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Abstract. This paper proposes a study Reinforcement Learnin@RL) for continuous state-space and time
control problems, based on the theoretical frameworksfosity solution§VSs). We use the method dfnamic
programming(DP) which introduces thealue functior(VF), expectation of the best future cumulative reinforce-
ment. In the continuous case, the value function satisfies a non-linear first (or second) order (depending on the
deterministic or stochastic aspect of the process) differential equation calledthi¢on-Jacobi-BellmaHJIB)
equation. Itis well known that there exists an infinity of generalized solutions (differentiable almost everywhere) to
this equation, other than the VF. We show that gradient-descent methods may converge to one of these generalized
solutions, thus failing to find the optimal control.

In order to solve the HIB equation, we use the powerful framework of viscosity solutions and state that there
exists a unigue viscosity solution to the HIB equation, which is the value function. Then, we use another main
result of VSs (their stability when passing to the limit) to prove the convergence of numerical approximations
schemes based on finite difference (FD) and finite element (FE) methods. These methods discretize, at some
resolution, the HIB equation into a DP equation Markov Decision Proces$MDP), which can be solved by DP
methods (thanks to a “strong” contraction property) if all the initial data (the state dynamics and the reinforcement
function) were perfectly known. However, in the RL approach, as we consider a system in interaction with some a
priori (at least partially) unknown environment, which learns “from experience”, the initial data are not perfectly
known but have to be approximated during learning. The main contribution of this work is to derive a general
convergence theorem for RL algorithms when one uses only “approximations” (in a sense of satisfying some
“weak” contraction property) of the initial data. This result can be used for model-based or model-free RL
algorithms, with off-line or on-line updating methods, for deterministic or stochastic state dynamics (though this
latter case is not described here), and based on FE or FD discretization methods. It is illustrated with several RL
algorithms and one numerical simulation for the “Car on the Hill” problem.

Keywords: reinforcementlearning, dynamic programming, optimal control, viscosity solutions, finite difference
and finite element methods, Hamilton-Jacobi-Bellman equation

1. Introduction

This paper is about Reinforcement Learning (RL) in the continuous state-space and time
case. RL techniques (see Kaelbling, Littman, and Moore (1996) for a survey) are adaptive
methods for solving optimal control problems for which only a partial amount of initial data

are available to the system that learns. In this paper, we focus on the Dynamic Programming
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(DP) method which introduces a function, called tia¢ue functior(VF) (or cost function),
that estimates the best future cumulative reinforcement (or cost) as a function of initial
states.

RL in the continuous case is a difficult problem for at least two reasons. Since we consider
acontinuous state-spacgthe first reason is that the value function has to be approximated,
either by usingliscretization(with grids or triangulations) ageneral approximatioiisuch
as neural networks, polynomial functions, fuzzy sets, etc.) methods. RL algorithms for con-
tinuous state-space have been implemented with neural networks (see for example Barto,
Sutton, and Anderson (1983), Barto (1990), Gullapalli (1992), Williams (1992), Lin (1993),
Sutton and Whitehead (1993), Harmon, Baird, and Klopf (1996), and Bertsekas and Tsitsik-
lis (1996)), fuzzy sets (see New1995; Glorennec & Jouffe, 1997), approximators based
on state aggregation (see Singh, Jaakkola, & Jordan, 1994), clustering (see Mahadevan &
Connell, 1992), sparse-coarse-coded functions (see Sutton, 1996) and variable resolution
grids (see Moore, 1991; Moore & Atkeson, 1995). However, as it has been pointed out by
several authors, the combination of DP methods with function approximators may produce
unstable or divergent results even when applied to very simple problems (see Boyan &
Moore, 1995; Baird, 1995; Gordon, 1995). Some results using clever algorithms (like
Residual algorithmsf Baird (1995)) or particular classes of approximation functions (like
the Averagersof Gordon (1995)) can lead to the convergence to a local or global solution
within the class of functions considered.

Anyway, it is difficult to define the class of functions (for a neural network, the suitable
architecture) within which the optimal value function could be approximated, knowing that
we have little prior knowledge of its smoothness properties.

The second reason is because we considentinuous-timevariable. Indeed, the value
function derived from the DP equation (see Bellman, 1957), relates the value at some
state as a function of the values at successor states. In the continuous-time limit, as the
successor states get infinitely closer, the value at some point becomes a function of its
differential, defining a non linear differential equation, calledifaenilton-Jacobi-Bellman
(HJB) equation.

In the discrete-time case, the resolution of the Markov Decision Process (MDP) is equiv-
alent to the resolution, on the whole state-space, of the DP equation; this property provides
us with DP or RL algorithms that locally solve the DP equation and lead to the optimal
solution. With continuous time, it is no longer the case since the HIB equation holds only
if the value function is differentiable. And in general, the value function is not differen-
tiable everywhere (even for smooth initial data), thus this equation cannot be solved in the
usual sense, because this leads to either no solution (if we look for classical solutions, i.e.
differentiable everywhere) or an infinity of solutions (if we look for generalized solutions,
i.e. differentiable almost everywhere).

This fact, which will be illustrated with a very simple 1-dimensional example, explains
why there could be many “bad” solutions to gradient-descent methods for RL. Indeed,
such methods intend to minimize the integral of some Hamiltonian. But the generalized
solutions of the HIB equation are global optima of this problem, so the gradient-descent
methods may lead to approximate any (among an infinity of) generalized solutions giving
little chance to reach the desired value function.
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In order to deal with the problem of integrating the HIB equation, we use the formalism
of Viscosity Solutions (VSs), introduced by Crandall and Lions (in Crandall and Lions
(1983); see the user’s guide (Crandall, Ishii, & Lions, 1992)) in order to define an adequate
class (which appears as a weak formulation) of solutions to non-linear first (and second)
order differential equation such as HIB equations.

The main properties of VSs are their existence, their uniqueness and the fact that the
value function is a VS. Thus, for a large class of optimal control problems, there exists
a unique VS to the HJIB equation, which is the value function. Furthermore, VSs have
remarkable stability properties when passing to the limit, from which we can derive proofs
of convergence for discretization methods.

Our approach here consists in defining a class of convergent numerical schemes, among
which are the finite element (FE) and finite difference (FD) approximation schemes intro-
duced in Kushner (1990) and Kushner and Dupuis (1992) to discretize, at some resolution
3, the HIB equation into a DP equation for some discrete Markov Decision Process. We
apply a result of convergence (from Barles & Souganidis, 1991) to prove the convergence
of the value functiorV? of the discretized MDP to the value functidhof the continuous
problem as the discretization st&pends to zero.

The DP equation of the discretized MDP could be solved by any DP method (because
the DP equation satisfies a “strong” contraction property leading successive iterations to
converge to the value function, the unique fixed point of this equation), but only if the data
(the transition probabilities and the reinforcements) were perfectly known by the learner,
which is not the case in the RL approach.

Thus, we propose a result of convergence for RL algorithms when we only use “approx-
imations” of these data (in the sense that the approximated DP equation need to satisfy
some “weak” contraction property). The convergence occurs as the number of iterations
tends to infinity and the discretization step tends to zero. This result applies to model-
based or model-free RL algorithms, for off-line or on-line methods, for deterministic
or stochastic state dynamics, and for FE or FD based discretization methods. It is illus-
trated with several RL algorithms and one numerical simulation for the “Car on the Hill”
problem.

In what follows, we consider thgiscounted, infinite-time horizon cafer a description
of the finite-time horizon case, see Munos (1997a)) wéterministic state dynami¢tor
the stochastic case, see Munos and Bourgine (1997) or Munos (1997a)).

Section 2introduces the formalism for RL in the continuous case, defines the value
function, states the HIB equation and presents a result showing continuity of the VF.

