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Abstract

A study of some problems in network information theory

by

Sudeep Uday Kamath

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor David Tse, Co-chair

Professor Venkat Anantharam, Co-chair

Shannon theory has been very successful in studying fundamental limits of communi-
cation in the classical setting, where one sender wishes to communicate a message to one
receiver over an unreliable medium. The theory has also been successful in studying networks
of small to moderate sizes, with multiple senders and multiple receivers. However, it has
become well-known recently that understanding the fundamental limits of communication
in a general network is a hard problem on numerous accounts.

In this dissertation, we suggest that a significant aspect of the difficulty in studying limits
of communication over networks lies in the unidirectional aspect of the problem. Under
different assumptions that rid the problem of this particular aspect by introducing a suitable
symmetry, either in the underlying network or in the traffic model, we find that simple
schemes are approximately optimal in achieving these fundamental limits. We demonstrate
this as a meta-theorem in the class of wireline networks and Gaussian networks. The key
contribution driving these results is a new outer bound that we call the Generalized Network
Sharing bound.

We also study a problem of simulation of joint distributions in a non-interactive setup.
Two agents observe correlated random variables and wish to simulate a certain joint distri-
bution. We consider a non-asymptotic formulation of this problem and study tools that help
prove impossibility results. We also study connections of this problem to existing problems
in the literature.
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5.2 A generalization of the Gács-Körner and Wyner formulations . . . . . . . . . . . 50
5.3 Non-Interactive Simulation of Joint Distributions . . . . . . . . . . . . . . . . . 50
5.4 Hypercontractivity ribbon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.5 Three random variable simulation example . . . . . . . . . . . . . . . . . . . . . 63



v

Acknowledgments

It has been an incredible experience being a student of David Tse and Venkat Anantharam
for the last five years. There was never a time that I did not feel cared for, thanks to their
constant support and guidance.

Working with David has helped me appreciate the necessity of being a good scholar, the
importance of strategy while devising research goals, and the need to constantly ask oneself
bold and important questions. Having served as a teaching assistant in a course taught by
him, I have been greatly inspired by his teaching philosophy and lucid presentation style.
His emphasis on simplicity and intuition, in teaching as well as in research, will continue to
influence me in the years ahead.

Working with Venkat has helped me understand the importance of rigor and clarity
in understanding. His deep knowledge of many disciplines and crystal-clear intuitions for
complex ideas are things I am only capable of aspiring for, but which I hope to inculcate into
my research style to the extent I can. I am inspired by his tenacity to focus on fundamental
problems, and hope to have a similar theme in my future research plans.

I am very grateful to Satish Rao for many helpful discussions that helped shape some of
the results in this dissertation. I am also grateful to David Aldous for being present on my
dissertation committee. Searching for answers to questions posed by him has been a very
helpful endeavour.

I would like to thank Pramod Viswanath and Sreeram Kannan for fruitful collaboration
over the past few years. A large section of this dissertation is comprised of results from this
collaboration. I would also like to thank Pramod for useful advice and guidance throughout
graduate school.

I would like to thank Alcatel-Lucent Bell Labs for hosting me as an intern during the
summer of 2010, and to Urs Niesen and Piyush Gupta for their mentorship during my stay.

I would like to thank Amin Gohari and Chandra Nair for some exciting research directions
that we have been exploring recently. Their brilliant ideas and unrelenting passion have been
very inspiring.

Thanks to the administrative staff at EECS Berkeley, especially to Ruth Gjerde, Kim
Kail, and Shirley Salanio, for their patience with my countless requests and administrative
questions.

Wireless Foundations has been an awesome place. Special thanks to Pulkit Grover for all
the help and advice throughout graduate life, and to Sreeram Kannan for his infectious enthu-
siasm in our numerous research collaborations. I would like to thank all my WiFo mates for
making my time here very enjoyable: Guy Bresler, Venkatesan Ekambaram, Naveen Goela,
Amin Gohari, Kate Harrison, Varun Jog, Rashmi K.V., Po-Ling Loh, Nebojsa Milosavljevic,
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Chapter 1

Introduction

Information theory concerns the study of the problem of reliable communication between
nodes under the presence of uncertainty. The classical setting with one sender and one
receiver is called the point-to-point setup, and fundamental limits of communication for this
setting were obtained by Shannon in his seminal work [55].

Network information theory considers the problem of communication between multiple
senders and receivers. Characterizing the fundamental limits of communication for a general
network, called the capacity region, has come to be seen as a very hard problem. One way to
simplify the problem in order to obtain insight into general networks is to study the capacity
regions of the simplest class of networks - wireline networks - where links between nodes
of the network are noise-free and orthogonal. It was observed first in [3] that if nodes of
the network perform coding operations rather than simply route information treating it as
a commodity, then communication rates can be significantly improved. This setting with
nodes performing coding operations has been termed network coding and shows promise in
implementation of the networks of tomorrow.

However, recent results suggest that characterizing the capacity region of a general net-
work is a hard problem in multiple ways:

• Certain so-called Non-Shannon inequalities (which are themselves not completely un-
derstood [63, 47]) are important for characterizing capacity [20], [10].

• A simple class of schemes called linear coding schemes does not achieve capacity in
general [18].

One of the central contributions of this dissertation is the following:

Routing is approximately optimal for achieving capacity in wireline networks, provided that
the network or traffic has a suitable symmetry.

This statement highlights that the difficulty of studying capacity regions of networks lies,
generally speaking, in the lack of symmetry in the problem. The above theme turns out to
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have more generality. A similar statement can be worked out in the case of wireless networks
as well. Wireless networks are more complicated than wireline networks due to the presence
of noise as well as the aspects of broadcast, superposition and interference. Yet, the general
theme holds and we have:

A simple separation based scheme is approximately optimal for achieving capacity in
Gaussian networks, provided that the network or traffic has a suitable symmetry.

The key tool that we use to obtain our results is a simple but novel outer bound on the
capacity regions of networks called the Generalized Network Sharing (GNS) bound that we
developed in an earlier work [32, 28].

In the latter part of the dissertation, we study a problem of simulation of joint distribu-
tions in a non-interactive setup. We use the tools of maximal correlation and hypercontrac-
tivity for studying this problem and our key contribution is a connection between the two
tools.

A rough outline of this dissertation is as follows:

• Chapter 2 introduces the Generalized Network Sharing bound and discusses some of
its properties.

• Chapter 3 obtains the approximation results for capacity regions of wireline networks
under various symmetry assumptions.

Here, we consider the problem of communication between k sources with their respec-
tive destinations in a wireline network. As we mentioned earlier, network coding is
known to have significant advantages for a general network. However, when the net-
work or traffic has some kind of symmetry, we show that the potential advantages
of network coding are small. We demonstrate this in the case of undirected networks,
networks with bidirectional traffic and symmetric demands (for every source communi-
cating to a destination at a certain rate, the destination communicates an independent
message back to the source at the same rate), and groupcast networks (networks with
a special group of nodes, each of which has an independent message for every other
node in the group).

• Chapter 4 obtains these approximation results for wireless networks under one specific
symmetry assumption on the traffic: bidirectional traffic with symmetric demands.

It has been shown recently that a simple layering principle - local physical-layer schemes
combined with global routing - can achieve approximately optimal performance in wire-
less networks [35]. However, this result depends heavily on the assumption of reciprocity
of wireless networks, which may be violated in general networks, due to asymmetric
power constraints, directional antennas, or frequency-duplexing. We show that the ap-
proximate optimality continues to hold even for wireless networks modeled as directed
graphs as long as there is a symmetric demand constraint: for every demand from a
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source to a destination at a particular rate, there runs a counterpart demand from
the destination to the source at the same rate. This models several practical scenarios
including voice calls, video calls, and interactive gaming. We prove this result in the
context of several channel models for which good local schemes exist.

• Chapter 5 takes a look at a problem of simulation of joint distributions.

We consider the following problem: Agents Alice and Bob observe different random
variables occuring in nature which are correlated. They are required to output one
random variable each, based on their observations, such that the pair of output random
variables has a specified joint distribution. This problem has important applications
to existing problems in simulation of joint distributions. The emphasis here is on the
non-asymptotic nature of the problem: The number of observations of the agents is
allowed to be arbitrarily large even though the agents are required to output just one
random variable each. We use the tools of maximal correlation and hypercontractivity
to obtain negative results for this problem. We hope that these tools will be useful
more generally to attack other problems in network information theory.

• Chapter 6 contains a discussion and some concluding remarks.

Publications in which some of this work has appeared

The results in this dissertation have appeared in various conferences. The main results of
Chapter 2 can be found in [31]. The results of Chapters 3 and 4 can be found in [33] and [30]
respectively. Most of the results of Chapter 5 can be found in [29], while a few others have
not appeared in print, but were developed in the course of finalizing this dissertation [5].
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Chapter 2

The Generalized Network Sharing

bound

The central problem of network information theory is to characterize the capacity region of
a general network. Wireline networks are a special class of such networks where the edges
between vertices are unidirectional, orthogonal and noise-free. In this class of networks,
network coding has the potential to provide significant advantages in comparison to flow
(i.e. routing strategies) for multicast problems [3] as well as for multiple unicast problems
[26]. Recent results suggest that characterizing the capacity region of a multiple unicast
network is a hard problem [19], [18], [10]. In particular, even coding strategies such as linear
codes do not achieve capacity in general [18].

Nonetheless, it is useful to develop outer bounds on the capacity region as they can
then provide useful guarantees on the performance of any suggested coding schemes. The
simplest and oldest such bound is the cutset bound [21], [14]. This bound however, is often
quite loose. The tightest known explicitly computable bound is the so-called LP bound
[62] that harnesses the full power of the basic information inequalities or so-called Shannon
inequalities. It is however, computationally intractable since the linear program has size
exponential in that of the network. The Generalized Network Sharing (GNS) bound was
introduced in our previous work [32, 28] as a new bound that is an improvement over the
cutset bound. In this chapter, we study more properties of this bound for wireline networks.

The literature has numerous outer bounds derived from the graph-theoretic structure of
the network. These edge-cut bounds have conventionally served as outer bounds to commod-
ity flow problems. Indeed, such commodity flow bounds derived from edge-cuts are not in
general, fundamental, i.e. they are not bounds on the capacity region and can potentially be
beaten by network coding [39]. It is of interest to study these edge-cut bounds because they
tend to be simpler and more intuitive than the LP bound, while also being tighter than the
cutset bound. Different works have studied what makes edge-cut bounds fundamental. [60]
proposed the Network Sharing bound which was subsequently improved to the Generalized
Network Sharing (GNS) bound in [32]. [39], [56] study bounds derived from functional depen-
dence graphs and [26] studies bounds derived from information dominance. Recently, there
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has also been some progress in studying weighted sum-rate edge-cut bounds. [40] exhibits
such bounds for multimessage multicast problems while [59] produces bounds for multiple
unicast problems based on a class of Shannon inequalities and a knowledge of the network
graph structure.

In this chapter, we focus on sum-rate edge-cut bounds for multiple-unicast networks.
We show that for multiple unicast networks, the GNS bound is equivalent to the more
sophisticated functional dependence bound derived from functional dependence graphs [56].
Next, we study edge-cut bounds on network coding capacity based purely on what we define
as the ‘profile’ of the edge-cut, which is simply the knowledge of the residual connectivity
between sources and destinations after a set of edges has been removed from the graph. We
show that the only edge-cut profiles for which every edge-cut with the said profile always leads
to a fundamental bound on network coding rates are the profiles of GNS-cuts. Furthermore,
we provide the tight constant associated with every edge-cut profile up to which network
coding may potentially outperform the associated edge-cut. Finally, we consider the problem
of computation of the GNS bound. We show that this problem is NP-complete, even for
two-unicast networks, and discuss the implications of this result.

The rest of the chapter is organized as follows. We describe notation and preliminaries
in Section 2.1. We show the equivalence between the GNS bound and the functional de-
pendence bound of [56] in Section 2.2. We study bounds from edge-cuts based purely on
source-destination connectivity in Section 2.3. We prove NP-completeness of the GNS-cut
in Section 2.4. Finally, we conclude with a discussion in Section 2.5.

In Chapter 3 and Chapter 4, we will use the GNS bound to obtain approximate capacity
characterizations for wireline and wireless networks under suitable symmetry assumptions
on the network or traffic.

2.1 Preliminaries

We briefly describe some notation that will be used throughout this chapter and the next.

Definition: A k-unicast wireline network N for source-destination pairs {(si; di)}i∈I with
|I| = k is a tuple (G,C) where

• G = (V , E) is the underlying directed or undirected graph with vertex set V and edge
set E , with si, di ∈ V(G) for i ∈ I,

• C = (Ce : e ∈ E(G)) is the edge-capacity vector, with Ce ∈ R≥0 ∪ {∞} ∀e ∈ E(G).

For each i ∈ I, si has independent information to be communicated to di at rate Ri.
Unless otherwise stated, it will be assumed that I = {1, 2, . . . , k}.

Notation: For directed graphs with v ∈ V(G), let In(v) and Out(v) denote the edges entering
into and leaving v respectively. For undirected graphs with v ∈ V(G), we denote the set of
edges incident onto v as Inc(v).
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Definition: Given a k-unicast network N = (G,C) for source-destination pairs {(si; di)}i∈I ,
we say that the non-negative rate tuple (Ri : i ∈ I) is achievable if for any ǫ > 0, there
exist positive integers N and T (called block length and number of epochs respectively), a
finite alphabet A with |A| ≥ 2 and using notation Hv := Πi∈I:v=siA⌈NTRi⌉ (with an empty
product being the singleton set),

• for the case of directed graphs,

– encoding functions for 1 ≤ t ≤ T, e = (u, v) ∈ E ,
fe,t : Hu × Πe′∈In(u)

(

A⌊NCe′⌋
)(t−1) 7→ A⌊NCe⌋,

– decoding functions at destinations di for i ∈ I,
fdi : Hdi × Πe′∈In(di)

(

A⌊NCe′⌋
)T 7→ A⌈NTRi⌉

• and for the case of undirected graphs,

– a subdivision of capacity for each edge e = (u, v) ∈ E and each epoch t, 1 ≤ t ≤ T,
Cu
e,t, C

v
e,t ≥ 0 such that Cu

e,t + Cv
e,t ≤ Ce, where C

u
e,t is the capacity for outgoing

data from u on edge e,

– for 1 ≤ t ≤ T, e = (u, v) ∈ E , two encoding functions fue,t, f
v
e,t as

fue,t : Hu × Πe′=(u,w)∈Inc(u)Π
t−1
l=1A

⌊NCw
e′,l

⌋ 7→ A⌊NCu
e,t⌋,

f ve,t : Hv × Πe′=(v,w)∈Inc(v)Π
t−1
l=1A

⌊NCw
e′,l

⌋ 7→ A⌊NCv
e,t⌋,

– decoding functions at destinations di for i ∈ I,
fdi : Hdi × Πe′=(di,w)∈Inc(di)Π

T
l=1A⌊NCw

e′,l
⌋ 7→ A⌈NTRi⌉

with the property that under the uniform probability distribution on Πi∈IA⌈NTRi⌉,

Pr (g(m1,m2, . . . ,mk) 6= (m1,m2, . . . ,mk)) ≤ ǫ,

where g : Πi∈IA⌈NTRi⌉ 7→ Πi∈IA⌈NTRi⌉ is the global decoding function induced inductively
by

• {fe,t : e ∈ E(G), 1 ≤ t ≤ T} and {fdi : i ∈ I} in the directed graph case and

• {fue,t, f ve,t : e = (u, v) ∈ E(G), 1 ≤ t ≤ T} and {fdi : i ∈ I} in the undirected graph case.

The closure of the set of achievable rate tuples is called the capacity region and is denoted
by C. Define the sum-rate-capacity by Csum−rate := sup(Ri:i∈I)∈C

∑

i∈I Ri.

Definition: Given a k-unicast network N = (G,C) for source-destination pairs {(si; di)}i∈I ,
we say that the non-negative rate tuple (Ri : i ∈ I) is achievable by routing flow if there
exist for each i ∈ I and each e = (u, v) ∈ E(G), real numbers fi,e ≥ 0 in the directed graph
case and fui,e, f

v
i,e ≥ 0 in the undirected graph case such that
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• ∑i∈I fi,e ≤ Ce ∀ e ∈ E(G), and for each i ∈ I and each v ∈ V(G),

∑

e∈Out(v)

fi,e −
∑

e∈In(v)

fi,e =











0 if v 6= si, di,

Ri if v = si,

−Ri if v = di.

in the directed graph case and

• ∑i∈I f
u
i,e + f vi,e ≤ Ce ∀ e = (u, v) ∈ E(G), and for each i ∈ I and each v ∈ V(G),

∑

e=(v,w)∈Inc(v)

f vi,e − fwi,e =











0 if v 6= si, di,

Ri if v = si,

−Ri if v = di.

in the undirected graph case.

The closure of the set of rate tuples achievable by routing flow is called the flow region and
is denoted by F . Define the sum-rate-max-flow by Fsum−rate := sup(Ri:i∈I)∈F

∑

i∈I Ri.

Definition: For a k-unicast network N = (G,C), we call G an uncapacitated k-unicast
network. This uncapacitated network is converted to a capacitated network by assigning
non-negative capacities C := (Ce : e ∈ E(G)) ∈ R

|E(G)|
≥0 to the edges of G.

