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ABSTRACT

This paper mainly focuses on the recent advances in the some approximated methods
for solving fuzzy Volterra-Fredholm integral equations, namely, Adomian decomposition
method, variational iteration method and homotopy analysis method. We converted fuzzy
Volterra-Fredholm integral equation to a system of Volterra-Fredholm integral equations in
crisp case. The approximated methods using to find the approximate solutions of this system
and hence obtain an approximation for the fuzzy solution of the fuzzy Volterra-Fredholm
integral equation. To assess the accuracy of each method, algorithms with Mathematica
6 according is used. Also, numerical example is included to demonstrate the validity and
applicability of the proposed techniques.
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1. INTRODUCTION
Recently, the topics of fuzzy integral equations which attracted increasing interest, in particular in relation

to fuzzy control, have been rapidly developed. The concept of fuzzy numbers and arithmetic operations firstly in-
troduced by Zadeh [1], and then by Dubois and Prade [2] . Also, they have introduced the concept of integration of
fuzzy functions. The fuzzy mapping function was introduced by Cheng and Zadeh [1]. Moreover, [3] presented an
elementary fuzzy calculus based on the extension principle. Later, Goetschel and Voxman [4] preferred a Riemann
integral type approach. Kaleva [5] chose to define the integral of fuzzy function, using the Lebesgue-type concept for
integration. One of the first applications of the fuzzy integral equation was given by Ma and Wu who investigated
the fuzzy Fredholm integral equation of the second kind. Recently, some mathematicians have studied fuzzy integral
and integro-differential equation by numerical techniques [6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. As we know the fuzzy
integral and differential equations are one of the important parts of the fuzzy analysis theory that play a main role in
the numerical analysis.

In this work, we will suggests recent advances in the some approximated methods for solving fuzzy Volterra-
Fredholm integral equations of the second kind, namely, Adomian decomposition method, variational iteration method
and homotopy analysis method.

2. FUZZY VOLTERRA-FREDHOLM INTEGRAL EQUATION
The fuzzy Volterra-Fredholm integral equation of the second kind is as follows:

ũ(x) = f̃(x) + µ1

∫ x

a

K1(x, t)G1(t, ũ(t))dt+ µ2

∫ b

a

K2(x, t)G2(t, ũ(t))dt, (1)
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where µ1, µ2 ≥ 0,f̃(x) is a fuzzy function of x; a ≤ x ≤ b, and Ki(x, t), Gi(t, ũ(t)), i = 1, 2, are analytic functions
on [a, b]. For solving in parametric form of Eq.(1), consider (f(x, r), f(x, r)) and (u(x, r), u(x, r)), 0 ≤ r ≤ 1 and
t ∈ [a, b] are parametric form of f̃(x) and ũ(x), respectively. then, parametric form of Eq.(1) is as follows:

u(x, r) = f(x, r) + µ1

∫ x

a

K1(x, t)G1(t, u(t, r))dt+ µ2

∫ b

a

K2(x, t)G2(t, u(t, r))dt, (2)

u(x, r) = f(x, r) + µ1

∫ x

a

K1(x, t)G1(t, u(t, r))dt+ µ2

∫ b

a

K2(x, t)G2(t, u(t, r))dt, (3)

Let for a ≤ t ≤ b, we have

H1(t, u, u) = min{G1(t, β)|u(t, r) ≤ β ≤ u(t, r)},
H2(t, u, u) = min{G2(t, β)|u(t, r) ≤ β ≤ u(t, r)},
F1(t, u, u) = max{G1(t, β)|u(t, r) ≤ β ≤ u(t, r)},
F2(t, u, u) = max{G2(t, β)|u(t, r) ≤ β ≤ u(t, r)}.

Then,

K1(x, t)G1(t, u(t, r)) =

{
K1(x, t)H1(t, u, u), K1(x, t) ≥ 0,
K1(x, t)F1(t, u, u), K1(x, t) < 0.

K2(x, t)G2(t, u(t, r)) =

{
K2((x, t))H2(t, u, u), K2(x, t) ≥ 0,
K2((x, t))F2(t, u, u), K2(x, t) < 0.

K1(x, t)G1(t, u(t, r)) =

{
K1(x, t)F1(t, u, u), K1(x, t) ≥ 0,
K1(x, t)H1(t, u, u), K1(x, t) < 0.

K2(x, t)G2(t, u(t, r)) =

{
K2(x, t)F2(t, u, u), K2(x, t) ≥ 0,
K2(x, t)H2(t, u, u), K2(x, t) < 0.