Section 3llustrates the problems of classical solutions to the HIB equation with a simple
1-dimensional example and introduces the notion of viscosity solutions.

Section 4is concerned with numerical approximation of the value function using dis-
cretization schemes. The finite element and finite difference methods are presented and a
general convergence theorem (whose proof is in Appendix A) is stated.

Section 5states a convergence theorem (whose proof is in Appendix B) for a general
class of RL algorithms and illustrates it with several algorithms.

Section Gresents a simple numerical simulation for the “Car on the Hill” problem.
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2. Aformalism for reinforcement learning in the continuous case

The objective of reinforcement learning is to learn from experience how to influence the
behavior of a dynamic system in order to maximize some payoff function callegitine
forcementor reward function (or equivalently to minimize some cost function). This is a
problem of optimal control in which the state dynamics and the reinforcement function are,
a priori, at least partially unknown.

In this paper we are concerned withterministic problemi which the dynamics of the
system is governed by a controlled differential equation. For similar results in the stochastic
case, see Munos and Bourgine (1997) and Munos (1997a), for a related work using multi-
grid methods, see Pareigis (1996).

The two possible approaches for optimal control are Pontryagiasimum principle
(for theoretical work, see Pontryagin et al. (1962) and more recently Fleming and Rishel
(1975), for a study of Temporal Difference, see Doya (1996), and for an application to the
control with neural networks, see Bersini and Gorrini (1997) and the Bellnfamamic
Programming(DP) (introduced in Bellman (1957)) approach considered in this paper.

2.1. Deterministic optimal control for discounted infinite-time horizon problems

In what follows, we consider infinite-time horizon problems under the discounted frame-
work. In that case, the state dynamics do not depend on the time. For a study of the finite
time horizon case (for which there is a dependency in time), see Munos (1997a).

Let x(t) be thestate of the systemvhich belongs to thetate-space), closure of an
open subse® c RY. The evolution of the system depends on the current si@jeand
control (or action) u(t) e U, whereU, closed subset, is treontrol spaceit is defined by
the controlled differential equation:

dx(t)
dt

= f(x(1), u(t)) (1)
where the contrali(t) is a bounded, Lebesgue measurable function with values ifihe
function f is called thestate dynamicsWe assume that is Lipschitzian with respect to
the first variable: there exists some constapt- 0 such that:

vx,ye O, [f(x,u)— f(y,u)| <L¢lx -yl 2)

For initial statexg at timet =0 the choice of a contral(t) leads to a unique (because
the state dynamics (1) is deterministigjectory x(t) (see figure 1).

Definition 1 We define the discountadinforcement functional J, which depends on

initial dataxo, and controlu(t) for 0<t <z, with = the exit time ofx(t) from O (with
T = oo if the trajectory always stays insid®):

J(Xo; u(t)) =/O yhor(x@), u)) dt + y'- R(x(1)) 3
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Figure 1 The state-spad®. From initial statexo att = 0, the choice of contral(t) leads to the trajectory(t)
for 0 <t < r, wherer is the exit time from the state-space.

with r (x, u) thecurrent reinforcemer(defined orO) andR(x) theboundary reinforcement
(defined oo O, the boundary of the state-space)< [0, 1) is thediscount factomwhich

weights short-term rewards more than long-term ones (and ensures the convergence of the
integral).

Theobjective of the control problemis to find, for any initial stateo, the controlu*(t)
that optimizes the reinforcement functiorlxg; u(t)).

Remark Unlike the discrete case, inthe continuous case, we need to consider two different
reinforcement functions: is obtained and accumulated during the running of the trajectory,
whereasR occurs whenever the trajectory exits from the state-space (if it does). This
formalism enables us to consider many optimal control problem, such as reaching a target
while avoiding obstacles, viability problems, and many other optimization problems.

Definition 2 We define thevalue function, the maximum value of the reinforcement
functional as a function of initial state at time=0:

V(X) = supJ(x; u(t)) (4)
u(t)

Before giving some properties of the value function (HJB equation, continuity and differen-
tiability properties), let us first describe the reinforcement learning framework considered
here and the constraints it implies.

2.2. The reinforcement learning approach

RL techniques are adaptive methods for solving optimal control problems whose data are a
priori (at least partially) unknown. Learning occurs iteratively, based on the experience of
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the interactions between the system and the environment, through the (currentand boundary)
reinforcement signals.

The objective of RL is to find the optimal control, and the techniques used are those
of DP. However, in the RL approach, the state dynanfi¢s, u), and the reinforcement
functionsr (x, u), R(x) are partially unknown to the system. Thus RL is a constructive and
iterative process that estimates the value function by successive approximations.

The learning process includes both a mechanism for the choice of the control, which has
to deal with theexplorationversusexploitationdilemma (exploration provides the system
with new information about the unknown data, whereas exploitation consists in optimizing
the estimated values based on the current knowledge) (see Meuleau, 1996), and a mechanism
for integrating new information for refining the approximation of the value function. The
latter topic is the object of this paper.

The study and the numerical approximations of the value function is of great importance
in RL and DP because from this function we can deduce an optimal feed-back controller.
The next section shows that the value function satisfies a local property, called the Hamilton-
Jacobi-Bellman equation, and points out its relation to the optimal control.

2.3. The Hamilton-Jacobi-Bellman equation

Using the dynamic programming principle (introduced in Bellman (1957)), we can prove
that the value function satisfies alocal condition, called the Hamilton-Jacobi-Bellman (HJB)
equation (see Fleming and Soner (1993) for a complete survey). In the deterministic case
studied here, itis a first-order non-linear partial differential equation (in the stochastic case,
we can prove that a similar equation of order two holds). Here we assumél tisat
compact set.

Theorem 1 Hamilton-Jacobi-Bellmahn If the value function V is differentiable at bet
DV (x) be the gradient of V at xhen the Hamilton-Jacobi-Bellman equation

V(X)Iny + sup[DVX)- f(X,u)+r(x,u)] =0 (5)

uelU
holds at xe O. Additionally V satisfies the following boundary condition
V(x) > R(x) forxedO (6)

Remark The boundary condition is an inequality because at some boundary point (for
example ak; € 90 on figure 1) there may exist a contra(t) such that the corresponding
trajectory stays insid® and whose reinforcement functional is strictly superior to the
immediate boundary reinforcemeRtx;). In such cases, (6) holds with a strict inequality.

Remark Using an equivalent definition, the HIB Eq. (5) means that the solution of
the equation:

H(x, W, DW) =0 (7)
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with the Hamiltonian Hdefined, for any differentiable functiow, by:

HX, W, DW) = —W(X)In y — sup[DW(x) - f(x, u) +r(x, u)].
ueuU

Dynamic programming computes the value function in order to find the optimal control
with a feed-back control policy, that is a functian(x): O — U such that the optimal
controlu*(t) at timet depends on current staxeét) : u*(t) = 7 (x(t)). Indeed, from the
value function, we deduce the following optimal feed-back control policy:

7*(X) € arg supDV (x) - f(x, u) + r(x, u)] (8)

ueU

Now that we have pointed out the importance of computing the value funetitor
defining the optimal control, we show some propertie¥ dicontinuity, differentiability)
and how to integrate (and in what sense) the HIB equation for approximéting

2.4. Continuity of the value function

The property of continuity of the value function may be obtained under the following
assumption concerning the state dynanficaround the boundaryO (which is assumed
smooth, i.e.d0 e C?):

For all x € 90, let i(x) be the outward normal oD at x (for example, seé(x) in
figure 1), we assume that:

If Ju e U with f(x, u)-A(x) <0, thendv € U with f(x,v)-fA(X) <0

9

If Ju e U with f(x, u)-i(x) > 0, thendv € U with f(x,v) -fA(x) >0 ©)

These hypotheses mean that at any point of the bountfaeye ought not be only tra-
jectories tangential to the boundary of the state space.