Edge-cut bounds have traditionally been studied in the context of commodity flow prob-
lems since they are simple outer bounds on the commodity flow region. Fix a k-unicast
uncapacitated network G, and an edge set E ⊆ E(G). Define the edge-cut-disconnected-
indices derived from E, denoted DG,E, to be the subset of {1, 2, . . . , k} where index j ∈ DG,E

if and only if there is no path from sj to dj in G \ E. Consider Statements 1 and 2 below.

Statement 1 : For any assignment of capacities CG ∈ R
|E(G)|
≥0 , and any rate tuple

(R1, R2, . . . , Rk) ∈ F(G,CG),

∑

j∈DG,E

Rj ≤
∑

e∈E

Ce. (2.1)

Statement 2 : For any assignment of capacities CG ∈ R
|E(G)|
≥0 , and any rate tuple

(R1, R2, . . . , Rk) ∈ C(G,CG),

∑

j∈DG,E

Rj ≤
∑

e∈E

Ce. (2.2)
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s1 s2

d1d2

e

s1 s2

a

a

b

ba⊕ b

a⊕ b a⊕ b

d1d2

a b

(a) (b)

Figure 2.1: A butterfly network

In this example, all edges having unit capacity. E = {e} yields the edge-cut inequality
R1 +R2 ≤ 1. The inequality is violated by R1 = R2 = 1 achieved by coding scheme shown.

Inequality (2.1) is the edge-cut bound derived from E. Statement 1 is obviously true since
any commodity flow must use up capacity on one of the edges of E. However, Statement 2
is not true in general, as evidenced by the butterfly counterexample in Fig. 2.1.

We say that the edge-cut derived from E is fundamental if Statement 2 holds, i.e. if
Inequality (2.2) holds for all capacity assignments and all rate tuples in the corresponding
capacity region. We shall be interested in what kinds of edge-cuts are fundamental. We
define the Generalized Network Sharing (GNS) bound via GNS-cuts as follows.

Definition: Given a k-unicast uncapacitated network G, an edge-cut derived from E ⊆
E(G) is called a GNS-cut for the network if there exists a permutation π : {1, 2, . . . , k} 7→
{1, 2, . . . , k} such that for any i, j there are no paths from si to dj in G \ E whenever
π(i) ≥ π(j). If there exists a subset D ⊆ {1, 2, . . . , k}, and a bijection π : D → {1, 2, . . . , |D|}
such that for any i, j ∈ D, there are no paths from si to dj in G \ E whenever π(i) ≥ π(j),
then we say that E is a GNS-cut for the network for the sources indexed by D.

Note that for k = 1, GNS-cuts are just vertex bipartition cuts that feature in the cutset
bound. The usefulness of GNS-cuts arises from the following theorem that describes the
GNS bound.

Theorem 1 (from [32]) GNS-cuts are fundamental.

We first present the proof of Theorem 1. The essential idea is contained in [32, 28] but
we provide a proof here for completeness.
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Proof: Consider a communication scheme over alphabet A with block length N and number
of epochs T that achieves for 1 ≤ i ≤ r, rate Ri for the message from si to di with error
probability at most ǫ. Let E be a GNS-cut for {s1, s2, . . . , sr; d1, d2, . . . , dr} with the identity
permutation without loss of generality. Thus, there are no paths in G \ E from node si to
node dj whenever i ≥ j. For 1 ≤ i ≤ r, let Wi be the source message at si that is required
to be delivered to di, for 1 ≤ i ≤ r. Let W0 denote the vector of all other source messages
in the network. W0,W1, . . . ,Wr are mutually independent and each Wi, 0 ≤ i ≤ r has the
uniform distribution. Let XE denote the vector of all symbols transmitted on the edges of
E over the duration of the complete scheme. For 1 ≤ i ≤ r, let Ŵi denote the estimate at di
of the source message Wi upon completion of the coding scheme. Assume |A| = 2; the proof
for larger alphabet size is identical. Note that

H(W1,W2, . . . ,Wr|XE,W0) (2.3)

=
r
∑

i=1

H (Wi|XE,W0, {Wj : 1 ≤ j < i}) (2.4)

=
r
∑

i=1

H
(

Wi|XE,W0, {Wj : 1 ≤ j < i}, Ŵi

)

(2.5)

[since Ŵi is a function of XE,W0, {Wj : 1 ≤ j < i}
from the connectivity properties of G \ E]

≤
r
∑

i=1

H
(

Wi|Ŵi

)

(2.6)

≤
r
∑

i=1

h(ǫ) + ǫ⌈NTRi⌉ = rh(ǫ) + ǫ

r
∑

i=1

⌈NTRi⌉, (2.7)

where h(·) is the binary entropy function. The last inequality follows from Fano’s inequality.
Thus, we have

r
∑

i=1

⌈NTRi⌉ = H(W1,W2, . . . ,Wr) (2.8)

= I(W1,W2, . . . ,Wr;XE,W0)

+H(W1,W2, . . . ,Wr|XE,W0) (2.9)

≤ I(W1,W2, . . . ,Wr;XE|W0) + rh(ǫ) + ǫ

r
∑

i=1

⌈NTRi⌉ (2.10)

≤ H(XE) + rh(ǫ) + ǫ
r
∑

i=1

⌈NTRi⌉ (2.11)

≤
∑

e∈E

T ⌊NCe⌋+ rh(ǫ) + ǫ
r
∑

i=1

⌈NTRi⌉ (2.12)
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This establishes that
∑r

i=1Ri ≤
∑

e∈E Ce.

Given a k-unicast uncapacitated network G, one can set out to build a collection of
fundamental edge-cut bounds as follows:

• Fix a non-empty subset D ⊆ {1, 2, . . . , k} and consider the |D|-unicast network where
for each j ∈ D, sj communicates to dj at rate Rj.

• For every edge cut derived from a set of edges E ⊆ E(G) that forms a GNS-cut for the
|D|-unicast problem, we include the edge-cut bound

∑

j∈D Rj ≤
∑

e∈E Ce.

• Repeat for all choices of non-empty subsets D.

This collection of fundamental edge-cut bounds will be called the GNS edge-cut bound
collection for G.

Through most of this chapter, we shall only consider complete edge-cuts, namely edge-
cuts which disconnect all sources from their respective destinations so thatDG,E = {1, 2, . . . , k}.
This is without loss of generality, since if we have a non-complete but fundamental edge-
cut, one only needs to prove the necessary bound by considering a complete edge-cut for a
suitable |D|-unicast problem with D = DG,E ⊂ {1, 2, . . . , k}.

2.2 Equivalence to the functional dependence bound

The problem of identifying edge-cut bounds that are fundamental has been approached using
different techniques. These include the following:

• PdE bound [39]

• Information Dominance bound [26]

• Functional Dependence bound [56]

The aforementioned works provide algorithms to show that certain edge-cut bounds are
fundamental based on properties of the underlying graph. We show that the GNS bound is
equivalent to the functional dependence bound [56]. Connection of the GNS bound to the
PdE bound [39] and the information dominance bound [26] is discussed in Section 2.5.

Theorem 2 For multiple-unicast networks, the GNS edge-cut bound collection is equivalent
to the functional dependence bound [56].

Proof: It is easy to check that the GNS bound is a special case of the functional dependence
bound [56]. Now, given a k-unicast uncapacitated network G, the functional dependence
bound [56] says that the inequality

k
∑

i=1

Ri ≤
∑

e∈E

Ce (2.13)
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holds for all capacity assignments CG and all (R1, R2, . . . , Rk) ∈ C(G,CG), for a set of edges
E that correspond to a so-called maximal irreducible set (defined below). We will show that
such a set of edges always yields a GNS-cut and that will complete the proof.

We describe the construction from [56] of the functional dependence graph (FDG) denoted
by Z. Corresponding to the information message of source si, introduce a (so-called) pseudo-
variable Yi and corresponding to each edge e, introduce a pseudo-variable Ue. For each e,
draw incoming edges into Ue from each of the pseudo-variables associated with all incoming
sources and edges incident on the tail of e. For each destination di, draw incoming edges into
Yi from each of the pseudo-variables associated with all incoming edges and sources incident
on di. This completes the construction of Z. In the network G, each source si must have
at least one path to its own destination di. So, we have that the FDG Z is cyclic (in the
notation of [56]). A maximal irreducible set is a subset of vertices A of the FDG Z with
the property that after one removes all edges outgoing from vertices in A and successively
removes all vertices and edges with no incoming edges and vertices respectively, then no
vertex in Z remains. It must also be that no proper subset of A has the same property but
we will not need this latter condition.

We start with a maximal irreducible set A that has none of the source variables Yi,
say A = {Ue : e ∈ E}. Consider vertices and edges being removed from the graph by this
procedure one at a time. Since the process ends with all the Yi’s removed from the graph,
let the order in which they get removed be given by a permutation π, i.e. let the order be
Yπ(1), Yπ(2), . . . , Yπ(k). Then, none of the sources s1, s2, . . . , sk have a path to dπ(1) in G \ E.
Further, none of the sources with the possible exception of sπ(1) can have a path to dπ(2)
in G \ E. Continuing this chain of reasoning, we find that the edge-cut derived from E is a
GNS-cut for the network G with permutation π. This completes the proof.

2.3 Edge-cut bounds based only on

source-destination connectivity

Fundamentality of an edge-cut bound is a purely graph-theoretic property. A simple way
to classify different edge-cuts is to look at connectivity from all sources to all destinations.
For a k-unicast uncapacitated network G, and a subset of edges E ⊆ E(G) which yield a
complete edge-cut, we define the profile of the edge-cut derived from E, denoted PG,E, to be
a directed graph with nodes having labels s1, s2, . . . , sk, d1, d2, . . . , dk with si’s having only
outgoing edges, di’s having only incoming edges and an edge from si to dj if and only if
there is a path from si to dj in G \E. If the edge-cut derived from E is a GNS-cut, then we
call the corresponding profile a GNS profile. Fig. 2.2 shows all possible profiles of complete
edge-cuts for a 2-unicast network.

From Theorem 1, all edge-cuts with a GNS profile result in fundamental bounds. A
natural question to ask is whether there are other edge-cut profiles for which it is also true
that all edge-cuts with that profile result in fundamental bounds. Furthermore, it is of
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d2

(b)

(c) (d)

Figure 2.2: Profiles of edge-cuts for 2-unicast networks

(a), (b), (c) are GNS profiles while (d) is not.

interest to provide some bounds in the case of an edge-cut profile that does not necessarily
give fundamental bounds for all networks. Both these issues are addressed by Theorem 3.
As an example, the profile in Fig. 2.2(d) is a non-GNS profile and this profile happens to
not give fundamental bounds in all networks as seen by the example in Fig. 2.1.

To state the main result of this section, we need one more definition. Given a profile
P of a complete edge-cut for a k-unicast network, we define a specific capacitated network
- its canonical network N (P) - an index coding [6] instance, as follows. Take the directed
graph represented by the profile P and add two nodes u and v. Add edges from all the si’s
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to u, from v to all the di’s and from u to v. All edges have infinite capacity except the
edge from u to v which has capacity 1 unit. For each i, si has independent information to
be communicated to di. Let the sum-capacity of this network be denoted by ρ(P). Fig. 2.3
shows two examples of profiles of edge-cuts and their corresponding canonical networks.

s1

s2

d1

d2

s3 d3

u v

∞

∞

∞

∞

∞

∞

∞

∞

1

∞

s1
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d2

s3 d3

s1

s2

d1

d2

s3 d3

s1

s2

d1

d2

s3 d3

u v

∞∞

∞

∞

∞

∞

∞

∞

1

∞

∞

∞

∞

(a) Profile P1

(c) Profile P2

(b) Canonical network N (P1)

(d) Canonical network N (P2)

Figure 2.3: Two examples of profiles and their corresponding canonical networks

It can be shown that ρ(P1) =
3
2
and ρ(P2) = 3.

Theorem 3 Fix an edge-cut profile P . For any k-unicast uncapacitated network G, and any
complete edge-cut derived from edge set E ⊆ E(G) with PG,E = P, we have the inequality

k
∑

j=1

Rj ≤ ρ(P)
∑

e∈E

Ce, (2.14)

for any assignment of capacities CG ∈ R
|E(G)|
≥0 , and any rate tuple within capacity, (R1, R2, . . . , Rk) ∈

C(G,CG). Moreover, the constant ρ(P) in Inequality (2.14) cannot be improved upon and sat-
isfies ρ(P) ≥ 1, with equality if and only if P is a GNS-profile.

Proof: Suppose we have a k-unicast capacitated network (G,CG), and a complete edge-cut
derived from edge set E, whose profile is P . We will perform modifications to the network
and its capacities which can only enhance its capacity region.
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• For each directed edge (x, y) in E, add an edge from each of the sources to x and from
y to each of the destinations.

• Now, assign infinite capacities to all edges of this network that do not belong to E.

Now all source messages can be assumed to be present in their entirety at the tails of
each edge in E and all destinations are connected with an infinite capacity path to the
heads of each edge in E, and therefore, any coding scheme operating on this network can
be translated to a coding scheme on a

(
∑

e∈E Ce
)

-scaled copy of N (P) and vice versa.
Therefore, the sum capacity of this enhanced network is ρ(P)

∑

e∈E Ce and so, for any rate
tuple (R1, R2, . . . , Rk) ∈ C(G,CG), we have the desired Inequality (2.14). The constant ρ(P)
cannot be improved upon since N (P) is an example of a network with edge-cut derived from
E = {(u, v)} having the desired profile P and for which Inequality (2.14) is tight by the
definition of ρ(P).

ρ(P) ≥ 1 is obvious from the definition since commodity flow can achieve a sum-rate of
1 in N (P). For a GNS profile P , Theorem 1 gives ρ(P) ≤ 1. We only need to show that
ρ(P) > 1 for any non-GNS profile P . It is easy to show that for any non-GNS profile P ,
one can find a sequence of t ≥ 2 distinct indices i1, i2, . . . , it ∈ {1, 2, . . . , k} such that in the
directed graph represented by P , we have that sir has an edge to dir+1 for r = 1, 2, . . . , t− 1
and sit has an edge to di1 . (For example, Fig. 2.3(a), (b) are both 3-unicast non-GNS profiles
for which one can set i1 = 1, i2 = 2, i3 = 3.) We now propose a coding scheme for N (P)
which achieves a sum-rate of t

t−1
thus showing ρ(P) ≥ t

t−1
> 1.

Assume that only the sources siα , α = 1, 2, . . . , t wish to deliver one message symbol
from a finite field F to their respective destinations and that the edge (u, v) can carry one
finite symbol per time slot. We will accomplish this task in t − 1 time slots. Node u
receives all the t finite field message symbols, say X1, X2, . . . , Xt. It sends out t− 1 random
linear combinations of these symbols on the edge (u, v), where the co-efficients are uniformly
chosen from F independent across the different symbols and across time. Each destination
diα , α = 1, 2, . . . , t receives all of these t − 1 symbols and also has one message symbol of
side information from the source directly connected to it. Standard calculations similar to
those in [38] can then be used to show that each destination can recover its intended message
with high probability as the size of the finite field F goes to infinity. Thus, there exists some
coding scheme that delivers the desired performance.

Remark: We note that ρ(P) may be quite hard to compute, especially for large k. However,
once computed for a profile for a specific k, it gives useful bounds for all k-unicast networks
with no restrictions on the size of such networks. Recent work in [6] provides inner bounds
on the entire capacity region for the index coding problem. In particular, their bounds are
tight for upto five-node networks which would allow us to evaluate the sum-capacity ρ(P)
exactly for all canonical networks N (P) with k ≤ 5.



CHAPTER 2. THE GENERALIZED NETWORK SHARING BOUND 15

2.4 NP-completeness of minimum GNS-cut

The works of [26], [39], [56] provide algorithms to check if their approach can deduce the
fundamentality of a given edge-cut. However, the number of edge-cuts is exponential in the
size of the network and so listing all of them and checking if they provide fundamental bounds
is computationally intractable. For a single-unicast problem, we know that the algorithm
of Ford and Fulkerson reveals the mincut efficiently in spite of there being exponentially
many edge-cuts. Given a capacitated k-unicast network, can we have any algorithm that
efficiently finds, among all complete edge-cuts E that are GNS-cuts, the one that has the
smallest value of

∑

e∈E Ce? Theorem 4 will show unfortunately that we cannot, even for
k = 2, unless P=NP. Let us define the following decision problem.

MIN 2-GNS-CUT

Instance: A two-unicast uncapacitated network G and an assignment of non-negative
capacities CG to the edges.

Question: Is there a set of edges E ⊆ E(G) with ∑e∈E Ce ≤ K such that the edge-cut
derived from E is a GNS-cut?

Theorem 4 MIN 2-GNS-CUT is NP-complete.

Proof: It is clear that MIN 2-GNS-CUT is in NP. We give a polynomial transformation from
the multiterminal cut problem for three terminals which is known to be NP-complete [17].
In the multiterminal cut problem, we are given a number K and an unweighted undirected
graph H with three special vertices or “terminals” x, y, z. We are asked whether there is a
subset of edges F of the graph H with |F | ≤ K such that H \ F has no paths between any
two of x, y, z. Given (H, K), we construct a corresponding instance of MIN 2-GNS-CUT as
follows. Let the number of edges of H be N with K ≤ N.

