Syracuse University

SURFACE

Northeast Parallel Architecture Center College of Engineering and Computer Science

1994

A Study of Software Development for High Performance
Computing

Manish Parashar
Syracuse University

Salim Hariri
Syracuse University

Tomasz Haupt
Syracuse University

Geoffrey C. Fox
Syracuse University

Follow this and additional works at: https://surface.syr.edu/npac

6‘ Part of the Software Engineering Commons

Recommended Citation

Parashar, Manish; Hariri, Salim; Haupt, Tomasz; and Fox, Geoffrey C., "A Study of Software Development
for High Performance Computing” (1994). Northeast Parallel Architecture Center. 71.
https://surface.syr.edu/npac/71

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Northeast Parallel Architecture Center by an authorized
administrator of SURFACE. For more information, please contact surface@syr.edu.


https://surface.syr.edu/
https://surface.syr.edu/npac
https://surface.syr.edu/lcsmith
https://surface.syr.edu/npac?utm_source=surface.syr.edu%2Fnpac%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=surface.syr.edu%2Fnpac%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/npac/71?utm_source=surface.syr.edu%2Fnpac%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

A Study of Software Development for High
Performance Computing

Manish Parashar, Salim Hariri, Tomasz Haupt and Geoffrey Fox
Northeast Parallel Architectures Center
Syracuse University

Published in
Programming Environments for Massively Parallel Distributed Systems
Birkhauser Verlag, Basel, Switzerland, August, 1994
Also, presented at
[FIP WG10.3 Working Conference on Programming Environments
for Massively Parallel Distributed Systems, 1994

Abstract

Software development in a High Performance Computing (HPC) environment is
non-trivial and requires a thorough understanding of the application and the ar-
chitecture. The objective of this paper is to study the software development process
m a high performance computing environment and to outline the stages typically
encountered in this process. Support required at each stage is also highlighted. The
modeling of stock option pricing is used as a running example in the study.

1 Introduction

Software development in any High Performance (Parallel/Distributed) Computing
(HPC) environment is a non-trivial process and requires a thorough understanding
of the application and the architecture. This is apparent from the fact that applica-
tions currently achieve only a fraction of peak available performance [Zor92]. HPC
software development requires the developer to resolve and tune a large number
of available design options. For example, during the course of software develop-
ment, the developer is required to select the optimal hardware configuration for a
particular application, the best decomposition and mapping of the problem onto
the selected hardware configuration, the best communication and synchronization
strategy to be used, etc. Using conventional techniques, this would require exten-
sive experimentation, data collection and post-processing. The set of reasonable



alternatives that have to be evaluated is very large and selecting the best among
these is a formidable task. As a result the exploitation of the vast potential of
HPC systems will largely be governed by the availability of suitable tools and
application development environments to support application developers.

The objective of this paper is to study the software development process in a
high performance computing environment and to outline the stages encountered.
Further, the nature of supporting tools that can assist the developer at each stage
are identified. Parallel modeling of stock option pricing is used as an illustrative
example in the study. The rest of the document is as organized follows: Section 2
presents the study of HPC software development process and outlines the stages
(subsections 2.3 - 2.7). Section 3 presents some conclusions.

2 HPC Software Development

The HPC software development process is described as a set of stages which cor-
respond to the phases typically encountered by a developer. At each stage, a set
of support tools which can assist the developer are identified. The stages can be
viewed as a set of filters in cascade (see Figure 1) forming a development pipeline.
The input to this system of filters is the application description and specification
which is generated from the application itself (if it is a new problem) or from
existing sequential code (porting of dusty decks). The final output of the pipeline
is a running application. Feedback loops present at some stages signify step-wise
refinement and tuning. Related discussions pertaining to parallel computing envi-
ronments and spanning parts of the software development process can be found
in [BM91, BBDK91, RL88]. A survey of existing tools and techniques correspond-
ing to the developemnt stages is presented in [PHHF93a]. The stages in the HPC
software development process are described in the following sections. Parallel mod-
eling of Stock Option Pricing [MCVT92] is used as an illustrative, running example
in the discussion.

