithm with that of [11] based on the Grobner basis algorithm
to the study of automated theorem provers. In many appli-for finding proofs in Polynomial Calculus.
cations, givgn a possible tau.tol.ogy, we are faced with the Ben-Sasson and Wigderson in [2] introduced a new com-
problem of finding a proof of it, if one eX|§ts. Then we en- plexity measure for Resolution refutations. Thiith of a
counFer two problems. Qne the complexﬁy O,f the smallest refutation is defined as the maximal number of literals in
possible proof, which might be exponential in the size of any clause of the refutation. The importance of this new
the tautology, and the second the complexity of the proof a4 re is twofold. On one side they were able to give a
search. general relationship between the width and the length of a
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width-size relation can be stated as follows:FIf an un- nique introduced by Razborov in [17] to a formula obtained
satisfiable formula ovet variables, has a resolution refuta- as a modification of the pigeonhole principle defined by Go-
tion of size S, then it has a resolution refutation of width erdt in [13]. It is hence of independent interest since this
O(v/nlog S). Through this relationship they obtained a technique was known to work only for tieH P formula.
unified method to prove most of the previously known lower We moreover conjecture that our result can be improved, to
bounds for Resolution. On the other side they made explicitshow that the simulation of [11] is the best possible in the
a new simple proof-search algorithm based on searching forcase the resolution proof is small. (Recall thatheitt this
clauses of increasing size. This algorithm works in time last restriction the optimality of this simulation is known
T(n) = n°®) wherew is the minimal width of any refu-  given the PC degree lower bounds of [17, 14].)

tation of I'. In this paper we are faced with the following Observe that, as noticed by A. Wigderson, the perfor-
guestion (also stated in [2] as an open problem). Can themance of the Groebner basis algorithm can be very good
width-size trade-off be improved ? We give a negative an- if we are able to translate the initial clauses into polynomi-
swer to this question showing that the result of [2] is opti- als of degree 1. For instance the Tseitin graph tautologies
mal. Namely for a giver3-C' N F' F over O(n?) variables require exponential size resolution refutations, but, depend-
we show that: (1}' has a polynomial size resolution refu- ing on the translation to polynomials, the degree of ft(e
tation; and (2) Any resolution refutation df requires a  proof can be)(1), or has to be linear in the number of vari-
clause of siz&(n). The main consequence of our result ables ([8]). This means that depending on the polynomial
is that the proof search algorithm of [2] is not going to be translation, the Grobener Basis algorithm can find PC refu-
efficient for finding resolution refutations. Another interest- tations of formulas very quickly, even when these formulas
ing open question is whether for some known restrictions require exponential size Resolution refutations.

of Resolution (that lie between tree-like and general resolu-  In the final section we prove that under a fixed standard
tion) it is possible to improve the size-width trade-off given translation to polynomials the width based algorithm of [2]
for general resolution. Here we also show that it is not the cannot have a better performance than the Grobner Basis
case for the following restrictions of Resolution: regular, proof search algorithm of [11]. This is a consequence of a
Davis-Putnam, positive, negative and linear Resolution. Fi- lemma giving a Polynomial Calculus simulation of Resolu-
nally, [2] also gave a width-size trade-off for tree-like reso- tion.

lution. [3] have proved that for this restriction of resolution, In section 2 we give some preliminary definitions that
the trade-off is also optimal. will be needed throughout the paper. In section 3 we show

Clegg et al. [11] defined a new propositional proof sys- the optimality of the vyidth-size mthod. In sectiop 4 we
tem, that later has been called polynomial calculB§’). prove that the simulation of resolgtlon by polynom|al cal-
This is an algebraic system for refuting CNF formulas trans- culus cannot be bether than quasipolynomial for small res-
lated to polynomial equations. In their paper they gave ©lution proofs. In section 5 we show how to obtain width
an efficient proof search algorithm based on the Groebner!OWer bounds for resolution from degree lower bounds for
basis algorithm. Their proof complexity measure was the polynomlal calculus, and some applications of this observa-
maximum degree of the polynomials used in the proof, and 10N
the maximum degree had to be a constant. Comparing the
work of [2] and [11] it is easy to observe that basically the 2 Preliminaries
width complexity measure is for Resolution what the de-

gree complexity measure is for PC. Hence, given the opti-  resoLuTionis a refutation proof system for formulas

mality result for the width-size trade-off, it is natural to ask ; i T Eve  DVE
y in CNF form with the following inference rule:-"42~2.