The two-unicast capacitated network G is obtained by replacing each undirected edge
(u, v) of H with a gadget as shown in Fig. 2.4. The gadget introduces two new vertices w,w′

and constitutes five edges, the one central edge having unit capacity and four flank edges
each having capacity N + 1 units. Finally, s1 is identified with terminal x, d2 with terminal
y and both s2 and d1 with terminal z.

We show that G has a GNS-cut derived from a set of edges E with
∑

e∈E Ce ≤ K if and
only if H has a set of edges F forming a multiterminal cut with |F | ≤ K.

Suppose that in the undirected graph H, there is a multiterminal cut F with at most K
edges. Then, picking the central edge of the gadgets corresponding to the edges in F gives
a GNS-cut in G with edge set E such that

∑

e∈E Ce = |E| ≤ K.
Conversely, suppose there is a GNS-cut in G derived from an edge set E which satisfies

∑

e∈E Ce ≤ K. As s2 and d1 are identified, the GNS-cut must have the profile shown in
Fig. 2.2 (c). Moreover, as K ≤ N, the edge set E cannot contain any flank edge and
must consist exclusively of central edges of gadgets. Choosing the undirected edges of H
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Figure 2.4: Edge to Gadget

(a) shows an undirected edge and (b) the corresponding gadget

corresponding to the gadgets whose central edges lie in E gives an edge set F of H that has
at most K edges and is a multiterminal cut in H.

The significance of Theorem 4 can be appreciated using Theorem 5 below.

Theorem 5 (Theorem 5 of [32]) For 2-unicast networks, the GNS edge-cut bound collection
is the tightest edge-cut bound collection possible. In particular, therefore, it is equivalent to
the PdE bound [39], Information Dominance bound [26] and Functional Dependence bound
[56] for 2-unicast networks.

Thus, the hardness result in Theorem 4 and the fact that the difficulty of computing the
tightest edge-cut bound in any class of bounds for the k-unicast problem can only increase
with k, we obtain a hardness result for computation of the tightest edge-cut bounds for the
k-unicast problem that can be dereived from the PdE, information dominance and functional
dependence bounds.

2.5 Discussion

Theorem 3 does not say that an edge-cut with a non-GNS profile must necessarily not be
fundamental. Consider the bat network example in Fig. 2.5(a). The edge-cut derived from
E = {e1, e2} is not a GNS-cut for the two-unicast network shown, yet R1+R2 ≤ Ce1 +Ce2 is
a fundamental edge-cut bound. The reason of course, is that R1 ≤ Ce2 and R2 ≤ Ce1 follow
from the cutset bound. Fig. 2.5(b) shows each edge assigned unit capacity and a specific
coding scheme. This coding scheme makes it clear why functional dependence or information
dominance do not capture this bound for the 2-unicast problem: The information flowing
on {e1, e2} does not dominate all the source messages.
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Figure 2.5: Bat network

(a) shows a two-unicast uncapacitated network. (b) shows a specific coding scheme on the
capacitated network with all edges having unit capacity.

Although this example is somewhat daft, the general question is not. Is there a funda-
mental sum-rate edge-cut bound for a k-unicast network that is not implied by the GNS
edge-cut bound collection? The answer is No for k = 1 (by the Max-Flow-Min-Cut theorem)
and also No for k = 2 by Theorem 5. The question is open for k ≥ 3. In particular, it is of
interest to know whether or not the PdE bound [39] and Information Dominance bound [26]
are strictly stronger than the GNS bound collection for k-unicast networks with k ≥ 3.

It is also of interest to explore weighted sum-rate edge-cut bounds as studied in [59]. It
would be useful to determine other classes of Shannon (or non-Shannon) inequalities and
other information about the graph structure of the network that can help in deriving such
bounds.
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Chapter 3

An information-theoretic

meta-theorem for wireline networks

In the previous chapter, we studied edge-cut bounds as conventional outer bounds on com-
modity flow or routing, and distinguished them from fundamental edge-cut bounds that
are outer bounds on the network capacity region. However, the literature on hardness of
cut problems typically deals with edge-cut bounds - the outer bounds on commodity flow.
Although these edge-cut bounds in directed networks are not fundamental, they are combi-
natorially well-represented. They are however, hard to approximate in general [13], [1].

One class of networks for which edge-cut bounds can be approximated well is the class
of undirected networks. A series of works [44], [46] has shown that for the problem of k-
unicast in undirected networks, flow solutions approach the edge-cut bounds up to a factor
of κ′ log(k+1), for some universal constant κ′. There has also been discovered a semi-definite
programming relaxation approach that allows an approximation of edge-cut bounds up to
a factor of Θ(

√
log k) [7]. Interestingly, for undirected networks, edge-cut bounds can be

derived from the vertex bipartition cutset bound and are hence fundamental outer bounds
on the capacity region. Thus, [44], [46] also characterize up to a factor of κ′ log(k+1), (with
κ′ being a universal constant), the capacity region of k-unicast in undirected networks. It
has been conjectured that flow solutions in fact achieve capacity [45], [25].

Another setting in which edge-cut bounds can be approximated well is the problem of
multiple unicast in directed wireline networks with symmetric demands, i.e. for each source
communicating to its destination at a certain rate there is an independent message to be
communicated from the destination back to the source at the same rate. Klein, Plotkin, Rao,
and Tardos [37] show under this model that flow solutions achieve within κ log3(k+1) of the
edge-cut bounds for some universal constant κ. We ask the question: “Are these edge-cut
bounds fundamental outer bounds on the capacity region?” Surprisingly, the answer turns
out to be yes and the proof of this result is one of the main contributions of this chapter.
The key tool we use in the proof is the Generalized Network Sharing (GNS) bound that
we described in Chapter 2. This completes an approximate characterization of the capacity
region for this class of problems.
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Yet another setting which allows a flow-cut closeness result is the groupcast problem in
directed wireline networks. In this setting, there is a group of nodes and each node in the
group has an independent message to be relayed to every other node in the group. [51]
shows that the maximum sum-rate achievable by routing flow for groupcast is at least half
the so-called multicut, a simple edge-cut based outer bound. We ask the question: “Is the
multicut a fundamental outer bound on the sum-rate?”. We show that the answer is no but
that twice the multicut is indeed a fundamental outer bound. This shows that routing flow
is approximately optimal for maximizing sum-rate in groupcast.

When there is some kind of symmetry in the network, either in the underlying graph
(undirected or bidirected networks) or in the traffic (directed network with symmetric de-
mands, sum-rate in groupcast), the following picture seems to emerge.

• (Achievability) Algorithmic Meta-Theorem: Edge-cut bounds can be well-approximated
either by flows [44], [46], [37], [12], [51] or by other means [7].

• (Converse) Information-Theoretic Meta-Theorem: Edge-cut bounds are fundamental
or close to fundamental outer bounds on the capacity region.

• Combined Meta-Theorem: Flows approximately achieve capacity.

In Chapter 4, we use achievability results similar to [46], [37], and [51] obtained for
polymatroidal networks (a generalization of wireline networks), and an extension of the
GNS bound to Gaussian networks to study the capacity regions of wireless networks. The
rest of this chapter is organized as follows. We define the edge-cut outer bound in Section 3.1.
We then discuss

• k-unicast undirected networks in Section 3.2,

• k-unicast directed symmetric-demand networks in Section 3.3,

• k-groupcast directed networks in Section 3.4.

Finally, we end with a discussion in Section 3.5.

3.1 Preliminaries

We add the following definition to the objects defined in Chapter 2.

Definition: Given a k-unicast network N = (G,C) for source-destination pairs {(si; di)}i∈I ,
we define the edge-cut outer bound denoted by Redge−cut, to be the set of all non-negative
tuples (Ri : i ∈ I) that satisfy for every E ⊆ E(G), the inequality∑i∈J Ri ≤

∑

e∈E Ce where
index i ∈ J ⊆ I if and only if G \E has no paths from si to di. (The paths are directed paths
in the directed graph case and undirected paths in the undirected graph case.) We define
the multicut denoted by Rmulticut, to be the minimum value of

∑

e∈E Ce over all E ⊆ E(G)
with the property that G \ E has no paths from si to di for each i ∈ I.
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While it is clear that F ⊆ Redge−cut and F ⊆ C, the connection between C and Redge−cut

is unclear. The example in Fig. 2.1 in Chapter 2 shows that C 6⊆ Redge−cut in general.
Thus, simple edge-cut based outer bounds are not fundamental fundamental, i.e. they are
not outer bounds on the capacity region. Likewise it is clear that Fsum−rate ≤ Rmulticut

and Fsum−rate ≤ Csum−rate but Csum−rate and Rmulticut have no apparent connection. Indeed,
[26] provides a series of k-unicast networks, one for each k with k = 2n, with Fsum−rate =
Rmulticut =

1
k
Csum−rate and C 6⊆ (k − ǫ)Redge−cut for any ǫ > 0.

Remark: Note that Rmulticut may in general be strictly larger than the tighter bound on
Fsum−rate given by sup(Ri:i∈I)∈Redge−cut

∑

i∈I Ri.

3.2 k-unicast undirected networks

Theorems 6 and 7, and Corollary 1 will refer to k-unicast undirected networks.

Theorem 6 (Leighton-Rao [44], Linial-London-Rabinovich [46])

Redge−cut

κ′ log(k + 1)
⊆ F ⊆ Redge−cut, (3.1)

for a universal constant κ′.

Theorem 7

C ⊆ Redge−cut (3.2)

Theorems 6 and 7 together imply that routing flow is approximately capacity-achieving:

Corollary 1
Redge−cut

κ′ log(k + 1)
⊆ F ⊆ C ⊆ Redge−cut, (3.3)

for a universal constant κ′.

Although Theorem 7 is easy to show, it is not very well-known. So, we provide a proof
here.

Proof: Consider a k-unicast undirected network N for source-destination pairs {(si; di)}i∈I .
Consider a coding scheme that achieves rates (Ri : i ∈ I) in T epochs of block length N
with overall error probability at most ǫ. Let E ⊆ E(G) be any subset of edges and let J ⊆ I
denote the set of all indices i ∈ I which have si and di disconnected from each other in
G \ E. Let (V1,V2, . . . ,Vr) denote the partition of V obtained as the connected components
of G \ E and let E ′ ⊆ E denote the set of edges that connect a vertex in Vs to a vertex in
Vs′ , for 1 ≤ s, s′ ≤ r, s 6= s′.
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For 1 ≤ q ≤ r, let Jq denote the set of all indices i ∈ I which have si ∈ Vq and di 6∈ Vq.
(J1, J2, . . . , Jr) is a partition of J. For 1 ≤ q ≤ r, let Xq denote the vector of all symbols
transmitted on edges going out of Vq and into Vs for some s 6= q. For i ∈ I, let Wi be the
source message at si that is required to be decoded at di. By the cutset bound written for
vertex bipartition (Vq,V \ Vq), we have

∑

i∈Jq

H(Wi) ≤ H(Xq) (3.4)

Adding up these inequalities over 1 ≤ q ≤ r, we get
∑

i∈J H(Wi) ≤ ∑r
q=1H(Xq), which

yields
∑

i∈J Ri ≤
∑

e∈E′ Ce ≤
∑

e∈E Ce. This establishes C ⊆ Redge−cut.

Remark: Theorems analogous to 6 and 7 can be similarly proved for k-unicast in bidirected
networks, i.e. directed networks in which for every edge from node u to node v there is
another edge from node v to node u with the same capacity.

It has been conjectured that a much stronger result than Corollary 1 holds:

Conjecture 1 (Li and Li conjecture [45], [25]) For k-pair unicast undirected networks,

F = C.

3.3 k-pair unicast directed symmetric-demand

networks

Definition: A k-pair unicast directed symmetric-demand network is a 2k-unicast directed
network N with 2k distinct distinguished nodes (source-destination nodes) u1, u2, . . . , uk,
v1, v2, . . . , vk with source-destination pairs {si; di}i∈I where I = {1, 2, . . . , k}∪{−1,−2, . . . ,−k}
and for i > 0, si = ui, di = vi, while for i < 0, si = v−i, di = u−i. The rate tuple
(Ri : 1 ≤ i ≤ k) is defined to be in the capacity region C, flow region F , or edge-cut
outer bound region Redge−cut for the k-pair unicast directed symmetric-demand network if
the rate tuple (R′

i : i ∈ I), given by R′
i = R|i| for i ∈ I, lies in the capacity region, flow

region, or edge-cut outer bound region respectively of the 2k-unicast directed network.

Remark: There is no loss of generality in assuming that u1, u2, . . . , uk, v1, v2, . . . , vk are
distinct since if they aren’t we can add more nodes and infinite capacity edges to make them
distinct while obtaining a network with an identical capacity region.

Definition: Given a k-pair unicast directed symmetric-demand network N = (G,C) with
source-destination nodes u1, u2, . . . , uk, v1, v2, . . . , vk, we define the GNS-cut outer bound de-
noted by RGNS−cut, to be the set of all non-negative tuples (Ri : 1 ≤ i ≤ k) that satisfy
for every E ⊆ E(G), the inequality

∑

i∈J Ri ≤ ∑

e∈E Ce whenever E is a GNS-cut for
{w1, w2, . . . , wr;w

′
1, w

′
2, . . . , w

′
r} with some permutation π where
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• J ⊆ {1, 2, . . . , k}, |J | = r,

• w1, w2, . . . , wr, w
′
1, w

′
2, . . . , w

′
r are distinct,

• for 1 ≤ j ≤ r, (wj, w
′
j) = (ui, vi) or (vi, ui) for some i ∈ J.

We define a weak edge-cut outer bound for this class of networks.

Definition: Given a k-pair unicast directed symmetric-demand network N = (G,C) with
source-destination nodes u1, u2, . . . , uk, v1, v2, . . . , vk, we define the weak edge-cut outer bound
denoted by Rw.e.c., to be the set of all non-negative tuples (Ri : 1 ≤ i ≤ k) that satisfy for
every E ⊆ E(G), the inequality∑i∈J Ri ≤

∑

e∈E Ce where index i ∈ J ⊆ {1, 2, . . . , k} if and
only if G \ E has no directed paths from either ui to vi or vi to ui or both.

Remark: For E ⊆ E(G), if J1 is the set of indices i, 1 ≤ i ≤ k for which G \ E has no
directed paths from either ui to vi or from vi to ui but not both and J2 is the set of indices
i, 1 ≤ i ≤ k for which G \ E has no directed paths from ui to vi and from vi to ui, then the
edge-cut outer bound has the inequality

∑

i∈J1
Ri + 2

∑

j∈J2
Rj ≤

∑

e∈E Ce while the weak
edge-cut outer bound has the inequality

∑

i∈J1
Ri +

∑

j∈J2
Rj ≤ ∑

e∈E Ce. It is therefore,
clear that

Redge−cut ⊆ Rw.e.c. ⊆ 2Redge−cut.

Theorems 8, 9 and 10 and Corollary 2 will refer to k-pair unicast directed symmetric-demand
networks.

Theorem 8 (Klein-Plotkin-Rao-Tardos [37])

Rw.e.c.

κ log3(k + 1)
⊆ F ⊆ Rw.e.c., (3.5)

for a universal constant κ.

Theorem 9 (stated as Theorem 1 in Chapter 2 )

C ⊆ RGNS−cut (3.6)

Theorem 10

Rw.e.c. = RGNS−cut (3.7)

Theorems 8, 9 and 10 together imply that routing flow is approximately capacity-achieving:

Corollary 2
Rw.e.c.

κ log3(k + 1)
⊆ F ⊆ C ⊆ Rw.e.c. = RGNS−cut, (3.8)

for a universal constant κ.
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Remark: The GNS bound is to the capacity region what the edge-cut bound is to the flow
region, namely an intuitive outer bound that arises from simple connectivity properties of
the underlying graph of the network. While more sophisticated bounds [39], [26], and [56]
include the GNS bound as a special case, it is the simplicity of the GNS bound that becomes
useful for Theorem 10, which shows that weak edge-cuts and GNS-cuts are identical for
k-pair directed symmetric-demand networks. We also note that the outer bound RGNS−cut

is in general strictly tighter than the cutset outer bound and that, in general, the capacity
region C is not contained in Redge−cut although it is always contained in Rw.e.c..

We conjecture that a much stronger result than Corollary 2 holds:

Conjecture 2 (Analog of Li and Li conjecture [45], [25]) For k-pair unicast directed symmetric-
demand networks,

F ⊆ C ⊆ 2F ,
i.e. network coding can improve rates beyond routing flow by at most a factor 2.

We prove the equivalence between weak edge-cuts and GNS-cuts for k-pair unicast di-
rected symmetric-demand networks, thus proving Theorem 10.

Proof: It is easy to see that the inequality obtained from a GNS-cut can always be obtained
from a weak edge-cut since a GNS-cut requires stronger disconnections as compared to a weak
edge-cut. This gives Rw.e.c. ⊆ RGNS−cut. To show RGNS−cut ⊆ Rw.e.c., we now consider E ⊆
E(G), and say i ∈ J ⊆ {1, 2, . . . , k} if and only if G\E has no directed paths from either ui to
vi or from vi to ui or both. We show that E is a GNS-cut for {w1, w2, . . . , wr;w

′
1, w

′
2, . . . , w

′
r}

with some permutation π where the 2r vertices w1, w2, . . . , wr, w
′
1, w

′
2, . . . , w

′
r are all distinct

and for 1 ≤ j ≤ r, (wj, w
′
j) = (ui, vi) or (vi, ui) for some i ∈ J with |J | = r. We will prove

this for the case J = {1, 2, . . . , k}. The proof for other choices of J is similar.
Define the connectivity graph Gc as a directed graph over 2k vertices u1, u2, . . . , uk, v1, v2, . . . , vk

as follows. For every pair of distinct vertices w and z, there is a directed edge from w to z
in Gc if and only if w has a directed path to z in G \ E. See Fig. 3.1 for an example. Gc is
transitively closed, i.e. for three distinct vertices w, z, x, if w has an edge to z and z has an
edge to x, then w has an edge to x. Define two distinct vertices u and v in Gc as associated,
if u has an edge to v and v has an edge to u. If we define every vertex to be associated with
itself, this relation is reflexive and symmetric. As Gc is transitively closed, this relation is
also transitive and so association is an equivalence relation. Further, for each i = 1, 2, . . . , k,
we have that ui and vi are not associated since there are no paths in G \ S from either ui to
vi or from vi to ui.