2.1 Parallel Modeling of Stock Option Pricing

Stock options are contracts that give the holder of the contract the right to buy or
sell the underlying stock at some time in the future for an agreed upon striking or
exercise price. Option contracts are traded just as stocks and models that quickly
and accurately predict their prices are valuable to the traders. Stock option pricing
models estimate the price for an option contract based on historical market trends
and current market information. The model requires three classes of inputs: Mar-
ket Variables which include the current stock price, call price, exercise price and
time to maturity. Model Parameters which include the volatility of the asset
(variance of the asset price over time), variance of the volatility and the correlation
between asset price and volatility. These parameters cannot be be directly observed
and must be estimated from historical data. User Inputs which specify the na-



New Application

Application Specification Application Specification
Filter Filter

<_,>—'{ Application Specification ‘

Application Analysis Stage

I =] Parallelization Specification ‘

=1 System Level Mapping Module

Algorithm Development Module [

Design Evaluator

—
Module
Implementation/Coding Module Machine Level Mapping Module|
Application Development Stage
= - H Parallelized Structure ‘

Compile-Time/Run-Time Stage

(|

I

Evaluation Specification ‘

Evaluation Stage

Evaluation Recommendation ‘

i

Maintenance/Evolution Stage

]

Figure 1: The HPC Software Development Process

ture of the required estimation; e.g. American/European call, constant /stochastic
volatility, time of dividend payoff, and other constraints regarding acceptable ac-
curacy and running times. A number of option pricing models have been developed
using varied approaches; e.g. non-stochastic analytic models, Monte Carlo simu-
lation models, binomial models, binomial models with forced recombination, etc.
Each of these models involve a set of tradeoff’s in the nature and accuracy of the



estimation and suit different user requirements. In addition, these models make
varied demands in terms of programming models and computing resources.

2.2 Inputs

The HPC software development process presented in this section addresses “new”
application development as well as the porting of exiting applications (Dusty-
Decks) to HPC environments. The input to the development pipeline is the ap-
plication specification in the form of a functional flow description, which is a very
high-level flow diagram of the application outlining the sequence of functions to
be performed. Each node (termed as functional module) in the functional flow di-
agram is a black-box and contains information about (1) its input(s), (2) the func-
tion to be performed, (3) the desired output(s) and (4) the resource requirements
at each node. The application specification can be thought of as corresponding to
the “user requirement document” in a traditional life-cycle models.

In the case of new applications, the inputs are generated from the textual
description of the problem and its requirements. In the case of dusty decks code
porting, the developer is required to analyze the existing source code. In either case,
expert system based tools and intelligent editors, both equipped with a knowledge
base to assist in analyzing the application, are required. In Figure 1, these tools
are included in the “Application Specification Filter” module.

The stock price modeling application comes under the first class of applica-
tions (i.e. new applications). The application specifications based on the textual
description presented in Section 2.1, is shown in Figure 2. It consists of three func-
tional modules: (1) The input module which accepts user specification, market
information and historical data and generates the three classes of inputs required
by the model. (2) The estimation module consists of the actual model and generates
the stock option pricing estimates. (3) The output module provides a graphical
display of the estimation to the user. The feedback from the output module to
the input module represents tuning of the user specification based on the output
displayed.

2.3 Application Analysis Stage

The first stage of the HPC software development pipeline is the application anal-
ysis stage. The input to this stage is the application specification as described in
Section 2.2. The function of this stage i1s to thoroughly analyze the application
with the sole objective of achieving the most efficient implementation. The prob-
lems dealt with in this stage are: (1) module creation problem, i.e. identification
of tasks which can be executed in parallel; (2) module classification problem i.e.
identification of standard modules; and (3) module synchronization problem, i.e.
analysis of mutual interdependencies. The output of this stage is a detailed pro-
cess flow graph called the “Parallelization Specification” where the nodes represent






market information and user inputs to generate market variables and estimation
specifications. The two components can be executed concurrently. The Estimation
module is identified as a standard computational module and is retained as a single
functional component. The Output functional module consists of two independent
functional components: (1) rendering the estimated information onto a graphical
display; and (2) writing it onto disk for subsequent analysis.