whether some polynomial formulation of the same formula a Resolution refutation for an inital sé&t of clauses is a

used to obtain the optimality result, requires degite) derivation of the empty clause frol using the above in-
PC refutations. This would mean that there is a formula ference rule. Several restrictions of the resolution proof sys-
easy to refqte in Resolutlop but for which bqth the 'Grob.ner tem have appeared in the literature [18]. Here we consider
basis algquthm and the width based algorithm fail to find e following five: (1) theREGULAR resolution system in
progfs quickly. We show a weaker form of the above re- \yhich the proofs are restricted in such a way that any vari-
sult: namely that for a given unsatisfialdleV I with poly-  5pje can be eliminated at most once in any path from an
nomial size resolution refutations, its direct translation to jnitial clause to the empty clause; (2) the\Ds-PUTNAM
polynomials requires PC refutations of degree not less tharyego|ytion system in which the proofs are restricted in such
$)(logn). Therefore proving that the simulation of resolu- 5 \yay that there exists an ordering of the variables such that
tion in [11] cannot be bether than quasipolynomial, in the it 4 yariables is eliminated before a variableon any path
case we start with a polynomial size resolution refutation.  fom an initial clause to the empty clause, theis beforey

Our lower bound proof extends the PC lower bound tech- in the ordering; (3) th&EGATIVE (resp.POSITIVE) resolu-



tion system, or N-resolution (resg2-resolution) for short,  where the clauses ifl) encode the transitivity closure
where in each application of the resolution rule one of the property, those ifi2) the property that there are no cycles of
premises must not contain any positive (resp. negative) lit-size two and those if8) say that eachode eceives at least
eral; (4) theLINEAR resolution system in which the refu- an edge from some other node (i.e. there is no source node).

tation is a sequence of clausgsy, C4, ..., C,) such that  This formula was first formulated by Krishnamurthy in [16]
Cy is an initial clause(,, is the empty clause and for all and then Stalmark in [19] gave polynomial size resolution
1 < i < nin the resolution step~=* ClB"l, the clause  refutations.

B;_; is either an initial clause or such th&t_; = C; for We consider a modification of the pigeon hole principle

somej < i. defined in [13]. Letr be of the form2*, for somek and let
Let R F F (resp. R 4y ') denote thatR is a gen- m = log, n (all thelog are inbase). Foreacly = 1,...m

eral (resp. tree-like) resolution refutation f The size let Part(j) the partition of[n] induced by; the following

| R| of a refutationR in any of the above systems is defined way:

as the number of clauses usedRn The size complexity

S(F F) (respectivelySy (- F)) of deriving aC N F for- Part(j) := ,

mula F' in general resolution (respectively in tree-like res-  {{&:7+1,....i+ (2 = 1)} | '

olution) is defined asmin |R| (respectively min_|R]). i=1L14+2,1+2-27 .1+ (5 —1)-2/}

REF RFEu F

Following [2] thewidth w(F) of a CNF formula is de-

fined to be the size (i.e. the number of literals) of the largest pefinition 2.1 We say thati and i, in [n] are j-
clauses inF". Thewidthw(R) of a refutation® is defined  comparisLE if and only if they are in different elements
as the size of the greatest clause appearinfg. ifihe width of Part(j).

w(k F) (resp.w(ty F)) of deriving a formulaF in general

(resp. tree-like) resolution is defined %SFH}T w(R) (resp. The C'NF formula defining the modified pigeon hole
min_w(R)). The size-width relationship obtained in [2] PrincipleM P H P, is given by the following clauses, where
REu F x; ; means that the pigeanis sitting in the holg:

is given by the following theorem:
Viti@i; i€n]
Theorem 2.1 ([2]) Let F be any unsatisfiable formula over Zi; VEi; je[m]i#£{ €[n],notj-compatible
n variables. Then: (1)57(- F) > 2w(Fal)-w(). (2) Zij Vi, 1€[n],j#£ke]m]
S(FF) > exp(Q(M))_ N
- n Observe that the clauses defining adrP H P,, are a su-
perset of the clauses defining thé PH P,, of [13]. Go-

POLYNOM'.AL CaLcuLus (PC) is a refutation system . erdt gave in [13] polynomial size unrestricted refutations
for formulas in CNF expressed as a sequence of polynoml-for MPHP

als over afield{. APCREFUTATION is a sequence of poly-
nomials ending with such that each line is either antial o ) _ _
polynomial or is inferred from two previous polynomials 3 Optimality of the width-size Method and its

by the following rules: (1UM: O/;,Jrgg fora,8 € K: (2) Consequences
PRODUCT. xf—f for any variablez.
The DEGREE of a refutation is the maximal degree of In this section we show the optimality of the size-width

a polynomial used in the proof. To foréel solutionsthe  trade-off of [2]. As formulated in [2] the question is the
axiomsz? — z, for all z, are always included among the ini- following: can one find an unsatisfiableC' N F formula
tial polynomials. We define standard traductiortr from F overn variables such that(F) is constantS(- F) =
formulas inC'N F to polynomials in the followingway: (1)  O(n®")) andw (- F) > Q(y/n) ? We show that a modi-
tr(z) =1—z;@)tr(z) ==, B)tr(zVy) = tr(z) -tr(y). fication of theGG'T,, formula verifies the properties required
We consider theC' NF formula GT, expressing the to answer the above question not only for unrestricted res-
negation of the property that in any directed graph closedolution but also for various other restrictions. We start by
under transitivity and with no cycles of size two there is a giving a resolution refutation fo&7;, that fullfills all the
source node. We obtain the following formula easily ex- considered restrictions (all but N-resolution), and then we

pressible as & N F': discuss how to modifys7;, to obtain our result.
We sligthly modify the proof of [19] in order to show that
(1) wijANzjp—2ip 4,5,ken)itjiFtk the upper bound also works for the following restrictions of
(2) @; — Ty i,j€nl, ity resolution: regular, positive, Davis-Putnam and linear reso-

(3) Vot hm ¥hij j € [n] lution.



