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Abstract

This paper studies a boundary value problem of nonlinear second-order q-difference
equations with non-separated boundary conditions. As a first step, the given
boundary value problem is converted to an equivalent integral operator equation by
using the q-difference calculus. Then the existence and uniqueness of solutions of
the problem is proved via the resulting integral operator equation by means of
Leray-Schauder nonlinear alternative and some standard fixed point theorems. Our
approach is simpler than the one involving the typical series solution form of q-
difference equations. The results corresponding to a second-order q-difference
equation with anti-periodic boundary conditions appear as a special case.
Furthermore, our results reduce to the corresponding results for classical second-
order boundary value problems with non-separated boundary conditions in the limit
q ® 1, which provides a useful check.
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1 Introduction
In this paper, we discuss the existence of solutions for the second-order q-difference

equation with non-separated boundary conditions{
D2

qu(t) = f (t, u(t)), t ∈ I,

u(0) = ηu(T), Dqu(0) = ηDqu(T),
(1:1)

where f ∈ C(I × R,R), I = [0,T] ∩ qN̄, qN̄ := {qn : n ∈ N} ∪ {0} and T ∈ qN̄ is a fixed

constant, and h ≠ 1 is a fixed real number.

The study of q-difference equations, initiated in the beginning of the 20th century

([1-4]), and, up to date, it has evolved into a multidisciplinary subject, (for example,

see ([5-15]) and references therein). For some recent work on q-difference equations,

we refer the reader to the papers ([16-23]). However, the theory of boundary value

problems for nonlinear q-difference equations is still in the initial stage and many

aspects of this theory need to be explored.

The main objective of this paper is to develop some existence and uniqueness results

for the boundary value problem (1.1). Our results are based on a variety of fixed point

theorems such as Banach’s contraction principle, Leray-Schauder nonlinear alternative
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and Krasnoselskii’s fixed point theorem. Some illustrative examples and special cases

are also discussed.

2 Preliminaries
Let us recall some basic concepts of q-calculus [14,15].

For 0 <q < 1, we define the q-derivative of a real valued function f as

Dqf (t) =
f (t) − f (qt)
(1 − q)t

, Dqf (0) = lim
t→0

Dqf (t).

The higher order q-derivatives are given by

D0
q f (t) = f (t), Dn

qf (t) = DqD
n−1
q f (t), n ∈ N.

The q-integral of a function f defined in the interval Ja = [a, b] ∩ qN̄ is given by

∫ x

a
f (t)dqt :=

∞∑
n=0

(1 − q)qn[xf (xqn) − af (qna)], x ∈ Ja,

and for a = 0, we denote

Iqf (x) =
∫ x

0
f (t)dqt =

∞∑
n=0

x(1 − q)qnf (xqn),

provided the series converges. If a ∈ J0 = [0, b] ∩ qN̄ and f is defined in the interval J0,

then∫ b

a
f (t)dqt =

∫ b

0
f (t)dqt −

∫ a

0
f (t)dqt.

Similarly, we have

I0q f (t) = f (t), Inq f (t) = IqI
n−1
q f (t), n ∈ N.

Observe that

DqIqf (x) = f (x), (2:1)

and if f is continuous at x = 0, then

IqDqf (x) = f (x) − f (0).

In q-calculus, the product rule and integration by parts formula are

Dq(gh)(t) = (Dqg(t))h(t) + g(qt)Dqh(t), (2:2)

∫ x

0
f (t)Dqg(t)dqt = [f (t)g(t)]x0 −

∫ x

0
Dqf (t)g(qt)dqt. (2:3)

In the limit q ® 1 the above results correspond to their counterparts in standard

calculus.