2.4 Application Development Stage

The application development stage receives as its input the Parallelization Speci-
fications and produces the Parallelized Structure which can then be compiled and
executed. This stage is made up of 5 modules: (1) Algorithm Development Mod-
ule; (2) System Level Mapping Module; (3) Machine Level Mapping Module; (4)
Implementation/Coding Module; and (5) Design Evaluator Module. Tt should be
noted, however, that these modules are not executed in any fixed sequence or a
fixed number of times. There exists instead, a feedback system from each module
to the other modules through the design evaluator module. This allows the devel-
opment as well as the tuning to proceed in an iterative manner using step-wise
refinement. The modules are described below:

2.4.1 Algorithm Development Module

The function of the algorithm development module is to assist the developer in
identifying functional components in the parallelization specification and selecting
appropriate algorithmic implementations. The input information to this module
includes: (1) the classification and requirements of the components specified in the
parallelization specification; (2) hardware configuration information; and (3) map-
ping information generated by the system level mapping module. It then uses this
information to select the best algorithmic implementation and the corresponding
implementation template from its database. The algorithm development module
uses the services of the design evaluator module to select between possible al-
gorithmic implementations. Tools needed during this phase include an intelligent
algorithm development environment (ADE) equipped with a database of opti-
mized templates for different algorithmic implementations, an evaluation of the
requirements of these templates and an estimation of their performance on differ-
ent platforms.

The algorithm chosen to implement the Estimation Component of the stock
option pricing model (shown in Figure 3), depends on the nature of the esti-
mation (constant/stochastic volatility, American/European calls/puts, dividend
payoff time, etc) to be performed and the accuracy/time constraints. For exam-
ple, models based on Monte Carlo simulation provide high accuracy. However,
these models are computationally intensive and slow and thereby cannot be used
in real-time systems. Further they are not suitable for American calls/puts when
early dividend payoff is possible. Binomial models are less accurate than Monte



Carlo models but are more tractable and can handle early exercise. Models using
constant volatility (as opposed to treating volatility as a stochastic process) lack
accuracy but are simplistic and easy to compute. The algorithmic implementations
of the input and output functional components must be capable of handling ter-
minal and disk I/O at rates specified by the time constraint parameters. Further,
the output display must provide all information required by the user.

2.4.2 System Level Mapping Module

The function of the system level mapping module is to use the information provided
by the algorithm development module to appropriately map the functional com-
ponents of the application to the appropriate computing elements of a distributed
(possibly heterogeneous) HPC environment. The objective is to map each func-
tional component to the computing element that maximizes the performance of
the application. Some data and load distribution issues may have to be resolved
in this module. In addition, this module may also cluster functional component
nodes specified in the parallelization specifications to obtain a better mapping.
The system level mapping module uses feedback from the evaluation module to
select between different mapping candidates. System level mapping can be ac-
complished in an interactive mapping environment equipped with intelligent tools
for analyzing the requirements of the functional components, and a knowledge
base consisting of analytic benchmarks for the different computing elements and
interconnection media in the HPC environment.

The algorithms for stock option pricing have been efficiently implemented
on architectures like the CM2 and the DECmpp-12000 [MCV+92]. Thus, an ap-
propriate mapping for the estimation functional component in the parallelization
specification in Figure 3 is an SIMD architecture. The input and output interfaces
(Input/Output Component-A) require graphics capability with support for high
speed rendering (output display) and must be mapped to an appropriate graphics
stations. Finally, Input/Output Component-B requires high speed disk 1/O and
must be mapped to an I/O server with such capabilities.