Theorem 3.1 There are polynomial size refutations@f, Tpo1,1,Ln—1,2y+->Ln—1,n
in the following proof systems: (i) general resolution, (i) z1,n—1,22n—1,+++3Zn—-2,n—1
Davis-Putnam resolution, (iii) regular resolution, (iv) posi-

tive resolution, (v) linear resolution.
2,1

Proof. We start by giving the general resolution refutation, 1,2
then we discuss why this proof falls in any of the restricted Therefore the refutation is Davis-Putnam as well as Regu-
versions of resolutions We adopt the following abbrevia- lar.

tions. Let: To see that the refutation is Linear observe that the follow-
A(i,j k) = zij Awjn — zin i 5% k€ [n] ?ng sequence of clauses defines the order of the linear elim-
B(i,5) = (vij = %) i #j€ln] ination:
N j €n]
Cn(i) =\ s { m € [n] Cn(n),
=L Cn(1),B(n,1),A(2,n,1),..., Aln—1n,1)
1 1 1 1
_ . n( )7 7Dn(n)7 n(1)7 7En(n)’
= /\10’"(3) m € [m] Cu(2),A(1,1,2), B(n,2), ..., Ali—1,m, 2),
= D1 D2(n), E%(1 EZ(n),
4 [ ]/{1} n( )7 s n(n)7 n( )7 s n(n)
Di_\(i) = Chea () V Fi i€k 1] :
J €[n] Crn— 1),14(1 nn—1),...,An—2nn-1), B(n,n—1)
. o k€ [n]/{1} DY), .. DI~ 1(n 1) ErY(1),... Er n—1),
Ej_y(0) = (Cema () v\ 2es) § i€k —1] Cooi(n — 1),
(=i Jj €ln] Cri (1), B(n = 1.1), A(2n—11),..., A —2n—11),
1 1 1
The proof proceeds by steps downward frero 2. At the Dia (D), Daca (=0, By (1), By (-1,
0T Cr-1(2), A(ln 1,2), B(n L2) (n 2n—12),
k-th step, for eachj = 1,...,n, we proveCy_;(j) using T B A ST
the inital clausesi(1, &, j), (k’,j) and the clausesy, () nA nt nt
and Cy (k) obtained at the previous step. At the end we
have proved’; from which a contradiction is obtained in ¢, (n—2),..., Ap—3n—1n—2), Bh—1n—2)
2 steps using3(1,2). Now we give a description of how D72 (1), Dn 2m=1),E"72(1),..., E" 2 (n—1),

to perform thek-th step obtaining in parallel the clauses ¢,,_,(n — 2)
Cr-1(1),Cr-1(2),...,Cr_1(n). For a generic valug €

[n] we obtainC —1(j ) by the following steps:

(a): Perform in parallel the following resolutions steps, each {} o

one resolving the variable, ;:

(1) el (2) il It is easy to observe that in the above refutation there
k—1 k—1

are clauses of siz€(n). We show below that in fact any
refutation of GT,, must have clauses of such width. But

(j— 1) Sl A(jf:f)’k’j (4) %ﬁ%g—kl unfortunately the initial clauses @#7,, are also of linear
(G+1) Cri) AG+1k ) () Exli)A(nkg) size inn so that we cannot obtain optimality of the size-
Dy, (+1) Dy _y(m) width trade-off. We consider a modification of the for-

mulaGT,, MGT,, with approximately the same number
of variables as+T,, such that: (L (MGT,) = 3; (2)
from a refutation ofG'T;,, we can easily find a refutation
v v v of MG1T,, and )w(F MGT,) > Q(n). To define
(1) Cr(k) Dy_,(1) ) B _,() Dy, MGT,, we introduce foreachj € [n], n new variables
B, (2) Yo,js - - Yi—1.4> Yi+1,s - - - Yn,; @nd substitute the clauses in

Ej—l("c) D%j—)l(k_l) (3) by the following clauses:
k—1

(b): Ck-1(j) is obtained by the following tree-like
refutation in which we are resolving along the variables
T1,ks T2ky ooy Th—1,k-

......... (k—1)

It is easy to see that such a refutation is a Positive reso-  (3') o, A A=y i (Yi-1,; V i j V Uij) AYnj
lution, indeed at each resolution step one of the involved

clauses is always made by positive literals. Theorem 3.2 There are polynomial size refutations for the
Itis also easy to see that the following order of elimination formula M7'G,, in any of the following proof systems:
of the variables is respected: (i) general resolution, (ii) positive resolution, (iii) Davis-
Tp 1y Ln,2s ey L1 Putnam resolution, (iv) regular resolution, (v) linear reso-

LlnsL2ny--+3Ln—1,n lution.