Theorem 2 (Continuity). Suppose tha2) and (9) are satisfiedthen the value function
is continuous irO.

The proof of this theorem can be found in Barles and Perthame (1990).

3. Introduction to viscosity solutions

From Theorem 1, we know that if the value function is differentiable then it solves the HIB
equation. However, in general, the value function is not differentiable everywhere even when
the data of the problem are smooth. Thus, we cannot expect to find classical solutions (i.e.
differentiable everywhere) to the HIB equation. Now, if we look for generalized solutions
(i.e. differentiablealmosteverywhere), we find that there are many solutions other than the
value function that solve the HIB equation.
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Therefore, we need to define a weak class of solutions to this equation. Crandall and
Lions introduced such a weak formulation by defining the notioVistosity Solutions
(VSs) in Crandall and Lions (1983). For a complete survey, see Crandall et al. (1992),
Barles (1994) or Fleming and Soner (1993). This notion has been developed for a very broad
class of non-linear first and second order differential equations (including HIB equations
for the stochastic case of controlled diffusion processes). Among the important properties
of viscosity solutions are some uniqueness results, the stability of solutions to approxi-
mated equations when passing to the limit (this very important result will be used to prove
the convergence of the approximation schemes in Section 4.4) and mainly the fact that
the value function is the unique viscosity solution of the HIB Eqg. (5) with the boundary
condition (6).

First, let us illustrate with a simple example the problems raised here when one looks for
classical or generalized solutions to the HIB equation.

3.1. 3 problems illustrated with a simple example

Let us study a very simple control problem in 1 dimension. Let the stddec [0, 1], the
controlu(t) € {—1, +1} and the state dynamics b%% =u.

Consider a current reinforcement 0 everywhere and aboundary reinforcement defined
by R(0) andR(1). In this example, we deduce that the value function is:

V(x) = max{R(©0) - y*, RQ) - y*7*} (10)
and the HJB equation is:

V(X)Iny + max{V'(x), -V'(x)} =0 (11)
with the boundary conditiong (0) > R(0) andV (1) > R(1).

1. First problem: there is no classical solution to the HIJB equation. R¢0) =1,

R(1) =2, andy =0.3. The corresponding value function is plotted in figure 2. We
observe thaV is not differentiable everywhere, thus does not satisfy the HIB equation
everywhere: there is no classical solution to the HIB equation.

2. Second problem:there are several generalized solutions. If one looks for generalized
solutions that satisfy the HIB equation almost everywhere, we find many functions other
than the value function. An example of a function satisfying (11) everywhere with the
boundary condition&(0) =1 andR(1) =2 is illustrated in figure 3.

Remark This problem is of great importance when one wants to use gradient-descent
methods with some general function approximator, like neural networks, to approxi-
mate the value function. The use of gradient-descent methods may lead to approximate
any of the generalized solutions of the HIB equation and thus fail to find the value
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Value function ,

X
' 0.5 1
Optimal control ; | <— | —_— '
Figure 2 The value function is not differentiable everywhere.
Value function ,
! 0 X
05 1

Optimal control ; < ——> é

Figure 3 There are many generalized solutions other than the value function.

function. Indeed, suppose that we use a gradient-descent method for finding a function
W minimizing the error:

E(W)= f H(x, W, DW)?dx (12)
xeO

with H the Hamiltonian defined in Section 2.3. Then, the method will converge, in
the best case, to ameneralized solution §/0f (7) (because these functions @lebal
optimaof this minimization problem, since their err&(Vy=0) which are probably
different from the value functioVv. Moreover the control induced by such functions
(by the closed loop policy (8)) might be very different from the optimal control (defined
by V). For example, the function plotted in figure 3 generates a control (given by the
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direction of the gradient) very different from the optimal control, defined by the value
function plotted in figure 2.

In fact, in such continuous time and space problems, there exists an infiigiytaf
minimafor gradient descent methods, and these functions may be very different from
the expected value function.

In the case of neural networks, we usually use smooth functions (differentiable
everywhere), thus neither the value functign(figure 2), nor a generalized solution
Vy (figure 3) can be exactly represented, but both can be approximated. Let us denote
V andVj, the best approximations & andVy in the network. TheV andV, arelocal
minima of the gradient-descent method minimiziBgbut nothing proves that is a
globalminimum. In this example, it could seem thats “smoother” than the generalized
solutions (because it has only one discontinuity instead of several ones) in the sense that
E(V) < E(\79), but this is not true in general. In any case, in the continuous-time case,
when we use a smooth function approximator, there exists an infiniocaf solutions
for the problem of minimizing the errdE and nothing proves that the expectéds a
global solution. See Munos, Baird, and Moore (1999) for some numerical experiments
on simple (one and two dimensional) problems.

When time is discretized, this problem disappears, but we still have to be careful when
passing to the limit. In this paper, we describe discretization methods that converge to
the value function when passing to the limit of the continuous case.

3. Third problem: the boundary condition is an inequality. Here we illustrate the problem
of the inequality of the boundary condition. LR{0) = 1 andR(1) = 5. The correspond-
ing value function is plotted in figure 4. We observe tha0) is strictly superior to
the boundary reinforcemem(0). This strict inequality occurs at any boundary point
x € 9O forwhich there exists a contralt) such that the trajectory goes immediately in-
sideO and generates a better reinforcement functional than the boundary reinforcement
R(x) obtained by exiting fronO atx.

We will give (in definition 4 that follows) a weak (viscosity) formulation of the
boundary condition (6).

Value function .

X
0.5 1

Figure 4  The boundary condition may hold with a strict inequality conditigni@) > R(0) = 1).
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3.2. Definition of viscosity solutions

In this section, we define the notion of viscosity solutions for continuous functions (a
definition for discontinuous functions is given in Appendix A).

Definition 3 (Viscosity solution). LetW be acontinuousreal-valued function defined
in O.

e W is aviscosity sub-solutionf (7) in O if for all functions ¢ € C1(0), for all x e O
local maximum ofW — ¢ such thatW(x) = ¢(x), we have:

H(X, (X), Dp(x)) <0

e Wisaviscosity super-solutioof (7) in O if for all functionsy € C*(0), forallx € O local
minimum of W — ¢ such thatW(x) = ¢(x), we have:

H (X, ¢(x), Dep(x)) > 0
e W is aviscosity solutiorof (7) in O if it is a viscosity sub-solution and a viscosity

super-solution of (7) irD.

3.3.  Some properties of viscosity solutions

The following theorem (whose proof can be found in Crandall et al. (1992)) states that the
value function is a viscosity solution.

Theorem 3. Suppose that the hypotheses of Thedzdrold. Then the value function V
is a viscosity solution af7) in O.

In order to deal with the inequality of the boundary condition (6), we define a viscosity
formulation in a differential type condition instead of a pure Dirichlet condition.

Definition 4(Viscosity boundary condition). L&V be a continuous real-valued function
defined inO,

* Wis aviscosity sub-solutioaf (7) in O with the boundary conditiof) if it is a viscosity
sub-solution of (7) inD and for all functionsy € C1(O), for all x € 3O local maximum
of W — ¢ such thaW(x) = ¢(x), we have:

min{H (X, W, DW), W(X) — ¢(X)} <0

* W is aviscosity super-solutionf (7) in O with the boundary conditiof6) if it is a
viscosity super-solution of (7) i® and for all functionsy € C1(O), for all x € 30
local minimum ofW — ¢ such thatW(x) = ¢(x), we have:

min{H (X, W, DW), W(X) — ¢(X)} > 0 (13)
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e W is aviscosity solutiorof (7) in O with the boundary conditio(6) if it is a viscosity
sub- and super-solution of (7) @ with the boundary condition (6).

