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Abstract

In an Arc Consistency (AC) algorithm, a residual
support, or residue, is a support that has been stored
during a previous execution of the procedure which
determines if a value is supported by a constraint.
The point is that a residue is not guaranteed to rep-
resent a lower bound of the smallest current sup-
port of a value. In this paper, we study the theoreti-
cal impact of exploiting residues with respect to the
basic algorithm AC3. First, we prove that AC3rm
(AC3 with multi-directional residues) is optimal for
low and high constraint tightness. Second, we show
that when AC has to be maintained during a back-
tracking search, MAC2001 presents, with respect
to MAC3rm, an overhead in O(μed) per branch of
the binary tree built by MAC, where μ denotes the
number of refutations of the branch, e the num-
ber of constraints and d the greatest domain size
of the constraint network. One consequence is that
MAC3rm admits a better worst-case time complex-
ity than MAC2001 for a branch involving μ refuta-
tions when either μ > d2 or μ > d and the tightness
of any constraint is either low or high. Our experi-
mental results clearly show that exploiting residues
allows enhancing MAC and SAC algorithms.

1 Introduction

It is well-known that Arc Consistency (AC) plays a central
role in solving instances of the Constraint Satisfaction Prob-
lem (CSP). Indeed, the MAC algorithm, i.e., the algorithm
which maintains arc consistency during the search of a so-
lution, is still considered as the most efficient generic ap-
proach to cope with large and hard problem instances. Fur-
thermore, AC is at the heart of a stronger consistency called
Singleton Arc Consistency (SAC) which has recently at-
tracted a lot of attention (e.g., [Bessière and Debruyne, 2005;
Lecoutre and Cardon, 2005]).

For more that two decades, many algorithms have been
proposed to establish arc consistency. Today, the most ref-
erenced algorithms are AC3 [Mackworth, 1977] because of
its simplicity and AC2001/3.1 [Bessière et al., 2005] because
of its optimality (while being not too complex). The worst-
case time complexities of AC3 and AC2001 are respectively

O(ed3) and O(ed2) where e denotes the number of constraints
and d the greatest domain size. The interest of an optimal al-
gorithm such as AC2001 resides in its robustness. It means
that AC2001 does not suffer from some pathological cases as
AC3 does. This situation occurs when the tightness of the
constraints is high, as it is the case for the equality constraint
(i.e. constraint of the form X = Y ). Indeed, as naturally
expected and demonstrated later, AC3 admits then a practical
behaviour which is close to the worst-case, and the difference
by a factor d between the two theoretical worst-case complex-
ities becomes a reality.

In this paper, we are interested in residues for AC algo-
rithms. A residue is a support that has been stored during
a previous execution of the procedure which determines if a
value is supported by a constraint. The point is that a residue
is not guaranteed to represent a lower bound of the smallest
current support of a value. The basic algorithm AC3 can be
refined by exploiting residues as follows: before searching a
support for a value from scratch, the validity of the residue
associated with this value is checked. We then obtain an al-
gorithm denoted AC3r, and when multi-directionality is ex-
ploited, an algorithm denoted AC3rm.

In fact, AC3r is an algorithm which can be advantageously
replaced by AC2001 when AC must be established stand-
alone on a given constraint network. However, when AC has
to be maintained during search, MAC3r which corresponds
to mac3.1residue [Likitvivatanavong et al., 2004] becomes
quite competitive. On the other hand, AC3rm is interesting
of its own as it exploits multi-directional residues just like
AC3.2 [Lecoutre et al., 2003]. But, let us see the interest of
exploiting residues.