For each 0 ≤ r ≤ 1 and a ≤ x ≤ b. We can see that Eq.(1) convert to a system of Volterra-Fredholm
integral equations in crisp case for each 0 ≤ r ≤ 1 and a ≤ t ≤ b. Now, we explain Adomian decomposition
method, variational iteration method and homotopy analysis method for approximating solution of this system of
integral equations in crisp case. Then, we find approximate solutions for ũ(x), a ≤ x ≤ b.

3. DESCRIPTION OF THE METHODS
Here we will highlight briefly on some reliable methods for solving this type of equations, where details can

be found in [16, 17, 21, 22, 23].

3.1. Adomian Decomposition Method (ADM)

The Adomian decomposition method has been applied to a wild class of functional equations [16, 19, 20, 21]
by scientists and engineers since the beginning of the 1980s. Adomian gives the solution as a infinite series usually
converging to a solution consider the following fuzzy Fredholm-Volterra integral equation of the form

u(x, r) = f(x, r) + µ1

∫ x

a

K1(x, t)G1(t, u(t, r))dt+ µ2

∫ b

a

K2(x, t)G2(t, u(t, r))dt,

u(x, r) = f(x, r) + µ1

∫ x

a

K1(x, t)G1(t, u(t, r))dt+ µ2

∫ b

a

K2(x, t)G2(t, u(t, r))dt, (4)

The ADM assume an infinite series solution for the unknowns functions [u, u], given by

u(x) =

∞∑
i=0

ui(x),

u(x) =

∞∑
i=0

ui(x). (5)
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The nonlinear operators G1(t, u(t)), G1(t, u(t)), G2(t, u(t)), G2(t, u(t)) into an infinite series of polynomi-
als given by

G1(t, u(t)) =

∞∑
i=0

An, G1(t, u(t)) =

∞∑
i=0

An,

G2(t, u(t)) =

∞∑
i=0

Bn, G2(t, u(t)) =

∞∑
i=0

Bn. (6)

where the Ãn = [An, An], B̃n = [Bn, Bn], n ≥ 0, are the so-called Adomian polynomial. Substituting Eqs.(5) and
Eqs.(6) into Eq.(4), we get

u0 = f(x, r),

u1 = µ1

∫ x

a

K1(x, t)A0dt+ µ2

∫ b

a

K2(x, t)B0dt,

un+1 = µ1

∫ x

a

K1(x, t)Andt+ µ2

∫ b

a

K2(x, t)Bndt.

and

u0 = f(x, r),

u1 = µ1

∫ x

a

K1(x, t)A0dt+ µ2

∫ b

a

K2(x, t)B0dt,

un+1 = µ1

∫ x

a

K1(x, t)Andt+ µ2

∫ b

a

K2(x, t)Bndt.

We approximate ũ(x, r) = [u(x, r), u(x, r)] by

ϕ
n
=

n−1∑
i=0

ui(x, r),

ϕn =

n−1∑
i=0

ui(x, r),

where,
lim

n→∞
ϕ
n
= u(x, r), lim

n→∞
ϕn = u(x, r).

3.2. Variational Iteration Method (VIM)

The variational iteration method (VIM) is proposed by (He 1997) [18, 23] as a modification of a general
Lagrange multiplier method. This method has been shown to solve effectively ,easily and accurately a large class of
nonlinear problems with approximations converging rapidly to a accurate solutions. To illustrate its basic idea of the
technique, we consider following general nonlinear system:

L[u(x)] +N [u(x)] = g(x), (7)

Where L is linear operator, N is a nonlinear operator, and g(x) is given continuous function. The basic character of
method is to a correction functional for system Eq.(7) which

un+1(x) = un(x) +

∫ x

0

λ(τ){Lun(τ) +Nũn(τ)− g(τ)}dτ, (8)

Where λ(τ) is a general Lagrangian multiplier (Kaleva 1987) which can be identified optimally via variational theory,
the subscript n denotes the nth-order approximation and ũn is consider a restricted variation, i.e. δũn = 0 where
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L = d
dt . For the integral equation (1), let w(x) be a function such that w′(x) = ũ(x), noting that ũ(x) is continuous.

Then we have

w′(x) = f̃(x) + µ1

∫ x

a

K1(x, t)G1(t, w
′(t))dt+ µ2

∫ b

a

K2(x, t)G2(t, w
′(t))dt. (9)

Consider

µ1

∫ x

a

K1(x, t)G1(t, w
′(t))dt+ µ2

∫ b

a

K2(x, t)G2(t, w
′(t))dt, (10)

as a restricted variation; we have the iteration sequence

wn+1 = wn +

∫ x

0

λ

[
w′n(s)− µ1

∫ s

a

K1(s, t)G1(t, w
′(t))dt− µ2

∫ b

a

K2(s, t)G2(t, w
′(t))dt− f̃(s)

]
ds.