Now, define the reduced connectivity graph Gr as a directed graph with vertices represented
by the equivalence classes defined from being associated in Gc. See Fig. 3.2 for an example.
There is a directed edge from equivalence class E1 to E2 in Gr if there is a directed edge in Gc
from each vertex in E1 to each vertex in E2. By transitive closure of Gc, this happens if and
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u1

u2

u3
u4

u5

v1

v2

v3

v4

v5

Figure 3.1: Connectivity graph Gc

u1

u2 u3u4

u5

v1

v2v3

v4

v5

Figure 3.2: Reduced connectivity graph Gr
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only if there is a directed edge in Gc from some vertex in E1 to some vertex in E2. Gr has at
least two vertices since u1 and v1 cannot belong to the same equivalence class.

Now, note that Gr is a directed acyclic graph. Suppose not, i.e. suppose the equivalence
classes E1, E2, E3, . . . , Er, E1 in that order describe a directed cycle. Then, in the graph Gc,
for vertex wj chosen from equivalence class Ej for j = 1, 2, . . . , r, we have wj has a directed
edge to wj+1 for j = 1, 2, . . . , r− 1 and wr has a directed edge to w1. Transitive closure of Gc
implies that there must be a directed edge from wj to wk for j, k = 1, 2, . . . , r, j 6= k, leading
to a collapse of the r ≥ 2 equivalence classes into one equivalence class, a contradiction.

We now describe an algorithm P that fills the cells of a k × 2 table with vertex names
from u1, u2, . . . , uk, v1, v2, . . . , vk such that the following properties hold:

(α) Each vertex shows up exactly once in the table.

(β) Each row of the table is made up of vertices ui and vi for some i.

(γ) In graph Gc, vertex u obtained from the first column of row i does not have an edge to
vertex v obtained from the second column of row j whenever i ≥ j.

A directed acyclic graph has at least one sink vertex, i.e. a vertex with no outgoing edges.
This is the proposed algorithm P .

(1) Pick any sink vertex in directed acyclic graph Gr.
(2) List the vertices of Gc in the equivalence class represented by the chosen sink vertex.

(a) Pick a vertex w from the list.

(b) If vertex w has been entered previously in the table, do nothing. Else, add vertex
w in the first column of the lowest row in the table not yet filled. Add the
destination of vertex w in the second column of the same row, i.e. if v3 was
entered in the first column of the lowest available row, then fill u3 in the second
column.

(c) Remove w from the list and go back to (a) if the list is still non-empty, else proceed
to (3)

(3) Modify graph Gr by deleting the chosen sink vertex. The modified graph continues to
be a directed acyclic graph. If this graph has non-zero number of vertices, go to step
(1), else quit.

Let us verify the claimed properties. By step (b), it is clear that each non-empty row
of the table is filled with a vertex and its destination, i.e. the vertices ui and vi for some
i. As the algorithm terminates only when all vertices have been listed and checked for their
presence in the table, and as the vertices are added only when they have not been added
previously, it follows that each vertex shows up exactly once and the table is completely
filled upon termination of the algorithm. This verifies claimed properties (α) and (β). Now,
we verify property (γ).



CHAPTER 3. AN INFORMATION-THEORETIC META-THEOREM FOR WIRELINE

NETWORKS 26

u1

u2

u3

u4

u5

v1

v2

v3

v4

v5

Figure 3.3: Connectivity pattern

One of the several 5× 2 tables generated by running algorithm P on the Gc,Gr shown in
Fig. 3.1, Fig. 3.2 respectively. The order of choosing sinks was v4, u5, u2v3u4, u3v2, v1, u1v5.
The arrows show connectivity from the vertices on the left to the vertices on the right in

Gc. Note that no arrows go ‘horizontally’ or go ‘upward’. They always go ‘downward’ which
is the desired GNS-cut property.

• Consider vertices in row j of the table, say w and w′ with w in the first column. These
are source-destination pairs ui, vi for some i. We claim that w has no edge to w′ in
Gc. Suppose it did. Then, there would be an edge in Gr from the equivalence class E
containing w to the equivalence class E ′ containing w′. These equivalence classes must
be distinct as w and w′ are source-destination pairs. This means that the algorithm
P must pick the equivalence class containing w′ before picking the equivalence class
containing w. When w′ is probed in the list of vertices, w must not have been entered
into the table as yet, and thus w′ would then be entered in the first column of some row
and w in the second column of the same row. This contradicts the assumed structure
of the table. Thus, we have no edge from w to w′ in Gc.

• Now, consider rows i and j with i > j. Let the vertices in row i be w and w′ with w
in the first column and the vertices in row j be z and z′ with z in the first column.
We claim that there is no edge from w to z′ in Gc. Suppose there is. Then, either
w and z′ are in the same equivalence class in Gc or they are not. If they are not,
then the equivalence class containing z′ has an incoming edge from the equivalence
class containing w and thus, the former ought to have been picked by the algorithm
before the latter. This is inconsistent with the table which was filled with w in the
first column of a row while z′ had not yet been filled. Now, if w and z′ are in the
same equivalence class, then clearly z does not fall in that equivalence class. Moreover,
the equivalence class containing z is picked after the equivalence class containing w
and z′. The algorithm P , when exhausting the list of vertices in the equivalence class
containing w and z′ is supposed to have accepted w and added it to the first column
of a row and rejected z′. But when z′ was probed, we are still in the same equivalence
class as w, so z had not been probed yet. Then z′ must have been added to the first
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column of some row, which contradicts the structure of the table. Thus, there is no
edge from w to z′ in Gc.

Now, if the jth row of the table consists of ui, vi, we set π(j) = i and (wi, w
′
i) = (ui, vi) or

(vi, ui) depending on whether the first entry in the row is ui or vi. This shows that S is a GNS-
cut for {w1, w2, . . . , wk;w

′
1, w

′
2, . . . , w

′
k} with permutation π. This gives Rw.e.c. ⊇ RGNS−cut

and completes the proof.

3.4 k-groupcast directed networks: Sum-rate

Definition: A k-groupcast directed network is a k(k−1)-unicast directed network N with k
distinct distinguished nodes (group-nodes) v1, v2, . . . , vk with source-destination pairs {s(i,j); d(i,j)}(i,j)∈I
where I = {(i, j) : 1 ≤ i, j ≤ k, i 6= j} and s(i,j) = vi, d(i,j) = vj.

Theorems 11 and 12 and Corollary 3 will refer to k-groupcast directed networks.

Theorem 11 (Naor-Zosin [51])

1

2
Rmulticut ≤ Fsum−rate ≤ Rmulticut (3.9)

Theorem 12

Csum−rate ≤ 2Rmulticut (3.10)

Theorems 11 and 12 together imply that routing flow is approximately capacity-achieving
for sum-rate:

Corollary 3
1

2
Rmulticut ≤ Fsum−rate ≤ Csum−rate ≤ 2Rmulticut (3.11)

We give the proof of Theorem 12.

Proof: Consider a k-groupcast directed network N with group-nodes v1, v2, . . . , vk. Let E
be a set of edges such that G \ E has no directed paths from vi to vj for each (i, j) ∈ I.
Let (R(i,j) : (i, j) ∈ I) ∈ C. Observe that E is a GNS-cut for source-destination pairs
{s(i,j); d(i,j)}(i,j)∈I:i>j. Theorem 9 gives

∑

(i,j)∈I:i>j R(i,j) ≤ ∑

e∈E Ce. Similarly, we can get
∑

(i,j)∈I:i<j R(i,j) ≤
∑

e∈E Ce. Adding, we obtain
∑

(i,j)∈I R(i,j) ≤ 2
∑

e∈E Ce, which completes
the proof.
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v1 v2 v3 vk

u

w

e

Figure 3.4: Example of a groupcast network

Remark: For the groupcast network in Fig. 3.4 with all edges having unit capacity, a simple
XOR coding scheme achieves the rate tuple given by

R(i,j) =

{

1 if (i, j) = (1, 2) or (2, 1)

0 otherwise,
(3.12)

is achievable, while the multicut Rmulticut = 1. This shows that the factor 2 in the inequality
of Theorem 12 cannot be improved upon.

3.5 Discussion

It is intriguing that the kind of symmetry that allows results suggesting the closeness of
flow and edge-cuts also leads to the near-fundamentality of such edge-cuts. It would be
interesting to see whether there is a deeper explanation of this phenomenon.
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Chapter 4

Wireless Networks: Network Capacity

under Traffic Symmetry

The capacity region of multiple unicast in general wireless networks is an interesting open
problem. Recent work [34], [35], [36] has made progress in this direction by giving an
approximate characterization of this capacity region by using the reciprocity in wireless
channels. It has been shown that simple layered architectures involving local physical-layer
schemes combined with global routing can achieve approximately optimal performance in
wireless networks.

In many practical scenarios, the reciprocity may be affected due to asymmetric power
constraints, directional antennas, or frequency-duplexing. The question we address in this
chapter is: “do layered architectures continue to be optimal even in this case?” We answer
this question in the affirmative under the symmetric demands model: there are k specially-
marked pairs of nodes (si, di), i = 1, 2, ..., k with si wanting to communicate an independent
message to di at rate Ri and di wanting to communicate an independent message to si at
rate Ri. This traffic model is valid in several practical scenarios including voice calls, video
calls, and interactive gaming.

As mentioned in Chapter 3, the symmetric demands traffic model was originally stud-
ied for wireline networks by Klein, Plotkin, Rao, and Tardos [37], who established that the
routing rate region and edge-cuts are within a factor κ log3(k + 1) of each other, where κ
is a universal constant. This result, however, does not establish that routing is approxi-
mately optimal since edge-cuts do not, in general, bound the rate of general communication
schemes. Chapter 3 showed that edge-cuts do in fact form fundamental upper bounds for
the communication rates under this traffic model.

In this chapter, we prove this result for wireless networks under several channel models
for which good schemes are known at a local level. Our results for wireless networks with
symmetric demands include:

• Capacity approximations for networks comprised of Gaussian MAC and broadcast
channels,
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• Degrees-of-freedom approximation for fixed Gaussian networks, and

• Capacity approximations for fading Gaussian networks.

At the heart of our achievable scheme is a connection to “polymatroidal networks” for
which the symmetric demands problem was recently addressed [11]. Our outer bound is
based on the Generalized Network Sharing bound which we extend to wireless networks in
this chapter.

This chapter is organized as follows. We first study a special class of Gaussian networks
that we call MAC+BC networks in Section 4.1. Then, we move to general Gaussian networks
in Section 4.2, with a study of fixed Gaussian networks and ergodic Gaussian networks.

4.1 Gaussian networks composed of Broadcast and

Multiple Access Channels

We set up a network model for this class of networks that we call MAC+BC networks. The
communication network is represented by a directed graph G = (V , E), and an edge coloring
ψ : E → C, where C is the set of colors. Each node v has a set of colors C(v) ⊆ C on which
it operates. Each color can be thought of as an orthogonal resource, so that the broadcast
and interference constraints for the wireless channel apply only within a given color. The set
of edges Ac corresponding to color c interact with each other and can be said to constitute
a channel.

The channel model can therefore be written as,

yci (t) =
∑

j∈Inc(i)

hcjix
c
j(t) + zci (t) ∀c ∈ C(i), (4.1)

where xci(t), y
c
i (t), z

c
i (t) are the transmitted vector, received vector, and noise vector on color

c at time instant t, hcji is the (fixed) channel coefficient between node i and node j on color
c and Inc(i) represents the set of in-neighbors of node i who are operating on color c. We
denote by yi the vector comprised of {yci} for all c ∈ C(i). We do not assume any symmetry
in the channels, so that, in general hcij may be different from hcji.

We say that a given c ∈ C corresponds to a multiple access channel (MAC) of degree d,
if the set of edges Ac is of the form Ac = {i1j, i2j, ..., idj}, i.e., all edges are directed towards
a particular node j. Similarly a channel c is said to correspond to a broadcast channel (BC)
of degree d if Ac = {ij1, ij2, ..., ijd} for some node i. If Ac is a singleton set, we say that the
channel c corresponds to an orthogonal link. A network is said to be a MAC+BC network if
the set C can be decomposed as C = M∪B, where M is the set of MAC channels and B is
the set of broadcast channels or orthogonal links. Stated alternately, a network is composed
of broadcast and multiple access channels if and only if no edge is involved simultaneously
in a broadcast and interference constraint inside the same color. We will call such a network
a “Gaussian MAC+BC network”. An example of such a network is shown in Fig. 4.1.
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Each node i has an average power constraint P to transmit for each color that it transmits
in. If there are distinct power constraints for different nodes, they can be absorbed into the
channel co-efficient without loss of generality. We assume that the channel hcij is fixed (time-
invariant) and is known at all the nodes.

s1 s2

t1 t2

e1

e2

e3

e4

e5

e6

e7

e8 e9

e10
e11

e12

e13

e14
e15

e16
e17

e18

e19

Figure 4.1: Example of a MAC+BC Gaussian network

Multiple Unicast in Gaussian MAC+BC Networks

A k-unicast Gaussian network has k pairs of nodes si, di, i = 1, 2, ..., k, where node si has
a message to send to di and di has an independent message to send to si, both at rate Ri.
We would like to characterize the closure of the set of all achievable rate tuples, called the
capacity region C. We will use Rach to denote rates achievable by a simple scheme that we
will propose. Also, for clarity, we will use Xv,Yv to denote the input and output alphabets
at node v, implicitly understanding that in the Gaussian network, Xv = R

a,Yv = R
b, for

suitable integers a and b. Formally, a (⌈2TR1⌉, ⌈2TR2⌉, . . . , ⌈2TRk⌉, T ) coding scheme for this
network which communicates over T time instants is comprised of the following.
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1. Independent random variablesWi which are distributed uniformly onWi := {1, . . . , ⌈2TRi⌉}
for i = 1, . . . , k respectively. Wi denotes the message intended from source si to desti-
nation di.

2. The source mapping at source si for time t,

fsi,t : (Wi,Y t−1
si

) → X t
si
. (4.2)

3. The relay mappings for each v ∈ V\{s1, d1, s2, d2, . . . , sk, dk} and time t,

fv,t : Y t−1
v → X t

v . (4.3)

4. The decoding map at destination di,

gdi : YT
di
→ Wi. (4.4)

If Ŵi is the decoded symbol at di, then the probability of error for destination di under this
coding scheme is given by

P i
e := Pr{Ŵi 6= Wi}. (4.5)

A rate tuple (R1, R2, . . . , Rk), where Ri is the rate of communication in bits per unit time
from source si to destination di, is said to be achievable if for any ǫ > 0, there exists a
(⌈2TR1⌉, ⌈2TR2⌉, . . . , ⌈2TRk⌉, T ) scheme that achieves a probability of error lesser than ǫ for
all nodes, i.e., maxi P

i
e ≤ ǫ. The capacity region C is the closure of the set of all achievable

rate tuples.
The capacity region can similarly be defined for the k-unicast problem with symmetric

demands: For each i = 1, 2, . . . , k, si has a message to be communicated to di at rate Ri and
di has an independent message to be communicated to si at the same rate Ri.

Weak edge-cut bound

Similar to the wireline network case, we define a weak edge-cut bound region for the wire-
less network with demand symmetry. The weak edge-cut bound region for the Gaussian
MAC+BC network is defined by the following: consider any set of edges F ⊆ E , and let
K(F ) denote the set of i ∈ {1, 2, ..., k} such that either there is no path from si to di or there
is no path from di to si in G \ F . The value of the cut F is defined by ν(F ) :=

∑

c ν(F
c),

where F = ∪cF c with F c being the set of edges that participate in color c and ν(F c) is the
capacity under complete coordination of source nodes in channel c. More formally, if c is
a broadcast channel, ν(F c) is equal to the sum-capacity of the broadcast channel specified
only by edges in F c, under complete coordination of destination terminals in F c. Similarly,
if c is a MAC channel, ν(F c) is equal to the sum-capacity of the MAC channel specified by
edges in F c, under complete coordination of source terminals in F c.
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The weak edge-cut bound region is now given as

Rw.e.c. = {(R1, ..., Rk) :
∑

i∈K(F )

Ri ≤ ν(F ) ∀F ⊆ E}.

As in the wireline network case, it is not clear if Rw.e.c. is an outer bound to the capacity
region C.

Our main result is the following:

Theorem 13 For the k-unicast problem with symmetric demands in a Gaussian MAC+BC
network, the weak edge-cut bound is a fundamental outer bound on the capacity region and
a simple separation strategy can achieve Rach(P ) which satisfies,

Rw.e.c.(
P

dmax
)

κ log3(k + 1)
⊆ Rach(P ) ⊆ C(P ) ⊆ Rw.e.c.(P ), (4.6)

where κ is a universal constant independent of problem parameters and dmax is the maximum
degree of any broadcast or MAC component channel c.