First, we prove in this paper that AC3rm, contrary to AC3,
admits an optimal behaviour when the tightness of the con-
straints is high. To illustrate this, let us consider the Domino
problem introduced in [Bessière et al., 2005]. All but one
constraints of this problem correspond to equality constraints.
The results that we obtain when running AC3, AC2001,
AC3.2 and the new algorithm AC3rm on some instances of
this problem are depicted in Table 1. The time in seconds
(cpu) and the number of constraint checks (ccks) is given for
each instance of the form domino-n-d where n corresponds
to the number of variables and d the number of values in each
domain. Clearly, AC3rm largely compensates the weakness
of the basic AC3.
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Instances AC3 AC3rm AC2001 AC3.2

domino-100-100
cpu 1.81 0.16 0.23 0.18
ccks 18M 990K 1485K 990K

domino-300-300
cpu 134 3.40 6.01 3.59
ccks 1377M 27M 40M 27M

domino-500-500
cpu 951 15.0 21.4 15.2
ccks 10542M 125M 187M 125M

domino-800-800
cpu 6144 60 87 59
ccks 68778M 511M 767M 511M

Table 1: Establishing Arc Consistency on Domino instances

Next, we analyse the cost of managing data structures with
respect to backtracking. On the one hand, it is easy to embed
AC3rm in MAC and SAC algorithms as these algorithms do
not require any maintenance of data structures during MAC
search and SAC inference. On the other hand, embedding
an optimal algorithm such as AC2001 entails an extra devel-
opment effort, with, in addition, an overhead at the execu-
tion. For MAC2001, this overhead is O(μed) per branch of
the binary tree built by MAC as we have to take into account
the reinitialization of a structure (called last) which contains
smallest found supports. Here, μ denotes the number of refu-
tations of the branch, e denotes the number of constraints and
d the greatest domain size.

2 Constraint Networks

A Constraint Network (CN) P is a pair (X , C ) where X is
a set of n variables and C a set of e constraints. Each vari-
able x ∈ X has an associated domain, denoted by dom(x),
which contains the set of values allowed for x. Each con-
straint C ∈ C involves a subset of variables of X , called
scope and denoted scp(C), and has an associated relation,
denoted rel(C), which contains the set of tuples allowed for
the variables of its scope. The initial (resp. current) domain
of a variable X is denoted dominit(X) (resp. dom(X)). For
each r-ary constraint C such that scp(C) = {X1, . . . , Xr},
we have: rel(C) ⊆

∏r
i=1 dominit(Xi) where

∏
denotes the

Cartesian product. Also, for any element t = (a1, . . . , ar),
called tuple, of

∏r

i=1 dominit(Xi), t[Xi] denotes the value
ai. It is also important to note that, assuming a total order on
domains, tuples can be ordered using a lexicographic order
≺. To simplify the presentation of some algorithms, we will
use two special values ⊥ and � such that any tuple t is such
that ⊥ ≺ t ≺ �.

Definition 1 Let C be a r-ary constraint such that scp(C) =
{X1, . . . , Xr}, a r-tuple t of

∏r

i=1 dominit(Xi) is said to be
allowed by C iff t ∈ rel(C), valid iff ∀Xi ∈ scp(C), t[Xi] ∈
dom(Xi), and a support in C iff it is allowed by C and valid.

A tuple t will be said to be a support of (Xi, a) in C when
t is a support in C such that t[Xi] = a. Determining if a tuple
is allowed is called a constraint check. A solution to a CN is
an assignment of values to all the variables such that all the
constraints are satisfied. A CN is said to be satisfiable iff it ad-
mits at least one solution. The Constraint Satisfaction Prob-
lem (CSP) is the NP-complete task of determining whether a
given CN is satisfiable. A CSP instance is then defined by a
CN, and solving it involves either finding one (or more) solu-
tion or determining its unsatisfiability. Arc Consistency (AC)
remains the central property of CNs and establishing AC on

a given network P involves removing all values that are not
arc consistent.

Definition 2 Let P = (X , C ) be a CN. A pair (X, a), with
X ∈ X and a ∈ dom(X), is arc consistent (AC) iff ∀C ∈ C

| X ∈ scp(C), there exists a support of (X, a) in C. P is AC
iff ∀X ∈X , dom(X) �= ∅ and ∀a ∈ dom(X), (X, a) is AC.

The following definitions will be useful later to analyze the
worst-case time complexity of some algorithms.

Definition 3 A cn-value is a triplet of the form (C,X ,a)
where C ∈ C , X ∈ scp(C) and a ∈ dom(X).

Definition 4 Let (C,X ,a) be a cn-value such that scp(C) =
{X, Y }.

