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Abstract. This paper proposes a study ofReinforcement Learning(RL) for continuous state-space and time
control problems, based on the theoretical framework ofviscosity solutions(VSs). We use the method ofdynamic
programming(DP) which introduces thevalue function(VF), expectation of the best future cumulative reinforce-
ment. In the continuous case, the value function satisfies a non-linear first (or second) order (depending on the
deterministic or stochastic aspect of the process) differential equation called theHamilton-Jacobi-Bellman(HJB)
equation. It is well known that there exists an infinity of generalized solutions (differentiable almost everywhere) to
this equation, other than the VF. We show that gradient-descent methods may converge to one of these generalized
solutions, thus failing to find the optimal control.

In order to solve the HJB equation, we use the powerful framework of viscosity solutions and state that there
exists a unique viscosity solution to the HJB equation, which is the value function. Then, we use another main
result of VSs (their stability when passing to the limit) to prove the convergence of numerical approximations
schemes based on finite difference (FD) and finite element (FE) methods. These methods discretize, at some
resolution, the HJB equation into a DP equation of aMarkov Decision Process(MDP), which can be solved by DP
methods (thanks to a “strong” contraction property) if all the initial data (the state dynamics and the reinforcement
function) were perfectly known. However, in the RL approach, as we consider a system in interaction with some a
priori (at least partially) unknown environment, which learns “from experience”, the initial data are not perfectly
known but have to be approximated during learning. The main contribution of this work is to derive a general
convergence theorem for RL algorithms when one uses only “approximations” (in a sense of satisfying some
“weak” contraction property) of the initial data. This result can be used for model-based or model-free RL
algorithms, with off-line or on-line updating methods, for deterministic or stochastic state dynamics (though this
latter case is not described here), and based on FE or FD discretization methods. It is illustrated with several RL
algorithms and one numerical simulation for the “Car on the Hill” problem.

Keywords: reinforcement learning, dynamic programming, optimal control, viscosity solutions, finite difference
and finite element methods, Hamilton-Jacobi-Bellman equation

1. Introduction

This paper is about Reinforcement Learning (RL) in the continuous state-space and time
case. RL techniques (see Kaelbling, Littman, and Moore (1996) for a survey) are adaptive
methods for solving optimal control problems for which only a partial amount of initial data
are available to the system that learns. In this paper, we focus on the Dynamic Programming
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(DP) method which introduces a function, called thevalue function(VF) (or cost function),
that estimates the best future cumulative reinforcement (or cost) as a function of initial
states.

RL in the continuous case is a difficult problem for at least two reasons. Since we consider
acontinuous state-space, the first reason is that the value function has to be approximated,
either by usingdiscretization(with grids or triangulations) orgeneral approximation(such
as neural networks, polynomial functions, fuzzy sets, etc.) methods. RL algorithms for con-
tinuous state-space have been implemented with neural networks (see for example Barto,
Sutton, and Anderson (1983), Barto (1990), Gullapalli (1992), Williams (1992), Lin (1993),
Sutton and Whitehead (1993), Harmon, Baird, and Klopf (1996), and Bertsekas and Tsitsik-
lis (1996)), fuzzy sets (see Now´e, 1995; Glorennec & Jouffe, 1997), approximators based
on state aggregation (see Singh, Jaakkola, & Jordan, 1994), clustering (see Mahadevan &
Connell, 1992), sparse-coarse-coded functions (see Sutton, 1996) and variable resolution
grids (see Moore, 1991; Moore & Atkeson, 1995). However, as it has been pointed out by
several authors, the combination of DP methods with function approximators may produce
unstable or divergent results even when applied to very simple problems (see Boyan &
Moore, 1995; Baird, 1995; Gordon, 1995). Some results using clever algorithms (like
Residual algorithmsof Baird (1995)) or particular classes of approximation functions (like
theAveragersof Gordon (1995)) can lead to the convergence to a local or global solution
within the class of functions considered.

Anyway, it is difficult to define the class of functions (for a neural network, the suitable
architecture) within which the optimal value function could be approximated, knowing that
we have little prior knowledge of its smoothness properties.

The second reason is because we consider acontinuous-timevariable. Indeed, the value
function derived from the DP equation (see Bellman, 1957), relates the value at some
state as a function of the values at successor states. In the continuous-time limit, as the
successor states get infinitely closer, the value at some point becomes a function of its
differential, defining a non linear differential equation, called theHamilton-Jacobi-Bellman
(HJB) equation.

In the discrete-time case, the resolution of the Markov Decision Process (MDP) is equiv-
alent to the resolution, on the whole state-space, of the DP equation; this property provides
us with DP or RL algorithms that locally solve the DP equation and lead to the optimal
solution. With continuous time, it is no longer the case since the HJB equation holds only
if the value function is differentiable. And in general, the value function is not differen-
tiable everywhere (even for smooth initial data), thus this equation cannot be solved in the
usual sense, because this leads to either no solution (if we look for classical solutions, i.e.
differentiable everywhere) or an infinity of solutions (if we look for generalized solutions,
i.e. differentiable almost everywhere).

This fact, which will be illustrated with a very simple 1-dimensional example, explains
why there could be many “bad” solutions to gradient-descent methods for RL. Indeed,
such methods intend to minimize the integral of some Hamiltonian. But the generalized
solutions of the HJB equation are global optima of this problem, so the gradient-descent
methods may lead to approximate any (among an infinity of) generalized solutions giving
little chance to reach the desired value function.
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In order to deal with the problem of integrating the HJB equation, we use the formalism
of Viscosity Solutions (VSs), introduced by Crandall and Lions (in Crandall and Lions
(1983); see the user’s guide (Crandall, Ishii, & Lions, 1992)) in order to define an adequate
class (which appears as a weak formulation) of solutions to non-linear first (and second)
order differential equation such as HJB equations.

The main properties of VSs are their existence, their uniqueness and the fact that the
value function is a VS. Thus, for a large class of optimal control problems, there exists
a unique VS to the HJB equation, which is the value function. Furthermore, VSs have
remarkable stability properties when passing to the limit, from which we can derive proofs
of convergence for discretization methods.

Our approach here consists in defining a class of convergent numerical schemes, among
which are the finite element (FE) and finite difference (FD) approximation schemes intro-
duced in Kushner (1990) and Kushner and Dupuis (1992) to discretize, at some resolution
δ, the HJB equation into a DP equation for some discrete Markov Decision Process. We
apply a result of convergence (from Barles & Souganidis, 1991) to prove the convergence
of the value functionV δ of the discretized MDP to the value functionV of the continuous
problem as the discretization stepδ tends to zero.

The DP equation of the discretized MDP could be solved by any DP method (because
the DP equation satisfies a “strong” contraction property leading successive iterations to
converge to the value function, the unique fixed point of this equation), but only if the data
(the transition probabilities and the reinforcements) were perfectly known by the learner,
which is not the case in the RL approach.

Thus, we propose a result of convergence for RL algorithms when we only use “approx-
imations” of these data (in the sense that the approximated DP equation need to satisfy
some “weak” contraction property). The convergence occurs as the number of iterations
tends to infinity and the discretization step tends to zero. This result applies to model-
based or model-free RL algorithms, for off-line or on-line methods, for deterministic
or stochastic state dynamics, and for FE or FD based discretization methods. It is illus-
trated with several RL algorithms and one numerical simulation for the “Car on the Hill”
problem.

In what follows, we consider thediscounted, infinite-time horizon case(for a description
of the finite-time horizon case, see Munos (1997a)) withdeterministic state dynamics(for
the stochastic case, see Munos and Bourgine (1997) or Munos (1997a)).

Section 2introduces the formalism for RL in the continuous case, defines the value
function, states the HJB equation and presents a result showing continuity of the VF.

Section 3illustrates the problems of classical solutions to the HJB equation with a simple
1-dimensional example and introduces the notion of viscosity solutions.

Section 4is concerned with numerical approximation of the value function using dis-
cretization schemes. The finite element and finite difference methods are presented and a
general convergence theorem (whose proof is in Appendix A) is stated.

Section 5states a convergence theorem (whose proof is in Appendix B) for a general
class of RL algorithms and illustrates it with several algorithms.

Section 6presents a simple numerical simulation for the “Car on the Hill” problem.
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2. A formalism for reinforcement learning in the continuous case

The objective of reinforcement learning is to learn from experience how to influence the
behavior of a dynamic system in order to maximize some payoff function called therein-
forcementor reward function (or equivalently to minimize some cost function). This is a
problem of optimal control in which the state dynamics and the reinforcement function are,
a priori, at least partially unknown.