Thus, the edge-cut bound is a fundamental upper bound on the capacity region and
furthermore the edge-cut bound, scaled down in power by a factor dmax and scaled down in
rate by a factor 1

κ log3(k+1)
, can be achieved by the proposed scheme.

Outer bound

We first establish that the weak edge-cut bound is fundamental, i.e., every communication
scheme must have rate pairs that lie inside this region: C ⊆ Rw.e.c.. We will prove this result
using a GNS bound for Gaussian networks.

Given an ℓ-unicast MAC+BC Gaussian network with source destination pairs {si, di}ℓi=1,
we define a set of edges F ⊆ E to be a GNS-cut if there exists a permutation π : {1, 2, . . . , ℓ} →
{1, 2, . . . , ℓ} such that there are no paths from si to di in G \ F, whenever π(i) ≥ π(j).

Lemma 1 (GNS bound for MAC+BC Gaussian networks) For an ℓ-unicast Gaussian MAC+BC
network, every GNS cut F is fundamental, i.e.,

∑

i∈K(F )Ri ≤ ν(F ) for any communication

scheme achieving (R1, ..., Rℓ). Alternately C ⊆ RGNS−cut, where

RGNS−cut = ∩F⊆E{(R1, .., Rℓ) :
∑

i∈K(F )

Ri ≤ ν(F )}. (4.7)

An instance of Lemma 1 can be found in Fig. 4.2.

Proof: Let F be a GNS-cut disconnecting si from di for i = 1, 2, . . . , ℓ with say, the identity
permutation πid. Thus, K(F ) = {1, 2, . . . , ℓ}. A similar proof holds in the case when K(F ) ⊂
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Figure 4.2: GNS bound for MAC+BC Gaussian networks

The set of edges {e5, e6, e8, e12, e13, e19} forms a GNS-cut in the two-unicast network of (a).
The outer bound on the capacity region of the two-unicast network, that can be derived

from the GNS-cut is shown in (b).

{1, 2, . . . , ℓ}. We first provide a proof of the GNS bound when the network has an acyclic
underlying graph G.

Recall that the set of colors C = M∪B where M consists of the colors of edges involved
in MAC components and B consists of colors of edges involved in broadcast components or
orthogonal links. For µ ∈ C, let Aµ denote the set of edges involved in µ. Now, construct a
directed graph G ′ as follows: for each µ ∈ C, there is a node in G ′ and add a directed edge
from node µ to node ν in G ′ if there exists an edge in Aµ that is upstream to some edge in
Aν in the original DAG G. Since the set of all edges with a given color constitute either a
MAC or a BC, we have that G ′ is a directed acyclic graph. Thus, we can have a total order
on the vertices of G ′ consistent with the partial order of ancestry in G ′. This gives a total
order on C and therefore also a total order on the subset D := {µ ∈ C : F ∩Aµ 6= ∅}, which
we will denote by µ1 < µ2 < . . . < µr, where µ1 is the most “upstream”.

• For µ ∈ M, we denote transmissions along edge e in Aµ by Xe and we denote the
reception by Yµ so that Yµ =

∑

e∈Aµ
Xe + Zµ where Zµ is Gaussian noise. Further,

define Uµ := {Xe : e ∈ F ∩Aµ}, and Vµ :=
∑

e∈F∩Aµ
Xe+Zµ. Intuitively, Uµ (Vµ) is the
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transmission (reception) on channel µ if only edges in F were present in the channel.

• For µ ∈ B, we denote the transmission on the broadcast component or orthogonal
link by Xµ and the receptions at heads of e ∈ Aµ by Ye so that Ye = Xµ + Ze
where {Ze, e ∈ Aµ} are independent Gaussian noise random variables. Further define
Uµ := Xµ, and Vµ := {Ye : e ∈ F ∩ Aµ}.

Define Ỹdi = {Y n
µ : head(e) = di, e ∈ Aµ, µ ∈ M} ∪ {Y n

e : head(e) = di, e ∈ Aµ, µ ∈ B}.

n[
ℓ
∑

i=1

Ri − ǫn] ≤
ℓ
∑

i=1

I(Wi; Ỹdi)

≤
ℓ
∑

i=1

I(Wi; {V n
µ : µ ∈ D}, {Wj : j < i})

[since Wi − {V n
µ : µ ∈ D}, {Wj : j < i} − Ỹdi

as F is a GNS cut with identity permutation]

=
ℓ
∑

i=1

I(Wi; {V n
µ : µ ∈ D}|{Wj : j < i})

[since Wi is independent of {Wj : j < i}]
= I({Wi : 1 ≤ i ≤ ℓ}; {V n

µ : µ ∈ D})
= h({V n

µ : µ ∈ D})
− h({V n

µ : µ ∈ D}|{Wi : 1 ≤ i ≤ ℓ})
≤
∑

µ∈D

h(V n
µ )− h({V n

µ : µ ∈ D}|{Wi : 1 ≤ i ≤ ℓ})

=:
∑

µ∈D

h(V n
µ )− A.

Now, we consider the negative term A above.
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A = h({V n
µ : µ ∈ D}|{Wi : 1 ≤ i ≤ ℓ})

= h(V n
µ1
, V n

µ2
, . . . , V n

µr |{Wi : 1 ≤ i ≤ ℓ})
≥ h(V n

µ1
, V n

µ2
, . . . , V n

µr |{Wi : 1 ≤ i ≤ k}, Un
µ1
)

= h(V n
µ1
|{Wi : 1 ≤ i ≤ ℓ}, Un

µ1
)

+ h(V n
µ2
, . . . , V n

µr |{Wi : 1 ≤ i ≤ ℓ}, Un
µ1
, V n

µ1
)

= h(V n
µ1
|Un

µ1
)

+ h(V n
µ2
, . . . , V n

µr |{Wi : 1 ≤ i ≤ ℓ}, Un
µ1
, V n

µ1
)

[since {Wi : 1 ≤ i ≤ ℓ} − Un
µ1

− V n
µ1

as µ1 is the most upstream channel]

≥ h(V n
µ1
|Un

µ1
)

+ h(V n
µ2
, . . . , V n

µr |{Wi : 1 ≤ i ≤ ℓ}, Un
µ1
, V n

µ1
, Un

µ2
)

= h(V n
µ1
|Un

µ1
) + h(V n

µ2
|{Wi : 1 ≤ i ≤ ℓ}, Un

µ1
, V n

µ1
, Un

µ2
)

+ h(V n
µ3
, . . . , V n

µr |{Wi : 1 ≤ i ≤ ℓ}, Un
µ1
, V n

µ1
, Un

µ2
, V n

µ2
)

= h(V n
µ1
|Un

µ1
) + h(V n

µ2
|Un

µ2
)

+ h(V n
µ3
, . . . , V n

µr |{Wi : 1 ≤ i ≤ ℓ}, Un
µ1
, V n

µ1
, Un

µ2
, V n

µ2
)

[since {Wi : 1 ≤ i ≤ ℓ}, Un
µ1
, V n

µ1
− Un

µ2
− V n

µ2

as only µ1 could be more upstream than µ2]

≥
∑

µ∈D

h(V n
µ |Un

µ ),

from repeating these steps. Thus, we obtain

n[
ℓ
∑

i=1

Ri − ǫn] ≤
∑

µ∈D

I(Un
µ ;V

n
µ ) (4.8)

≤ n
∑

µ∈D

ν(Fµ) (4.9)

= nν(F ), (4.10)

and therefore it follows that the GNS bound is a fundamental upper bound on the capacity
region for acyclic networks.

For a general cyclic network, we can employ a standard time-layering argument in order
to complete the proof. While the details of our method and the use of time-layering to deal
with cyclic networks are fairly standard, see [3, 8], one key difference is that here we are
using time-layering in order to prove an outer-bound, whereas the earlier works utilized time
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layering to show achievability. We will provide a brief sketch of the method here. Given
a cyclic network G and a coding scheme over n time instants, we construct a time-layered
graph Gn as follows. The nodes in the graph Gn are arranged in n + 1 layers 0, 1, ..., n. For
each i, layer i has a copy of all the nodes V in the original graph, we call this V [i] and the
copy of node v in layer i is called v[i]. Add directed edges in the graph in the following
manner.

• For each (u, v) ∈ E in the original graph with channel coefficient hcvu on color c, we
add edges (u[i], v[i+ 1]) for i = 0, 1, ..., n− 1 with channel coefficient hcivu on color ci.

• Create an edge from v[i] to v[i + 1] for each v of infinite capacity in an independent
channel (in order to model memory of the link).

Thus the time-layered graph Gn is created. This graph defines an instance of a Gaussian
MAC+BC network, which is acyclic. For this new graph, we define a communication prob-
lem by specifying that sources s1[0], ..., sℓ[0] wish to communicate independent information to
destinations d1[n], d2[n], ..., dℓ[n]. Observe that any scheme on the original network utilizing
n time instants gives a valid scheme on this graph Gn. Thus upper bounds on the communica-
tion rates in this graph serve as upper bounds to n(R1, R2, ..., Rℓ) whenever (R1, R2, . . . , Rℓ)
lies in the capacity region of the original network. Now given a GNS cut on the original
graph with the identity permutation, defined by a set of edges F , we can define a cut on this
graph Gn by F n := ∪i∈[n]F [i], where F [i] = {(u[i− 1], v[i), ∀(u, v) ∈ F}. If F disconnected
source sa from destination db in the original graph, this cut F n disconnects sa[0] from db[n]
in the time-layered graph because any remaining path from sa[0] to db[n] would imply a path
in the original graph from sa to db. This implies that any GNS cut on the original graph
can produce a GNS cut on Gn with n times the value, as each edge occurs n times in F n.
Since the rate is also scaled by n times in this time layered graph, this proves that the GNS
bound is a valid upper bound on the rate of an arbitrary (cyclic) graph.

Now that we know that GNS-cut is a valid upper bound on the Gaussian network for any
ℓ unicast problem, we will define the GNS-cut for a symmetric demands problem (in exactly
the same way as it was defined for wireline networks in Chapter 3).

Definition: Given a k-pair unicast directed symmetric-demand MAC + BC Gaussian net-
work with source-destination nodes u1, u2, . . . , uk, v1, v2, . . . , vk, we define the GNS-cut outer
bound denoted by RGNS−cut, to be the set of all non-negative tuples (Ri : 1 ≤ i ≤ k) that
satisfy for every F ⊆ E(G), the inequality

∑

i∈J Ri ≤ ν(F ) whenever F is a GNS-cut for
{w1, w2, . . . , wr;w

′
1, w

′
2, . . . , w

′
r} with some permutation π where

• J ⊆ {1, 2, . . . , k}, |J | = r,

• w1, w2, . . . , wr, w
′
1, w

′
2, . . . , w

′
r are distinct,

• for 1 ≤ j ≤ r, (wj, w
′
j) = (ui, vi) or (vi, ui) for some i ∈ J.
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By Theorem 10 of Chapter 3, we have that Rw.e.c. = RGNS−cut. Using this result in
conjunction with Lemma 1, gives us the desired result,

C ⊆ Rw.e.c.. (4.11)

We parametrize both C and Rw.e.c. by power constraint P in order to emphasize its depen-
dence.

Coding Scheme

The coding scheme we propose is a separation-based strategy: each component broadcast or
multiple access channel is coded for independently creating bit-pipes on which information
is routed globally. In order to evaluate the rate region of this scheme, we use polymatroidal
networks as an interface for which we can show that the flow region corresponding to routing
and the bounding region defined by edge-cuts are close to each other. For simplicity of
notation, we will assume that all MAC and broadcast channels have degree d = dmax. It will
be clear from the details that this assumption is not necessary.

For a finite set V, a set function f : 2V 7→ R is said to satisfy the polymatroidal axioms if

• f(∅) = 0,

• A ⊆ B =⇒ f(A) ≤ f(B),

• The function f is submodular, i.e. for any two sets A,B ⊆ V, f(A) + f(B) ≥ f(A ∩
B) + f(A ∪ B).

A bounding region B defined over R|V| is said to be a polymatroidal region if it is of the
form B = {(Rv : v ∈ V ) : Rv ≥ 0 and for any A ⊆ V,

∑

v∈ARv ≤ f(A)} for some functin f
that satisfies the polymatroidal axioms.

Let us first consider the coding for the multiple access channel with channel coefficients
h1, ..., hd and power constraint P at each of the d nodes. Let the rate region achievable on
this multiple access channel be denoted by

RMAC
ach (P ) = {R :

∑

i∈A

Ri ≤ log

(

1 +
∑

i∈A

|hi|2P
)

∀A}. (4.12)

This region is known to be polymatroidal. The outer bound for the MAC under arbitrary
source cooperation is given by

RMAC
cut (P ) = {R :

∑

i∈A

Ri ≤ log



1 +

(

∑

i∈A

|hi|
)2

P



 ∀A}. (4.13)

The capacity region of a broadcast channel with channel coefficients h1, ..., hk and power
constraint P is not a polymatroidal region. However, it can be approximated by a polyma-
troidal region [34]. In particular, the achievable region includes the following polymatroidal
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region, and we will restrict our broadcast channel scheme to operate inside the following
polymatroidal region, as we will show that this is not too far from the cutset outer bound:

RBC
ach(P ) = {R :

∑

i∈A

Ri ≤ log

(

1 +
∑

i∈A

|hi|2
P

d

)

∀A}, (4.14)

The cutset bound on the broadcast channel under arbitrary destination cooperation is

RBC
cut(P ) = {R :

∑

i∈A

Ri ≤ log

(

1 +
∑

i∈A

|hi|2P
)

∀A}. (4.15)

It can be easily verified that RMAC
cut (P ) ⊆ RMAC

ach (dP ) and RBC
cut(P ) ⊆ RBC

ach(dP ). Now,
each multiple access or broadcast channel can be replaced by a set of d bit-pipes whose rates
are jointly constrained by the corresponding capacity constraints. It turns out that this falls
inside a class of networks called polymatroidal networks, that have been already studied [12].
We will now give a short description of polymatroidal networks and some results for these
networks.

Polymatroidal Networks

Consider a directed graph G = (V , E). We have considered networks in the previous chapter
with capacity constraints on the edges. A polymatroidal network has more general capacity
constraints coupling edges that meet at a node. In the polymatroidal network, for each node
v there are two associated submodular functions: ρInv and ρOut

v which impose joint capacity
constraints on the edges in In(v) and Out(v) respectively. That is, for any set of edges
S ⊆ In(v), the total capacity available on the edges in S is constrained to be at most ρInv (S).
Similarly, ρOut

v constrains edges in Out(v).
For any subset of edges F ⊆ E , we define the disconnection set K(F ) as the set of indices

i for which source si has no paths to destination di in G \F. In standard networks, the value
of the cut F is simply

∑

e∈F c(e) where c(e) is the capacity constraint on edge e. The value
of a cut F in polymatroidal networks is defined as follows: each edge (u, v) in F is first
assigned to either u or v; we say that an assignment of edges to nodes g : F → V is valid
if it satisfies this restriction. Once this assignment is made, we can compute the value of
the cut according to this assignment by evaluating the submodular functions corresponding
to the set of edges grouped together. The value of the cut ν(F ) is the minimum over all
assignments, that is,

ν(F ) := min
g:F→V,g valid

∑

v

{

ρInv (In(v) ∩ g−1(v)) + ρOut

v (Out(v) ∩ g−1(v))
}

. (4.16)

A max-flow min-cut theorem for the single unicast problem in directed polymatroidal
networks is known in the literature [43, 27]. For the k-unicast problem in a directed poly-
matroidal network with symmetric demands, the following theorem is proved in [11], which
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generalizes the result of [37] from edge capacity constraints to polymatroidal capacity con-
straints. The weak edge-cut bound for symmetric-demand polymatroidal networks is defined
similarly as for standard networks.

Theorem 14 (from [11]) For a symmetric-demand directed polymatroidal network with k
source-destination pairs, any rate tuple in the weak edge-cut rate region divided by a factor
κ(log3(k + 1)) is achievable by routing, where κ is a universal constant.

If Rpoly
w.e.c. stands for the weak edge-cut region in the polymatroidal network and Rpoly

ach

stands for the region achievable by flow in the polymatroidal network, then Theorem 14 can
be rewritten as:

Rpoly
w.e.c.

κ log3(k + 1)
⊆ Rpoly

ach . (4.17)

Analysis of Achievable Rates in Gaussian MAC+BC Network

The proposed separation strategy converts the Gaussian MAC+BC network into a directed
polymatroidal network with symmetric demands. Using the achievable rates for the corre-
sponding MAC and BC channels from (4.12) and (4.14), we can see that this polymatroidal
network has the following submodular functions at any given node v,

ρInv (S) =
∑

c

log



1 +
∑

(uv)∈S

|hcvu|2P



 , (4.18)

ρOut

v (S) =
∑

c

log



1 +
∑

(vu)∈S

|hcvu|2
P

d



 . (4.19)

This fully defines the polymatroidal network. Now any rate tuple achievable on this poly-
matroidal network is achievable in the Gaussian MAC+BC network using the proposed
separation architecture.

Now we can use Theorem 14 to show that the achieved rate tuple in the Gaussian network
is within a poly-logarithmic factor of the weak edge-cut bound in the polymatroidal network,
i.e.