Proof. The proof proceeds the following way. From the
clauses in(3) obtain the clauses if8) eliminating they
variables. Then we apply the polynomial size proof for

of row j; of the matrix. ¢, From the remaining indexeg:of
choose another indej and put all0s in the empty posi-
tions of the columry,; and all1s in the empty positions of

G, to these new clauses. Observe that the first part ofthe rowj;. Repeat this process until the matrix is full. We

the proof is in fact a tree-like proof of size quadraticnin
and, since the variables are different for differerte [n],

call such an assignmentjg-critical assignment.
Let B; be the formula in(3’). A j-critical assignment

the regularity of the proof is preserved. It is also easy to for MTG,, is defined the following way: first we give a
see that the new first part of the proof is a Davis-Putnam critical assignment for the’s variables and then we assign

resolution since the following order of elimination of the
variables is respected:

Yo,15+ 5 Yn,1,
Y0,29+++ s Yn,2,
Yo,ny -« o5 Yn,yn

Moreover if for eachj € [n] we start by eliminating
they; ,, variable it is easy to see that the new first part is
also a positive resolution. Finally, to prove that this proof
is a linear resolution proof, consider for= 1,...,n the
following definition:

Yn,j ifz=n
Gj(i): ($n,jV$n—1,j~~~$i,jvyi—1,j) 1=1....n—1
Cr(j) ifi=0

values to they’s in such a way as to make false only the
formulaB; and true all the otheBy’s for k #£ j .

Let A; be the conjunction of the clauses; Vv z; ; for
all i € [n],¢ # j. Consider the formulal’; defined as
the conjunction ofd; A B; and letVars(j) be the set of
variables of”;, that is, inV ars(j) we have all the variables
that mention the nodg
Proof of Theorem 3.4
For eachl C [n], let C; be defined ag\;.; ;. For any
clauseC' in a resolution proof ofif TG, p1(C) is the size of
the minimall C [r] such that all critical truth assignments
satisfyingC also satisifyC'. x(C;) < 1, u({}) = n, andu
is obviously subadditive w.r.t. the resolution rule, therefore
in any resolution proof oM T'G,, there is a clause, say
such that? < u(C) < £, We show that this clause will
contain> % literals. Assume for the sake of contradiction

Then the order of the clauses in the linear resolution of that|C'| < %. First of all notice that sincg(C) > % the

MTG, is obtained from the order of the linear resolution
for GT,, by putting foreachj = 1,..., n the sequence of
clauseds;(n),...G;(1) just before the claus€, (j). O

Theorem 3.3 There is &83—CNF formulaF onO(n?) vari-
ables verifying the following two properties: (£)has poly-
nomial size resolution refutations; (2) any resolution refuta-
tion of F' contains a clause having at lea3(n) variables.

This theorem is an immediate consequence of Theorem 3.27

and the following theorem.

Theorem 3.4 Any resolution proof off 7'G;,, must have a
clause of siz&(n).

First we introduce the notion of critical truth assignment
for the formulaGT,,. A critical truth assignment is Bn-
ear directed acyclic graph over distinct nodes and closed
under transitivity. The idea is that if the variaklg; corre-
ponds to whether there is a directed e¢lgg) in the graph,

following claim holds:

Claim 3.1 There exists at least ane I such that no vari-
able fromVars(l) belongs taC'.

Proof of the Claim

Each variabler; ; belongs to two differents set§ars(i)
andVars(j). In the worst case all the variablesGhmen-
tion different nodes so that we capture at mésifferent
etsVars(-). Sincel > 7, then there is at least an index in
verifying the claim.O

Consider any critical assignment such thata(Ch)
0,a(C)=0andforallj € I/{l} «(C;) = 1. This assign-
ment must exist by the minimality dfand moreover it sat-
isfies all the clause§); for i € [n]/{l}. DefineJ = [n]/I.
We have thatJ| > £ (since|l| < %). Therefore by the
same argument used in Claim 3.1 for the 5ete deduce
that there is at least 4 € J such that no variable from
Vars(j) appears irC'. We build an assignmertt from «
such thap(C;) = 1 forall i € I and3(C) = 0, and this is

then such a linear graph falsifies only one among the initial a contradiction is built the following way: change all; ;

clauses in(3). This is because the graph is closauder

such thaiv(z; ;) = 1to 0. Change all the symmetric val-

transitivity, there are no cycles, and every node except foruesz; ; such that(z;;) = 0 to 1. This first change does
the first one in the line has a predecessor. A critical truth not affect the value of’ since no variable fronVars(j)
assignment can be also defined by the adjacency matrix ofappears inC’. Observe that after this change the variable
such linear graphs (observe that the diagonal elements are;; will have the valuel. Therefore it remains to change
not present). The assignments can be obtained by the folconsistently the values of the variablgs in such a way to

lowing algorithm: chose an indej € [»] and put0s in all
the positions of colump; and allls in the empty positions

satisfyC} (i.e. such tha3(C;) = 1). This last change will
not affect the value of” since no variable fromVars(!)