In this paper we are concerned withdeterministic problemsin which the dynamics of the
system is governed by a controlled differential equation. For similar results in the stochastic
case, see Munos and Bourgine (1997) and Munos (1997a), for a related work using multi-
grid methods, see Pareigis (1996).

The two possible approaches for optimal control are Pontryagin’smaximum principle
(for theoretical work, see Pontryagin et al. (1962) and more recently Fleming and Rishel
(1975), for a study of Temporal Difference, see Doya (1996), and for an application to the
control with neural networks, see Bersini and Gorrini (1997) and the Bellman’sDynamic
Programming(DP) (introduced in Bellman (1957)) approach considered in this paper.

2.1. Deterministic optimal control for discounted infinite-time horizon problems

In what follows, we consider infinite-time horizon problems under the discounted frame-
work. In that case, the state dynamics do not depend on the time. For a study of the finite
time horizon case (for which there is a dependency in time), see Munos (1997a).

Let x(t) be thestate of the system, which belongs to thestate-spaceŌ, closure of an
open subsetO⊂Rd. The evolution of the system depends on the current statex(t) and
control (or action) u(t)∈U , whereU , closed subset, is thecontrol space; it is defined by
the controlled differential equation:

dx(t)

dt
= f (x(t), u(t)) (1)

where the controlu(t) is a bounded, Lebesgue measurable function with values inU . The
function f is called thestate dynamics. We assume thatf is Lipschitzian with respect to
the first variable: there exists some constantL f > 0 such that:

∀x, y∈ Ō, | f (x, u)− f (y, u)| ≤ L f ‖x − y‖ (2)

For initial statex0 at timet = 0 the choice of a controlu(t) leads to a unique (because
the state dynamics (1) is deterministic)trajectory x(t) (see figure 1).

Definition 1. We define the discountedreinforcement functional J, which depends on
initial data x0 and controlu(t) for 0≤ t ≤ τ , with τ the exit time ofx(t) from Ō (with
τ =∞ if the trajectory always stays insidēO):

J(x0; u(t)) =
∫ τ

0
γ t · r (x(t), u(t)) dt + γ t · R(x(τ )) (3)
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Figure 1. The state-spacēO. From initial statex0 at t = 0, the choice of controlu(t) leads to the trajectoryx(t)
for 0≤ t ≤ τ , whereτ is the exit time from the state-space.

with r (x, u) thecurrent reinforcement(defined onŌ) andR(x) theboundary reinforcement
(defined on∂O, the boundary of the state-space).γ ∈ [0, 1) is thediscount factorwhich
weights short-term rewards more than long-term ones (and ensures the convergence of the
integral).

Theobjective of the control problem is to find, for any initial statex0, the controlu∗(t)
that optimizes the reinforcement functionalJ(x0; u(t)).

Remark. Unlike the discrete case, in the continuous case, we need to consider two different
reinforcement functions:r is obtained and accumulated during the running of the trajectory,
whereasR occurs whenever the trajectory exits from the state-space (if it does). This
formalism enables us to consider many optimal control problem, such as reaching a target
while avoiding obstacles, viability problems, and many other optimization problems.

Definition 2. We define thevalue function, the maximum value of the reinforcement
functional as a function of initial state at timet = 0:

V(x) = sup
u(t)

J(x; u(t)) (4)

Before giving some properties of the value function (HJB equation, continuity and differen-
tiability properties), let us first describe the reinforcement learning framework considered
here and the constraints it implies.

2.2. The reinforcement learning approach

RL techniques are adaptive methods for solving optimal control problems whose data are a
priori (at least partially) unknown. Learning occurs iteratively, based on the experience of
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the interactions between the system and the environment, through the (current and boundary)
reinforcement signals.

The objective of RL is to find the optimal control, and the techniques used are those
of DP. However, in the RL approach, the state dynamicsf (x, u), and the reinforcement
functionsr (x, u), R(x) are partially unknown to the system. Thus RL is a constructive and
iterative process that estimates the value function by successive approximations.

The learning process includes both a mechanism for the choice of the control, which has
to deal with theexplorationversusexploitationdilemma (exploration provides the system
with new information about the unknown data, whereas exploitation consists in optimizing
the estimated values based on the current knowledge) (see Meuleau, 1996), and a mechanism
for integrating new information for refining the approximation of the value function. The
latter topic is the object of this paper.

The study and the numerical approximations of the value function is of great importance
in RL and DP because from this function we can deduce an optimal feed-back controller.
The next section shows that the value function satisfies a local property, called the Hamilton-
Jacobi-Bellman equation, and points out its relation to the optimal control.

2.3. The Hamilton-Jacobi-Bellman equation

Using the dynamic programming principle (introduced in Bellman (1957)), we can prove
that the value function satisfies a local condition, called the Hamilton-Jacobi-Bellman (HJB)
equation (see Fleming and Soner (1993) for a complete survey). In the deterministic case
studied here, it is a first-order non-linear partial differential equation (in the stochastic case,
we can prove that a similar equation of order two holds). Here we assume thatU is a
compact set.

Theorem 1 (Hamilton-Jacobi-Bellman). If the value function V is differentiable at x, let
DV(x) be the gradient of V at x, then the Hamilton-Jacobi-Bellman equation:

V(x) ln γ + sup
u∈U

[DV(x) · f (x, u)+ r (x, u)] = 0 (5)

holds at x∈O. Additionally, V satisfies the following boundary condition:

V(x) ≥ R(x) for x ∈ ∂O (6)

Remark. The boundary condition is an inequality because at some boundary point (for
example atx1∈ ∂O on figure 1) there may exist a controlu(t) such that the corresponding
trajectory stays insidēO and whose reinforcement functional is strictly superior to the
immediate boundary reinforcementR(x1). In such cases, (6) holds with a strict inequality.

Remark. Using an equivalent definition, the HJB Eq. (5) means thatV is the solution of
the equation:

H(x,W, DW) = 0 (7)
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with theHamiltonian Hdefined, for any differentiable functionW, by:

H(x,W, DW) = −W(x) ln γ − sup
u∈U

[DW(x) · f (x, u)+ r (x, u)].

Dynamic programming computes the value function in order to find the optimal control
with a feed-back control policy, that is a functionπ(x) : Ō→U such that the optimal
controlu∗(t) at timet depends on current statex(t) : u∗(t) = π(x(t)). Indeed, from the
value function, we deduce the following optimal feed-back control policy:

π∗(x)∈ arg sup
u∈U

[DV(x) · f (x, u)+ r (x, u)] (8)

Now that we have pointed out the importance of computing the value functionV for
defining the optimal control, we show some properties ofV (continuity, differentiability)
and how to integrate (and in what sense) the HJB equation for approximatingV .

2.4. Continuity of the value function

The property of continuity of the value function may be obtained under the following
assumption concerning the state dynamicsf around the boundary∂O (which is assumed
smooth, i.e.∂O ∈ C2):

For all x ∈ ∂O, let En(x) be the outward normal ofO at x (for example, seeEn(x2) in
figure 1), we assume that:

If ∃u ∈ U with f (x, u) · En(x) ≤ 0, then∃v ∈ U with f (x, v) · En(x) < 0

If ∃u ∈ U with f (x, u) · En(x) ≥ 0, then∃v ∈ U with f (x, v) · En(x) > 0
(9)

These hypotheses mean that at any point of the boundary, there ought not be only tra-
jectories tangential to the boundary of the state space.

Theorem 2 (Continuity). Suppose that(2) and (9) are satisfied, then the value function
is continuous inŌ.

The proof of this theorem can be found in Barles and Perthame (1990).

3. Introduction to viscosity solutions

From Theorem 1, we know that if the value function is differentiable then it solves the HJB
equation. However, in general, the value function is not differentiable everywhere even when
the data of the problem are smooth. Thus, we cannot expect to find classical solutions (i.e.
differentiable everywhere) to the HJB equation. Now, if we look for generalized solutions
(i.e. differentiablealmosteverywhere), we find that there are many solutions other than the
value function that solve the HJB equation.
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Therefore, we need to define a weak class of solutions to this equation. Crandall and
Lions introduced such a weak formulation by defining the notion ofViscosity Solutions
(VSs) in Crandall and Lions (1983). For a complete survey, see Crandall et al. (1992),
Barles (1994) or Fleming and Soner (1993). This notion has been developed for a very broad
class of non-linear first and second order differential equations (including HJB equations
for the stochastic case of controlled diffusion processes). Among the important properties
of viscosity solutions are some uniqueness results, the stability of solutions to approxi-
mated equations when passing to the limit (this very important result will be used to prove
the convergence of the approximation schemes in Section 4.4) and mainly the fact that
the value function is the unique viscosity solution of the HJB Eq. (5) with the boundary
condition (6).