• The number of supports of (X, a) in C, denoted
s(C,X,a), corresponds to the size of the set {b ∈
dom(Y ) | (a, b) ∈ rel(C)}.

• The number of conflicts of (X, a) in C, denoted c(C,X,a),

corresponds to the size of the set {b ∈ dom(Y ) |
(a, b) /∈ rel(C)}.

Note that the number of cn-values that can be built from a
binary constraint network is O(ed). To sum up all evaluations
of an expression Expr(C, X, a) wrt all the cn-values of a
given CN, we will write:

∑

C,X,a

Expr(C, X, a).

3 AC3rm

In this section, we introduce AC3rm, and we propose a de-
tailed analysis of its complexity. It is important to remark that
our algorithm is given in the general case (i.e. it can be ap-
plied to instances involving constraints of any arity). Hence,
strictly speaking, its description corresponds to GAC3rm
since for non binary constraints, one usually talks about Gen-
eralized Arc Consistency (GAC). However, to simplify, theo-
retical complexities will be given for binary instances. More
precisely, for all theoretical results, we will consider given a
binary CN P = (X , C ) such that, to simplify and without
any loss of generality, each domain exactly contains d values.

To establish (generalized) arc consistency on a given CN,
doAC (Algorithm 1) can be called. It returns true when the
given CN can be made arc-consistent and it is described in
the context of a coarse-grained algorithm. Initially, all pairs
(C, X), called arcs, are put in a set Q. Once Q has been
initialized, each arc is revised in turn (line 4), and when a
revision is effective (at least one value has been removed), the
set Q has to be updated (line 6). A revision is performed by a
call to the function revise, and entails removing values that
have become inconsistent with respect to C. This function

Algorithm 1 doAC (P = (X , C ) : CN): Boolean

1: Q← {(C, X) | C ∈ C ∧X ∈ scp(C)}
2: while Q �= ∅ do
3: pick and delete (C, X) from Q
4: if revise(C,X) then
5: if dom(X) = ∅ then return false
6: Q← Q∪{(C′, Y )|C′ �= C, Y �= X, {X, Y } ⊆ scp(C′)
7: return true
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Algorithm 2 revise(C : Constraint, X : Variable) : Boolean

1: nbElements← | dom(X) |
2: for each a ∈ dom(X) do
3: if supp[C, X, a] is valid then continue
4: t← seekSupport(C, X, a)
5: if t = 	 then remove a from dom(X)
6: else for each Y ∈ scp(C) do supp[C,Y, t[Y ]]← t

7: return nbElements �= |dom(X) |

Algorithm 3 seekSupport(C, X, a) : Tuple

1: t← ⊥
2: while t �= 	 do
3: if C(t) then return t
4: t← setNextTuple(C,X, a, t)
5: return 	

returns true when the revision is effective. The algorithm is
stopped when a domain wipe-out occurs (line 5) or the set Q
becomes empty.

Following the principle used in AC3.2 [Lecoutre et al.,
2003], we propose a mechanism to partially benefit from
(positive) multi-directionality. The idea is that, when a sup-
port t is found, it can be recorded for all values occurring in t.
For example, let us consider a binary constraint C such that
scp(C) = {X, Y }. If (a, b) is found in C when looking for
a support of either (X, a) or (Y, b), in both cases, it can be
recorded as being the last found support of (X, a) in C and
the last found support of (Y, b) in C. In fact, one can sim-
ply record for any cn-value (C,X ,a) the last found support
of (X ,a) in C. However, here, unlike AC2001, by exploit-
ing multi-directionality, we cannot benefit anymore from uni-
directionality. It means that, when the last found support is no
more valid, one has to search for a new support from scratch.
Indeed, by using multi-directionality, we have no guarantee
that the last found support corresponds to the last smallest
support. This new algorithm requires the introduction of a
three-dimensional array, denoted supp. This data structure is
used to store for any cn-value (C,X ,a) the last found support
of (X ,a) in C. Initially, any element of the structure supp
must be set to ⊥. Each revision (see Algorithm 2) involves
testing for any value the validity of the last found support (line
3) and if, it fails, a search for a new support is started from
scratch (see Algorithm 3). It uses setNextTuple which re-
turns either the smallest valid tuple t′ built from C such that
t ≺ t′ and t′[X ] = a, or � if it does not exist. Without any
loss of generality, we assume that any call to setNextTuple
is performed in constant time. Note that C(t) must be under-
stood as a constraint check and that C(⊥) returns false. If
this search succeeds, structures corresponding to last found
supports are updated (line 6).