appears ir('. Also notice that the variablag , for s # { Definition 4.1 7' is the set of the polynomials =
don't need to change value [ The existence of thig xi, - 24,5 such that alk;, are distinct and for allj;, €
leads to a contradictiom [m] and for alli and ¢’ in Pigeons(z, ji) ¢ andi are ji-
Our result has several consequences. First of all thecompatible.

width-size relationship of [2] for tree-like resolution to-
gether with Theorem 3.4 give a lower bound25(") for Using the identitie$2), (3) and(4) any polynomial can
tree-like resolution proofs oM T'G,. Theorem 3.2 gives be represented as a linear combination of polynomials in
another exponential separation between unrestricted resolu{'. Therefore any polynomial calculus refutation carried on
tion and tree-like resolution as in [4, 2]. modulo the ideal generated from the polynomig(), (3)

_ _ and(4), is in the vector spac&pan(T) generated fronT".
Theorem 3.5 Any tree like resolution proof i/ 7'G:, must  From now on we assume that all the computations are mod-
have sizé2(2"). ulo the ideall.

We also obtain other consequences with respect to other We want to build a basis3, for the vector space
restrictions of resolution. As we have seen in Section 2, theSpa”(T) such that the elements &, are products of the

width-size trade-off is more powerful in the tree-like case form[[; ; = ; [[; Qi. Asin[14] (and [17]) the definition of
than in the unrestricted one. This fact lead us to think that 2 is obtalned from a process that maps partial assignments
(possibly) restricting some way the resolution system it is I"© Partial assignments: the pigeon dance. We consider a
possible to give better trade-off results than in the unre- dUMmy holed, and we represent elementsj as partial
stricted case. We show that this is not the case for regu-assignments according to the following déon
lar, positive, negative, Davis-Putnam and linear resolution.
As we have seetd TG, has also polynomial size refuta- Definition 4.2 A is the set of the partial mappingsfrom
tions in all the considered restrictions. By Theorem 3.4 any [7] to [m] U {0} such that for alli,i € [n], i # ¢, if
resolution refutation of/ TG, (in particular in any of the ~ @(i) = a(i’) = j # 0 theni andi’ are j-compatible.
considered restrictions) must have a clause of Sige).
This immediately implies that the width-size trade-off for Let A; = {a € A : J|a| < d}. Fora € A
general resolution cannot be improved for regular, positive, with a = {(i1, j1), ... (4, jr), (41, 0),..., (i}, 0)}, a de-
Davis-Putnam and linear resolution. In the case of negativenote the restriction{ (i1, j1), ... (ix, jx)} of a. Any ele-
resolution, we consider the unsatisfiable formia'G;,, in menta of A defines a polynomiat, the following way:
which thex; ; variables are replaced by; whose intended o = [],(;)=;,20 ¥i.j [ Ia(i)=0 Qi- Therefore by definition
meaning is opposite to that of thevariables. Itis easy to  of T any polynomiatk:, assomated 6 € AqisinTy.
see that the positive resolution proof fof'7'G:,, is in fact Our pigeon dance differs from that of [17, 14] since
a negative resolution proof faW T'G,, and that the lower ~ sometimes a pigeon can be sent to an occupied hole. Con-
bound technique can also be applied. Therefore also in thesider the following definition:
case of negative resolution we cannot improve the width-
size trade-off obtained for unrestricted resolution by [2].  Definition 4.3 Givena € A, we say that a holg IS GoobD

FOR THE PIGEON: IN a and we writej € Good(, a) if j >
4 Lower Bounds for the Polynomial Calculus a(¢) and the following condition hold: (1) either there is no

i’ € [n] such thatz(¢') = j (i.e. the hole is unoccupied), or
(2) forall i/ € a=1(j), i and’ are j-compatible.

In this section we show that any polynomial calculus
refutation of theM P H P,, requires degre€(logn). We
will use the same technique as [17, 14]. Recall from Sec-
tion 2 thatm = logn, and the definition of-compatible
pigeons. GiverQ; := 1 -3 .., %i,; we adopt the fol-
lowing polynomial formulation of théZ PH P,,:

Our pigeon dance acts the following way: giveneag
A and starting from the first pigeon iom(a) we try to
move all the pigeonsin dom(a) into a hole; different and
strictly greater tham(¢) which is good for in a.