First, let us illustrate with a simple example the problems raised here when one looks for
classical or generalized solutions to the HJB equation.

3.1. 3 problems illustrated with a simple example

Let us study a very simple control problem in 1 dimension. Let the statex(t) ∈ [0, 1], the
controlu(t) ∈ {−1,+1} and the state dynamics be:dx

dt = u.
Consider a current reinforcementr = 0 everywhere and a boundary reinforcement defined

by R(0) andR(1). In this example, we deduce that the value function is:

V(x) = max
{
R(0) · γ x, R(1) · γ 1−x

}
(10)

and the HJB equation is:

V(x) ln γ +max{V ′(x),−V ′(x)} = 0 (11)

with the boundary conditionsV(0)≥ R(0) andV(1)≥ R(1).

1. First problem: there is no classical solution to the HJB equation. LetR(0)= 1,
R(1)= 2, andγ = 0.3. The corresponding value function is plotted in figure 2. We
observe thatV is not differentiable everywhere, thus does not satisfy the HJB equation
everywhere: there is no classical solution to the HJB equation.

2. Second problem: there are several generalized solutions. If one looks for generalized
solutions that satisfy the HJB equation almost everywhere, we find many functions other
than the value function. An example of a function satisfying (11) everywhere with the
boundary conditionsR(0)= 1 andR(1)= 2 is illustrated in figure 3.

Remark. This problem is of great importance when one wants to use gradient-descent
methods with some general function approximator, like neural networks, to approxi-
mate the value function. The use of gradient-descent methods may lead to approximate
any of the generalized solutions of the HJB equation and thus fail to find the value
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Figure 2. The value function is not differentiable everywhere.

Figure 3. There are many generalized solutions other than the value function.

function. Indeed, suppose that we use a gradient-descent method for finding a function
W minimizing the error:

E(W)=
∫

x∈O
H(x,W, DW)2 dx (12)

with H the Hamiltonian defined in Section 2.3. Then, the method will converge, in
the best case, to anygeneralized solution Vg of (7) (because these functions areglobal
optimaof this minimization problem, since their errorE(Vg= 0) which are probably
different from the value functionV . Moreover the control induced by such functions
(by the closed loop policy (8)) might be very different from the optimal control (defined
by V). For example, the function plotted in figure 3 generates a control (given by the
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direction of the gradient) very different from the optimal control, defined by the value
function plotted in figure 2.

In fact, in such continuous time and space problems, there exists an infinity ofglobal
minimafor gradient descent methods, and these functions may be very different from
the expected value function.

In the case of neural networks, we usually use smooth functions (differentiable
everywhere), thus neither the value functionV (figure 2), nor a generalized solution
Vg (figure 3) can be exactly represented, but both can be approximated. Let us denote
Ṽ andṼg, the best approximations ofV andVg in the network. TheñV andṼg arelocal
minima of the gradient-descent method minimizingE, but nothing proves that̃V is a
globalminimum. In this example, it could seem thatV is “smoother” than the generalized
solutions (because it has only one discontinuity instead of several ones) in the sense that
E(Ṽ)≤ E(Ṽg), but this is not true in general. In any case, in the continuous-time case,
when we use a smooth function approximator, there exists an infinity oflocal solutions
for the problem of minimizing the errorE and nothing proves that the expectedṼ is a
globalsolution. See Munos, Baird, and Moore (1999) for some numerical experiments
on simple (one and two dimensional) problems.

When time is discretized, this problem disappears, but we still have to be careful when
passing to the limit. In this paper, we describe discretization methods that converge to
the value function when passing to the limit of the continuous case.

3. Third problem: the boundary condition is an inequality. Here we illustrate the problem
of the inequality of the boundary condition. LetR(0)= 1 andR(1)= 5. The correspond-
ing value function is plotted in figure 4. We observe thatV(0) is strictly superior to
the boundary reinforcementR(0). This strict inequality occurs at any boundary point
x ∈ ∂O for which there exists a controlu(t) such that the trajectory goes immediately in-
sideŌ and generates a better reinforcement functional than the boundary reinforcement
R(x) obtained by exiting fromŌ at x.

We will give (in definition 4 that follows) a weak (viscosity) formulation of the
boundary condition (6).

Figure 4. The boundary condition may hold with a strict inequality condition (V(0)> R(0)= 1).
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3.2. Definition of viscosity solutions

In this section, we define the notion of viscosity solutions for continuous functions (a
definition for discontinuous functions is given in Appendix A).

Definition 3 (Viscosity solution). LetW be acontinuousreal-valued function defined
in O.r W is a viscosity sub-solutionof (7) in O if for all functionsϕ ∈C1(O), for all x ∈O

local maximum ofW−ϕ such thatW(x)=ϕ(x), we have:

H(x, ϕ(x), Dϕ(x)) ≤ 0r W is aviscosity super-solutionof (7) in O if for all functionsϕ ∈C1(O), for all x ∈O local
minimum ofW − ϕ such thatW(x)=ϕ(x), we have:

H(x, ϕ(x), Dϕ(x)) ≥ 0r W is a viscosity solutionof (7) in O if it is a viscosity sub-solution and a viscosity
super-solution of (7) inO.

3.3. Some properties of viscosity solutions

The following theorem (whose proof can be found in Crandall et al. (1992)) states that the
value function is a viscosity solution.

Theorem 3. Suppose that the hypotheses of Theorem2 hold. Then the value function V
is a viscosity solution of(7) in O.

In order to deal with the inequality of the boundary condition (6), we define a viscosity
formulation in a differential type condition instead of a pure Dirichlet condition.

Definition 4(Viscosity boundary condition). LetW be a continuous real-valued function
defined inŌ,r W is aviscosity sub-solutionof (7) in O with the boundary condition(6) if it is a viscosity

sub-solution of (7) inO and for all functionsϕ ∈C1(Ō), for all x ∈ ∂O local maximum
of W − ϕ such thatW(x) = ϕ(x), we have:

min{H(x,W, DW),W(x)− ϕ(x)} ≤ 0r W is a viscosity super-solutionof (7) in O with the boundary condition(6) if it is a
viscosity super-solution of (7) inO and for all functionsϕ ∈ C1(Ō), for all x ∈ ∂O
local minimum ofW − ϕ such thatW(x) = ϕ(x), we have:

min{H(x,W, DW),W(x)− ϕ(x)} ≥ 0 (13)
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r W is aviscosity solutionof (7) in O with the boundary condition(6) if it is a viscosity
sub- and super-solution of (7) inO with the boundary condition (6).

Remark. When the HamiltonianH is related to an optimal control problem (which is the
case here), the condition (13) is simply equivalent to the boundary inequality (6).

With this definition, Theorem 3 extends to viscosity solutions with boundary conditions.
Moreover, from a result of uniqueness, we obtain the following theorem (whose proof is in
Crandall et al. (1992) or Fleming and Soner (1993)):

Theorem 4. Suppose that the hypotheses of Theorem2 hold. Then the value function V
is the unique viscosity solution of(7) in O with the boundary condition(6).

Remark. This very important theorem shows the relevance of the viscosity solutions for-
malism for HJB equations. Moreover this provides us with a very useful framework (as will
be illustrated in next few sections) for proving the convergence of numerical approximations
to the value function.

Now we study numerical approximations of the value function. We define approximation
schemes by discretizing the HJB equation with finite element or finite difference methods,
and prove the convergence to the viscosity solution of the HJB equation, thus to the value
function of the control problem.

4. Approximation with convergent numerical schemes

4.1. Introduction

The main idea is to discretize the HJB equation into a Dynamic Programming (DP) equation
for some stochastic Markovian Decision Process (MDP). For any resolutionδ, we can solve
the MDP and find the discretized value functionV δ by using DP techniques, which are
guaranteed to converge since the DP equation is a fixed-point equation satisfying some
strong contraction property(see Puterman, 1994; Bertsekas, 1987). We are also interested
in the convergence properties of the discretizedV δ to the value functionV asδ decreases to 0.