To summarize, the structure supp allows to record what
we call multi-directional residues. Of course, it is possible
to exploit simpler residues [Likitvivatanavong et al., 2004],
called here uni-directional residues, by not exploiting multi-
directionality. We can then derive a new algorithm, denoted
AC3r, by replacing line 6 of Algorithm 2 with:

else supp[C, X, a]← t
However, with AC3r, when AC must be established stand-

alone, rather than searching a new support from scratch when
the residue is no more valid, it is more natural and more effi-
cient to perform the search using the value of the residue as
a resumption point. This is exactly what is done by AC2001.
It means that, in practice, AC3r is interesting only when it is
embedded in MAC [Likitvivatanavong et al., 2004] or a SAC
algorithm.

AC3rm has a space complexity of O(ed) and a non-optimal
worst-case time complexity of O(ed3). However, it is possi-
ble to refine this result as follows:

Proposition 1 In AC3rm, the worst-case cumulated time
complexity of seekSupport for a cn-value (C,X ,a) is O(cs+
d) with c = c(C,X,a) and s = s(C,X,a).

Proof. The worst-case in terms of constraint checks is when:
1) only one value is removed from dominit(Y ) between two
calls to revise(C,X), 2) values of dominit(Y ) are ordered
in such a way that the c first values correspond to values
which do not support a and the s last values correspond to
values which support a, 3) the first s values removed from
dominit(Y ) systematically correspond to the last found sup-
ports recorded by AC3rm (until a domain wipe-out is en-
countered). For these s + 1 calls (note the initial call) to
seekSupport(C, X, a), we obtain s ∗ (c + 1) + c constraint
checks. On the other hand, the number of other operations
(validity checks and updates of the supp structure) in revise
performed with respect to a is bounded by d. Then, we have
a worst-case cumulated complexity in O(sc + s + c + d) =
O(cs + d). �

What is interesting with AC3rm is that, even if this al-
gorithm is not optimal, it is adapted to instances involving
constraints of low or high tightness. Indeed, when the con-
straint tightness is low (more precisely, when c is O(1)) or
high (when s is O(1)), the worst-case cumulated time com-
plexity becomes O(d), what is optimal. On the other hand,
sc is maximized when c = s = d/2, what corresponds to
a medium constraint tightness. However, AC3rm can also
be expected to have a good (practical) behavior for medium
constraint tightness since, on average (i.e. asymptotically),
considering random constraints, 2 constraint checks are nec-
essary to find a support when the tightness is 0.5. We can
deduce the following result.

Proposition 2 The worst-case time complexity of AC3rm is:
O(ed2 +

∑

C,X,a

c(C,X,a) ∗ s(C,X,a)).

Table 2 indicates the overall worst-case complexities1

to establish arc consistency with algorithms AC3, AC3rm,
AC2001 and AC3.2. It is also interesting to look at worst-
case cumulated time complexities to seek successive supports
for a given cn-value (C,X ,a). Even if it has not been intro-
duced earlier, it is easy to show that optimal algorithms admit
a cumulated complexity in O(d). By observing Table 3, we
do learn that AC3 and AC3rm are optimal when the tightness
is low (i.e. c is O(1)), and that, unlike AC3, AC3rm is also
optimal when the tightness is high (i.e. s is O(1)).

1Due to lack of space, we do not provide the detailed proof of
the original complexities given for AC3.
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Space Time

AC3 O(e + nd) O(d ∗
∑

C,X,a

c(C,X,a) +
∑

C,X,a

s(C,X,a))

AC3rm O(ed) O(ed2 +
∑

C,X,a

c(C,X,a) ∗ s(C,X,a) )

AC2001 O(ed) O(ed2)

AC3.2 O(ed) O(ed2)

Table 2: Worst-case complexities to establish AC.