Rpoly
w.e.c.(P )

κ log3(k + 1)
⊆ Rpoly

flow (P ) = Rg
ach(P ). (4.20)

Here we have parametrized all the rate regions by the power constraint in order to make this
dependence explicit. In order to prove our main result, we still need to connect the weak
edge-cut bound in the polymatroidal network to the weak edge-cut bound in the Gaussian
network.
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We will connect the value of the cut in the polymatroidal network to the value of the cut
in the Gaussian network. Let us take a cut derived from a set of edges F in the polymatroidal
network and a valid assignment g of F , which yields the minimum among all possible valid
assignments. In this assignment, each edge (u, v) of F is assigned either to u or to v. Thus for
any node, some incoming edges are assigned together and some outgoing edges are assigned
together and the value of the cut is given by

ν(F ) =
∑

v

{ρInv (In(v) ∩ g−1(v)) + ρOut

v (Out(v) ∩ g−1(v))}.

Note that each of these functions ρInv and ρOut
v corresponds to the constraints in the achiev-

able region of the original MAC and broadcast channels. If we take the cut corresponding to
F in the original network, then these functions will be replaced by the functions correspond-
ing to the cut in the MAC and broadcast channels, whose equations are given in (4.13) and
(4.15). It has been observed earlier that,

RMAC
cut (P ) ⊆ RMAC

ach (dP ) (4.21)

RBC
cut(P ) ⊆ RBC

ach(dP ). (4.22)

Note that the value of any cut in the polymatroidal network is a function of the power
constraint implicitly, since ρIn and ρOut are functions of the power constraint. Let us call this
function v(P ). Now if we look at the same cut in the Gaussian network then the value of
this cut here is at most v(dP ) because of (4.21) and (4.22). Thus the weak edge-cut region
in the polymatroidal network and the weak edge-cut region in the Gaussian network can be
related to each other as follows,

Rg
w.e.c.(P ) ⊆ Rpoly

w.e.c.(dP ), (4.23)

or alternately Rg
w.e.c.(

P
d
) ⊆ Rpoly

w.e.c.(P ). This result, when combined with (4.20) and (4.11),
yields the following relationship,

Rg
w.e.c.(

P
d
)

κ log3(k + 1)
⊆ Rg

ach(P ) ⊆ C ⊆ Rg
w.e.c.(P ), (4.24)

which completes the proof of Theorem 13.

4.2 General Gaussian Networks

In this section, we consider general Gaussian networks, i.e., networks where broadcast and
MAC can occur simultaneously. Our basic idea will remain similar to what we did in the
case of the Gaussian MAC+BC network, where we employed a separation strategy. A
good physical layer scheme that approximately achieved the cut-set bound converted the
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MAC+BC Gaussian network into a polymatroidal network on which routing was shown to
be approximately optimal.

In order to provide guarantees on the performance of our layered architecture in general
Gaussian networks, we need physical layer schemes that achieve close to the cut-set bound
on the component channels. This class of networks includes as a special case the interference
channel and the X-channel (where every transmitter has a message to transmit to every
receiver). In a general Gaussian network, it is not clear what a component channel is. In
[35], it was identified that the X-channel can be viewed as a basic component channel of
a general Gaussian network. Good communication schemes are known for the X- channel
under the following scenarios:

1) Degrees-of-freedom in fixed Gaussian channels

2) Capacity approximation in ergodic Gaussian channels.

As such, our network-level results also apply under these two settings.

Fixed Gaussian channels

The communication network is represented by a directed graph G = (V , E). The edges (j, i)
that are present have fading coefficients hij on them, each of which are chosen independently
from a continuous fading distribution. Note that in a general Gaussian network, the presence
of edge (j, i) does not necessarily imply the presence of edge (i, j). There are k pairs of
specially designated nodes si, di such that si has a message to send to di at rate Ri and di
has an independent message to send to si at the same rate Ri. The channel model can be
written as

yi(t) =
∑

j∈In(i)

hijxj(t) + zi(t) ∀t = 1, 2, ..., T, (4.25)

where xi(t), yi(t), zi(t) are the transmitted vector, received vector, and noise vector at time
t, and In(i) represents the set of neighbors of node i who have an incoming edge to i. The
noise vector is assumed to have unit variance and is independent at each node. There is an
average power constraint of P per node. The degrees-of-freedom (DOF) tuple (d1, ..., dk) is
said to be achievable if, for each P , there is a scheme achieving rate tuple (R1(P ), ..., Rk(P ))
such that di = limP→∞

Ri

logP
. The closure of the set of all achievable DOF tuples is called

the DOF region D. Let Dach denote the DOF tuples achievable by our specific strategy and
let Dw.e.c. correspond to the weak edge-cut bound (which is defined formally below).

Weak Edge-Cut Bound:

In order to define the weak edge-cut bound in the general Gaussian network case, we will uti-
lize the weak edge-cut bound region in the Gaussian MAC+BC network case. We will observe
that there are several ways to upper bound the capacity of a given general Gaussian network
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by a related network of Gaussian MAC+BC channels. This can be done by “deactivation” of
some of the MAC and BC constraints. Formally, consider a coloring on the set of edges such
that the channel corresponding to each color is a MAC or broadcast channel. This coloring
produces a Gaussian MAC+BC network whose DOF region contains the DOF region of the
original network, as we shall show. For a MAC+BC network, each orthogonal MAC or BC
component contributes a DOF of 1. Thus, the DOF value of the cut in the colored network
is the total number of MAC or BC channels involved in the cut. Now, we define d(F ) as the
tightest bound obtainable on the DOF by bounding it based on any suitable coloring giving
a MAC+BC network. Finally, define Dw.e.c. = {(d1, ..., dk) :

∑

i:i∈K(F ) di ≤ d(F ) ∀F ⊆ E}.
It is not clear, as earlier, that Dw.e.c. is a fundamental upper bound on any achievable DOF
tuple under symmetric demands.

Our main result is the following.

Theorem 15 For a directed wireless network with symmetric demands, if the fixed channel
coefficients are drawn from a continuous distribution, the DOF region given by Dach satisfying

Dw.e.c.

κ log3(k + 1)
⊆ Dach ⊆ D ⊆ Dw.e.c., (4.26)

is achievable, with probability 1.

Coding Scheme

Our coding scheme involves a conversion of the Gaussian network into a bit-pipe network
(more specifically, a polymatroidal network) and then routing on this induced polymatroidal
network.

First, consider an interference channel with l sources s1, s2, . . . , sk, wishing to commu-
nicate to their respective destinations d1, d2, . . . , dk. Suppose that the connectivity between
sources and destinations is described by a suitable bipartite graph and that for each i, there
is an edge from si to di. Then, it is well-known that the real interference alignment scheme
[50] achieves half DOF per transmitter-receiver pair simultaneously, almost surely over the
randomness in the channel co-efficients.

In our Gaussian network, we choose two subsets of nodes of equal size. We choose one
set to be a set of “transmitter” nodes and the other set to be a set of “receiver” nodes. This
creates for us an interference channel. We choose a suitable matching in the connectivity
from the transmitters to the receivers to give us the transmitter-receiver pairs. This creates
bit pipes that offer half DOF for each transmitter-receiver pair. We then time-share between
all possible choices of subset pairs and over all possible matchings.

It has been shown in [35] that such a choice in fact leads to a simple polymatroidal network
with the same set of of edges as the original Gaussian network, and with the following sub
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modular functions at each node, almost surely

ρInv (S) =
1

2
∀S 6= ∅ ⊆ In(v), ∀v ∈ V, (4.27)

ρOut

v (T ) =
1

2
∀T 6= ∅ ⊆ Out(v), ∀v ∈ V. (4.28)

Now, on this polymatroidal network, information is routed from the source nodes to the
destination nodes. Since the traffic demand is symmetric between si and di, the result of
Theorem 14 shows that the rate achieved on the polymatroidal network is within a poly-
logarithmic factor of the edge-cut bound in the polymatroidal network, i.e.,

Rpoly
w.e.c.

κ log3(k + 1)
⊆ Rpoly

ach . (4.29)

Observe that if (R1, ..., Rk) ∈ Rpoly
ach is achievable in the polymatroidal network, a degrees

of freedom tuple (D1, ..., Dk) = (R1, ..., Rk) is achievable almost surely in the Gaussian
network using the strategy described above. Thus Dg

ach = Rpoly
ach . So, (4.29) gives

Rpoly
w.e.c.

κ log3(k + 1)
⊆ Rpoly

ach = Dg
ach. (4.30)

Now, we need to connect Rpoly
w.e.c. to Dg

w.e.c. in order to obtain the desired result. For this,
we want to find the DOF value of a cut in the Gaussian network. We upper bound the DOF
in the original Gaussian network by creating a modified network. We will color the edges
in a certain way such that broadcast and superposition constraints are active only inside a
color (similar to the coloring defined for MAC+BC networks (see Sec. 4.1).

We need the following lemma, which relates the rates achieved in the two networks.

Lemma 2 (from [35]) If we color the edges in the Gaussian network to obtain a “colored
network”, then the capacity regions of the two networks are related by the following:

Rg

ach(P ) ⊆ Rg(P ) ⊆ Rcol(dP ), (4.31)

where the superscript g is used for the original Gaussian network and the superscript col is
used to denote the colored Gaussian network and d is the maximum degree of any node in
the network, that is, Rg

ach(P ) is the set of rate tuples achieved by our scheme, Rg(P ) is the
capacity region and Rcol(dP ) is the capacity region of the colored Gaussian network at power
constraint dP.

Now, if the coloring yields a MAC+BC network, Lemma 1 informs us that the GNS
bound is a fundamental outer bound on the capacity region. Also, from Theorem 10 for the
symmetric demands problem, the weak edge cut bound is identical to the GNS bound, that
is,

Rcol(P ) ⊆ Rcol
w.e.c.(P ). (4.32)
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(4.31) and (4.32) imply

Rg
ach(P ) ⊆ Rg(P ) ⊆ Rcol(dP ) ⊆ Rcol

w.e.c.(dP ). (4.33)

Since degrees of freedom do not change by constant factor power scaling, we get

Dg
ach ⊆ Dg ⊆ Dcol ⊆ Dcol

w.e.c.. (4.34)

This justifies that Dcol
w.e.c. is indeed an upper bound on the DOF of the original network.

From the definition of Dg
w.e.c., we have Dg

w.e.c. = ∩col∈ZDcol
w.e.c., where Z denotes the set of all

possible colorings that yield MAC+BC Gaussian networks. Using this and (4.34) we have

Dg
ach ⊆ Dg ⊆ Dg

w.e.c.. (4.35)

Now, consider a subset of edges F ⊆ E in the polymatroidal network. Let the value of
this cut in the polymatroidal network be ν(F ). By the definition of cuts in polymatroidal
network, ν(F ) is achieved by an optimal assignment g of each edge (u, v) ∈ F to either node
u or v and the summing up the sub-modular functions in the polymatroidal network. Recall
that the value of the cut ν(F ) is given by,

ν(F ) :=
∑

v

{ρInv (In(v) ∩ g−1(v)) + ρOut

v (Out(v) ∩ g−1(v))}.

Each sub-modular function has the same value (1
2
) for a non-empty subset. Hence the

total value of the edge-cut in the polymatroidal network is equal to one half of the number
of nodes that are assigned at least one incoming edge by the assignment plus one half of
the number of nodes that are assigned at least one outgoing edges. From this optimal
assignment g, we describe a specific coloring from a partition of F into equivalence classes
using the following equivalence relation ∼, where

e1 ∼ e2 ⇐⇒ g(e1) = g(e2) = head(e1) = head(e2) or

g(e1) = g(e2) = tail(e1) = tail(e2),

i.e., e1 ∼ e2 if they are assigned by g to the same node and share the head or tail. We assign
distinct color to equivalence classes and each edge in the equivalence class is assigned the
same color. The edges not in F are all assigned distinct colors, which are disjoint from the
colors already assigned. This defines a colored network, whose DOF upper bounds the DOF
of the original network.

The DOF value of this GNS cut is simply the sum of the number of broadcast or MAC
channels involved in the cut. This is exactly equal to the number of colors in the cut, which
is the same as the number of distinct equivalence classes, which is equal to 2ν(F ). Thus the
degrees of freedom of the cut F , d(F ) is upper bounded by 2ν(F ), and therefore,

Dg
w.e.c. ⊆ Dcol

w.e.c. ⊆ 2Rpoly
w.e.c.. (4.36)
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From (4.30), (4.35) and (4.36), we get

Dg
w.e.c.

κ log3(k + 1)
⊆ Dg

ach ⊆ Dg ⊆ Dg
w.e.c., (4.37)

which proves our claim.

Ergodic Gaussian Channels

In an ergodic wireless network, the channel model is similar to the fixed Gaussian network,
except that instead of assuming constant channel coefficients hij(t) = hij, we assume that for
each (j, i) ∈ E , the channel coefficient hij(t) is varying as a function of time. In particular, we
assume that hij(t) is i.i.d. according to a fading distribution p(h) across i, j, t, i.e., identical
and independent across all the edges and time. We make another assumption, that the
fading distribution p(h) is symmetric, i.e., p(h) = p(−h) with Eh|h|2 = 1 and also that it
satisfies the following weak tail assumption,

a := e−E(log |h|2) <∞. (4.38)

Many common fading distributions satisfy this assumption. One particularly useful example
of such a fading distribution is the i.i.d. complex Gaussian distribution, for which a ≈ 1.78
[53].

Our main result in this setting is the following.

Theorem 16 For directed Gaussian network with symmetric demands, with a symmetric
weak-tailed ergodic fading distribution, the rate region given by Rach(P ) satisfying

Rw.e.c.(
P
ad3

)

κ log3(k + 1)
⊆ Rach(P ) ⊆ C(P ) ⊆ Rw.e.c.(P ), (4.39)

is achievable, where κ is a universal constant, d is the maximum degree of any node and
a = e−E(log |h|2).

The proof of this result is similar to the case of general static networks in Subsection 4.2
and has been carried out for bidirected wireless networks in [35]. We only sketch the basic
differences in the proof here.

The wireless network is converted into a polymatroidal network using the following phys-
ical layer scheme: At any given instant, we choose a subset of nodes as transmitter and
another subset of nodes of the same size as receiver, and pair them up as into transmitter-
receiver pairs. This creates an interference channel between the set of transmitting nodes
and receiving nodes, in this interference channel, ergodic interference alignment [52] can
achieve the following rate,

r :=
1

2
Eh log

(

1 + |h|2P
)

, (4.40)
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for every transmitter receiver pair which is connected. When we time-share between all such
possible transmitter subset, receiver subset and matching choices, we get a polymatroidal
network specified by the same set of edges as the original wireless network with submodular
functions on the nodes given by,

ρInv (S) = r ∀S 6= ∅ ⊆ In(v) ∀v ∈ V, (4.41)

ρOut

v (T ) = r ∀T 6= ∅ ⊆ Out(v) ∀v ∈ V. (4.42)

We define the weak edge-cut for the ergodic wireless network similar to the definition of
the weak edge-cut for fixed wireless network, using the sharpest upper bound given by the
coloring of the edges that induces a MAC+BC network, i.e.,

Rg
w.e.c.(P ) = ∩col∈ZRcol

w.e.c.(dP ), (4.43)

where the superscript ‘col’ here denotes a particular instance of a colored network and Z
is the set of all possible colorings of the network that lead to a MAC+BC network. By
Lemma 2 and Lemma 1, we know that C(P ) ⊆ Rg

w.e.c.(P ), i.e., the region Rg
w.e.c.(P ) is a

fundamental upper bound for the capacity region.
We then perform routing on this polymatroidal network from the sources to the sinks in

the given traffic model. By Theorem 14, routing can achieve rate tuples close to the cut-set
bound in the polymatroidal network to within a poly-logarithmic factor,

Rg
ach(P ) = Rpoly

ach (P ) ⊇ Rpoly
w.e.c.(P )

κ log3(k + 1)
. (4.44)

In order to connect the cuts of the Gaussian network to the polymatroidal network, we
take any edge-cut F and the optimizing assignment g of the cut, and color the edges of the
Gaussian network using equivalence classes of F , in exactly the same way as in the fixed
Gaussian network case. The cuts in the colored network can be related to the cuts in the
polymatroidal network, along the lines of [35] as follows:

Rcol
w.e.c.(P ) ⊆ Rpoly

w.e.c.(ad
2P ). (4.45)

Therefore, we get,

Rg
w.e.c.(P ) ⊆ Rpoly

w.e.c.(ad
3P ), (4.46)

which completes the sketch of proof of Theorem 16.
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Chapter 5

Non-Interactive Simulation of Joint

Distributions

In this chapter, we consider the problem of simulation of one sample of a joint distribution
by physically separated non-interacting agents observing i.i.d. copies of correlated random
variables. Related problems have been well-studied in the literature. Wyner [58] studied the
problem of simulating a joint distribution from shared randomness while Gács and Körner
[23] studied the problem of extracting common randomness from correlated observations.
Cuff studied communication requirements for simulating a channel [15]. Gohari and Anan-
tharam generalized Cuff’s formulation in [24] and Yassaee, Gohari and Aref recently solved
this problem in [61]. Cuff, Permuter, and Cover studied communication requirements for
establishing dependence among nodes in a network setting [16].