From Kushner (1990) and Kushner and Dupuis (1992), we define two classes of
approximation schemes based on finite difference (FD) (Section 4.2) and finite element
(FE) methods (Section 4.3). Section 4.4 provides a very general theorem of convergence
(deduced from the abstract formulation of Barles and Souganidis (1991) and using the
stability properties of viscosity solutions), that covers both FE and FD methods (the only
important required properties for the convergence are themonotonicityand theconsistency
of the scheme).

In the following, we assume that the control spaceU is approximated by finite control
spacesU δ such that:δ ≤ δ′ ⇒ U δ′ ⊂U δ and:

⋃
δ U δ = U.
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Figure 5. The discretized state-space6δ (the dots) and its frontier∂6δ (the crosses).

4.2. Approximation with finite difference methods

Let e1, e2, . . . ,ed be a basis for IRd. The dynamics are:f = ( f1, . . . , fd). Let the positive
and negative parts offi be: f +i = max( fi , 0), f −i = max(− fi , 0). For anydiscretization
stepδ, let us consider the lattices:δZd = {δ ·∑d

i=1 ji ei } where j1, . . . , jd are any integers,
and6δ = δZd ∩ O. Let ∂6δ, the frontier of 6δ, denote the set of points{ξ ∈ δZd\O
such that at least one adjacent pointξ ± δei ∈6δ} (see figure 5). Let us denote by‖y‖1 =∑d

i=1 |yi | the 1-norm of any vectory.
The FD method consists of replacing the gradientDV(ξ) by the forward and backward

difference quotients ofV at ξ ∈ 6δ in directionei :

1+i V(ξ) = 1

δ
[V(ξ + δei )− V(ξ)]

1−i V(ξ) = 1

δ
[V(ξ − δei )− V(ξ)]

Thus the HJB equation can be approximated by the following equation:

V δ(ξ) ln γ

+ sup
u∈U δ

{
d∑

i=1

[
f +i (ξ, u) ·1+i V δ(ξ)+ f −i (ξ, u) ·1−i V δ(ξ)

]+ r (ξ, u)

}
= 0

Knowing that (1t ln γ ) is an approximation of (γ1t − 1) as1t tends to 0, we deduce the
following equivalent approximation equation: forξ ∈6δ ,

V δ(ξ) = sup
u∈U δ

{
γ

δ
‖ f (ξ,u)‖1

∑
ξ ′

p(ξ ′ | ξ, u) ·V δ(ξ ′)+ δ

‖ f (ξ, u)‖1 r (ξ, u)

}
(14)

with p(ξ ′ | ξ, u) =
{

f ±i (ξ,u)
‖ f (ξ,u)‖1 for ξ ′ = ξ ± δei

0 otherwise



278 R. MUNOS

Figure 6. A geometrical interpretation of the FD discretization. The continuous process (on the left) is discretized
at some resolutionδ into an MDP (right). The transition probabilitiesp(ξi | ξ, u) of the MDP are the coordinates
of the vector1

δ
(η− ξ) with η the projection ofξ onto the segment(ξ + δ · e1, ξ + δ · e2) in a direction parallel to

f (ξ, u).

which is a DP equation for a finite Markovian Decision Process whosestate-spaceis
6δ, control spaceis U δ andprobabilities of transitionare p(ξ ′ | ξ, u) (see figure 6 for a
geometrical interpretation).

From the boundary condition, we define the absorbing terminal states:

For ξ ∈ ∂6δ, V δ(ξ) = R(ξ) (15)

By definingF δ
FD the finite difference scheme:

F δ
FD [ϕ](ξ) = sup

u∈U δ

{
γ

δ
‖ f (ξ,u)‖1

∑
ξ ′

p(ξ ′ | ξ, u) · ϕ(ξ ′)+ δ

‖ f (ξ, u)‖1 · r (ξ, u)
}

(16)

DP Eq. (14) becomes: forξ ∈6δ,

V δ(ξ) = F δ
FD [V δ](ξ) (17)

This equation states thatV δ is a fixed point ofF δ
FD . Moreover, asf is bounded from

above (with some valueM f ), F δ
FD satisfies the followingstrong contraction property:

∥∥F δ
FD [ϕ1] − F δ

FD [ϕ2]
∥∥ ≤ λ · ‖ϕ1− ϕ2‖ with λ = γ

δ
M f (18)

and sinceλ<1, there exists a fixed point which is the value functionV δ; it is unique and
can be computed by DP iterative methods (see Puterman, 1994; Bertsekas, 1987).

Computation of Vδ and convergence. There are two standard methods for computing
the value functionV δ of some MDP:value iteration(V δ is the limit of a sequence of
successive iterationsV δ

n+1= F δ
FD [V δ

n ]) andpolicy iteration(approximations in policy space
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by alternative policy evaluation steps and policy improvement steps). See Puterman (1994),
Bertsekas (1987) or Bertsekas and Tsitsiklis (1996) for more information about DP theory.
In Section 5, we describe RL methods for computing iteratively the approximated value
functionsV δ.

In the following section, we study a similar method for discretizing the continuous process
into an MDP by using finite element methods. The convergence of these two methods (i.e.
the convergence of the discretizedV δ to the value functionV asδ tends to 0) will be derived
from a general theorem in Section 4.4.

4.3. Approximations with finite element methods

We use a finite element (FE) method (with linear simplexes) based on a triangulation6δ

covering the state-space (see figure 7).
The value functionV is approximated by piecewise linear functionsV δ defined by their

values at the vertices{ξ} of the triangulation6δ. The value ofV δ at any pointx inside some
simplex(ξ0, . . . , ξd) is a linear combination ofV δ at the verticesξ0, . . . , ξd (see figure 7):

V δ(x) =
d∑

i=0

λξi (x)V
δ(ξi ) for all x ∈ Simplex(ξ0, . . . , ξd)

with λξi (x) being thebarycentric coordinatesof x inside the simplex(ξ0, . . . , ξd)3 x. (We
recall that the definition of the barycentric coordinates is thatλξi (x) satisfy:

∑d
i=0 λξi (x) ·

(ξi − x) = 0,
∑d

i=0 λξi (x) = 1 andλξi (x) ≥ 0).
By using a finite element approximation scheme derived from Kushner (1990), the con-

tinuous HJB equation is approximated by the following equation:

V δ(ξ) = sup
u∈U δ

[
γ τ(ξ,u) · V δ(η(ξ, u))+ τ(ξ, u)r (ξ, u)]

Figure 7. Triangulation6δ of the state-space.Vδ(x) is a linear combination of theVδ(ξi ), for x ∈ simplex
(ξ0, ξ1, ξ2), weighted by the barycentric coordinatesλξi (x).
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Figure 8. A finite element approximation. Consider a vertexξ andη1 = ξ+τ(ξ, u1). f (ξ, u1). Vδ(η1) is a linear
combination ofVδ(ξ0),Vδ(ξ1),Vδ(ξ2) weighted by the barycentric coordinatesλξi (η1). Thus, the probabilities
of transition of the MDP are these barycentric coordinates.

whereη(ξ, u) is a point inside6δ such thatη(ξ, u) = ξ + τ(ξ, u) · f (ξ, u) (see figure 8)
for some “time discretization” functionτ :6δ × U δ → R. We require thatτ satisfies the
following condition, for some positive constantsk1 andk2:

∀ξ ∈ 6δ, ∀u ∈ U δ, k1 · δ ≤ τ(ξ, u) ≤ k2 · δ (19)

Remark. It is interesting to notice that this time discretization functionτ(ξ, u) does not
need to be constant and can depend on the stateξ and the controlu. This provides us with
some freedom on the choice of these parameters, assuming that Eq. (19) still holds. For a
discussion on the choice of a constant time discretization functionτ according to the space
discretization sizeδ in order to optimize the precision of the approximations, see Pareigis
(1997).