Tightness

Any Low Medium High

AC3 O(cd + s) O(d) O(d2) O(d2)

AC3rm O(cs + d) O(d) O(d2) O(d)

AC2001 O(d) O(d) O(d) O(d)

AC3.2 O(d) O(d) O(d) O(d)

Table 3: Cumulated worst-case time complexities to seek suc-
cessive supports for a cn-value (C,X ,a). We have c + s = d.

Remark that the complexities given for AC3rm also hold
for AC3r. The advantage of AC3rm is the fact that as we
always record the most recent found supports (by exploit-
ing multi-directionality), there is a greater probability that a
residue be valid. Finally, note that it should be possible to
extend the AC-* framework [Régin, 2005] in order to include
the concept of residues.

4 Maintaining arc consistency

In this section, we focus on maintaining arc consistency dur-
ing search. More precisely, we study the impact, in terms of
time and space, of embedding some AC algorithms in MAC.
The MAC algorithm aims at solving a CSP instance and per-
forms a depth-first search with backtracking while maintain-
ing arc consistency. At each step of the search, a variable
assignment is performed followed by a filtering process that
corresponds to enforcing arc-consistency. MAC is based on
a binary branching scheme. It means that, at each step of
the search, a pair (X ,a) is selected where X is an unassigned
variable and a a value in dom(X), and two cases are consid-
ered: the first one corresponds to the assignment X = a and
the second one to the refutation X �= a.

On the other hand, it is important to remark that all known
AC algorithms (including AC3rm) are incremental. An arc-
consistency algorithm is incremental if its worst-case time
complexity is the same when it is applied one time on a
given network P and when it is applied up to nd times on P
where between two consecutive executions at least one value
has been deleted. By exploiting incrementality, one can get
the same complexity, in terms of constraint checks, for any
branch of the search tree as for only one establishment of AC.

For AC3 and AC3rm, the (non optimal) worst-case time
complexity for any branch of the search tree is guaranteed
(by incrementality) even if, meanwhile, sub-trees have been
explored and then backtracking has occurred. However, for
optimal algorithms AC2001 and AC3.2, it is important to
manage the data structure, denoted last, in order to restart
search, after exploring a sub-tree, as if backtracking never
occurred. In this paper, MAC2001 and MAC3.2 correspond
to the algorithms that record the smallest supports that have
been successively found all along the current branch. Note

Space Time (per branch)

MAC3
O(e + nd) O(ed2 + d ∗

∑

C,X,a

c(C,X,a) )

MAC3rm
O(ed) O(ed2 +

∑

C,X,a

c(C,X,a) ∗ s(C,X,a) )

MAC2001 O(min(n, d)ed) O(ed(d + μ))

MAC3.2 O(min(n, d)ed) O(ed(d + μ))

Table 4: Worst-case complexities to run MAC. Time com-
plexity is given for a branch involving μ refutations.

that it is at the price of a space complexity in O(min(n,d)ed)
[van Dongen, 2004].

Proposition 3 In MAC2001 and MAC3.2, the worst-case cu-
mulated time complexity of reinitializing the structure last is
O(μed) for any branch involving μ refutations.

Proof. For any refutation occurring in a branch, we need
to restore the data structure last. In the worst-case, we have
at most e ∗ 2 ∗ d operations since for each cn-value (C,X ,a),
we have to reinitialize last[C, X, a] to a stacked value (or, for
variants, to ⊥ or a new recomputed value). Hence, we obtain
(μed). �

If μ = 0, it means that a solution has been found with-
out any backtracking. In this case, there is no need to restore
the structure last as the instance is solved. At the opposite,
we know that the longest branch that can be built contains
nd edges as follows: for each variable X , there are exactly
d− 1 edges that correspond to refutations and only one edge
that corresponds to an assignment. Then, we obtain a worst-
case cumulated time complexities of reinitializing the struc-
ture last in O(end2) and although it is omitted here, we can
also show that it is Ω(end2).