Lemma 2.1 The unique solution of (1.1) is given by

u(t) =
∫ t

0
(t − qs)f (s, u(s))dqs +

η

(η − 1)2

∫ T

0
[T + (1 − η)(t − qs)]f (s, u(s))dqs. (2:4)
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Proof. Integrating the equation D2
qu = f (t, u), we get

Dqu(t) =
∫ t

0
f (s, u(s))dqs + a1. (2:5)

Integrating (2.5), we obtain

u(t) =
∫ t

0

(∫ ν

0
f (s, u(s))dqs

)
dqν + a1t + a2, (2:6)

which, on changing the order of integration, takes the form

u(t) =
∫ t

0

(∫ t

qs
f (s, u(s))dqν

)
dqs + a1t + a2. (2:7)

Alternatively, (2.7) can be written as

u(t) =
∫ t

0
(t − qs)f (s, u(s))dqs + a1t + a2. (2:8)

Here a1,a2 are arbitrary constants. Conversely, differentiating (2.8) by applying the

formulae (2.1) and (2.2) of q-calculus, one can easily obtain D2
qu = f (t, u).

Now, using the boundary conditions of (1.1) in (2.8), we find that

a1 =
−η

(η − 1)

∫ T

0
f (s, u(s))dqs,

a2 =
η2T

(η − 1)2

∫ T

0
f (s, u(s))dqs − η

(η − 1)

∫ T

0
(T − qs)f (s, u(s))dqs.

Substituting the values of a1 and a2 in (2.8), we obtain (2.4). This completes the

proof.

For the forthcoming analysis, let C = C(I,R) denotes the Banach space of all contin-

uous functions from I to ℝ endowed with the norm defined by ║x║ = sup{|x(t)|, t Î I}.

Furthermore, we set

�1 = sup
t∈I

{
t2

1 + q
+

|η(1 + ηq)|T2

(1 + q)(η − 1)2
+

∣∣∣∣ η

η − 1

∣∣∣∣ tT
}

=
(

1
1 + q

+
|η(1 + ηq)|

(1 + q)(η − 1)2
+

∣∣∣∣ η

η − 1

∣∣∣∣
)
T2.

(2:9)

Theorem 2.1 Let f: I × ℝ ® ℝ be a continuous function satisfying the condition

|(H0)
∣∣f (t, u) − f (t, v)

∣∣ ≤ L |u − v| ,∀t ∈ I, u, v ∈ R,

where L is a Lipschitz constant. Then the boundary value problem (1.1) has a unique

solution, provided Λ = LΛ 1 < 1, where Λ1 is given by (2.9).

Proof. We define � : C → C by

�u(t) =
∫ t

0
(t − qs)f (s, u(s))dqs +

η

(η − 1)2

∫ T

0
[T + (1 − η)(t − qs)]f (s, u(s))dqs (2:10)
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for u ∈ C and t Î I. Let us set suptÎI |f(t, 0)| = M0 and choose

r ≥ M0�1

1 − δ
, (2:11)

where δ is such that Λ ≤ δ < 1. Now we show that �Br ⊂ Br , where

Br = {u ∈ C : ‖u‖ ≤ r} . For u Î Br, we have

∥∥(�u)(t)
∥∥ = sup

t∈I

∣∣∣∣
∫ t

0
(t − qs)f (s, u(s))dqs

+
η

(η − 1)2

∫ T

0

[
T + (1 − η)(t − qs)

]
f (s, u(s))dqs

∣∣∣∣
≤ sup

t∈I

∣∣∣∣
∫ t

0
(t − qs)(

∣∣f (s, u(s)) − f (s, 0)
∣∣ + ∣∣f (s, 0)∣∣)dqs

+
η

(η − 1)2

∫ T

0

[
T + (1 − η)(t − qs)

]
(
∣∣f (s, u(s)) − f (s, 0)

∣∣ + ∣∣f (s, 0)∣∣)dqs
∣∣∣∣

≤ sup
t∈I

∣∣∣∣
∫ t

0
(t − qs)(L

∣∣u(s)∣∣ + ∣∣f (s, 0)∣∣)dqs
+

η

(η − 1)2

∫ T

0

[
T + (1 − η)(t − qs)

]
(L

∣∣u(s)∣∣ + ∣∣f (s, 0)∣∣)dqs
∣∣∣∣

≤ (L ‖u‖ +M0) sup
t∈I

∣∣∣∣
∫ t

0
(t − qs)dqs

+
η

(η − 1)2

∫ T

0
[T + (1 − η)(t − qs)]dqs

∣∣
≤ (L ‖u‖ +M0) sup

t∈I

{
t2

1 + q
+

∣∣η(1 + ηq)
∣∣ T2

(1 + q)(η − 1)2
+

∣∣∣∣ η

η − 1

∣∣∣∣ tT
}

≤ �1(Lr +M0) ≤ (� + 1 − δ)r ≤ r.