2.4.3 Machine Level Mapping Module

The machine level mapping module performs the mapping of the functional com-
ponent(s) onto the processor(s) of the computing elements. This stage resolves is-
sues like data partitioning, load distribution, control distribution, etc. and makes
transformations specific to that computing element. It uses the feedback from
the design evaluator module to select between possible alternatives. Machine level
mapping can be accomplished in an interactive mapping environment similar to
that described for the system level mapping module, but equipped with informa-
tion pertaining individual computing elements of a specific computer architecture.

The performance of the stock option pricing models are very sensitive to the
layout of data onto the processing elements. The optimal layout is dictated by



the input parameters (e.g. time of dividend payoff, terminal time, etc.) and by
the specification of the architecture onto which the component is mapped. For
example, in the binomial model, the continuous time processes for stock price and
volatility are represented as discrete up/down movements forming a binary lattice.
Such a lattice is generally implemented as asymmetric arrays which are distributed
onto the processing elements. It has been found that the default mapping of these
arrays (i.e. in two dimensions) on architectures like the DECmpp-12000, lead to
poor load balancing and performance, specially for extreme values of the dividend
payoff time. Further the performance in case of such a mapping, is very sensitive
to this value and has to be modified for each set of inputs. Hence, in this case it
is favorable to explicitly map them as one dimensional arrays. This is done by the
machine level mapping module.

2.4.4 Implementation/Coding Module

The function of the implementation/coding module is to handle all code generation
and perform the code filling of selected templates, so as to produce parallel code
which can then be compiled and executed on the target computer architecture.
This module incorporates all machine specific transformations, optimized libraries
and codes; handles the introduction of calls to communication and synchronization
routines; and takes care of the distribution of data among the processing elements.
It also handles any input/output redirection that may be required.

With regard to the pricing model application, the implementation/coding
module is responsible for introducing the machine specific communication rou-
tines. For example, the binary estimation model makes use of the “end-of-shift”
function for its nearest-neighbor communication. The corresponding function call
in C* (CM2) or MPL (DECmpp-12000) are introduced by this module. A pos-
sible machine specific optimization that can be introduced by this module is to
reduce communication by making use of in-processor arrays. This optimization
can improve performance by about two orders of magnitude [MCV+92].

2.4.5 Design Evaluator Module

The design evaluator module is a critical component of the application develop-
ment stage. Its function is to assist the developer in evaluating different options
available to each of the other modules, and identifying the option that provides the
best performance. It receives information about the hardware configuration, the
application structure, the requirements of the selected algorithms and the map-
pings. This input information is then used to estimate the performance of the
application on the target configuration. Further, it provides insight into the com-
putation and communication costs, the existing idle times and the overheads. This
information can be used by the other modules to identify regions where further
refinement or tuning is required. The keys features of this module are: (1) the
ability to provide evaluations with the desired accuracy, with minimum resource



requirements and within a reasonable amount of time; (2) the ability to auto-
mate the evaluation process; and (3) the ability to perform the evaluation within
an integrated workstation environment without running the application on the
target computers. Support applicable to this module consists primarily of perfor-
mance prediction and estimation tools. Simulation approaches can also be used to
achieve some of the required functionality. A novel approach which uses interpre-
tive techniques to realize a performance prediction framework that can meet these
requirements, is presented in [PHHF93b].

2.5 Compile-Time & Run-Time Stage

The compile-time/run-time stage handles the task of executing the parallelized
application generated by the development stage to produce the required output.
The input to this stage is the parallelized source code (parallelized structure).
The compile-time portion of this stage consists of set of cross compilers for the
computing elements and tools for scheduling and allocation. The run-time por-
tion of this stage handles run-time functions like debugging, scheduling, dynamic
load balancing, migration, irregular communications, etc. It also enables the user
to (non-intrusively) instrument the code for profiling and debugging and allows
checkpointing for fault-tolerance. During the execution of the application, it ac-
cepts outputs from the different computing elements and directs them for proper
visualization. It intercepts error messages generated and provides proper interpre-
tation.