One nice feature of AC3rm is that, when they are em-
bedded in MAC, no initialization is necessary at each step
since the principle of this algorithm is to record the last found
support which does not systematically correspond to the last
smallest one. In fact, it was reported in [Lecoutre et al., 2003]

that it is worthwhile to leave unchanged last found supports
(using AC3.2) while backtracking, having the benefit of a so-
called memorization effect. It means that a support found at a
given depth of the search has the opportunity to be still valid
at a weaker depth of the search (after backtracking). In other
words, it is worthwhile to exploit residues during search. The
importance of limiting in MAC the overhead of maintain-
ing the data structures employed by the embedded AC al-
gorithm was pointed out in [Likitvivatanavong et al., 2004]

(but no complexity result was given). In fact, MAC3r corre-
sponds to the algorithm mac3.1residue introduced in [Likit-
vivatanavong et al., 2004].

By taking into account Proposition 3 and Table 2, we ob-
tain the results given in Table 4. It appears that, for the
longest branch, when μ > d2, MAC3 and MAC3rm have
a better worst-case time complexity than other MAC algo-
rithms based on optimal AC algorithms since we know that,
for any branch, due to incrementality, MAC3 and MAC3rm
are O(ed3). Also, if the tightness of any constraint is either
low or high (more precisely, if for any cn-value (C,X ,a), ei-
ther c(C,X,a) is O(1) or s(C,X,a) is O(1)), then MAC3rm ad-

mits an optimal worst-case time complexity in O(ed2) per
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MAC embedding

AC3 AC3rm AC2001 AC3.2

Classes of random instances (mean results for 100 instances)

〈40-8-753-0.1〉
cpu 22.68 22.96 34.38 33.35

ccks 81M 17M 24M 16M

〈40-11-414-0.2〉
cpu 21.19 19.23 27.91 26.34

ccks 97M 22M 28M 19M

〈40-16-250-0.35〉
cpu 21.86 18.31 25.18 23.38

ccks 121M 28M 33M 24M

〈40-25-180-0.5〉
cpu 37.35 25.53 35.30 32.27

ccks 233M 56M 60M 45M

〈40-40-135-0.65〉
cpu 37.62 26.62 35.98 34.45

ccks 344M 83M 82M 64M

〈40-80-103-0.8〉
cpu 89.01 51.62 67.74 61.48

ccks 1072M 240M 225M 180M

〈40-180-84-0.9〉
cpu 166.12 76.99 98.69 87.50

ccks 2540M 506M 479M 381M

Academic instances

ehi-85-12
cpu 394 377 557 511

ccks 642M 60M 190M 83M

geo-50-20-19
cpu 194 157 278 263

ccks 1117M 244M 284M 199M

qa-5
cpu 31.60 28.31 37.49 36.02

ccks 130M 36M 38M 27M

qcp-819
cpu 139 143 215 208

ccks 116M 21M 41M 25M

Real-world instances

fapp01-0200-9
cpu 0.54 0.37 0.60 0.60

ccks 6905K 3080K 3018K 2778K

js-enddr2-3
cpu 53.66 29.08 39.24 29.60

ccks 596M 104M 88M 48M

scen-11
cpu 15.67 11.88 16.26 14.58

ccks 92M 18M 15M 10M

graph-10
cpu 0.64 0.54 0.69 0.68

ccks 4842K 2216K 2228K 1925K

Table 5: Cost of running MAC

branch. In this case, MAC3rm outperforms MAC2001 as
soon as μ > d. These observations suggest that MAC3rm
should be very competitive.

5 Experiments

To compare the different algorithms mentioned in this paper,
we have performed a vast experimentation (run on a PC Pen-
tium IV 2.4GHz 512MB under Linux) with respect to ran-
dom, academic and real-world problems. Performances have
been measured in terms of the CPU time in seconds (cpu) and
the number of constraint checks (ccks).