Definition 4.4 (Dance) Leta € A and considetlom(a). A

(1) @i=0 teln] pigeon dance on is a se i [
guence of mappings, a1, - . . ay
(2) wijeie=0  i€[n], jke€[m] ; : : - :
(3) wijwng =0 j € [m], i, k € [n] not j-compatible in A with the same domain as defined the following way:
(4) Y _’;,j —0 ien], jem] ap = a and for all0 < t < n, if a(t) is undefined, then
6,J i ’

a; = a;_1, otherwise

For a polynomialz which is a product ofx; ;, let

Pigeons(z, j) be the set of’s such that; ; is a factor in ar(j) = ar-1(j) j#Ft
z. a:(t) € Good(t,a;_1)



Definition 4.5 (Minimal Dance) Leta € A be given and
let¢ be a pigeon index ifn]. By D;(a) we denote a map-
pingb € A such thatdom(b) = dom(a), and defined as
follows:

b(i) = a(i) i€ dom(a),i#t
b(t) = minjemlj € Good(t, a)]

If minjepnili € Good(t,a)] does not exists, thed(t)
is undefined. ThevINIMAL PIGEON DANCE 0N a iS:
Dy (Dp-1(- -+ (D1(a) - ++)

The first point holds since otherwigg;, ¢ Good(b:_1,1)
(recall thatb,_q (i) = b;(¢) for all ¢ < t — 1). The sec-
ond point is also easy. Indeed if there exist two different
pigeonsi and:’ both not;j,,-compatible witht then, they
are all three in the same elements of the partitiopedfn-
duced byj,.;,,. But this is not possible sindeis a correct
dance and thereforeandi’ must bej,.;,,-compatibles. For
the third point, we have to show thate Good(i,¢;—1). If

¢ ',(j) = 0, then the result is immediate. Otherwise as-

sume that; !, (j) # 0. We show that for any’ € ¢!, (j)
(i.eci:(i') = 7), ¢ andi’ arej-compatible, from which the

The minima| dance has two main properties_ It can be Claim fO”OWS. Assume fOI’ Sake Of Contradiction thahdll
always defined whenever a dance is defined, and it defines &re notj-compatible, we show the contradiction thavas
one-to-one mapping from partial assignments to partial as-Not a correct dance. Sinéandi’ are notj-compatible, then
signments. We show these properties in the following lem- they are in the same group of Part(j). By the point (2)

mas.

Lemma 4.1 If there exists a dance an then there always
exists a minimal dance on

Proof. We prove by inductionoh = 1,.. ., n that there is
danceb = by, by,..., b, Whereby = a such that its first
steps correpond to the firssteps of the minimal dance on
a. The lemma hence follows fdr= n. Assume to have
proved the claim fot — 1, and letb = bg, by,..., b, the
correct dance having the first- 1 steps as in the minimal
dance. We show how to build a new correct dance
co, €1, - - -, ¢ having itsfirstt steps as in the minimal dance.
Let jin = minjep,)[j € Good(t, b;—1)] and supposg =
b:(t). Observe that that sinéds a correct dance, theh,,
always exists and moreover,;, < j. Now if j = jnin,
thenb is making the right choice at thieth step. In this
case we define = b. Otherwisej,,;» < j. In this case
we definec the following way: for alli, i = 1,...,¢ — 1,

¢; = b;; forall i > t we define first; (¢) the following way:

(i) = j i >t 8.1b;(1) = jminA
! i, t are notj,,;,-compatible
b; (i)

otherwise
We complete the definition of thg for : > ¢ as follows
¢i(j) = ci—1(j) forj #i.
We have to prove thatis a correct dance, since the min-
imality is given by the definition 0f,.,. To prove that is
a correct dance we claim that:

Claim 4.1 (1) there is ndi < ¢ such thaw, (i) = jmis and

i andt are not j,,;,-compatible; (2) there could be only
onei > t such that; (i) = jni, andi andt are NOtj,,,-
compatible; (3) If there is such ah> t (as described in
(2)), thenj is in Good(i, ¢;—1).

The correctness of the danethen follows by its definition.
Proof. (of Claim4.1)

i is the only node (except fa) for which we will modify
b(i). Therefore’ was already sent tpin b, i.e. b;: (i') = j.
We show that € B from which follows the contradiction
since inb we would haveb,(t) = j andb;: (i) = j for
two element inB i.e. notj-compatible. Finally to see that
t € B only observe that and: are j,,,;,-compatible and
Jmin < j. Thereforet and: must be in the same group of
Part(j). Sincei € B € Part(j) thent € B. O

Lemma 4.2 The minimal dance is a one-to-one mapping.

Proof. We show that foralt = 1,...,n, D:(-) isa 1-1
mapping. The result then follows since the minimal dance
is a composition of theD; mappings. We show that if
D,(a) = D:(d’) thena = a'. SupposeD;(a) = D;(a’).
Thendom(a) = dom(a’) and in particular(i) = a'(¢) for

all i € dom(a), i # t. It remains to show that(t) = /().

We show that neithet(t) < «/(t) nora’(t) < a(t). Sup-
pose the former. We show the following contradiction:

Di(a)(t) < a'(t) < Di(a')(t) = Di(a)(t)

To justify the first equality observe that(t) € Good(a,t)
sinceGood(a',t) = Good(a,t) (thisis sincea(i) = a'(7)
forall i # t) and D;(a)(t) = minj¢m)[j € Good(a,t)].
The second inequality holds by definition of minimal dance.
The other case’(t) < a(t) is completely symmetrid]

A property of any pigeon dance which ends succesfully
onana € A isthatthe polynomial associated to the dance is
in T" (this is because we are moving to strictly greater holes
and therefore at the end the dummy hibleas disappeared).