Remark When the Hamiltoniam is related to an optimal control problem (which is the
case here), the condition (13) is simply equivalent to the boundary inequality (6).

With this definition, Theorem 3 extends to viscosity solutions with boundary conditions.
Moreover, from a result of uniqueness, we obtain the following theorem (whose proof is in
Crandall et al. (1992) or Fleming and Soner (1993)):

Theorem 4. Suppose that the hypotheses of Thed?drold. Then the value function V
is the unique viscosity solution @f) in O with the boundary conditio(®).

Remark This very important theorem shows the relevance of the viscosity solutions for-
malism for HIB equations. Moreover this provides us with a very useful framework (as will
be illustrated in next few sections) for proving the convergence of numerical approximations
to the value function.

Now we study numerical approximations of the value function. We define approximation
schemes by discretizing the HIB equation with finite element or finite difference methods,
and prove the convergence to the viscosity solution of the HIB equation, thus to the value
function of the control problem.

4. Approximation with convergent numerical schemes
4.1. Introduction

The mainidea s to discretize the HIB equation into a Dynamic Programming (DP) equation
for some stochastic Markovian Decision Process (MDP). For any resofjtiemcan solve

the MDP and find the discretized value functighl by using DP techniques, which are
guaranteed to converge since the DP equation is a fixed-point equation satisfying some
strong contraction propert{see Puterman, 1994; Bertsekas, 1987). We are also interested
inthe convergence properties of the discretiZédo the value functioV ass decreasesto 0.

From Kushner (1990) and Kushner and Dupuis (1992), we define two classes of
approximation schemes based on finite difference (FD) (Section 4.2) and finite element
(FE) methods (Section 4.3). Section 4.4 provides a very general theorem of convergence
(deduced from the abstract formulation of Barles and Souganidis (1991) and using the
stability properties of viscosity solutions), that covers both FE and FD methods (the only
important required properties for the convergence arenthigotonicityand theconsistency
of the scheme).

In the following, we assume that the control spatés approximated by finite control
spaced)’ such thats < §' = U cU? and: ;U = U.
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oz8,

Figure 5 The discretized state-spaé (the dots) and its frontie¥ =% (the crosses).

4.2. Approximation with finite difference methods

Leter, e, ..., e be a basis for R The dynamics aref = (fy, ..., fq). Let the positive
and negative parts of be: f;* = maxfi, 0), f~ = max(— f;, 0). For anydiscretization
steps, let us consider the lattice8Z? = {5 - Zidzl jie} wherejy, ..., jg are any integers,
and=? = 529N O. Letax?, thefrontier of £°, denote the set of pointg € §Z29\ O
such that at least one adjacent pdint g € £’} (see figure 5). Let us denote hy|; =
> . |yi| the 1-norm of any vectoy.

The FD method consists of replacing the gradien (¢) by the forward and backward
difference quotients o¥ até e ¢ in directiong;:

N 1

ATV (E) = S[VE +d8) = V()]
1

ATV(E) = S[VE —de) = V()]

Thus the HIB equation can be approximated by the following equation:

Vi) Iny

uel?

d
+ sup{ [ffE w- AT V@ + f7E W-ATVO] +1E, u>} =0

=1
Knowing that (At In ) is an approximation of*! — 1) asAt tends to 0, we deduce the
following equivalent approximation equation: foe %°¢,

s )
Vi) = &0l 1E W) -VIE) + —— 1 (&, 14
&) SUP:V' sl %, PE 1§, w)- V(&) + ||f(E,U)||1r($ U)} (14)

uey?

) ,_
with pe' | &, u) = { TTEWR forg’=¢ +de
0 otherwise
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ol £,

N p(E2|g.u)?... S ——
0 Ve,

u
&2
‘ : MDP :
- P(E,|E,u) State  Control Prob. shg;’{‘;
S RS o & o pglew E

Figure 6. A geometrical interpretation of the FD discretizatiofihe continuous process (on the left) is discretized
at some resolutiod into an MDP (right). The transition probabilitiggé; | &£, u) of the MDP are the coordinates
of the vector%(n — &) with n the projection of onto the segmer(t + 6 - e1, £ + & - €2) in a direction parallel to
f(&, u).

which is a DP equation for a finite Markovian Decision Process wistate-spacds
»?%, control spaces U® and probabilities of transitionare p(¢’ | £, u) (see figure 6 for a
geometrical interpretation).

From the boundary condition, we define the absorbing terminal states:

Fore €dx?®, V%) =R() (15)

By defining R, the finite difference scheme:

s I}
FS = TTETL "IE U () + ———— T (€, 16
o [e] (&) supyy ;ﬁ@|sww@rmﬁ@wmr@u> (16)
DP Eq. (14) becomes: fdre ©¢,
VeE) = R [V°16) (17)

This equation states th&t’ is a fixed point ofFS, . Moreover, asf is bounded from
above (with some valubl¢), F2, satisfies the followingtrong contraction property

IFds [e1] = Fo [@2l| < &~ llgr — @all  with & = ™ (18)

and since < 1, there exists a fixed point which is the value functish it is unique and
can be computed by DP iterative methods (see Puterman, 1994; Bertsekas, 1987).

Computation of V¢ and convergence There are two standard methods for computing
the value functionv? of some MDP:value iteration(V? is the limit of a sequence of
successive iteration$’, , = FZ, [V,2]) andpolicy iteration(approximations in policy space



REINFORCEMENT LEARNING BY THE MEANS OF VISCOSITY SOLUTIONS 279

by alternative policy evaluation steps and policy improvement steps). See Puterman (1994),
Bertsekas (1987) or Bertsekas and Tsitsiklis (1996) for more information about DP theory.
In Section 5, we describe RL methods for computing iteratively the approximated value
functionsV?.

Inthe following section, we study a similar method for discretizing the continuous process
into an MDP by using finite element methods. The convergence of these two methods (i.e.
the convergence of the discretiz¢é to the value functiov ass tends to 0) will be derived
from a general theorem in Section 4.4.

4.3. Approximations with finite element methods

We use a finite element (FE) method (with linear simplexes) based on a trianguistion
covering the state-space (see figure 7).

The value functiorV is approximated by piecewise linear functioris defined by their
values at the verticgg} of the triangulatior®. The value ol? at any poinix inside some
simplex(&o, . .., &) is a linear combination 0¥ ® at the verticesy, . .., & (see figure 7):

d
Vi) = a5 (0VP(&) forall x € Simplex(éo. . .., &)
i=0

with ¢ (X) being thebarycentric coordinatesf x inside the simplex&o, . . ., &q) > x. (We
recall that the dffinition of the barycentric coordinates is tadk) satisfy: Zid:o Ag (X) -
& —x) =0, _ors (X) = Landxrg (x) > 0).

By using a finite element approximation scheme derived from Kushner (1990), the con-
tinuous HJB equation is approximated by the following equation:

VOE) = sup[y™©Y - VP&, u) + TE wr ¢ w]

ueuy’

Figure 7. Triangulationz?® of the state-spaca/®(x) is a linear combination of th¥? (&), for x € simplex
(%0, &1, £2), weighted by the barycentric coordinates(x).