Let us denote(ξ0, . . . , ξd) the simplex containingη(ξ, u). As V δ is linear inside the
simplex, this equation can be written:

V δ(ξ) = sup
u∈U δ

[
γ τ(ξ,u) ·

d∑
i=1

λξi (η(ξ, u))V
δ(ξi )+ τ(ξ, u)r (ξ, u)

]
(20)

which is a DP equation for a Markov Decision Process whose state-space is the set of
vertices{ξ} and the probability of transition from (stateξ , controlu) to next statesξ ′ ∈
{ξ0, . . . , ξd} are the barycentric coordinates ofη(ξ, u) inside simplex(ξ0, . . . , ξd) (and 0
for ξ ′ /∈ {ξ0, . . . , ξd}) (see figure 8). The boundary states satisfy the terminal condition:

For ξ ∈ ∂6δ, V δ(ξ) = R(ξ). (21)
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By definingF δ
FE the finite element scheme,

F δ
FE [ϕ](ξ) = sup

u∈U δ

{
γ τ(ξ,u) ·

d∑
i=1

λξi (η(ξ, u))ϕ(ξi )+ τ(ξ, u)r (ξ, u)
}

(22)

the approximated value functionV δ satisfies the DP equation

V δ(ξ) = F δ
FE [V δ](ξ). (23)

Similarly to the FD scheme,F δ
FE satisfies the following “strong” contraction property:∥∥F δ

FE [ϕ1] − F δ
FE [ϕ2]

∥∥ ≤ λ · ‖ϕ1− ϕ2‖ with λ = γ k1δ. (24)

and sinceλ < 1, there is a unique solution,V δ to (23) with (21) which can be computed
by DP techniques.

4.4. Convergence of the approximation schemes

In this section, we present a convergence theorem for a general class of approximation
schemes. We use the stability properties of viscosity solutions (described in Barles and
Souganidis, 1991) to obtain the convergence. Another kind of convergence result, using
probabilistic considerations, can be found in Kushner and Dupuis (1992), but such results
do not treat the problem with the general boundary condition (9). In fact, the only impor-
tant required properties for convergence is monotonicity (property (27)) and consistency
(properties (30) and (31) below). As a corollary, we deduce that the FE and the FD schemes
studied in the previous sections are convergent.

4.4.1. A general convergence theorem.Let6δ and∂6δ be two discrete and finite subsets
of IRd. We assume that for allx ∈O, limδ↓0 dist(x, 6δ)= 0 and for all x ∈ ∂O,
limδ↓0 dist(x, ∂6δ) = 0. Let F δ be an operator on the space of bounded functions on
6δ. We are concerned with the convergence of the solutionV δ to the dynamic program-
ming equation:

V δ(ξ) = F δ[V δ](ξ) for ξ ∈ 6δ (25)

with the boundary condition:

V δ(ξ) = R(ξ) for ξ ∈ ∂6δ (26)

We make the following assumptions onF δ:r Monotonicity:

if ϕ1 ≤ ϕ2 thenF δ[ϕ1] ≤ F δ[ϕ2] (27)
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r For any constantc,

F δ[ϕ + c] = F δ[ϕ] + c(1+ O(δ)) (28)r For anyδ,

there exists a solutionV δ to (25) and (26) which is

bounded with a constantMV independent ofδ. (29)r Consistency: there exists a constantk> 0 such that:

– if H(x, ϕ(x), Dϕ(x)) ≥ 0 then

lim inf
ξδ

δ↓0−→x

1

δ
[ϕ − F δ[ϕ]](ξδ) ≥ k.H(x, ϕ(x), Dϕ(x)) (30)

– if H(x, ϕ(x), Dϕ(x)) ≤ 0 then

lim sup
ξδ

δ↓0−→x

1

δ
[ϕ − F δ[ϕ]](ξδ) ≤ k.H(x, ϕ(x), Dϕ(x)) (31)

Remark. Conditions (30) and (31) are satisfied in the particular case of:

lim
ξδ

δ↓0−→(ξδ

1

δ
[ϕ − F δ[ϕ]](ξδ) = H(x, ϕ(x), Dϕ(x))

Theorem 5 (Convergence of the scheme). Assume that the hypotheses of Theorem2 are
satisfied. Assume that(27), (28), (30)and(31)hold, then Fδ is a convergent approximation
scheme, i.e. the solutions Vδ of (25)and(26)satisfy:

lim
ξδ

δ↓0−→x

V δ(ξδ) = V(x) uniformly on any compactÄ ⊂ O (32)

4.4.2. Outline of the proof. We use the procedure described in Barles and Perthame
(1988). The idea is to define the largest limit functionVsup= lim supV δ and the smallest
limit function Vinf = lim inf V δ and prove that they are respectively discontinuous sub- and
super viscosity solutions. This proof, based on the general convergence theorem of Barles
and Souganidis (1991), is given in Appendix A. Then we use a comparison result which
states that if (9) holds then viscosity sub-solutions are less than viscosity super-solutions,
thusVsup≤ Vinf . By definitionVsup≥ Vinf , thusVsup= Vinf = V and the limit functionV
is the viscosity solution of the HJB equation, thus (from Theorem 4) the value function of
the problem.

4.4.3. FD and FE approximation schemes converge

Corollary 1. The approximation schemes FδFD and FδFE are convergent.

Indeed, for the finite difference scheme, it is obvious that sincep(ξ ′ | ξ, u) are considered
as transition probabilities, the approximation schemeF δ

FD satisfies (27) and (28). As (17)
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is a DP equation for some MDP, DP theory ensures that (29) is true. We can check that the
scheme is also consistent: conditions (30) and (31) hold withk = 1

M f
. ThusF δ

FD satisfy the
hypotheses of Theorem 5.

Similarly, for the finite element scheme, from the basic properties of the barycentric
coordinatesλξi (x), the approximation schemeF δ

FE satisfies (27). From (19), condition (28)
holds. DP theory ensures that (29) is true. The scheme is consistent and conditions (30)
and (31) hold withk = k1. ThusF δ

FE satisfies the hypotheses of Theorem 5.

4.5. Summary of the previous results of convergence

For any given discretization stepδ, from the “strong” contraction property (18) or (24), DP
theory ensures that the valuesV δ

n iterated by some DP algorithm converge to the valueV δ

of the approximation schemeF δ asn tends to infinity. From the convergence of the scheme
(Theorem 5), theV δ tend to the value functionV of the continuous problem asδ tends to 0
(see figure 9).

Remark. Theorem 5 gives a result of convergence on any compactÄ ⊂ O, provided that
the hypothesis (9), for the continuity ofV , is satisfied. However, if this hypothesis is not
satisfied, but if the value function is continuous, the theorem still applies. Now, if (9) is
not satisfied and the value function is discontinuous at some area, then we still have the
convergence on any compactÄ ⊂ O where the value function is continuous.

5. Designing convergent reinforcement learning algorithms

In order to solve the DP Eqs. (14) or (20), one can use DP off-line methods—such asvalue
iteration, policy iteration, modified policy iteration(see Puterman, 1994), with synchronous
or asynchronous back-ups, or on-line methods—likeReal Time DP(see Barto, Bradtke,
& Singh, 1991; Bertsekas & Tsitsiklis, 1996). For example, by introducing theQ-values
Qδ

n(ξ, u), Eq. (20) can be solved by successive back-ups (indexed byn) of statesξ , controlu
(in any order provided that every state and control are updated regularly) by:

Qδ
n+1(ξ, u) = γ τ(ξ,u) · V δ

n (ξ + τ(ξ, u) · f (ξ, u))+ τ(ξ, u)r (ξ, u)
(33)

with: V δ
n (ξ) = sup

u∈U δ

Qδ
n(ξ, u)

Figure 9. The HJB equation is discretized, for some resolutionδ, into a DP equation whose solution isVδ .
The convergence of the scheme ensures thatVδ→V asδ→ 0. Thanks to the “strong” contraction property, the
iterated valuesVδ

n tend toVδ asn→∞.
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The valuesV δ
n of this algorithm converges to the value functionV δ of the discretized MDP

asn→∞.
However, in the RL approach, the state dynamicsf and the reinforcement functionsr, R

are unknown to the learner. Thus, the right side of the iterative rule (33) is unknown and
has to be approximated thanks to the available knowledge. In the RL terminology, there are
two possible approaches for updating the values:r Themodel-basedapproach consists of first, learning a model of the state dynamics and

of the reinforcement functions, and then using DP algorithms based on such a rule (33)
with the approximated model instead of the true values. The learning (the updating of
the estimated Q-valueQδ

n) may occur iteratively during the simulation of trajectories
(on-line learning) or at the end (at the exit time) of one or several trajectories (off-lineor
batch learning).r Themodel-freeapproach consists of updating incrementally the estimated valuesV δ

n or
Q-valueQδ

n of the visited states without learning any model.

In what follows, we propose a convergence theorem that applies to a large class of RL
algorithms (model-based or model-free, on-line or off-line, for deterministic or stochastic
dynamics) provided that the updating rule satisfies some“weak” contraction property
with respect to some convergent approximation scheme such as the FD and FE schemes
studied previously.