To start, we have tested MAC (equipped with dom/deg)
by considering 7 classes of binary random instances situated
at the phase transition of search. For each class 〈n,d,e,t〉,
defined as usually, 100 instances have been generated. The
tightness t denotes the probability that a pair of values is al-
lowed by a relation. What is interesting here is that a signifi-
cant sampling of domain sizes, densities and tightnesses is in-
troduced. In Table 5, we can observe the results obtained with
MAC embedding the various AC algorithms. As expected,
the best embedded algorithms are AC3 and AC3rm when the
tightness is low (here 0.1) and AC3rm when the tightness is
high (here, 0.9). Also, AC3rm is the best when the tight-
ness is medium (here 0.5) as expected on random instances.
All these results are confirmed for some representative se-
lected academic and real-world instances. Clearly, MAC3rm
outperform all other MAC algorithms in terms of cpu while
MAC3.2 is the best (although beaten on a few instances by

SAC − 1 embedding

AC3 AC3rm AC2001 AC3.2

Academic instances

domino-300-300
cpu 446.32 9.56 14.40 9.67

ccks 1376M 26M 40M 26M

domino-500-100
cpu 4.37 0.53 0.71 0.57

ccks 88M 4950K 7425K 4950K

geo-50-20-19
cpu 1.18 0.74 1.49 1.24

ccks 9525K 1165K 2671K 1157K

qa-5
cpu 1.22 0.89 1.91 1.34

ccks 10M 3104K 5001K 3085K

Real-world instances

fapp01-0200-9
cpu 637 158 312 192

ccks 10047M 905M 1795M 904M

js-enddr2-3
cpu 58.95 12.35 24.66 14.38

ccks 980M 54M 128M 55M

graph-10
cpu 980 439 836 581

ccks 12036M 1307M 2467M 1303M

scen-11
cpu 44.89 21.07 56.03 53.21

ccks 479M 33M 52M 37M

Table 6: Cost of establishing SAC-1

MAC3rm) in terms of constraint checks. Interestingly, in an
overall analysis, we can remark that MAC3rm and MAC2001
roughly perform the same number of constraint checks. As,
on the other hand, MAC3rm do not require any data struc-
ture to be maintained, it explains why it is the quickest ap-
proach. These results confirm the results obtained for MAC3r
(mac3.1residue) in [Likitvivatanavong et al., 2004] which has
a behaviour similar to MAC3rm (due to lack of space, results
for MAC3r are not presented).

We have then embedded AC algorithms in SAC-1. In Ta-
ble 6, one can observe that, for domino instances which in-
volve constraints of high tightness, AC3rm clearly shows its
superiority to AC3. For real-world instances, the gap be-
tween AC3rm and the other algorithms increases. For exam-
ple, SAC-1 embedding AC3rm is about 3 times more efficient
than SAC-1 embedding AC2001 on scen11 and 4 times more
efficient than SAC-1 embedding AC3 on fapp01-0200-9.

6 Residues for Non Binary Constraints

One can wonder what is the behaviour of an algorithm that
exploits residues when applied to non binary instances. First,
it is important to remark that seeking a support of a cn-value
from scratch requires iterating O(dr−1) tuples in the worst-
case for a constraint of arity r. We then obtain a worst-case
cumulated time complexity of seeking a support of a given
cn-value in O(r2dr) for GAC3 and O(rdr−1) for GAC2001
[Bessière et al., 2005] since we consider that a constraint
check is O(r) and since there are O(rd) potential calls to the
specific seekSupport function. Then, we can observe that
there is a difference by a factor dr. It means that the differ-
ence between the two algorithms grows linearly with r.

On the other hand, if we assume that c > 0 and s > 0
respectively denote the number of forbidden and allowed tu-
ples of the constraint, then we obtain, by generalizing our
results of Section 3, a complexity in O(crdr−1) for GAC3
and in O(cs) for GAC3rm. We can then deduce that the
worst-case cumulated time complexity of seeking a support is
O(min(c, rd).rdr−1) for GAC3 and O(min(csr, r2dr)) for
GAC3rm. If c = O(1) or s = O(1), we obtain O(rdr−1) for
GAC3rm as c+ s = dr−1, that is to say optimality. However,
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MGAC embedding
Instance GAC3 GAC3r GAC3rm GAC2001