280 R. MUNOS

7

e

Trm

uﬂ’. . lr,g(n;) .&.'0

e i (N =§1
i, A MTNeE,
MDP : L
Next
State  Control Proba. state

E hm) E

Figure 8 Afinite element approximation. Consider a vergeandn, = & +1(£, up). f (£, u1). V(1) isalinear
combination ofV? (£o), V4 (£1), V4 (&2) weighted by the barycentric coordinates(n1). Thus, the probabilities
of transition of the MDP are these barycentric coordinates.

wheren (g, u) is a point insidex?® such thaty(£, u) = & + 7 (£, u) - f (&, u) (see figure 8)
for some “time discretization” function: =% x U® — R. We require that satisfies the
following condition, for some positive constaritsandks:

vEe ! VYuelU? ki<t u <k S (19)

Remark It is interesting to notice that this time discretization functiq¥, u) does not

need to be constant and can depend on the Statel the controli. This provides us with

some freedom on the choice of these parameters, assuming that Eq. (19) still holds. For a
discussion on the choice of a constant time discretization functamtording to the space
discretization sizé in order to optimize the precision of the approximations, see Pareigis
(1997).

Let us denotgéy, ..., £g) the simplex containing)(£, u). As V¢ is linear inside the
simplex, this equation can be written:

d

VA(€) = sup [WW Y e (E WIVE) + TE U (E, u)} (20)
uel? i—1

which is a DP equation for a Markov Decision Process whose state-space is the set of

vertices{¢} and the probability of transition from (stafe controlu) to next stateg’ e

{&o, ..., &4} are the barycentric coordinatespft, u) inside simplex(&, ..., &) (and O

for&’ ¢ {&, ..., &q}) (see figure 8). The boundary states satisfy the terminal condition:

Foré € 9%°%, V4(&) = R®). (21)
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By defining F¢ the finite element scheme,

Feelpl©) = sup{y &Y -y “ae (& W)e&) + TE, W (€, u) (22)

d
ueu’ i=1

the approximated value functior’ satisfies the DP equation
V2() = FEe[V16). (23)
Similarly to the FD schemeR ¢ satisfies the following “strong” contraction property:
| Fécload — Fécleal]| <2+ llos — gall - with & = ', (24)

and sincer. < 1, there is a unique solutiov,? to (23) with (21) which can be computed
by DP techniques.

4.4. Convergence of the approximation schemes

In this section, we present a convergence theorem for a general class of approximation
schemes. We use the stability properties of viscosity solutions (described in Barles and
Souganidis, 1991) to obtain the convergence. Another kind of convergence result, using
probabilistic considerations, can be found in Kushner and Dupuis (1992), but such results
do not treat the problem with the general boundary condition (9). In fact, the only impor-
tant required properties for convergence is monotonicity (property (27)) and consistency
(properties (30) and (31) below). As a corollary, we deduce that the FE and the FD schemes
studied in the previous sections are convergent.

4.4.1. A general convergence theorem.et ¢ andd =? be two discrete and finite subsets
of RY. We assume that for alk e O, lims,odist(x, 2°) =0 and for all xedO,
lims,o dist(x, 3%%) = 0. Let F® be an operator on the space of bounded functions on

4. We are concerned with the convergence of the solWbro the dynamic program-
ming equation:

Vi€ =F[V°]§) forgex’ (25)
with the boundary condition:

Ve(E) = R() forg e dx? (26)
We make the following assumptions &i:
¢ Monotonicity

if o1 < @2 thenF?[p1] < F[gy] (27)
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¢ For any constant,
Folp +c] = F°[] + c(1 + O(3)) (28)
* For anys,

there exists a solutioW® to (25) and (26) which is
bounded with a constamy, independent of. (29)

¢ Consistencythere exists a constakt> 0 such that:
— if H(X, ¢(X), Dp(x)) > 0 then

o1
lim inf [ — F*[g]] &) = k-H(X, ¢(x), Dp()) (30)
Es—>X

— if H(X, ¢(X), Dp(x)) < 0then
. 1
lim sup <[y — Folell (€5) < k.-H (X, 9(x), Do(x)) (31)
EAB—W)X

Remark Conditions (30) and (31) are satisfied in the particular case of:

310

. 1
lim  <l¢ - Folell (€5) = H(X, 9(X), Dg(X))
E— (&

Theorem 5 (Convergence of the schejne Assume that the hypotheses of TheoZeare
satisfied. Assume thé7), (28), (30and(31)hold, then P is a convergent approximation
schemei.e. the solutions ¥ of (25) and (26) satisfy

lim V(&) = V(x) uniformly on any compad&@ c O (32)
510

Es—>X

4.4.2. Outline of the proof. We use the procedure described in Barles and Perthame
(1988). The idea is to define the largest limit functidg, = lim supV? and the smallest

limit function Viys = liminf V¢ and prove that they are respectively discontinuous sub- and
super viscosity solutions. This proof, based on the general convergence theorem of Barles
and Souganidis (1991), is given in Appendix A. Then we use a comparison result which
states that if (9) holds then viscosity sub-solutions are less than viscosity super-solutions,
thusVsup < Vine. By definitionVsyp > Ving, thusVsyp = Vine = V and the limit functionV

is the viscosity solution of the HIB equation, thus (from Theorem 4) the value function of
the problem.

4.4.3. FD and FE approximation schemes converge
Corollary 1. The approximation schemegd-and F¢ are convergent.

Indeed, for the finite difference scheme, itis obvious that spi€€| &, u) are considered
as transition probabilities, the approximation schefig satisfies (27) and (28). As (17)
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is a DP equation for some MDP, DP theory ensures that (29) is true. We can check that the
scheme is also consistent: conditions (30) and (31) holdlvw?mMif. ThusF#, satisfy the
hypotheses of Theorem 5.

Similarly, for the finite element scheme, from the basic properties of the barycentric
coordinates.s (x), the approximation schenfez satisfies (27). From (19), condition (28)
holds. DP theory ensures that (29) is true. The scheme is consistent and conditions (30)
and (31) hold wittk = k;. ThusF2. satisfies the hypotheses of Theorem 5.

4.5. Summary of the previous results of convergence

For any given discretization stépfrom the “strong” contraction property (18) or (24), DP
theory ensures that the valu€s iterated by some DP algorithm converge to the valde

of the approximation schent€ asn tends to infinity. From the convergence of the scheme
(Theorem 5), th&v? tend to the value functioW of the continuous problem @agends to 0
(see figure 9).

Remark Theorem 5 gives a result of convergence on any confpactO, provided that

the hypothesis (9), for the continuity ¥f, is satisfied. However, if this hypothesis is not
satisfied, but if the value function is continuous, the theorem still applies. Now, if (9) is
not satisfied and the value function is discontinuous at some area, then we still have the
convergence on any compdetc O where the value function is continuous.

5. Designing convergent reinforcement learning algorithms

In order to solve the DP Eqgs. (14) or (20), one can use DP off-line methods—sualuas
iteration, policy iteration modified policy iteratiorisee Puterman, 1994), with synchronous
or asynchronous back-ups, or on-line methods—Real Time DP(see Barto, Bradtke,
& Singh, 1991; Bertsekas & Tsitsiklis, 1996). For example, by introducingthalues
Q! (¢, u), Eqg. (20) can be solved by successive back-ups (indexajidfistates, controlu

(in any order provided that every state and control are updated regularly) by:

D w) =y EY VI(E + (g, u) - F(E, W)+ T(E, Wr(E,u)

. 33
with: V(&) = sup Q4 (&, u) (33)
ueuy?
HJB equation DP equation
d
V =77 V
d—0 DP with
the "strong"
n —0o contraction
§  property
Vi

Figure 9 The HJB equation is discretized, for some resolutipinto a DP equation whose solution V&'
The convergence of the scheme ensures\Wat> V ass — 0. Thanks to the “strong” contraction property, the
iterated value®? tend toV® asn — co.
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The values/! of this algorithm converges to the value functiéf of the discretized MDP
asn — oo.