Lemma4.3If d < 6" anda € Ay, then there exists a
dance orz if and only if there exists a dance én

Proof. If there is a dance fo# then obviously there is a
dance fora, so that one implication is easy. For the other
implication assume that the number @ffactors inz, is
different from0 since otherwise there is nothing to prove.



Now, the worst case for the dance®is when all the holes  be rewritten as
referred to ina are different and the dance is assigning al-

ways a new hole to each pigeondiom(d). Since there (1) @e—wcQr ~ Z Lelt,j!
arem = logn holes and sincd < '€, then the dance 31#

ona leaves at Ieaéﬂgﬂ holes unused. These holes are the Observe that all the terms.x, ;; such thatj’ is not in
nodes we will use to define a dance on the wholéThat  Giood(t, b) are equal$ so that the above sum can be written
is, if the pigeoni is in dom(a), thena(i) = a(i). If the as

pigeon: € dom(a) — dom(a), then we assign one of the

unused holes te(i). Since these are new holes and since #c—#cQ:— Z Tolt,jr— Z Loy, 5!
|dom(a)| — |dom(a)| < d < “)—‘gﬂ then the dance omis J'<j.j'€Good(t,b) J'>5,5'€Good(t,b)

well defined.O

- . Observe that the first three terms in the above sum are
We can now proceed to the défion of the basisB,.

in Span(By). The first by induction orx. The second by

induction on< and by the monotonicity property éf; and

the third by (the second case of the definitien)The fourth
By = {z,:a € Ay there is a dance oa} term correspond exactly to all the possible corteitt steps

of b. Therefore if we sum over all, for b € P,_; we have
It is easy to prove that the following monotonicity pro- thatd_,cp o € Span(Ba) iff 3., p | 2y € Span(Ba).

porties hold forBy: (1) Bs—1 C By; (2) 2, € Bq_1 if and This concludes the proof of the Lemnia.

only if for all ¢ ¢ dom(a), 2,Q; € By. In order to show

that B, is a basis foiSpan(T;) we need to define an order Theorem 4.1 Any polynomial calculus refutation of

~< on polynomials iril;. We will do it as in [14]. M PH P, has degree not less théﬁgﬂ.

Definition 4.6

Proof. The proofis asin[14]. Thatis we prove by induction
thenz < y if and only if deg(z,) < deg(zy), or if on the length of the proof that each line in a refutation of
deg(x,) = deg(x;), then for the largest pigeahsuch that _Jll_{]PHan can te)le EeXJQressgqt ﬁs a polynomialtip — :I;d.t'

) = b(i), we have thai(i) < b(i). erefore sinc a and it has a unique representation
ald) # b(0) (0 (0 in each basis, then wemaot derive the polynomidl with
a proof of degree less than or equalito

Recall that we are considering refutationsdulo 7.

Proof. Under the hypothesis of the Lemma, we show: (1) Therefore if a line is an axiom it ig); for somei € [n],
that|B,| < |T,| and (2) that any:, € T, can be expressed and the claim follows. If a line is inferred by the sum rule
as a linear combination of elements®B§, from which the the resultis immediate. For the case of product, say we have
Lemma follows. The first property is a consequence of the 7,z 1hereforda| < d—1andz, € Bs—Ts. By induc-
fact that the seB, is in 1-1 correspondence with the gt tion we have that, is of the formz; Q) for someb andk,
via the minimal dance. More precisely, 4, € B, then  Withz, € By_». Toprove that,z;,; = zp2; ; [[, Qx isin
we have a dance anand sincel < '€ then by Lemma  Ba — T4, observe that,z; ; € Span(Bg4-1) and therefore
4.3, there is dance anand therefore by Lemma 4.1 there Wwe can rewrite it as a sum of elementsif_,. Now if we

is a minimal dance on that by Lemma 4.2 is a 1-1 map- Mmultiply each of these terms f¢}; we obtain eithef (if &
ping. By the property discussed above of the dance thatis in domn(b)) or, by the monotonicity property an element
ends correctly we then obtain the first part. For the sec-of By. Therefore the whole sum is $pan(Bg). O

ond part we work by induction og. Assume that for all So far we have proved @(logn) degree lower bound

#' < wq ' € Span(By), we show thatr, € Span(Ba). for the polynomials (1)-(4) defined at the beginning of this
If there is a dance on then, is in By. Otherwise we  gaction, The same degree lower bound can be obtained for
show how to express, as a linear combln'atlon of the gl- a different set of polynomal§-M PH P,, expressing the
ements ofB,. Let P, be the set of all possible correct first  ¢5me principle. This new set of polynomials is obtained
t steps of the dance an We prove that:, € Span(By) substituting the polynomials — @; in M PHP, by the

iff 2 pep, 2o € Span(Bq) by induction oni = 0, ..., n. polynomials obtained from the translation (see section
Since there is no dance anthenP, = () and therefore the 2) applied to the set of claus@so A A}, (yij—1 V 2ij V

claim follows. The base of the inductior= 0 follows since
P, = a. For the induction step observe that i dom(a)
thenP; = P,_; and so the claim follows by induction @gn
Otherwise for anyy € P,_y, «3 is of the formz; jz.. We Theorem 4.2 Any polynomial calculus refutation o3-
rewrite z, ; with respect to the relatio@,, so thatz, can M PH P, has degree not less théﬁgﬂ.