Random instances (mean results for 10 instances - constraints are of arity 6)

〈20-6-36-0.55〉
cpu 13.1 8.7 8.0 10.2
ccks 12M 6481K 4997K 6825K

〈20-8-24-0.75〉
cpu 51.7 31.8 27.7 34.6
ccks 48M 26M 20M 26M

〈20-10-14-0.95〉
cpu 220 135 102 135
ccks 249M 151M 108M 149M

〈20-20-15-0.99〉
cpu 869 489 301 351
ccks 2255M 1289M 785M 887M

Structured instances

tsp-20-366
cpu 387 242 243 266
ccks 607M 370 364M 387M

gr-44-9-a3
cpu 73.1 37.2 38.4 56.3
ccks 166M 44M 41M 74M

gr-44-10-a3
cpu 2945 1401 1465 2129
ccks 6819M 1513M 1527M 2914M

series-14
cpu 233 218 217 312
ccks 1135M 531M 490M 618M

renault
cpu 25.0 25.4 16.2 25.2
ccks 68M 66M 42M 66M

Table 7: Cost of running MGAC

in practice, the likelihood of having small (bounded) values
of c or s when dealing with non binary constraints is weak.

We have performed a preliminary experimentation by
maintaining GAC algorithms during search on series of ran-
dom non binary instances. Here, we chose constraints of arity
6 and studied the behaviour of the algorithm for a tightness
t ∈ {0.55, 0, 75, 0.95, 0.99}. For small values of t, we ob-
served (as in the binary case) that the difference between all
algorithms was limited. On these random instances, one can
observe in Table 7 that GAC3rm and GAC3.2 are the most
efficient embedded algorithms. Of course, when the tightness
is high, GAC3 is penalized and GAC3r is less efficient then
GAC3rm as exploiting multi-directionality pays off. On non
binary structured instances of the 2005 CSP solver competi-
tion, one can see the good behaviour of GAC3r and GAC3rm.

7 Conclusion

In this paper, we have introduced some theoretical results
about the use of residual supports, or residues, in Arc Consis-
tency algorithms. The concept of residue has been introduced
under its multi-directional form in [Lecoutre et al., 2003]

and under its uni-directional form in [Likitvivatanavong et
al., 2004]. We have first proved that the basic algorithm
AC3 which is optimal for low constraint tightness, also be-
comes optimal for high constraint tightness when it is ex-
tended to exploit uni-directional or multi-directional residues.
Furthermore, these extensions to AC3, respectively called
AC3r and AC3rm, can be expected to have a good (prac-
tical) behavior for medium tightness as asymptotically, for
random constraints, 2 constraint checks are necessary to find
a support when the tightness is 0.5. Then, we have shown
that MAC3rm admit a better worst-case time complexity than
MAC2001 for a branch of the binary search tree when either
μ > d2 or μ > d and the tightness of any constraint is low or
high, with μ denoting the number of refutations of the branch.

On the practical side, we have run a vast experimentation
including MAC and SAC-1 algorithms on binary and non
binary instances. The results that we have obtained clearly

show the interest of exploiting residues as AC3rm (embed-
ded in MAC or SAC-1) were almost always the quickest
algorithms (only beaten by AC3.2 on some non binary in-
stances). It confirms for MAC3r (mac3.1residue) the results
presented in [Likitvivatanavong et al., 2004]. In terms of con-
straint checks, it appears that AC3rm is quite close to AC2001
(but usually beaten by AC3.2). We also noted that AC3rm
was more robust than AC3r on non binary instances and con-
straints of high tightness.

Finally, residues can be seen as a lazy structure related to
the concept of watched literals [Moskewicz et al., 2001]. In
both cases, no maintenance of data structures upon backtrack-
ing is required. We also want to emphasize that implementing
(G)AC3rm (and embedding it in MAC or SAC) is a quite easy
task. It should be compared with the intricacy of fine-grained
algorithms which requires a clever use of data structures, in
particular when applied to non binary instances. The simplic-
ity of AC3rm offers another scientific advantage: the easy
reproducibility of the experimentation by other researchers.
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