However, in the RL approach, the state dynanfi@nd the reinforcement functionsR
are unknown to the learner. Thus, the right side of the iterative rule (33) is unknown and
has to be approximated thanks to the available knowledge. In the RL terminology, there are
two possible approaches for updating the values:

¢ Themodel-basedpproach consists of first, learning a model of the state dynamics and
of the reinforcement functions, and then using DP algorithms based on such a rule (33)
with the approximated model instead of the true values. The learning (the updating of
the estimated Q-valu®?) may occur iteratively during the simulation of trajectories
(on-line learning or at the end (at the exit time) of one or several trajectonédife or
batch learning.

e Themodel-freeapproach consists of updating incrementally the estimated v&jjies
Q-valueQ? of the visited states without learning any model.

In what follows, we propose a convergence theorem that applies to a large class of RL
algorithms (model-based or model-free, on-line or off-line, for deterministic or stochastic
dynamics) provided that the updating rule satisfies sbmeak” contraction property
with respect to some convergent approximation scheme such as the FD and FE schemes
studied previously.

5.1. Convergence of RL algorithms

The following theorem gives a general condition for which an RL algorithm converges to
the optimal solution of the continuous problem. The idea is that the updated values (by
any model-free or model-based method) must be close enough to those of a convergent
approximation scheme so that their difference satisfies the “weak” contraction property
(34) below.

Theorem 6 (Convergence of RL algorithins For any 8, let us build finite subsets?

and 9X? satisfying the properties of Sectidnd. We consider an algorithm that leads to
update every staté € %% regularly and every staté ¢ 9%° at least once. Let Fbe a
convergent approximation schertfer example(22)) and V° be the solution t¢25) and

(26). We assume that the values updated at the iteration n satisfy the following properties

e forg e £°,V2 (&) approximates V() in the sense of the followirfgveak contraction
property.

V2,1 &) = VP& < (1—k8) sup |V2E) — V()| +e@).s (34)

£exiUITs

for some positive constant k and some functi@h) ¢hat tends td assé | 0,
e forg €dx?, V2, (&) approximates V(&) = R(§), in the sense

IV2,1(8) — RE)| < kr.8 (35)
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for some positive constankkthen for any compac® c O, for all ¢ > 0, there exists
A such that for any < A, there exists Nfor alln > N,

sup V2@ - V@©) <e.
£eQN(ZUIXY)

This result states that when the hypotheses of the theorem applies (mainly when we
find some updating rule satisfying the weak contraction property (34)) then the Wues
computed by the algorithm converge to the value functioof the continuous problem as
the discretization steptends to zero and the number of iterationends to infinity.

5.1.1. Outline of the proof. The proof of this theorem is given in Appendix B. If condition
(34) were a strong contraction property such as

VELE - Vi@®|<a sup [V2©) —V®) (36)

£exiUITP

for some constarit < 1, then the convergence would be obvious since from (25) and from
the fact that all the states are updated regularly, for a fix&f would converge td/° as
n — oo. From the fact (Theorem 5) th&® converges to/ ass | 0, we could deduce that
V¢ — V asé | 0andn — oo (see figure 9).
If it is not the case, we can no longer expect tat— V? asn — oco. However, if (34)
holds, we can prove (this is the object of Section B.2 in Appendix B) that forany0,
there exists small enough valuesscafuch that at some stadé |Vrf — V3 <gforn> N.
This result together with the convergence of the scheme leads to the convergence of the
algorithm ass | 0 andn — oo (see figure 10).

5.1.2. The challenge of designing convergent algorithmsn general the “strong” con-
traction property (36) is impossible to obtain unless we have perfect knowledge of the
dynamicsf and the reinforcement functiomsand R. In the RL approach, these compo-

nents are estimated and approximated during some learning phase. Thus the iterated values
V¢ are imperfect, but may be “good enough” to satisfy the weak contraction property (34).
Defining such “good” approximations is the challenge for designing convergent RL
algorithms.

HJB equation DP equation
)

V =—-— V

d—0 RL with
\ >’< the ”wea}k"
contraction
n —od §  broperty
§—0 Vi

Figure 10 The valued/? iterated by an RL algorithm do not convergetb asn — co. However, if the “weak”
contraction property is satisfied, tMé tend toV ass — 0 andn — oo.
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In order to illustrate the method, we present in Section 5.2 a procedure for designing
model-based algorithms, and in Section 5.3, we give a model-free algorithm based on a FE
approximation scheme.

5.2. Model-based algorithms

The basic ideais to build a model of the state dynanfiesd the reinforcement functions
andR at stateg from the local knowledge obtained through the simulation of trajectories.
So, if some trajectory, (t) goes inside the neighborhoodiofby defining the neighborhood
as an area whose diameter is bounde#py for some positive constaRy,) at some time
t, and keep a constant controfor a periodr, (from X, = Xy (tn) t0 Vi = X (th + 1)), We
can build the model of (¢, u) andr (&, u):

fagouy = 20

F&,u) =1, u

(see figure 11). Then we can approximate the scheme (22), by the following values using
the previous model: the Q-valu€¥, are updated according to:

b ) =y GV VI E 4 o(g, u) - o5, u) +T(E, ) - F(E, W)
andV?(€) = sup Q) (¢, u)

uel?

(for any functionz (¢, u) satisfying (19)), which corresponds to the iterative rule (33) with
the modelf,, andf instead off andr.

Itis easy to prove (see Munos and Moore (1998) or Munos (1997a)) that assuming some
smoothness assumptiomsR Lipschitzian), the approximated satisfy the condition (34)
and theorem 6 applies.

Remark Using the same model, we can build a similar convergent RL algorithm based on
the finite difference scheme (22) (see Munos, 1998). Thus, it appears quite easy to design
model-based algorithms satisfying the condition (34).

o] o o}

. (1)
f(&%/ i

Figure 11 Atrajectory goes through the neighborhood (the grey aref) ®he state dynamics is approximated
by fn(€, u) = =X
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Remark This method can also be used in the stochastic case, for which a model of the
state dynamics is thaverage for several trajectories, of suevﬁ;nﬁ, and a model of the
noise is theivariance(see Munos and Bourgine, 1997).

Furthermore, it is possible to design model-free algorithms satisfying the condition (34),
which is the topic of the following section.

5.3. A model-free algorithm

The Finite Element RL algorithm. Consider a triangulatio®?® satisfying the properties
of Section 4.3. The direct RL approach consists of updating on-line the Q-values of the
vertices without learning any model of the dynamics.

We consider the FE scheme (22) witli&, u) being such thag (&, u) =& + t (&, u).

f (€, u) is the projection of onto the opposite side of the simplex, in a parallel direction to
f (&, u) (see figure 12). If we suppose that the simplexes are non degeneratgkl,(sech
that the radius of the sphere inscribed in each simplex is supetigs}then (19) holds.

Let us consider that a trajectoxyt) goes through a simplex. L&t= x(t;) be the input
pointandy = x(tp) be the output point. The controlis assumed to be kept constant inside
the simplex.

As the valuest (¢, u) andn(&, u) are unknown to the system, we make the following
estimations (from Thales’ theorem):

e (&, U)isapproximated bxﬁ (wherex (x) is theg —barycentric coordinate ofinside
the simplex)

e (£, u) is approximated by + XE_(;;

which only use the knowledge of the state at the input and output poirdady), the
running timer of the trajectory inside the simplex and the barycentric coordinate)

(which can be computed as soon as the system knows the vertices of the input side of the
simplex). Besides, (&, u) is approximated by the current reinforceme¢x, u) at the input

point.

n(&u) x(t)

L= .