2.6 Evaluation Stage

In the evaluation stage, the developer, retrospectively evaluates the design choices
made during the design process and looks for ways to improve the performance.
The evaluation stage performs a thorough evaluation of the execution of the en-
tire application, detailing communication and computation times, synchronization
overheads and existing idle times at every execution level (application level, node
level, procedure level, etc.). Tt uses this evaluation to identify regions in the im-
plementation where performance improvement is possible. Further, it allows a
cost-effective evaluation (in terms of time and resources) of the application for a
representative inputs set as well as the effect of various run-time parameters like
system load, network contention, on performance. The scalability of the applica-
tion with machine and problem size is also evaluated. The key requirement of this
stage is the ability to provide desired accuracy and granularity of evaluation while
maintaining tractability and non-intrusiveness. Support applicable to the evalua-
tion stage include different analytic tools, monitoring tools, simulation tools and
prediction/estimation tools.



2.7 Maintenance/Evolution Stage

In addition to the above described stages encountered during the development
and execution of HPC applications, there is an additional stage in the life-cycle of
this software which involves its maintenance and evolution. Maintenance includes
monitoring the operation of the software and ensuring that it continues to meet
its specifications. It involves detecting and correcting bugs as they surface. The
maintenance stage also handles modifications needed to incorporate changes in
the system configuration. Software evolution deals with improving the software,
adding additional functionality, incorporating new optimizations, etc. Another as-
pect of evolution is the development of more efficient algorithms and correspond-
ing algorithmic templates and the incorporation of new hardware architectures. To
support such a development, the maintenance/evolution stage provides tools for
the rapid prototyping of hardware and software and for evaluating the new config-
uration and designs without having to implement them. Other support required
during this stage includes tools for monitoring the performance and execution of
the software, fault detection and recovery tools, and system configuration and
configuration evaluation tools.

3 Conclusions

Software development in any Parallel/Distributed environment is a non-trivial pro-
cess and requires a thorough understanding of the application and the architecture.
This apparent from the fact that currently, applications are able to achieve only
a fraction of peak available performance. This paper studies the software develop-
ment process for in a High Performance Computing environment. It describes the
stages typically involved in this process and outlines the support required at each
stage. The development of a parallel model for stock option pricing is used as a
running example.

References

[BBDK91] J. E. Boillat, H. Burkhart, K. M. Decker, and P. G. Kropf. Parallel Comput-
ing in the 1990’s: Attacking the Software Problem. Physics Report (Review
Section of Physics Letters), 207(3-5):141 — 165, 1991.

[BMO1] Victor R. Basili and John D. Musa. The Future Engineering of Software: A
Management Perspective. IEEE Computer, 24(9):90-96, September 1991.

[MCV'192] Kim Mills, Gang Cheng, Michael Vinson, Sanjay Ranka, and Geoffrey C.
Fox. Software Issues and Performance of a Parallel Model for Stock Op-
tion Pricing. Proceedings of the 5" Australian Supercomputing Conference,
Melbourne, Australia, December 1992.

[PHHF93a] Manish Parashar, Salim Hariri, Tomasz Haupt, and Geoffrey C. Fox. An In-

tegrated Software Development Model for Heterogeneous High Performance

10



[PHHF93b]

[RLSS]

[Zor92]

Computing. Technical Report SCCS-453, Northeast Parallel Architectures
Center, Syracuse University, Syracuse NY 13244-4100, April 1993.

Manish Parashar, Salim Hariri, Tomasz Haupt, and Geoffrey C. Fox. An
Interpretive Framework for Application Prediction. Procs of the 1993 Int’l
Conference On Parallel and Distributed Systems, 668—-672, Dec. 1993.

Lucian Russell and R. N. C. Lightfoot. Software Development Issues for
Parallel Processing. Proceedings of the 12" Annual International Computer
Software and Applications Conference, 306-307, 1988.

Glenn Zorpette. Teraflops Galore. IEEE Spectrum, 29(9):26-76, sep 1992.

11



	A Study of Software Development for High Performance Computing
	Recommended Citation

	tmp.1285859524.pdf.s4_r_