5.1. Convergence of RL algorithms

The following theorem gives a general condition for which an RL algorithm converges to
the optimal solution of the continuous problem. The idea is that the updated values (by
any model-free or model-based method) must be close enough to those of a convergent
approximation scheme so that their difference satisfies the “weak” contraction property
(34) below.

Theorem 6 (Convergence of RL algorithms). For any δ, let us build finite subsets6δ

and∂6δ satisfying the properties of Section4.4. We consider an algorithm that leads to
update every stateξ ∈6δ regularly and every stateξ ∈ ∂6δ at least once. Let Fδ be a
convergent approximation scheme(for example(22)) and Vδ be the solution to(25) and
(26). We assume that the values updated at the iteration n satisfy the following properties:r for ξ ∈6δ,V δ

n+1(ξ) approximates Vδ(ξ) in the sense of the following“weak” contraction
property:∣∣V δ

n+1(ξ)− V δ(ξ)
∣∣ ≤ (1− k.δ) sup

ξ∈6δ∪∂6δ

∣∣V δ
n (ξ)− V δ(ξ)

∣∣+ e(δ).δ (34)

for some positive constant k and some function e(δ) that tends to0 asδ ↓ 0,r for ξ ∈ ∂6δ, V δ
n+1(ξ) approximates Vδ(ξ) = R(ξ), in the sense:∣∣V δ

n+1(ξ)− R(ξ)
∣∣ ≤ kR.δ (35)
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for some positive constant kR, then for any compactÄ ⊂ O, for all ε > 0, there exists
1 such that for anyδ ≤ 1, there exists N, for all n ≥ N,

sup
ξ∈Ä∩(6δ∪∂6δ)

∣∣V δ
n (ξ)− V(ξ)

∣∣ ≤ ε.
This result states that when the hypotheses of the theorem applies (mainly when we

find some updating rule satisfying the weak contraction property (34)) then the valuesV δ
n

computed by the algorithm converge to the value functionV of the continuous problem as
the discretization stepδ tends to zero and the number of iterationsn tends to infinity.

5.1.1. Outline of the proof. The proof of this theorem is given in Appendix B. If condition
(34) were a strong contraction property such as∣∣V δ

n+1(ξ)− V δ(ξ)
∣∣ ≤ λ sup

ξ∈6δ∪∂6δ

∣∣V δ
n (ξ)− V δ(ξ)

∣∣ (36)

for some constantλ < 1, then the convergence would be obvious since from (25) and from
the fact that all the states are updated regularly, for a fixedδ,V δ

n would converge toV δ as
n→∞. From the fact (Theorem 5) thatV δ converges toV asδ ↓ 0, we could deduce that
V δ

n → V asδ ↓ 0 andn→∞ (see figure 9).
If it is not the case, we can no longer expect thatV δ

n → V δ asn→∞. However, if (34)
holds, we can prove (this is the object of Section B.2 in Appendix B) that for anyε > 0,
there exists small enough values ofδ such that at some stageN, |V δ

n − V δ| ≤ ε for n ≥ N.
This result together with the convergence of the scheme leads to the convergence of the
algorithm asδ ↓ 0 andn→∞ (see figure 10).

5.1.2. The challenge of designing convergent algorithms.In general the “strong” con-
traction property (36) is impossible to obtain unless we have perfect knowledge of the
dynamics f and the reinforcement functionsr and R. In the RL approach, these compo-
nents are estimated and approximated during some learning phase. Thus the iterated values
V δ

n are imperfect, but may be “good enough” to satisfy the weak contraction property (34).
Defining such “good” approximations is the challenge for designing convergent RL
algorithms.

Figure 10. The valuesVδ
n iterated by an RL algorithm do not converge toVδ asn→∞. However, if the “weak”

contraction property is satisfied, theVδ
n tend toV asδ→ 0 andn→∞.
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In order to illustrate the method, we present in Section 5.2 a procedure for designing
model-based algorithms, and in Section 5.3, we give a model-free algorithm based on a FE
approximation scheme.

5.2. Model-based algorithms

The basic idea is to build a model of the state dynamicsf and the reinforcement functionsr
andR at statesξ from the local knowledge obtained through the simulation of trajectories.
So, if some trajectoryxn(t)goes inside the neighborhood ofξ (by defining the neighborhood
as an area whose diameter is bounded bykN .δ for some positive constantkN) at some time
tn and keep a constant controlu for a periodτn (from xn = xn(tn) to yn = xn(tn + τn)), we
can build the model off (ξ, u) andr (ξ, u):

f̃n(ξ, u) = yn − xn

τn

r̃ (ξ, u) = r (xn, u)

(see figure 11). Then we can approximate the scheme (22), by the following values using
the previous model: the Q-valuesQδ

n are updated according to:

Qδ
n+1(ξ, u) = γ τ(ξ,u) · V δ

n (ξ + τ(ξ, u) · f̃n(ξ, u))+ τ(ξ, u) · r̃ (ξ, u)
andV δ

n (ξ) = sup
u∈U δ

Qδ
n(ξ, u)

(for any functionτ(ξ, u) satisfying (19)), which corresponds to the iterative rule (33) with
the model f̃n andr̃ instead off andr .

It is easy to prove (see Munos and Moore (1998) or Munos (1997a)) that assuming some
smoothness assumptions (r, RLipschitzian), the approximatedV δ

n satisfy the condition (34)
and theorem 6 applies.

Remark. Using the same model, we can build a similar convergent RL algorithm based on
the finite difference scheme (22) (see Munos, 1998). Thus, it appears quite easy to design
model-based algorithms satisfying the condition (34).

Figure 11. A trajectory goes through the neighborhood (the grey area) ofξ . The state dynamics is approximated
by f̃n(ξ, u) = yn−xn

τn
.
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Remark. This method can also be used in the stochastic case, for which a model of the
state dynamics is theaverage, for several trajectories, of suchyn−xn

τn
, and a model of the

noise is theirvariance(see Munos and Bourgine, 1997).

Furthermore, it is possible to design model-free algorithms satisfying the condition (34),
which is the topic of the following section.

5.3. A model-free algorithm

The Finite Element RL algorithm. Consider a triangulation6δ satisfying the properties
of Section 4.3. The direct RL approach consists of updating on-line the Q-values of the
vertices without learning any model of the dynamics.

We consider the FE scheme (22) withτ(ξ, u) being such thatη(ξ, u)= ξ + τ(ξ, u).
f (ξ, u) is the projection ofξ onto the opposite side of the simplex, in a parallel direction to
f (ξ, u) (see figure 12). If we suppose that the simplexes are non degenerated (i.e.∃kρ such
that the radius of the sphere inscribed in each simplex is superior tokρδ) then (19) holds.

Let us consider that a trajectoryx(t) goes through a simplex. Letx = x(t1) be the input
point andy = x(t2) be the output point. The controlu is assumed to be kept constant inside
the simplex.

As the valuesτ(ξ, u) andη(ξ, u) are unknown to the system, we make the following
estimations (from Thales’ theorem):r τ(ξ, u) is approximated by τ

λξ (x)
(whereλξ (x) is theξ−barycentric coordinate ofx inside

the simplex)r η(ξ, u) is approximated byξ + y− x
λξ (x)

which only use the knowledge of the state at the input and output points (x and y), the
running timeτ of the trajectory inside the simplex and the barycentric coordinateλξ (x)
(which can be computed as soon as the system knows the vertices of the input side of the
simplex). Besides,r (ξ, u) is approximated by the current reinforcementr (x, u) at the input
point.

Figure 12. A trajectory going through a simplex.η(ξ, u) is the projection ofξ onto the opposite side of the
simplex. y− x

λξ (x)
is a good approximation ofη(ξ, u)− ξ .
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Thanks to the linearity ofV δ inside the simplex,V δ(η(ξ, u)) is approximated byV δ(ξ)+
V δ(y)−V δ(x)

λξ (x)
. Then the algorithm consists in updating the qualityQδ

n(ξ, u) with the estima-
tion:

Qδ
n+1(ξ, u) = γ

τ
λξ (x) ·

[
V δ

n (ξ)+
V δ

n (y)− V δ
n (x)

λξ (x)

]
+ τ

λξ (x)
· r (x, u) (37)

andV δ
n (ξ) = sup

u∈U δ

Qδ
n(ξ, u) (38)

and if the system exits from the state-space inside the simplex (i.e.y∈ ∂O), then update
the closest vertexξ ′ ∈ ∂6δ of the simplex with:

V δ
n+1(ξ

′) = R(y).