Now, for u, v ∈ C and for each tÎI, we obtain∥∥(�u)(t) − (�v)(t)
∥∥

= sup
t∈I

∣∣(�u)(t) − (�v)(t)
∣∣

≤ sup
t∈I

∣∣∣∣
∫ t

0
(t − qs)[f (s, u(s)) − f (s, v(s))]dqs

+
η

(η − 1)2

∫ T

0

[
T + (1 − η)(t − qs)

] [
f (s, u(s)) − f (s, v(s))

]
dqs

∣∣∣∣
≤ L sup

t∈I

∣∣∣∣
∫ t

0
(t − qs)dqs +

η

(η − 1)2

∫ T

0
[T + (1 − η)(t − qs)]dqs

∣∣∣∣ ‖u − v‖

≤ L sup
t∈I

{
t2

1 + q
+

∣∣η(1 + ηq)
∣∣T2

(1 + q)(η − 1)2
+

∣∣∣∣ η

η − 1

∣∣∣∣ tT
}

‖u − v‖

≤ � ‖u − v‖ ,
where

� = L

(
1

1 + q
+

∣∣η(1 + ηq)
∣∣

(1 + q)(η − 1)2
+

∣∣∣∣ η

η − 1

∣∣∣∣
)
T2,
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which depends only on the parameters involved in the problem. As Λ < 1, therefore

Ϝ is a contraction. Thus, the conclusion of the theorem follows by Banach’s contraction

mapping principle. This completes the proof.

The next existence result is based on Leray-Schauder alternative.

Theorem 2.2 (Nonlinear alternative for single valued maps)[24]. Let E be a Banach

space, C a closed, convex subset of E, U an open subset of C and 0Î U. Suppose that F:

Ū ®C is a continuous, compact (that is, F(Ū) is a relatively compact subset of C) map.

Then either

(i) F has a fixed point in Ū, or

(ii) there is a u Î ∂U (the boundary of U in C) and l Î (0,1) with u = lF(u).

Theorem 2.3 Assume that:

(H1) there exists a continuous nondecreasing function ψ: [0,∞) ® (0,∞) and a function

p Î L1(I,ℝ+) such that∣∣f (t, u)∣∣ ≤ p(t)ψ(|u|) for each (t, u) ∈ I × R;

(H2) there exists a number M < 0 such that

M

T
(
1 +

|η| (1 + |1 − η|)
(η − 1)2

)
ψ(M)

∥∥p∥∥ L1 > 1,

where

‖p‖L1 =
∫ T

0
p(s)dqs �= 0.

Then the BVP (1.1) has at least one solution.

Proof. We define � : C → C as in (2.10). The proof consists of several steps.

(i) F maps bounded sets into bounded sets in C(I,ℝ).

Let Bk = {uÎ C(I,ℝ): ║u║ ≤ k} be a bounded set in C(I,ℝ) and u Î Bk. Then we have

∣∣�u(t)
∣∣ ≤

∫ t

0

∣∣t − qs
∣∣ ∣∣f (s, u(s))∣∣ dqs + |η|

(η − 1)2

∫ T

0

∣∣T + (1 − η)(t − qs)
∣∣ ∣∣f (s, u(s))∣∣ dqs

≤ T
(
1 +

|η| (1 + |1 − η|)
(η − 1)2

)∫ T

0
p(s)ψ(‖u‖)dqs

≤ T
(
1 +

|η| (1 + |1 − η|)
(η − 1)2

)
ψ(k)

∫ T

0
p(s)dqs.