Taking the variation with respect to the independent variable wn and noticing that δwn(0) = 0, we get

δwn+1 = δwn + λ(s)δwn|s=x −
∫ x

0

λ′(s)δwnds = 0 (11)

Then we apply the following stationary conditions:

1 + λ(s)|s=x = 0, λ′(s)|s=x = 0,

The general Lagrange multiplier, therefore, can be readily identified:

λ = −1

and, as a result, we obtain the following iteration formula:

wn+1 = wn −
∫ x

0

[
w′n(s)− f̃(s)− µ1

∫ s

a

K1(s, t)G1(t, w
′(t))dt− µ2

∫ b

a

K2(s, t)G2(t, w
′(t))dt

]
ds.

Therefore, we can write the following iteration formulas

un+1(x, r) = un(x, r)−
∫ x

0

[
un(s, r)− f(s, r)− µ1

∫ s

a

K1(s, t)G1(t, u(t, r))dt− µ2

∫ b

a

K2(s, t)G2(t, u(t, r))dt

]
ds.

un+1(x, r) = un(x, r)−
∫ x

0

[
un(s, r)− f(s, r)− µ1

∫ s

a

K1(s, t)G1(t, u(t, r))dt− µ2

∫ b

a

K2(s, t)G2(t, u(t, r))dt

]
ds.

3.3. Homotopy Analysis Method (HAM)

Consider,
N [ũ] = 0,

where N is a nonlinear operator, ũ = [u(x, r), u(x, r)] are unknown functions and x is an independent variable [22].
Let u0(x, r), u0(x, r) denote an initial guess of the exact solution u(x, r), u(x, r), h 6= 0 an auxiliary parameter,
H1(x) 6= 0 an auxiliary function, and L an auxiliary linear operator with the property L[s(x)] = 0 when s(x) = 0.
Then using q ∈ [0, 1] as an embedding parameter, we can construct a homotopy when consider, N [u] = 0, as follows:

(1− q)L[φ(x; q, r)− u0(x, r)]− qhH1(x)N [φ(x; q, r)] = Ĥ[φ(x; q, r);u0(x, r), H1(x), h, q]. (12)

It should be emphasized that we have great freedom to choose the initial guess u0(x, r), the auxiliary linear
operator L, the non-zero auxiliary parameter h, and the auxiliary function H1(x). Enforcing the homotopy Eq.(12) to
be zero, i.e.,

Ĥ1[φ(x; q, r);u0(x, r), H1(x), h, q] = 0, (13)
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we have the so-called zero-order deformation equation

(1− q)L[φ(x; q, r)− u0(x, r)] = qhH1(x)N [φ(x; q, r)]. (14)

when q = 0, the zero-order deformation Eq.(14) becomes

φ(x; 0, r) = u0(x, r). (15)

and when q = 1, since h 6= 0 and H1(x) 6= 0, the zero-order deformation Eq.(14) is equivalent to

φ(x; 1, r) = u(x, r). (16)

Thus, according to Eqs.(15) and (16), as the embedding parameter q increases from 0 to 1, φ(x; q, r) varies
continuously from the initial approximation u0(x, r) to the exact solution u(x, r). Such a kind of continuous variation
is called deformation in homotopy. Due to Taylor’s theorem, φ(x; q, r) can be expanded in a power series of q as
follows

φ(x; q, r) = u0(x, r) +

∞∑
m=1

um(x, r)qm, (17)

where,

um(x, r) =
1

m!

∂mφ(x; q, r)

∂qm
|q=0, (18)

Let the initial guess u0(x, r), the auxiliary linear parameter L, the nonzero auxiliary parameter h and the
auxiliary function H1(x) be properly chosen so that the power series Eq.(17) of φ(x; q, r) converges at q = 1, then,
we have under these assumptions the solution series

u(x, r) = φ(x; 1, r) = u0(x, r) +

∞∑
m=1

um(x, r). (19)

From Eq.(17) , we can write Eq.(14) as follows:

(1− q)L[φ(x; q, r)− u0(x, r)] = (1− q)L[
∞∑

m=1

um(x, r)qm] (20)

= qhH1(x)N [φ(x; q, r)]

then,

L[

∞∑
m=1

um(x, r)qm]− qL[
∞∑

m=1

um(x, r)qm] = qhH1(x)N [φ(x; q, r)]. (21)

By differentiating Eq.(20) m times with respect to q, we obtain

{L[
∞∑

m=1

um(x, r)qm]− qL[
∞∑

m=1

um(x, r)qm]}(m) = hH1(x)m
∂m−1N [φ(x; q, r)]

∂qm−1
|q=0.