By assuming some additional regularity assumptions (r andR Lipschitzian, f bounded
from below), the valuesV δ

n (ξ) satisfy (34) and (35) which proves the convergence of the
model-free RL algorithm based on the FE scheme (see Munos (1996) for the proof).

In a similar way, we can design a direct RL algorithm based on the finite difference
schemeF δ

FD (16) and prove its convergence (see Munos, 1997b).

6. A numerical simulation for the “Car on the Hill” problem

For a description of the dynamics of this problem, see Moore and Atkeson (1995). This
problem has a state-space of dimension 2: the position and the velocity of the car. In our
experiments, we chose the reinforcement functions as follows: the current reinforcement
r (x, u) is zero everywhere. The terminal reinforcementR(x) is−1 if the car exits from the
left side of the state-space, and varies linearly between+1 and−1 depending on the velocity
of the car when it exits from the right side of the state-space. The best reinforcement+1
occurs when the car reaches the right boundary with a null velocity (see figure 13). The
controlu has only 2 possible values: maximal positive or negative thrust.

Figure 13. The “Car on the Hill” problem.
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Figure 14. Three triangulations used for the simulations.

In order to approximate the value function, we used 3 different triangulationsT1, T2 and
T3, composed respectively of 9 by 9, 17 by 17 and 33 by 33 states (see figure 14), and, for
each of these, we ran the two algorithms that follows:r An asynchronous Real Time DP (based on the updating rule (33)), assuming that we have

a perfect model of the initial data (the state dynamics and the reinforcement functions).r An asynchronous Finite Element RL algorithm, described in Section 5.3 (based on the
updating rule (37)), for which the initial data are approximated by parts of trajectories
selected at random.

In order to evaluate the quality of approximation of these methods, we also computed
a very good approximation of the value functionV (plotted in figure 15) by using DP

Figure 15. The value function of the “Car on the Hill”, computed with a triangulation composed of 257 by 257
states.
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(with rule (33)) on a very dense triangulation (of 257 by 257 states) with a perfect model
of the initial data.

We have computed the approximation errorEn(Tk) = supξ∈Ä |V δk
n (ξ) − V(ξ)| with δk

being the discretization step of triangulationTk. For this problem, we notice that hypothesis
(9) does not hold (because all the trajectories are tangential to the boundary of the state-
space at the boundary states of zero velocity), and the value function is discontinuous. A
frontier of discontinuity happens because a point beginning just above this frontier can
eventually get a positive reward whereas any point below is doomed to exit on the left side
of the state-space. Thus, following the remark in Section 4.5, in order to computeEn(Tk),
we choseÄ to be the whole state-space except some area around the discontinuity.

Figures 16 and 17 represent, respectively for the 2 algorithms, the approximation error
En(Tk) (for the 3 triangulationsT1, T2 andT3) as a function of the number of iterationsn.
We observe the following points:

r Whatever the resolution of the discretizationδ is, the valuesV δ
n computed by RTDP

converge, asn increases. Their limit isV δ, solution of the DP Eq. (20). Moreover, we
observe the convergence of theV δ to the value functionV as the resolutionδ tends to
zero. These results illustrate the convergence properties showed in figure 9.r For a given triangulation, the valuesV δ

n computed by FERL do not converge. ForT1

(rough discretization), the error of approximation decreases rapidly, and then oscillates
within a large range. ForT2, the error decreases more slowly (because there are more
states to be updated) but then oscillates within a smaller range. And forT3 (dense dis-
cretization), the error decreases still more slowly but eventually gets close to zero (while
still oscillating). Thus, we observe that, as illustrated in figure 10, for any given dis-
cretization stepδ, the values do not converge. However, they oscillate within a range
depending onδ. Theorem 6 simply states that for any desired precision (∀ε), there exists

Figure 16. The approximation errorEn(Tk) of the values computed by the asynchronous Real Time DP algorithm
as a function of the number of iterationsn for several triangulations.



REINFORCEMENT LEARNING BY THE MEANS OF VISCOSITY SOLUTIONS 291

Figure 17. The approximation errorEn(Tk) of the values computed by the asynchronous Finite Element RL
algorithm.

a discretization stepδ such that eventually (∃N, ∀n> N), the values will approximate
the value function at that precision (sup|V δ

n − V |<ε).

7. Conclusion and future work

This paper proposes a formalism for the study of RL in the continuous state-space and
time case. The Hamilton-Jacobi-Bellman equation is stated and several properties of its
solutions are described. The notion of viscosity solution is introduced and used to integrate
the HJB equation for finding the value function. We describe discretization methods (by
using finite element and finite difference schemes) for approximating the value function,
and use the stability properties of the viscosity solutions to prove their convergence.

Then, we propose a general method for designing convergent (model-based or model-free)
RL algorithms and illustrate it with several examples. The convergence result is obtained by
substituting the “strong” contraction property used to prove the convergence of DP method
(which cannot hold any more when the initial data are not perfectly known) by some “weak”
contraction property, that enables some approximations of these data. The main theorem
states a convergence result for RL algorithms as the discretization stepδ tends to 0 and the
number of iterationsn tends to infinity.

For practical applications of this method, we must combine to thelearning dynamics
(n→∞) somestructural dynamics(δ→ 0) which operates on the discretization process.
For example, in Munos (1997c), an initial rough Delaunay triangulation (highδ) is pro-
gressively refined (by adding new vertices) according to a local criterion estimating the
irregularities of the value function. In Munos and Moore (1999), a Kuhn triangulation em-
bedded in a kd-tree is adaptively refined by a non-local splitting criterion that allows the
cells to take into account their impact on other cells when deciding whether to split.

Future theoretical work should consider the study of approximation schemes (and the de-
sign of algorithms based on these scheme) for adaptive and variable resolution discretizations
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(like the adaptive discretizations of Munos and Moore (1999); Munos (1997c), the parti-
game algorithm of Moore and Atkeson (1995), the multi-grid methods of Akian (1990) and
Pareigis (1996), or the sparse grids of Griebel (1998)), the study of the rates of convergence
of these algorithms (which already exists in some cases, see Dupuis and James (1998)), and
the study of generalized control problems (with “jumps”, generalized boundary conditions,
etc.).

To adequately address practical issues, extensive numerical simulations (and compari-
son to other methods) have to be conducted, and in order to deal with high dimensional
state-spaces, future work should concentrate on designing relevant structural dynamics and
condensed function representations.

Appendix A: Proof of Theorem 5

A.1. Outline of the proof

We use the Barles and Perthame procedure in Barles and Perthame (1988). First we give
a definition of discontinuous viscosity solutions. Then we define the largest limit function
Vsup and the smallest limit functionVinf and prove (following Barles & Souganidis, 1991),
in Lemma (1), thatVsup (respectivelyVinf ) is a discontinuous viscosity sub-solution (resp.
super-solution). Then we use a strong comparison result (Lemma 2) which states that if (9)
holds then viscosity sub-solutions are less than viscosity super-solutions, thusVsup≤ Vinf .
By definition Vsup≥Vinf , thus Vsup=Vinf =V and the limit functionV is the viscosity
solution of the HJB equation, and thus the value function of the problem.

A.2. Definition of discontinuous viscosity solutions

Let us recall the notions of theupper semi-continuous envelope W∗ and thelower semi-
continuous envelope W∗ of a real valued functionW:

W∗(x) = lim sup
y→x

W(y)

W∗(x) = lim inf
y→x

W(y)

Definition 5. Let W be a locally bounded real valued function defined onŌ.r W is aviscosity sub-solutionof H(x,W, DW) = 0 in Ō if for all functionsϕ ∈ C1(Ō),
for all x ∈ Ō, local maximum ofW∗ − ϕ such thatW∗(x) = ϕ(x), we have:

H∗(x, ϕ(x), Dϕ(x)) ≤ 0r W is aviscosity super-solutionof H(x,W, DW) = 0 in Ō if for all functionsϕ ∈ C1(Ō),
for all x ∈ Ō, local minimum ofW∗ − ϕ such thatW∗(x) = ϕ(x), we have:

H∗(x, ϕ(x), Dϕ(x)) ≥ 0
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r W is aviscosity solutionof H(x,W, DW) = 0 in Ō if it is a viscosity sub-solution and
a viscosity super-solution ofH(x,W, DW) = 0 in Ō.

A.3. Vsup and Vinf are viscosity sub- and super-solutions

Lemma 1. The two limit functions Vsup and Vinf :

Vsup(x) = lim sup
ξ
δ↓0→x

V δ(ξ)

Vinf(x) = lim inf
ξ
δ↓0→x

V δ(ξ)

are respectively viscosity sub- and super-solutions.