Figure 12 A trajectory going through a simplex; (¢, u) is the projection ot onto the opposite side of the

simplex. i’;&; is a good approximation of(&, u) — &.
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Thanks to the linearity 0¥ ? inside the simplexy® (5 (£, u)) is approximated by/® (£) +

W Then the algorithm consists in updating the qua@i(, u) with the estima-
tion:
- V2 (y) — Vi (x) T
3 [ v 8 n n .
QnuG,u) =y* [Vn & + 0 ] + e r(x, u) (37)
andV; (€) = sup Q4(&, u) (38)

uel?

and if the system exits from the state-space inside the simplexy(gel O), then update
the closest verte&’ € 9%° of the simplex with:

V2 1 (E) = R(y).

By assuming some additional regularity assumptiorsnd R Lipschitzian, f bounded
from below), the value¥? (&) satisfy (34) and (35) which proves the convergence of the
model-free RL algorithm based on the FE scheme (see Munos (1996) for the proof).

In a similar way, we can design a direct RL algorithm based on the finite difference
schemeF}, (16) and prove its convergence (see Munos, 1997b).

6. A numerical simulation for the “Car on the Hill” problem

For a description of the dynamics of this problem, see Moore and Atkeson (1995). This
problem has a state-space of dimension 2: the position and the velocity of the car. In our
experiments, we chose the reinforcement functions as follows: the current reinforcement
r (x, u) is zero everywhere. The terminal reinforcemBix) is —1 if the car exits from the

left side of the state-space, and varies linearly betwekeand—1 depending on the velocity

of the car when it exits from the right side of the state-space. The best reinforcerhent
occurs when the car reaches the right boundary with a null velocity (see figure 13). The
controlu has only 2 possible values: maximal positive or negative thrust.

Goal

R=+1 fo} null velocity
R=-1 for max. velocity

Resistance

Reinforcement
R=-1

Gravitation

Position

-1 X 1

Figure 13 The “Car on the Hill” problem.
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Velocity

Triangulation 1 Triangulation 2 Triangulation 3
Figure 14 Three triangulations used for the simulations.

In order to approximate the value function, we used 3 different triangulaligris and
Tz, composed respectively of 9 by 9, 17 by 17 and 33 by 33 states (see figure 14), and, for
each of these, we ran the two algorithms that follows:

e Anasynchronous Real Time DP (based on the updating rule (33)), assuming that we have
a perfect model of the initial data (the state dynamics and the reinforcement functions).

¢ An asynchronous Finite Element RL algorithm, described in Section 5.3 (based on the
updating rule (37)), for which the initial data are approximated by parts of trajectories
selected at random.

In order to evaluate the quality of approximation of these methods, we also computed
a very good approximation of the value functidh (plotted in figure 15) by using DP

Value function

Velocity

Position

Figure 15 The value function of the “Car on the Hill”, computed with a triangulation composed of 257 by 257
states.
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(with rule (33)) on a very dense triangulation (of 257 by 257 states) with a perfect model
of the initial data.
We have computed the approximation erigi(Tk) = SUp..q V(&) — V(&) with &
being the discretization step of triangulatién For this problem, we notice that hypothesis
(9) does not hold (because all the trajectories are tangential to the boundary of the state-
space at the boundary states of zero velocity), and the value function is discontinuous. A
frontier of discontinuity happens because a point beginning just above this frontier can
eventually get a positive reward whereas any point below is doomed to exit on the left side
of the state-space. Thus, following the remark in Section 4.5, in order to corBp(ig),
we chose to be the whole state-space except some area around the discontinuity.
Figures 16 and 17 represent, respectively for the 2 algorithms, the approximation error
En(Ty) (for the 3 triangulationd;, T, andTs) as a function of the number of iterations
We observe the following points:

e Whatever the resolution of the discretizatidris, the valuesv; computed by RTDP
converge, as increases. Their limit i%/?, solution of the DP Eq. (20). Moreover, we
observe the convergence of thé to the value functionV as the resolutiod tends to
zero. These results illustrate the convergence properties showed in figure 9.

e For a given triangulation, the valu&é& computed by FERL do not converge. Fbr
(rough discretization), the error of approximation decreases rapidly, and then oscillates
within a large range. Fof,, the error decreases more slowly (because there are more
states to be updated) but then oscillates within a smaller range. Arid {dense dis-
cretization), the error decreases still more slowly but eventually gets close to zero (while
still oscillating). Thus, we observe that, as illustrated in figure 10, for any given dis-
cretization ste, the values do not converge. However, they oscillate within a range
depending o. Theorem 6 simply states that for any desired precisteh there exists

Error of approximation

1
09
08|
07 |
X3 3
ash
04}

03

02}

otf !
o X ) \_\x\\_‘Triungu]ution 3

L 20000 40000 60000 1

Figure 16 The approximation errdg, (Tk) of the values computed by the asynchronous Real Time DP algorithm
as a function of the number of iterationgor several triangulations.
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Error of approximation

I F | Triangulation 1

rh’\l A ™
p r1H.r'l" L ‘—',,f"h‘“'r“\.‘_ & /e i _n e ¥ Triangulation 2
A3 v

, , Triangulation 3
0 20000 40000 60000 n

Figure 17. The approximation errokE,(Ty) of the values computed by the asynchronous Finite Element RL
algorithm.

a discretization step such that eventualhaN, vn > N), the values will approximate
the value function at that precision (siyff — V| < ).

7. Conclusion and future work

This paper proposes a formalism for the study of RL in the continuous state-space and
time case. The Hamilton-Jacobi-Bellman equation is stated and several properties of its
solutions are described. The notion of viscosity solution is introduced and used to integrate
the HIB equation for finding the value function. We describe discretization methods (by
using finite element and finite difference schemes) for approximating the value function,
and use the stability properties of the viscosity solutions to prove their convergence.

Then, we propose a general method for designing convergent (model-based or model-free)
RL algorithms and illustrate it with several examples. The convergence result is obtained by
substituting the “strong” contraction property used to prove the convergence of DP method
(which cannot hold any more when the initial data are not perfectly known) by some “weak”
contraction property, that enables some approximations of these data. The main theorem
states a convergence result for RL algorithms as the discretizatios t&ags to 0 and the
number of iterations tends to infinity.

For practical applications of this method, we must combine tddghening dynamics
(n— o0) somestructural dynamicgs — 0) which operates on the discretization process.
For example, in Munos (1997c), an initial rough Delaunay triangulation (Bjgh pro-
gressively refined (by adding new vertices) according to a local criterion estimating the
irregularities of the value function. In Munos and Moore (1999), a Kuhn triangulation em-
bedded in a kd-tree is adaptively refined by a non-local splitting criterion that allows the
cells to take into account their impact on other cells when deciding whether to split.

Future theoretical work should consider the study of approximation schemes (and the de-
sign of algorithms based on these scheme) for adaptive and variable resolution discretizations
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(like the adaptive discretizations of Munos and Moore (1999); Munos (1997c), the parti-
game algorithm of Moore and Atkeson (1995), the multi-grid methods of Akian (1990) and
Pareigis (1996), or the sparse grids of Griebel (1998)), the study of the rates of convergence
of these algorithms (which already exists in some cases, see Dupuis and James (1998)), and
the study of generalized control problems (with “jumps”, generalized boundary conditions,
etc.).

To adequately address practical issues, extensive numerical simulations (and compari-
son to other methods) have to be conducted, and in order to deal with high dimensional
state-spaces, future work should concentrate on designing relevant structural dynamics and
condensed function representations.

Appendix A: Proof of Theorem 5
A.1. Outline of the proof

We use the Barles and Perthame procedure in Barles and Perthame (1988). First we give
a definition of discontinuous viscosity solutions. Then we define the largest limit function
Vsup @and the smallest limit functiol,s and prove (following Barles & Souganidis, 1991),

in Lemma (1), thaw/s,, (respectivelyViy) is a discontinuous viscosity sub-solution (resp.
super-solution). Then we use a strong comparison result (Lemma 2) which states that if (9)
holds then viscosity sub-solutions are less than viscosity super-solution/sthus Vins.