Non-Interactive Correlation Distillation, a setup in which non-interacting agents have to
each output a uniform random bit which agree with high probability, has been studied in [57,
49, 9]. In this chapter, we propose a generalization of this problem. Below, we summarize
different existing formulations of the problem of simulation of joint distributions.

a) The formulation shown in Fig. 5.1 was proposed by Gohari and Anantharam [24] as
a generalization of Cuff’s formulation [15]. Yassaee, Gohari, and Aref [61] recently
solved this problem completely. The task is for two agents to simulate i.i.d. samples of
a specified joint distribution P (x, y, u, v). Nature supplies i.i.d. copies of (X, Y ) with
the marginal distribution P (x, y) as shown and the agents can use a certain rate of
common randomness and certain rate-limited communication and an infinite stream of
their own private randomness to accomplish the desired task.

b) In this formulation (Fig. 5.2), two agents having access to their own infinite stream
of private randomness observe n i.i.d. copies of samples generated according to a
specified law P (x, y) as shown and are required to output nR samples drawn from
a distribution that is close (in total variation) to the the distribution constructed by
taking i.i.d. copies of a specified law Q(u, v). Let R∗ be the supremum of all achievable
rates.
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Figure 5.1: Gohari-Anantharam formulation

– When (U, V ) ∼ Q(u, v) has U = V ∼ Ber(1/2), we have R∗ = K(X;Y ), the
Gács-Körner common information [23] of X and Y.

– When (X, Y ) ∼ P (x, y) has X = Y ∼ Ber(1/2), we have 1
R∗ = C(U ;V ), the

Wyner common information [58] of U and V.

The problem of characterizing R∗ is open for general distributions P (x, y), Q(u, v) and
indeed, so is the problem of characterizing when R∗ > 0.

c) Since the problem of characterizing when R∗ > 0 in formulation b) is also non-trivial,
we propose a relaxed problem where two agents observe an arbitrary but finite number
of samples drawn i.i.d. from P (x, y) as shown in Fig. 5.3 and are required to output
one random variable each with the requirement that the output distribution be close
in total variation to a specified Q(u, v). Clearly, if it is impossible to generate even a
single sample, we obtain R∗ = 0. We therefore, focus on impossibility results for this
problem which will be relevant to formulation b) above. It is not clear if the converse
is true, i.e. it is unclear whether the possibility of generating one sample implies that
we may generate samples at a positive rate R > 0.

When (U, V ) ∼ Q(u, v) has U = V ∼ Ber(1/2), the problem has recently come to be
called Non-Interactive Correlation Distillation [49]. We therefore, call our formulation
the problem of Non-Interactive Simulation of Joint Distributions. In a remarkable
strengthening of the Gács-Körner result [23], Witsenhausen showed that unless the
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Figure 5.2: A generalization of the Gács-Körner and Wyner formulations

Gács-Körner common information K(X;Y ) is positive (i.e. the joint distribution of
(X, Y ) is decomposable), non-interactive correlation distillation is impossible to achieve
[57] .
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Private

Randomness

Figure 5.3: Non-Interactive Simulation of Joint Distributions

Our main contribution is a comparison between two tools - maximal correlation and
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hypercontractivity/reverse hypercontractivity - that help in proving impossibility results
for the problem formulation c). We show that under suitable conditions on the source
distribution (X, Y ), hypercontractivity/reverse hypercontractivity is a stronger tool than
maximal correlation.

This chapter is organized as follows. In Section 5.1, we discuss the problem formulation.
In Section 5.2, we describe the key tools used: maximal correlation, hypercontractivity and
reverse hypercontractivity. We describe properties of these tools that make them well-suited
for use in our problem formulation. Section 5.3 contains our main results and Section 5.4
contains the proofs of the main results. We conclude with an interesting example of an
extension of this problem setup to three agents in Section 5.5.

5.1 Problem formulation

Definition: Let X ,Y ,U ,V denote finite sets. Given a source distribution P (x, y) over X×Y
and a target distribution Q(u, v) over U×V , we say that non-interactive simulation of Q(u, v)
using P (x, y) is possible, if for any ǫ > 0, there exists a positive integer n and functions
f : X n 7→ U , g : Yn 7→ V such that

dTV ((f(Xn), g(Y n)), (U, V )) ≤ ǫ

where {(Xi, Yi)}ni=1 is a sequence of i.i.d. samples drawn from P (x, y), (U, V ) is drawn from
Q(u, v) and dTV(·, ·) is the total variation distance.

For a fixed P (x, y), the set of distributions Q(u, v) on U × V for which non-interactive
simulation is possible can be shown to be the closure of the set of marginal distributions
of (U, V ) satisfying U − Xk − Y k − V for some k. However, this set of distributions seems
to be very hard to characterize. We focus on outer bounds on this set or in other words,
impossibility results for non-interactive simulation.

Note that the simulation problem specified in the above definition does not have any
more generality if we allow the agents to use their own private randomness: Agents can
obtain as much private randomness as desired by using extended observations that are non-
overlapping in time, i.e. the agents observe n1 + n2 + n3 symbols, they use X1, . . . , Xn1 as
their correlated observations, one agent uses Xn1+1, . . . , Xn2 as her private randomness and
the other agent uses Xn2+1, . . . , Xn3 as his private randomness.

Note also that the notion of simulation we consider is distinct from the notion of exact
generation. If we have a strategic setting, such as a distributed game, in which a player,
represented by a number of distributed agents, is playing against an adversary, the agents
would often need to generate a joint distribution exactly [4].

We will consider two examples to motivate the focus of this study.
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Example 1

Let X be a uniform Bernoulli random variable, X ∼ Ber(1
2
). Let Y be a noisy copy of X,

i.e. Y = X +N where N ∼ Ber(α) for 0 < α < 1
2
, is independent of X. We say that (X, Y )

has the Doubly Symmetric Binary Source distribution with parameter α denoted DSBS(α)
following the notation of Wyner [58]. We consider (U, V ) ∼ DSBS(β) for 0 ≤ β < 1

2
. We ask

whether non-interactive simulation of DSBS(0) using DSBS(α) is possible. Witsenhausen
answered this question in the negative in [57], thus significantly strengthening the result of
Gács and Körner [23]. Witsenhausen established this by proving the tensorization of the
Hirschfeld-Gebelein-Rényi maximal correlation, henceforth simply called the maximal corre-
lation (both tensorization and maximal correlation are defined and discussed in Section 5.2).
Witsenhausen’s approach easily allows us to conclude that if non-interactive simulation is
possible, then the maximal correlation of the target distribution can be no more than that
of the source distribution. The maximal correlation of a pair of binary random variables
distributed as DSBS(α) equals |1− 2α|. Thus, for instance, if the non-interactive simulation
of DSBS(β) using DSBS(α) is possible, with 0 ≤ α, β ≤ 1

2
, then we must have α ≤ β. It is

easy to see in this case that if α ≤ β, then non-interactive simulation is indeed possible: one
agent outputs the first bit of her observation while the other agent outputs a suitable noisy
copy of his first bit, the noise realization created from his other n − 1 observations. Thus,
for 0 ≤ α, β ≤ 1

2
, non-interactive simulation of DSBS(β) using DSBS(α) is possible if and

only if α ≤ β.

Example 2

Let (X, Y ) ∼ DSBS(α) with 0 < α < 1
2
. Consider binary random variables (U, V ) distributed

as Q(u, v) given by: Q(0, 0) = 0, Q(0, 1) = Q(1, 0) = Q(1, 1) = 1
3
. We ask if non-interactive

simulation of Q(u, v) using DSBS(α) is possible. The maximal correlation of a DSBS(α)
source distribution is 1− 2α while that of Q(u, v) is 1

2
. The approach of comparing maximal

correlations of the source and target informs us that the inequality 1 − 2α ≤ 1
2
, if violated,

makes non-interactive simulation impossible. Thus, if 1
4
< α < 1

2
, then non-interactive

simulation is impossible. But what about the case when 0 < α ≤ 1
4
? Can we come up with a

suitable scheme to simulate Q(u, v)? The answer turns out to be no for each 0 < α ≤ 1
4
and

can be proved using the so-called reverse hypercontractive inequalities [48]. The following
inequality holds for {(Xi, Yi)}∞i=1 being i.i.d DSBS(α), and for arbitrary sets S, T ⊆ {0, 1}n :

Pr (Xn ∈ S, Y n ∈ T ) ≥ Pr (Xn ∈ S)
1
2α Pr (Y n ∈ T )

1
2α . (5.1)

If non-interactive simulation of Q(u, v) using DSBS(α) were possible, we should be able to
find sets S, T such that Pr (Xn ∈ S) ≈ 1

3
,Pr (Y n ∈ T ) ≈ 1

3
and Pr (Xn ∈ S, Y n ∈ T ) ≈ 0.

Inequality (5.1) rules out this possibility. Thus, hypercontractivity or reverse hypercon-
tractivity can provide impossibility results when the maximal correlation approach cannot.
Is it true that one is always stronger than the other? We show indeed that the approach
using hypercontractivity and reverse hypercontractivity subsumes the maximal correlation



CHAPTER 5. NON-INTERACTIVE SIMULATION OF JOINT DISTRIBUTIONS 53

approach for the case when P (x, y) is of the form DSBS(α).More generally, we give necessary
and sufficient conditions on P (x, y) for this subsumption. This arises from an inequality ob-
tained by Ahlswede and Gács [2] in the hypercontractive case which we extend to the reverse
hypercontractive case.

The rest of the chapter is organized as follows. Section 5.2 discusses preliminaries on
maximal correlation, hypercontractivity and reverse hypercontractivity. We present our
main results in Section 5.3. Section 5.4 contains all the proofs. Finally, Section 5.5 discusses
an interesting example of non-interactive simulation of a joint distribution of three random
variables.

5.2 Maximal Correlation and the Hypercontractivity

Ribbon

In our notation, sets X ,Y ,U ,V are finite and all probability distributions are discrete and
have finite support. For a finite set X , let FX ,F+

X denote the set of all functions from X to R

and to R≥0 respectively. We will also assume without loss of generality that the marginals of
P (x, y) and Q(u, v) (denoted PX , PY and QU , QV respectively) assign zero probability only
to the null set.

Maximal Correlation and its properties

For jointly distributed random variables (X, Y ), define their maximal correlation ρ(X;Y ) :=
supEf(X)g(Y ) where the supremum is over f : X 7→ R, g : Y 7→ R such that Ef(X) =
Eg(Y ) = 0 and E (f(X))2 = E (g(Y ))2 = 1 and with the convention that the supremum over
the empty set evaluates to 0.

The following theorem was proved by Witsenhausen in [57]. Kumar has obtained simpler
proofs of the same result [41].

Theorem 17 (Witsenhausen [57]) If (X1, Y1), (X2, Y2) are independent, then ρ(X1, X2;Y1, Y2) =
max{ρ(X1;Y1), ρ(X2;Y2)}. If (X1, Y1), (X2, Y2) are i.i.d., then ρ(X1, X2;Y1, Y2) = ρ(X1;Y1).

The following monotonicity lemma is immediate.

Lemma 3 If φ(X) = U, ψ(Y ) = V , then ρ(X;Y ) ≥ ρ(U ;V ).

The following properties hold for the maximal correlation of two discrete valued random
variables with finite support [54].

1. If (X, Y ) ∼ DSBS(α), then ρ(X;Y ) = |1− 2α|.
2. ρ(X;Y ) = 0 if and only if X is independent of Y.

3. ρ(X;Y ) = 1 if and only if the Gács-Körner common information K(X;Y ) > 0, i.e. if
and only if (X, Y ) is decomposable.
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It is easy to show that maximal correlation of (U, V ) seen as a function of its joint
distribution Q(u, v) is continuous at Q(u, v) whenever QU , QV assign a positive probability
to each u ∈ U and each v ∈ V respectively. Using this fact and putting together Theorem 17
and Lemma 3, we get the following corollary.

Corollary 4 Non-interactive simulation of (U, V ) ∼ Q(u, v) using (X, Y ) ∼ P (x, y) is
possible only if ρ(X;Y ) ≥ ρ(U ;V ).

Hypercontractivity ribbon and its properties

Definition: For any random variableW and real number p 6= 0, define ||W ||p := (E|W |p)1/p .
Define ||W ||0 := exp (E log |W |) . For p ≤ 0, ||W ||p = 0 if Pr (|W | = 0) > 0.

||W ||p is continuous and non-decreasing in p. If W is non-constant, then ||W ||p is strictly
increasing for p ≥ 0. If in addition, Pr (|W | = 0) = 0, then ||W ||p is strictly increasing for all
p.

Definition: For a pair of random variables (X, Y ) ∼ P (x, y) on X ×Y , define the operator
TX;Y : FY 7→ FX as

(TX;Y f)(x) := E[f(Y )|X = x]. (5.2)

Likewise, define TY ;X : FX 7→ FY as

(TY ;Xg)(y) := E[g(X)|Y = y]. (5.3)

Definition: For a pair of random variables (X, Y ) ∼ P (x, y) on X × Y , we define the
hypercontractivity ribbon

RX;Y ⊆ {(p, q) : 1 ≤ q ≤ p or 1 ≥ q ≥ p}
as follows:

• For 1 ≤ q ≤ p, we have (p, q) ∈ RX;Y if

||TX;Y f(X)||p ≤ ||f(Y )||q ∀f ∈ FY ; (5.4)

• For 1 ≥ q ≥ p, we have (p, q) ∈ RX;Y if

||TX;Y f(X)||p ≥ ||f(Y )||q ∀f ∈ F+
Y . (5.5)

Likewise, we can define RY ;X . These are both regions in R
2 pinching to a point at (1, 1)

resembling a ribbon, explaining our choice of the name (see Fig. 5.4). RX;Y and RY ;X are
intimately connected by a duality relationship which we will discuss later. TX;Y is contractive
in the p-norm when p ≥ 1 and inequality (5.4) is a hypercontractive inequality since q ≤ p.
TX;Y is reverse contractive for non-negative valued functions f under the p-pseudo-norm
when p ≤ 1, (the triangle inequality is violated) and inequality (5.5) is called a reverse
hypercontractive inequality and has been studied in [48].
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Figure 5.4: Hypercontractivity ribbon

The hypercontractivity ribbon RX;Y is the shaded region. Also shown a straight line of
slope ρ2 := ρ2(X;Y ) through (1, 1).

Definition: For any real p 6= 0, 1, define its Hölder conjugate p′ by 1
p
+ 1

p′
= 1. For p = 0,

define p′ = 0.

Remark: An equivalent definition of RX;Y which does not use the definition of the operator
TX;Y can be provided by observing how much the corresponding Hölder’s and reverse Hölder’s
inequalities may be tightened.

• For 1 ≤ q < p, we have (p, q) ∈ RX;Y iff

Ef(X)g(Y ) ≤ ||f(X)||p′ ||g(Y )||q
∀f ∈ FX , g ∈ FY ; (5.6)

• For 1 ≥ q > p, we have (p, q) ∈ RX;Y iff

Ef(X)g(Y ) ≥ ||f(X)||p′ ||g(Y )||q
∀f ∈ F+

X , g ∈ F+
Y ; (5.7)

• (1, 1) ∈ RX;Y .
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To see the equivalence, observe that for p > 1, if (5.4) holds, then by Hölder’s inequality, we
get

Ef(X)g(Y ) = Ef(X) (TX;Y g) (X) (5.8)

≤ ||f(X)||p′ || (TX;Y g) (X)||p (5.9)

≤ ||f(X)||p′ ||g(Y )||q. (5.10)

Conversely, if the inequality in (5.4) fails for some non-negative f, say f = h, then by

choosing the function e(X) = (TX;Y h(X))p/p
′

, we have equality in Hölder’s inequality as
follows:

Ee(X)h(Y ) = Ee(X) (TX;Y h) (X) (5.11)

= ||e(X)||p′ || (TX;Y h) (X)||p (5.12)

> ||e(X)||p′ ||h(Y )||q, (5.13)

since ||e(X)||p′ > 0, thus producing the desired contradiction to (5.6). It suffices to consider
non-negative f, since −|f | ≤ f ≤ |f | holds pointwise and so |TX;Y f | ≤ TX;Y |f | holds
pointwise so that if (5.4) fails for some f then it also fails for |f |. A similar equivalence can
be observed for p < 1, using the reverse Hölder’s inequality:

E[WZ] ≥ ||W ||p′ ||Z||p, (5.14)

which holds when p < 1 and W,Z are non-negative random variables. The contradiction is
first observed for strictly positive functions with p/p′ := −1 in the case p = 0 and then for
non-negative functions by taking limits.

RX;Y is closed and connected in R
2. Moreover, {(p, q) : p = q} ⊆ RX;Y . So, RX;Y

is completely characterized by its other boundary, a continuous non-decreasing function
q∗X;Y : R 7→ R such that

• q∗X;Y (p) ≤ p whenever p ≥ 1, and q∗X;Y (p) ≥ p whenever p ≤ 1, so q∗X;Y (1) = 1;

• RX;Y = {(p, q) : 1 ≤ q∗X;Y (p) ≤ q ≤ p} ∪ {(p, q) : 1 ≥ q∗X;Y (p) ≥ q ≥ p}.

Hypercontractive inequalities and reverse hypercontractive inequalities tensorize [48].