Proof: Let us prove thatVsup is a sub-solution. The proof thatVinf is a super-solution is
similar. Letϕ be a smooth test function such thatVsup− ϕ has a maximum (which can be
assumed to be strict) atx such thatVsup(x) = ϕ(x). Let δn be a sequence converging to
zero. ThenV δn − ϕ has a maximum atξn which tends tox asδn tends to 0. Thus, for all
ξ ∈ 6δn ,

V δn(ξ)− ϕ(ξ) ≤ V δn(ξn)− ϕ(ξn)

By (27), we have:

F δn [V δn(ξ)− V δn(ξn)− ϕ(ξn)] ≤ F δn [ϕ(ξ)]

By (28), we obtain:

F δn [V δn(·)](ξn)− (1+ O(δn))[V
δn(ξn)− ϕ(ξn)]≤ F δn [ϕ(·)](ξn)

By (29), F δn [V δn ] = V δn , thus:

1

δn
O(δn)[V

δn(ξn)− ϕ(ξn)] ≤ 1

δn
[F δn [ϕ(·)](ξn)− ϕ(ξn)]

As V δn(ξn)− ϕ(ξn) tends to 0, the left side of this inequality tends to 0 asδn ↓ 0. Thus,
by (31), we have:

H(x, ϕ, Dϕ) ≥ 0.

ThusVsup is a viscosity sub-solution. 2
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A.4. Comparison principle between viscosity sub- and super-solutions

Lemma 2. Assume(9), then(7) and(6) has a weak comparison principle, i.e. for any vis-
cosity sub-solutionW and super-solution̄W of(7) and(6), for all x ∈O we have:

W(x) ≤ W̄(x)

For a proof of this comparison result between viscosity sub- and super-solutions see
Barles (1994) and Barles and Perthame (1998, 1990) or for slightly different hypothesis
Fleming and Soner (1993).

A.5. Proof of Theorem 5

Proof: From Lemma 1, the largest limit functionVsup and the smallest limit function
Vinf are respectively viscosity sub-solution and super-solution of the HJB equation. From
the comparison result of Lemma 2,Vsup≤Vinf . But by their definitionVsup≥Vinf , thus
Vsup=Vinf =V and the approximation schemeV δ converges to the limit functionV , which
is the viscosity solution of the HJB equation thus the value function of the problem, and
(32) holds true. 2

Appendix B: Proof of Theorem 6

B.1. Outline of the proof

We know that from the convergence of the schemeV δ (Theorem 5), for any compactÄ ⊂ O,
for anyε1 > 0, there exists a discretization stepδ such that:

sup
x∈Ä
|V δ(x)− V(x)| ≤ ε1.

Let us define:

Eδ
n = sup

ξ∈6δ∪∂6δ

∣∣V δ
n (ξ)− V δ(ξ)

∣∣
As we have seen in Section 5.1.1, if we had the strong contraction property (36), then for
anyδ, Eδ

n would converge to 0 asn→∞. As we only have the weak contraction property
(34): ∣∣V δ

n+1(ξ)− V δ(ξ)
∣∣ ≤ (1− k · δ)Eδ

n + e(δ) · δ

the idea of the following proof is that for anyε2 > 0, there existsδ and a stageN, such that
for n ≥ N,

Eδ
n= sup

ξ∈6δ∪∂6δ

∣∣V δ
n (ξ)− V δ(ξ)

∣∣ ≤ ε2. (B.1)
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Then we deduce that for anyε > 0, we can findε1 > 0 andε2 > 0 such thatε1+ε2 = ε and:

sup
ξ∈Ä∩(6δ∪∂6δ)

∣∣V δ
n (ξ)− V(ξ)

∣∣ ≤ sup
x∈Ä
|V δ(x)− V(x)| + sup

ξ∈6δ∪∂6δ

∣∣V δ
n (ξ)− V δ(ξ)

∣∣
≤ ε1+ ε2 = ε

B.2. A sufficient condition for Eδn ≤ ε2

Lemma 3. Let us suppose that there exists some constantα > 0 such that for any stateξ
updated at stage n, the following condition hold:

If Eδ
n > ε2 then

∣∣V δ
n+1(ξ)− V δ(ξ)

∣∣ ≤ Eδ
n − α (B.2)

If Eδ
n ≤ ε2 then

∣∣V δ
n+1(ξ)− V δ(ξ)

∣∣ ≤ ε2 (B.3)

then there exists N such that for n≥ N, Eδ
n ≤ ε2.

Proof: As the algorithm updates every stateξ ∈ 6δ regularly, there exists an integerm
such that at stagen+m all the statesξ ∈ 6δ have been updated at least once since stage
n. Thus, from (B.2) and (B.3) we have:

If Eδ
n > ε2 then sup

ξ∈6δ

∣∣V δ
n+m(ξ)− V δ(ξ)

∣∣ ≤ Eδ
n − α

If Eδ
n ≤ ε2 then sup

ξ∈6δ

∣∣V δ
n+m(ξ)− V δ(ξ)

∣∣ ≤ ε2

Thus, there existsN1 such that:∀n ≥ N1,

sup
ξ∈6δ

∣∣V δ
n (ξ)− V δ(ξ)

∣∣ ≤ ε2. (B.4)

Moreover, all statesξ ∈ ∂6δ are updated at least once, thus there existsN2 such that:
∀n ≥ N2, for all ξ ∈ ∂6δ,

∣∣V δ
n+1(ξ)− V δ(ξ)

∣∣ ≤ kR · δ ≤ ε2 (B.5)

for anyδ ≤ 11 = ε2
kR

.
Thus from (B.4) and (B.5), forn ≥ N = max{N1, N2},

Eδ
n = sup

ξ∈6δ∪∂6δ

∣∣V δ
n (ξ)− V δ(ξ)

∣∣ ≤ ε2.
2

Lemma 4. For anyε1 > 0, there exists12 such that forδ ≤ 11, the conditions(B.2) and
(B.3) are satisfied.
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Proof: Let us consider a valueε2 > 0. From the convergence ofe(δ) to 0 whenδ ↓ 0,
there exists11 such that forδ ≤ 11, we have:

e(δ)− k · ε2

2
≤ 0. (B.6)

Let us prove that (B.2) and (B.3) hold. LetEδ
n > ε2, then from (34),∣∣V δ

n+1(ξ)− V δ(ξ)
∣∣ ≤ (1− k · δ)Eδ

n + e(δ) · δ ≤ Eδ
n − k · δ · ε2+ e(δ) · δ

From (B.6),

∣∣V δ
n+1(ξ)− V δ(ξ)

∣∣ ≤ Eδ
n − k · δ · ε2

2
+ e(δ) · δ − k · δ · ε2

2
≤ Eδ

n − k · δ · ε2

2

and (B.2) holds forα = k · δ · ε2
2 .

Now if Eδ
n ≤ ε2, from (34), we have:

∣∣V δ
n+1(ξ)− V δ(ξ)

∣∣ ≤ (1− k · δ)ε2

2
+ ε2

2
+ e(δ)δ − k · δ ε2

2
≤ ε2

2
+ ε2

2
= ε2.

and condition (B.3) holds. 2

B.3. Convergence of the algorithm

Proof: Let us prove Theorem 6. For any compactÄ ⊂ O, for all ε > 0, let us consider
ε1> 0 andε2> 0 such thatε1+ ε2 = ε. From Lemma 4, forδ ≤ 11, conditions (B.2) and
(B.3) are satisfied, and from Lemma 3, there existsN, for all n ≥ N,

Eδ
n = sup

ξ∈6δ∪∂6δ

∣∣V δ
n (ξ)− V δ(ξ)

∣∣ ≤ ε2.

Moreover, from the convergence of the approximation scheme, Theorem 5 implies that for
any compactÄ ⊂ O, there exists12 such that for allδ ≤ 12,

sup
x∈Ä
|V δ(x)− V(x)| ≤ ε1

Thus forδ≤1= min{11,12}, for any finite discretized state-space6δ and∂6δ satis-
fying the properties of Section 4.4, there existsN, for all n ≥ N,

sup
ξ∈Ä∩(6δ∪∂6δ)

∣∣V δ
n (ξ)− V(ξ)

∣∣ ≤ sup
x∈Ä
|V δ(x)− V(x)| + sup

ξ∈6δ∪∂6δ

∣∣V δ
n (ξ)− V δ(ξ)

∣∣
≤ ε1+ ε2 = ε. 2
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