Thus

‖�u‖ ≤ T
(
1 +

|η|(1 + |1 − η|)
(η − 1)2

)
ψ(k)‖p‖L1 .

(ii) F maps bounded sets into equicontinuous sets of C(I,ℝ).

Let r1, r2Î I, r1 <r2 and Bk be a bounded set of C(I, ℝ) as before. Then for u Î Bk we

have
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∣∣�u(r2) − �u(r1)
∣∣ = ∣∣∣∣

∫ r2

0
(r2 − qs)f (s, u(s))dqs −

∫ r1

0
(r1 − qs)f (s, u(s))dqs

+
η(1 − η)

(η − 1)2

∫ T

0
(r2 − r1)f (s, u(s))dqs

∣∣∣∣
=

∣∣∣∣
∫ r1

0
(r2 − r1)f (s, u(s))dqs +

∫ r2

r1
(r2 − qs)f (s, u(s))dqs

+
η(1 − η)

(η − 1)2

∫ T

0
(r2 − r1)f (s, u(s))dqs

∣∣∣∣
≤

∫ r1

0
|r2 − r1|p(s)ψ(k)dqs +

∫ r2

r1

∣∣r2 − qs
∣∣ p(s)ψ(k)dqs

+
|η|

|1 − η|
∫ T

0
|r2 − r1| p(s)ψ(k)dqs.

The right hand side tends to zero as r2 - r1 ® 0. As a consequence of Arzelá-Ascoli

theorem, we can conclude that � : C(I,R) −→ C(I,R) is completely continuous.

(iii) Let l Î (0,1) and let u = λ�u . Then, for t Î I, we have

∣∣u(t)∣∣ = ∣∣λ�u(t)
∣∣ ≤

∫ t

0

∣∣t − qs
∣∣ ∣∣f (s, u(s))∣∣ dqs

+
|η|

(η − 1)2

∫ T

0

∣∣T + (1 − η)(t − qs)
∣∣ ∣∣f (s, u(s))∣∣ dqs

≤ T
(
1 +

|η| (1 + |1 − η|)
(η − 1)2

)
ψ(‖u‖)

∫ T

0
p(s)d,

and consequently

‖u‖
T

(
1 +

|η|(1 + |1 − η|)
(η − 1)2

)
ψ(‖u‖)‖p‖L1

≤ 1.

In view of (H2), there exists M such that ║u║ ≠ M. Let us set

U = {u ∈ C(I,R) : ‖u‖ < M}.

Note that the operator � : U → C(I,R) is continuous and completely continuous

(which is well known to be compact restricted to bounded sets). From the choice of U,

there is no u Î ∂U such that u = λ�(u) for some l Î (0,1). Consequently, by Theorem

2.2, we deduce that Ϝ has a fixed point u Î Ū which is a solution of the problem (1.1).

This completes the proof.

Theorem 2.4 Assume that there exist constants 0 ≤ c < 1/Δ2 and N > 0 such that∣∣f (t, u)∣∣ ≤ c

T2
|u| +Nfor all tÎ I, uÎ C(I,ℝ), where

�2 =
1

1 + q
+

∣∣η(1 + ηq)
∣∣

(1 + q)(η − 1)2
+

∣∣∣∣ η

η − 1

∣∣∣∣ . (2:12)

Then the BVP (1.1) has at least one solution.

Proof. We define � : C → C as in (2.10). As in Theorem 2.3, using the assumption∣∣f (t, u)∣∣ ≤ c

T2
|u| +N (a special form of the condition (H1) with p(t) = 1,

ψ(|u|) = c
T2

|u| +N), we can prove that Ϝ is completely continuous.
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Assume that u = λ�u for some lÎ [0, 1]. For all tÎ I we have∣∣u(t)∣∣ = ∣∣λ�u(t)
∣∣

=

∣∣∣∣
∫ t

0
(t − qs)f (s, u(s))dqs

+
η

(η − 1)2

∫ T

0
[T + (1 − η)(t − qs)]f (s, u(s))dqs

≤
( c
T2

|u| +N
)

�2T
2

≤ �2(c |u| +NT2),

which implies that

‖u‖ ≤ N�2T2

1 − c�2
.