Definition 4.7 Let 2, and z;, be two polynomials irVy.

Lemma 4.4 B, is a basis forSpan(Ty) for anyd < l‘)—gﬁ

Uij) A Yim, Wherey; ; fori=1,...,n,andj =0,...,m
wherem = log n are new variables.



Proof. We will prove thatM PH P, is (1,3)-reducible to
3-M P H P, following the definitions of d;, d3)-reductions
from [8]. Definey;,; = 1 — >, zix. We prove
that all the initial polynomials of3-M PH P,, (with y
substituted as defined above) are derivable wishdegree
polynomial calculus refutations from initial polynomials of
MPHP,. Observe thay; o = 1 — Q; = 0 andy; ,, = 1.
So we can prove; o = 0 andl — y;,, = 0. Now a
generic initial polynomial of3-M PH P, of the form
(1 = yij—1)(1 — 2 ;) (i, ;) for 2 < j < n, is equivalent
to (Zzgj—l 1‘271@)(1 — xi7j)(2?>j $i,k)- This can be
rewritten as(1 — Y2727 xi ) (1 — zi5)(1 — 4% ,). By
simple calculations (using the initial axioms &f P H P,,)
this is equal tl — Q;) + iy 4z Tinziy + (1 —
l‘@j) Z‘Zc;i Tik Z?:j+1 Ti k- Using the inital axioms of

If A is a initial clause the result follows by definition of
tr. Now assume that at a resolution step we are in the fol-
lowing situation4¥£ZYE py induction we have derived
Poly(A)(1 — z) = 0 andPoly(B)z = 0. By the previous
observation we can obtaiRoly(A)Poly(B)(1 — z) = 0
and Poly(A) Poly(B)x = 0. Finally by an applycation of
addition we obtairPoly(A) Poly(B) = 0. O

The previous lemma also shows that the degree lower
bound obtained fo3- M P H P,, cannot be improved. In fact
[13] shows how to obtain a superpolynomial size resolu-
tion refutation of3-M P H P, of widthO(log n), and by the
lemma there is also a polynomial calculus refutation of the
direct translation of degre@(log n).

As a consequence of the previous lemma and the width-
size trade-off [2] (see theorem 2.1), a linear (in the number

MPHP, it is easy to see that each of the three terms of of variables) degree lower bound in polynomial calculus can

this polynomial is equal t6. O

We have found a principl&-M PH P, that has poly-

give us an exponential lower bound in resolution size.
Finally observe that the previous lemma is better (in the
sense that it gives a smaller degree PC refutations) than the

nomial size resolution refutations, but such that its direct correponding simulation lemma of [11] in the case we have

polynomial translation requireQ(log n) degree. Observe

constant width polynomial Resolution refutations of formu-

that this result can also be obtained using the pigeonholdas having initial clauses of constant size. Moreover it im-

principle, PH P]*, wherem = 2 nlogn |t is known
that PH P" has polynomial size (im) resolution refuta-

tions (see [10]), and on the other hand there i©)4n) de-

gree lower bound for polynomial calculus proofs of it (see

[14, 17]).
Our conjecture is that the simulation of [11] is optimal

plies that under thér translation the width base algorithm
of [2] cannot be better than the Grobner basis algorithm of
[11].

It would be interesting to obtain the opposite direction of
lemma 5.1. Buresh-Oppenheim and Pitassi [7] have a sim-
ulation of polynomial calculus by resolution when we start

for small resolution proofs. We think that some polynomial With binomial equations as initial polynomials. The simu-

version of the formula:T,, should requirg2(n) degree in
PC for some field.

5 Resolution lower bounds via degree lower
bounds

The following Lemma shows that degree lower bounds
imply width lower bounds as long as the initial polynomias

lation has the property that the width is twice the degree.
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of the PC' proofs are a direct translation of the inital clauses References

of the resolution proofs.

Lemma5.1 Given a set of unsatisfiable claus€sand a
resolution refutation off" , there is a polynomial calculus
refutation oftr(F) of degree less than or equal ta(- F).

Proof. For a generic clausd = At v A~ whereA™ =
(a;, V...Va;,)andA™ = (a;, V...Va,,), letpoly(AT) =

o (1 —ap) andpoly(A~) =[]}, ar. Thenpoly(A) =
poly(At)-poly(A~). Observe that given two clausdsand
B, it is easy to obtain a PC derivation &oly(A4) = 0,
Poly(A)Poly(B) = 0 with a degree less than or equal to
w(A) + w(B). We show that for each lind in the res-
olution proof we find a PC refutation aPoly(4) = 0.
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