Therefore,
L[um(x, r)− χmum−1(x, r)] = hH1(x)<m(um−1(x, r)), (22)

where,

<m(um−1(x)) =
1

(m− 1)!

∂m−1N [ϕ(x; q)]

∂qm−1
|q=0, (23)

and

χm =

{
0 m ≤ 1,

1 m > 1.

Note that the high-order deformation Eq.(22) is governing the linear operatorL, and the term<m(um−1(x, r))
can be expressed simply by Eq.(23) for any nonlinear operator N.
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To obtain the approximation solution of Eq.(2), according to HAM

Rm(um−1(x, r)) = um−1(x, r)− f(x, r)− µ1

∫ x

a

K1(x, t)G1(t, u(t, r))dt

− µ2

∫ b

a

K2(x, t)G2(t, u(t, r))dt− (1− χm)f(x, r),m ≥ 1 (24)

Substituting Eq.(24) into Eq. (22)

L[um(x, r)− χmum−1(x, r)] = hH1(x)[um−1(x, r)− µ1

∫ x

a

K1(x, t)G1(t, u(t, r))dt

− µ2

∫ b

a

K2(x, t)G2(t, u(t, r))dt− (1− χm)f(x, r)]. (25)

We take an initial guess u0(x, r) = f(x, r), an auxiliary linear operator Lu = u, a nonzero auxiliary
parameter h = −1, and auxiliary function H1(x) = 1. This is substituted into Eq.(25) to give the recurrence relation

u0(x, r) = f(x, r)

un+1(x, r) = µ1

∫ x

a

K1(x, t)G1(t, un(t, r))dt+ µ2

∫ b

a

K2(x, t)G2(t, un(t, r))dt, n ≥ 0. (26)

Similarly, we can construct a homotopy when consider, N [u] = 0, to give the recurrence relation

u0(x, r) = f(x, r)

un+1(x, r) = µ1

∫ x

a

K1(x, t)G1(t, un(t, r))dt+ µ2

∫ b

a

K2(x, t)G2(t, un(t, r))dt, n ≥ 0. (27)

From Eqs.(26), and Eqs.(27) we approximate ũ(x, r) = [u(x, r), u(x, r)] by

u(x, r) = lim
n→∞

un, u(x, r) = lim
n→∞

un.

4. NUMERICAL EXAMPLE
In this section, we solve the fuzzy Volterra-Fredholm integral equation of the second kind by the ADM, VIM

and HAM.

Example 4.1

Consider the fuzzy Volterra-Fredholm integral equation of the second kind as follows:

ũ(x) = f̃(x) +

∫ x

0

sin(x)sin(
t

2
)ũ3(t)dt+

∫ 0.6

0

sin(
x

2
)sin(t)(1 + ũ2(t))dt, (28)

whear,

f(x, r) = sin(
x

2
)(
13

15
(r2 + r) +

2

15
(4− r3 − r),

f(x, r) = sin(
x

2
)(

2

15
(r2 + r) +

13

15
(4− r3 − r),

and,
r = 0.3, ε = 10−2, 0 ≤ x, t ≤ 0.6.
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x ADM(n=11) V IM(n=4) HAM(n=4)

0.1 0.2203548375 0.220466127 0.2204663982
0.2 0.3062332542 0.306329751 0.3063488741
0.3 0.4035946723 0.403659665 0.4037996457
0.4 0.5233741235 0.523379658 0.5234862764
0.5 0.5964831157 0.614656263 0.6259432736
0.6 0.6523678927 0.652356871 0.6524855123

Table 1. The Obtained Solutions for Example 4.1

The above table show comparison between the approximate solutions by using ADM, VIM and HAM for
results of the example 4.1 .

5. CONCLUSION
We discussed the different methods for solving fuzzy Volterra-Fredholm integral equations, namely, Adomian

decomposition method, variational iteration method and homotopy analysis method. To assess the accuracy of each
method, the test example with known exact solution is used. The results show that these methods are very efficient,
convenient and can be adapted to fit a larger class of problems. The comparison reveals that although the numerical
results of these methods are similar approximately, HAM is the easiest, the most efficient and convenient.
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