Letting

R =
N�2T2

1 − c�2
+ 1,

we have ║u║ ≤ R. Consequently, by the nonlinear alternative of Leray-Schauder type

[24], this completes the proof.

For next theorem, we need the following fixed point theorem [25].

Theorem 2.5 Let Ω be an open bounded subset of a Banach space E with 0Î Ω and

B : 	̄ → E be a compact operator. Then B has a fixed point in 	̄ provided ║Bu-u║2 ≥

║Bu║2-║u║2, uÎ∂ Ω.

Theorem 2.6 Assume that there exists a positive constant M1 such that

∣∣f (t, u)∣∣ ≤ M1

�1
, ∀t ∈ I, u ∈ [−M1,M1],

where Λ1 is given by (2.9). Then the BVP (1.1) has at least one solution.

Proof. Let us define Γ = {u Î C(I,ℝ): ║u║ <M1}. As in Theorem 2.3, using the

assumption on f(t, u), it can be shown that Ϝ is completely continuous. Thus, in view

of Theorem 2.5, we just need to show that

‖�u‖ ≤ ‖u‖ , ∀u ∈ ∂�. (2:13)

For all t Î I, uÎ ∂ Γ, we have

∣∣�u(t)
∣∣ = ∣∣∣∣

∫ t

0
(t − qs)f (s, u(s))dqs

+
η

(η − 1)2

∫ T

0
[T + (1 − η)(t − qs)]f (s, u(s))dqs

∣∣∣∣
≤

∣∣∣∣
∫ t

0
(t − qs)f (s, u(s))dqs

∣∣∣∣
+

∣∣∣∣ η

(η − 1)2

∫ T

0
[T + (1 − η)(t − qs)]f (s, u(s))dqs

∣∣∣∣
≤ M1

�1

∣∣∣∣
∫ t

0
(t − qs)dqs +

η

(η − 1)2

∫ T

0
[T + (1 − η)(t − qs)]dqs

∣∣∣∣ ,
which yields ‖�u‖ ≤ M1. Since (2.13) holds, therefore, we obtain the result.
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Remark 2.1 In view of the assumption
∣∣f (t, u)∣∣ ≤ c

T2
‖u‖ +N, u ∈ C(I,R), t ∈ I of

Theorem 24, we see that it suffices to take M1 ≥ N�2T2

1 − c�2
.

Before presenting the last result, we state a fixed point theorem due to Krasnoselskii

[26] which is needed to prove the existence of solutions of (1.1).

Theorem 2.7 (Krasnoselskii) Let Ω be a closed convex, bounded and nonempty subset

of a Banach space X. Let �1,�2be the operators such that: (i) �1x +�2y ∈ 	 whenever

x, yÎΩ; (ii) �1is compact and continuous; (iii) �2is a contraction mapping. Then there

exists zÎΩ such that z = �1z +�2z .

Theorem 2.8 Assume that f: I × ℝ ® ℝ is a continuous function satisfying (H0) and

the following assumption holds:

(H3) |f(t, u)| ≤ µ(t), ∀(t, u) Î I × ℝ, and µ ÎC(I, ℝ+).

If ( ∣∣η(1 + ηq)
∣∣

(1 + q)(η − 1)2
+

∣∣∣∣ η

η − 1

∣∣∣∣
)
LT2 < 1, (2:14)

then the boundary value problem (1.1) has at least one solution on I.

Proof. With maxtÎI |µ(t)| = ║µ║, let us fix r ≥ ║µ║Λ1 (Λ1 is given by (2.9)) and

define Br = {u ∈ C : ‖u‖ ≤ r}.
Define the operators �1u and �2u on the set Br as

�1u(t) =
∫ t

0
(t − qs)f (s, u(s))dqs,

�2u(t) =
η

(η − 1)2

∫ T

0
[T + (1 − η)(t − qs)]f (s, u(s))dqs.