By definition Vsyp> Vint, thus Vsyp= Vin =V and the limit functionV is the viscosity
solution of the HIB equation, and thus the value function of the problem.

A.2. Definition of discontinuous viscosity solutions
Let us recall the notions of thepper semi-continuous envelope\&hd thelower semi-
continuous envelope Vf a real valued functiolV:

W*(x) = limsup W(y)

y—X

W, (X) = Ii|;n iQf W(y)
Definition 5 LetW be a locally bounded real valued function defined®n

* W is aviscosity sub-solutionf H (x, W, DW) = 0in O if for all functionsg € C*(0),
for all x € O, local maximum ofW* — ¢ such thatWW*(x) = ¢(x), we have:

H.(X, (X), Dp(x)) <0
* Wis aviscosity super-solutionf H (x, W, DW) = 0in Qifforall functionsy € C*(O),
for all x € O, local minimum ofW, — ¢ such that, (x) = ¢(x), we have:

H*(X, ¢(X), De(x)) = 0
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e W is aviscosity solutiorof H(x, W, DW) = 0 in O_if it is a viscosity sub-solution and
a viscosity super-solution dfl (x, W, DW) =0in O.

A.3. \pand Vy are viscosity sub- and super-solutions

Lemma 1. The two limit functions Y, and Mys:

Vsup(x) = limsup V°(§)

510
€20

Vint(X) = liminf V°(&)
MOX

are respectively viscosity sub- and super-solutions.
Proof: Let us prove thaWs,pis a sub-solution. The proof th&t.s is a super-solution is
similar. Lety be a smooth test function such tha,, — ¢ has a maximum (which can be
assumed to be strict) atsuch thatVsys(Xx) = ¢(x). Leté, be a sequence converging to
zero. Thenv® — ¢ has a maximum &, which tends tax asé, tends to 0. Thus, for all
£exh,

V() — (&) < V(&) — p(&n)
By (27), we have:

FOVo(§) — V(&) — 9(En)] < F[p(8)]
By (28), we obtain:

FOVO ()] &) — (L + 0@V (§n) — 9(E] < F[p()](n)

By (29), Fé[V%] = V&, thus:

1 1
S—O(Sn)[VS” (n) —9(En)] < 3—[':5”[90(-)](&) — @(n)

As V¥ (&) — (&) tends to 0, the left side of this inequality tends to Gas 0. Thus,
by (31), we have:

H(X, ¢, Dp) > 0.

ThusVsyis a viscosity sub-solution. O
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A.4. Comparison principle between viscosity sub- and super-solutions

Lemma2. Assumg9),then(7)and(6)has a weak comparison principlee. for any vis-
cosity sub-solutiolV and super-solutioklV of (7) and(6), for all x € O we have

W(x) < W(x)

For a proof of this comparison result between viscosity sub- and super-solutions see
Barles (1994) and Barles and Perthame (1998, 1990) or for slightly different hypothesis
Fleming and Soner (1993).

A.5. Proof of Theorem 5

Proof: From Lemma 1, the largest limit functiovk,, and the smallest limit function

Vins are respectively viscosity sub-solution and super-solution of the HIB equation. From
the comparison result of Lemma ¥y, < Vinr. But by their definitionVsyp> Vins, thus
Vsup= Vinf =V and the approximation scheré converges to the limit functiow, which

is the viscosity solution of the HIB equation thus the value function of the problem, and
(32) holds true. O

Appendix B: Proof of Theorem 6
B.1. Outline of the proof

We know that from the convergence of the sch&ffiéTheorem 5), for any compagt c O,
for anye; > 0, there exists a discretization st&puch that:

sup|V2(x) — V(x)| < e1.

XeQ2

Let us define:

E)= sup V(&) —V°®)|
EexiUInd

As we have seen in Section 5.1.1, if we had the strong contraction property (36), then for
anys, E2 would converge to 0 as— oo. As we only have the weak contraction property
(34):

Ve E) = V(&) < A—k-8E) +e©) -8

the idea of the following proof is that for ary > 0, there exists and a stag®\, such that
forn> N,

Eb= sup [V — V()| <ea (B.1)

£exdUIx?
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Then we deduce that for amy> 0, we canfind; > 0ands, > 0suchthat; +&, = ¢ and:

sup IV£(§>—V(§>|ssu£|v8(x)—V(x>|+ sup |V2(&) — VO(®)]

£€QN(ZPUIT?) £eTUITD
<é&eter=¢

B.2. A sufficient condition for E< ¢,

Lemma 3. Let us suppose that there exists some constantO such that for any state
updated at stage,rthe following condition hold

If E) > e, then|Vy,,(6) — V()| < E) — (B.2)
If E) < exthen|Vy,,(6) — V(&) < &2 (B.3)
then there exists N such that forh N, Ef, < &o.

Proof: As the algorithm updates every stéte= %° regularly, there exists an integer
such that at stage + m all the stateg € £ have been updated at least once since stage
n. Thus, from (B.2) and (B.3) we have:

If E} > e then sup|V?, (&) =V’ &) <E)—«a

tex?
If E} < epthen sup|V?P, (&) — V2 (&)| < ez
Eexd

Thus, there existdl; such thatvn > Ny,

sup| V2 (&) — V2 (©)] < eo. (B.4)

Eexd

Moreover, all stateg € 9X? are updated at least once, thus there edibtsuch that:
vn > N, forall &€ € 3%?,

Vo 16) = V2(@E)| < k-8 < &2 (B.5)

foranyé < Ay = i—é
Thus from (B.4) and (B.5), fon > N = max{ Ny, Ny},

El= sup |V/(©E) - V)| <en
EeXiUTs O

Lemma4. Foranyeg; > 0,there exist®\, such that fols < A1, the conditiongB.2) and
(B.3) are satisfied.
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Proof: Let us consider a valug, > 0. From the convergence efs) to 0 whené | 0,
there existsA; such that fod < A, we have:

es) — k- 8—22 <o0. (B.6)

Let us prove that (B.2) and (B.3) hold. LEf > &5, then from (34),
V2 1) — V2@ <A —k-O)E) +e@) -8 <Ej—k-8-e2+€(©) -8

From (B.6),

|V,f+1($)—v5(§)|5Eﬁ—k-8-8—22+e(5)-5—k-5~8—22§ Eﬁ—k-8~8—22

and (B.2) holds forx =k -6 - %.
Now if ES < &5, from (34), we have:

& & &
2 _f2 f2_

£ £
|Vrf+1(é)—V‘3(§)|5(1—k-8)§2+§+e(5)3—k.52 <245

and condition (B.3) holds. O

B.3. Convergence of the algorithm

Proof: Let us prove Theorem 6. For any comp&tc O, for all ¢ > 0, let us consider
€1 >0 ande; > 0 such that; 4+ ¢, = ¢. From Lemma 4, fo < A3, conditions (B.2) and
(B.3) are satisfied, and from Lemma 3, there exi¢tgor alln > N,

El= sup |V)(&)— V)| <e

£exdUIx?

Moreover, from the convergence of the approximation scheme, Theorem 5 implies that for
any compacf2 C O, there exists\, such that for alb < A,

sup|V°(x) — V(X)| < &1

XeQ

Thus fors < A = min{A1, Ay}, for any finite discretized state-spaké andd =? satis-
fying the properties of Section 4.4, there exilsitsfor alln > N,

sup  [VE(E) = V@) <suplVix) —VX)|+ sup |ViE) — Vi)
£eQN(TPUIR?) XeQ E€TIUITS

< =
<ée+é& E. 0
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