For u, υ Î Br, we have

‖�1u +�2v‖ ≤ ‖μ‖
(

1
1 + q

+

∣∣η(1 + ηq
∣∣

(1 + q)(η − 1)2
+

∣∣∣∣ η

η − 1

∣∣∣∣
)
T2 = ‖μ‖�1 ≤ r,

which implies that �1u +�2v ∈ Br . In view of the condition (2.14), it follows that

�2 is a contraction mapping. Continuity of f together with the assumption (H3)

implies that the operator �1 is continuous and uniformly bounded on Br. Let us define

sup(t,u) Î I × Br |f(t,u)| = fmax < ∞. Then, for t1, t2 Î I with t2 <t 1 and u Î Br, we have

∥∥(�1u)(t1) − (�1u)(t2)
∥∥ = sup

(.,u)∈I×Br

∣∣∣∣
∫ t1

0
(t1 − qs)f (s, u(s))dqs

−
∫ t2

0
(t2 − qs)f (s, u(s))dqs

∣∣∣∣
= sup

(.,u)∈I×Br

∣∣∣∣
∫ t1

0
(t1 − t2)f (s, u(s))dqs

+
∫ t1

t2
(t2 − qs)f (s, u(s))dqs

∣∣∣∣
≤ fmax

(∫ t1

0
(t1 − t2)dqs +

∫ t1

t2

∣∣t2 − qs
∣∣ dqs

)
,
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which is independent of u and tends to zero as t2 - t1 ® 0. So �1 is relatively com-

pact on Br. Hence, by the Arzelá-Ascoli Theorem, �1 is compact on Br. Thus all the

assumptions of Theorem 2.7 are satisfied and the conclusion of Theorem 2.7 implies

that the boundary value problem (1.1) has at least one solution on I. This completes

the proof.

3 Examples
Example 3.1. Consider⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

D2
1
2

u(t) = L
(
t2 + cos t + 1 + tan−1u(t)

)
, 0 ≤ t ≤ 1, L > 0,

u(0) =
1
3
u(1), D1

2

u(0) =
1
3
D1
2

u(1).
(3:1)

Here, f(t,u) = L(t2 + cost + 1 + tan−1 u), L to be fixed later, q = 1/2, h = 1/3 and T =

1. Clearly∣∣f (t, u) − f (t, v)
∣∣ ≤ L

∣∣tan−1u − tan−1v
∣∣ ≤ L |u − v|

and

�1 =

(
1

1 + q
+

∣∣η(1 + ηq)
∣∣

(1 + q)(η − 1)2
+

∣∣∣∣ η

η − 1

∣∣∣∣
)
T2 =

21
12

.

For L <
1

�1
=
12
21

, it follows by Theorem 2.1 that the problem (3.1) has a unique

solution.

Example 3.2. Consider the following problem⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

D2
1
2

u(t) =
c

(2π)
sin(2πu(t)) +

|u(t)|
2(1 + |u(t)|) +

1
2
, 0 ≤ t ≤ 1, c ≥ 0,

u(0) =
1
3
u(1), D1

2

u(0) =
1
3
D1
2

u(1).
(3:2)

Here q = 1/2, h = 1/3, T = 1, and c will be fixed later. Observe that

∣∣f (t, u)∣∣ = ∣∣∣∣ c
(2π)

sin(2πu) +
|u(t)|

2(1 + |u(t)|) +
1
2

∣∣∣∣ ≤ c |u| + 1,

and �2 =
21
12

. Obviously N = 1 and we can choose c <
1

�2
=
12
21

. Thus, the conclu-

sion of Theorem 2.4 applies to the problem (3.2).

Remark. By fixing h in the results of this paper, we can obtain some special new

results for q-difference equations. For instance, our results correspond to the ones for

second-order q-difference equations with anti-periodic boundary conditions (u(0) = -u

(T), Dqu(0) = -Dqu(T)) for h = -1, and the results for an initial value problem of sec-

ond-order q-difference equations follow for h = 0. Furthermore, the classical results

for second order boundary value problems with non-separated boundary conditions

follow in the limit q ® 1−.
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