Theorem 18 Suppose (p, q) ∈ RX1;Y1 and (p, q) ∈ RX2;Y2 . If (X1, Y1), (X2, Y2) are indepen-
dent, then (p, q) ∈ RX1,X2;Y1Y2 , so that R(X1,X2);(Y1,Y2) = RX1;Y1 ∩RX2;Y2 . If (X1, Y1), (X2, Y2)
are i.i.d., then R(X1,X2);(Y1,Y2) = RX1;Y1 .

The following lemma provides a monotonicity property for the hypercontractivity ribbon
[48].

Lemma 4 If φ(X) = U, ψ(Y ) = V , then RX;Y ⊆ RU ;V .
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It is easy to show that for any fixed p, the property q∗U ;V (p) of (U, V ) seen as a function
of its joint distribution Q(u, v) is continuous at Q(u, v) whenever QU , QV assign a positive
probability to each u ∈ U and each v ∈ V respectively. Using this fact and putting together
Theorem 18 and Lemma 4 , we get the following corollary.

Corollary 5 Non-interactive simulation of (U, V ) ∼ Q(u, v) using (X, Y ) ∼ P (x, y) is
possible only if RX;Y ⊆ RU ;V .

The following properties hold for the hypercontractivity ribbon for two discrete valued
random variables with finite support [48].

1. If (X, Y ) ∼ DSBS(α), then

q∗X;Y (p)− 1 = (1− 2α)2(p− 1) [49].

2. q∗X;Y (p) ≡ 1 if and only if X and Y are independent, i.e. I(X;Y ) = 0.

3. q∗X;Y (p) ≡ p if and only if P (x, y) is decomposable, i.e. the Gács-Körner common
information K(X;Y ) > 0.

4. If K(X;Y ) = 0 but I(X;Y ) > 0, then for p > 1, we have the strict inequalities
1 < q∗X;Y (p) < p [2].

Proving impossibility results for non-interactive simulation using

the hypercontractivity ribbon RX;Y

While Corollary 5 describes the technique for proving impossibility results, it is worthwhile
noting that this is equivalent to the techniques that were originally used to produce inequal-
ities like (5.1).

Suppose that non-interactive simulation of Q(u, v) using P (x, y) is possible, i.e. suppose
for any ǫ > 0, there exists n and functions φ : X n 7→ U , ψ : Yn 7→ V so that φ(Xn) =
Ũ , ψ(Y n) = Ṽ produces (Ũ , Ṽ ) satisfying dTV((Ũ , Ṽ ); (U, V )) ≤ ǫ when (U, V ) ∼ Q(u, v)
and {(Xi, Yi)}ni=1 are generated i.i.d. from P (x, y). Choose

f(xn) =
∑

u∈U

λu1[φ(xn)=u], (5.15)

g(yn) =
∑

v∈V

µv1[ψ(yn)=v]. (5.16)

For (p, q) ∈ RX;Y , with p > 1, using (5.6), we obtain upon taking the limit as ǫ→ 0,
∑

u∈U

∑

v∈V

λuµvQ(u, v)

≤
(

∑

u∈U

λp
′

uQU(u)

)1/p′

·
(

∑

v∈V

µqvQV (v)

)1/q

. (5.17)
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For (p, q) ∈ RX;Y , with p < 1, using (5.7), we obtain for non-negative {λu}u∈U , {µv}v∈V , the
inequality

∑

u∈U

∑

v∈V

λuµvQ(u, v)

≥
(

∑

u∈U

λp
′

uQU(u)

)1/p′

·
(

∑

v∈V

µqvQV (v)

)1/q

. (5.18)

Indeed, (5.1) is a version of (5.18) with (p, q) ∈ RX;Y for (X, Y ) ∈ DSBS(α) given by
p = − 2α

1−2α
, q = 2α.

The inclusion RX;Y ⊆ RU ;V implies the collection of inequalities (5.17) for any choice of
real {λu}u∈U , {µv}v∈V and the collection of inequalities (5.18) for any choice of non-negative
{λu}u∈U , {µv}v∈V . By an argument similar to the one proving equivalence of the two defini-
tions of RX;Y , one can prove the reverse implication from the collection of inequalities (5.17),
(5.18) to RX;Y ⊆ RU ;V .

5.3 Main Results

Theorem 19

ρ(X;Y ) ≤ inf
(p,q)∈RX;Y ,p 6=1

√

q − 1

p− 1
= inf

p 6=1

√

q∗X;Y (p)− 1

p− 1
. (5.19)

Theorem 19 is obtained in [2] for the case of hypercontractive inequalities. We pro-
vide an alternate proof of the same result and derive it for the reverse hypercontractive
inequalities. In the current form of the statement of Theorem 19, the maximal correlation
is afforded a geometric meaning, namely its square is the slope of a straight line bound
constraining the hypercontractivity ribbon (see Fig 5.4). Indeed, for (X, Y ) ∼ DSBS(α), the
hypercontractivity ribbon is precisely the wedge obtained by the straight lines p = q, and
q − 1 = ρ(X;Y )2(p− 1) [49].

Theorem 20 The following are equivalent:

• For all (U, V ), we have RX;Y ⊆ RU ;V =⇒ ρ(X;Y ) ≥ ρ(U ;V ).

•
ρ(X;Y ) = inf

(p,q)∈RX;Y ,p 6=1

√

q − 1

p− 1
. (5.20)

Theorem 20 states that Corollary 5 subsumes Corollary 4 for all Q(u, v) if and only (5.19)
holds with equality.
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Ahlswede and Gács [2] show that limp→∞
q∗X;Y (p)

p
exists and equals a quantity s∗(X;Y ),

defined as follows: Consider finite sets X ,Y and let P (x, y) be a joint distribution over the
product X × Y . Let R(x) be an arbitrary probability distribution on X . Let ∑X PY |X ∗ R
denote the probability distribution on Y whose probability mass at y is

∑

x∈X
P (x,y)
PX(x)

R(x). If

(X, Y ) ∼ P (x, y), then we define s∗(X;Y ) = supR:R 6=PX

D(
∑

X PY |X∗R||PY )

D(R||PX)
.

We prove the same result, also extending it to reverse hypercontractive inequalities by a
simpler approach.

Theorem 21

lim
p→1

q∗X;Y (p)− 1

p− 1
= s∗(Y ;X). (5.21)

Corollary 6 follows from Theorem 21 upon using a duality result connecting RX;Y and
RY ;X .

Corollary 6

lim
p→∞

q∗X;Y (p)− 1

p− 1
= lim

p→−∞

q∗X;Y (p)− 1

p− 1
= s∗(X;Y ). (5.22)

Corollary 7 provides a sufficient condition for (5.20) to hold.

Corollary 7 If ρ(X;Y ) = min{
√

s∗(X;Y ),
√

s∗(Y ;X)}, then

∀ (U, V ), RX;Y ⊆ RU ;V =⇒ ρ(X;Y ) ≥ ρ(U ;V ).

Note that from properties listed for the hypercontractivity ribbon, DSBS sources always
satisfy the condition in Corollary 7.

Finally, we find the right constant for a strong data processing inequality in the literature.
Erkip and Cover make the following claim in [22]:

Claim 1 supU :U−X−Y
I(U ;Y )
I(U ;X)

= ρ2(X;Y ).

We show in fact, that

Theorem 22 supU :U−X−Y
I(U ;Y )
I(U ;X)

= s∗(X;Y ).

5.4 Proofs

We first present the proof of Theorem 19.
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Proof: The proof proceeds from a perturbative argument. Let (X, Y ) distributed as P (x, y).
Fix functions φ : X 7→ R, ψ : Y 7→ R such that

Eφ(X) = Eψ(Y ) = 0, Eφ(X)2 = Eψ(Y )2 = 1. (5.23)

Fix r > 0. Define f : X 7→ R, g : Y 7→ R by f(x) = 1+ σ
r
φ(x), g(y) = 1+ σrψ(y). Note that

for sufficiently small σ, the functions f, g take only positive values. Fix (p, q) ∈ RX;Y with
p > 1. Using (5.6), we have

E[(1 +
σ

r
φ(X))(1 + σrψ(Y ))] ≤

(

E[(1 +
σ

r
φ(X))p

′

]
)1/p′

· (E[(1 + σrψ(Y ))q])1/q . (5.24)

For Z satisfying EZ = 0,EZ2 = 1,

(

E[(1 + aZ)l]
)1/l

=

(

1 + l · aEZ +
l(l − 1)

2
· a2EZ2 +O(a3)

)1/l

=

(

1 +
l − 1

2
a2 +O(a3)

)

.

The first two terms of the expansion on both sides of (5.24) match. Comparing the coefficient
of σ2 on both sides, we get

Eφ(X)ψ(Y ) ≤ p′ − 1

2r2
+

(q − 1)r2

2
.

Taking the supremum over all φ, ψ satisfying (5.23) and the infimum over all r > 0, we have

ρ(X;Y ) ≤
√

q − 1

p− 1
.

We can similarly prove the inequality in the case when p < 1.We get Eφ(X)ψ(Y ) ≥ −
√

q−1
p−1

in this case and we replace φ by −φ and perform similar steps to get the desired. This
completes the proof.

Next, we prove Theorem 20.

Proof: The if part of the statement follows immediately from Theorem 19. For the only if
part, suppose that for (X, Y ) ∼ P (x, y), we have for some δ > 0,

ρ(X;Y ) = inf
(p,q)∈RX;Y ,p 6=1

√

q − 1

p− 1
− δ.
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A classical result [49] states that for (U, V ) ∼ DSBS(ǫ),

q∗U ;V (p)− 1

p− 1
= (1− 2ǫ)2 = ρ(U ;V )2.

Choosing ǫ so that ρ(U ;V ) = 1 − 2ǫ = inf(p,q)∈RX;Y ,p 6=1

√

q−1
p−1

, we have ρ(X;Y ) < ρ(U ;V )

and RX;Y ⊆ RU ;V . This completes the proof.

A perturbative argument provides the proof of Theorem 21 as below.

Proof: As noted earlier, the inequality (5.4) holds for all functions f only if it holds for all
non-negative functions f. Now, for non-negative f, we always have

||TX;Y f(X)||1 = ||f(Y )||1 ∀f ∈ F+
Y . (5.25)

As in [48], we define for any non-negative random variable X, the function Ent(X) :=
EX logX−EX · logEX, where by convention 0 log 0 := 0. By strict convexity of the function
x 7→ x log x, we get using Jensen’s inequality that Ent(X) ≥ 0 and equality holds if and only
if X is a constant almost surely. Also, note that Ent(·) is homogenous, that is, Ent(aX) =
aEnt(X) for any a ≥ 0.

Define s := sup
Ent(TX;Y f(X))

Ent(f(Y ))
, where the supremum is taken over non-constant functions

f ∈ F+
Y . As PY assigns a positive probability to all elements of Y , this rules out the possibility

of a non-constant function f with f(Y ) being a constant almost surely.
If m < s, then (1 + τ, 1 +mτ) 6∈ RX;Y for all sufficiently small τ > 0. To see this, fix f0

to be any (non-constant) function in F+
Y that satisfies

Ent(TX;Y f0(X))

Ent(f0(Y ))
≥ m+

δ

2
, (5.26)

where δ := s−m. Now,

||f0(Y )||1+mτ = ||f0(Y )||1
+mτ Ent(f0(Y )) +O(τ 2), (5.27)

||TX;Y f0(X)||1+τ = ||TX;Y f0(X)||1
+ τ Ent(TX;Y f0(X)) +O(τ 2). (5.28)

Putting together (5.25), (5.26), (5.27), (5.28), we get the existence of τ0 > 0 such that

||TX;Y f0(X)||1+τ > ||f0(Y )||1+mτ ∀τ : 0 < τ ≤ τ0. (5.29)

If m > s, then consider the set H of all functions f : Y 7→ R+ that satisfy ||f ||1 = 1 and
define τ(f) := max{τ : 0 ≤ τ ≤ 1, ||TX;Y f(X)||1+τ ≤ ||f(Y )||1+mτ}. As τ(f) is continuous
over the compact set H, showing τ(f) > 0 ∀f ∈ H would yield τ1 := inff∈H τ(f) > 0. But
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that is obvious since for f constant, τ(f) = 1 and for f non-constant, τ(f) > 0 from (5.25),
(5.26), (5.27), (5.28).

This gives ||TX;Y f(X)||1+τ ≤ ||f(Y )||1+mτ for all f ∈ H, 0 < τ ≤ τ1. By homogeneity
of the p-norm, it follows that ||TX;Y f(X)||1+τ ≤ ||f(Y )||1+mτ ∀f ∈ FY+ , 0 < τ ≤ τ1, thus
proving that

lim
p→1+

q∗X;Y (p)− 1

p− 1
= s. (5.30)

Similarly, one can prove the same limit for p → 1−. The final step is to show s = s∗(Y ;X).
For any distribution R(·) on Y , that is not equal to PY (·) consider the non-constant function
f given by f(y) := R(y)

PY (y)
. This choice yields Ent(f(Y )) = D(R||PY ) and Ent(TX;Y f(X)) =

D(
∑

Y PX|Y ∗R||PX)) which gives s ≥ s∗(Y ;X). Homogeneity of Ent(·) then completes the
proof.

Corollary 6 follows simply from Theorem 21 as below.

Proof: The existence of the limit and its value both follow from Theorem 21 and the fol-
lowing well-known duality result that follows from the equivalent formulations of the hyper-
contractivity ribbon in inequalities (5.6), (5.7): For 1 < q < p or 1 > q > p,

(p, q) ∈ RX;Y ⇐⇒ (q′, p′) ∈ RY ;X . (5.31)

Corollary 7 also follows easily as an easy consequence of Theorems 20, 21 and Corollary 6.
We present the proof of Theorem 22 below.

Proof: Suppose U takes values in U and satisfies U − X − Y. Let Pr (U = u) = p(u) >

0,Pr (X = x|U = u) = R
(u)
X (x) so that

∑

u p(u)R
(u)
X (x) = PX(x). Then, Pr (Y = y|U = u) =

∑

X PY |X ∗R(u)
X . Thus,

I(U ;Y )

I(U ;X)
=

∑

u p(u)D(
∑

X PY |X ∗R(u)
X ||PY )

∑

u p(u)D(R
(u)
X ||PX)

(5.32)

≤ max
u:R

(u)
X

6=PX

D(
∑

X PY |X ∗R(u)
X ||PY )

D(R
(u)
X ||PX)

(5.33)

≤ sup
R:R 6=PX

D(
∑

X PY |X ∗R||PY )
D(R||PX)

= s∗(X;Y ). (5.34)

Thus, supU :U−X−Y
I(U ;Y )
I(U ;X)

≤ supR:R 6=PX

D(
∑

X PY |X∗R||PY )

D(R||PX)
.

Conversely, fix a distribution R 6= PX . Define Uǫ satisfying Uǫ − X − Y taking val-
ues in U = {1, 2}, with Pr (Uǫ = 1) = ǫ,Pr (Uǫ = 2) = 1 − ǫ. Let Pr (X = x|Uǫ = 1) =

R(x),Pr (X = x|Uǫ = 2) = PX(x)
1−ǫ

− ǫR(x)
1−ǫ

. For sufficiently small ǫ, this defines the probability
distribution of a joint triple (U,X, Y ). A simple calculation gives
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lim
ǫ↓0

I(Uǫ;Y )

I(Uǫ;X)
=
D(
∑

X PY |X ∗R||PY )
D(R||PX)

. (5.35)

This gives supU :U−X−Y
I(U ;Y )
I(U ;X)

≥ supR:R 6=PX

D(
∑

X PY |X∗R||PY )

D(R||PX)
.

Thus, we have supU :U−X−Y
I(U ;Y )
I(U ;X)

≤ supR:R 6=PX

D(
∑

X PY |X∗R||PY )

D(R||PX)
= s∗(X;Y ), completing

the proof.

5.5 Non-interactive simulation of a three random

variable joint distribution

This section discusses an interesting example. Consider joint distributions P (x, y, z), Q(u, v, w)
with binary random variables X, Y, Z and U, V,W. Fix 0 < ǫ < 1

2
. Let X ∼ Ber(1

2
) and

Y = X + N1, Z = Y + N2 where N1, N2 ∼ Ber(ǫ) are independent of X with P (N1 =
N2 = 0) = 1 − 3ǫ

2
, P (N1 = 0, N2 = 1) = P (N1 = 1, N2 = 0) = P (N1 = N2 = 1) = ǫ

2
.

Let U ∼ Ber(1
2
) and V = U + N3,W = V + N4 where N3, N4 ∼ Ber(ǫ) such that

U,N3, N4 are independent. Note that (X, Y ), (Y, Z), (X,Z), (U, V ), (V,W ) ∼ DSBS(ǫ) and
(U,W ) ∼ DSBS(2ǫ(1− ǫ)) as shown in the Fig. 5.5

Consider the problem where three agents try to simulate a triple joint distribution as
follows. Agents A,B,C observe Xn, Y n, Zn respectively and output Ũ , Ṽ , W̃ , respectively
which is required to be close in total variation to the target distribution (U, V,W ) as shown.

X

Y Z

ε

ε

ε

U

V W

ε

ε

2
ε(1

−

ε)

(a) (b)

Figure 5.5: Three random variable simulation example

(a) represents the source distribution and (b) represents the target distribution.

As discussed earlier, non-interactive simulation of a DSBS target distribution with pa-
rameter q < 1

2
using a DSBS source distribution with parameter p < 1

2
is possible if and

only if the target distribution is more noisy, i.e. p ≤ q. Thus, for this example, each pair of
agents can perform the marginal pair simulation desired of them. However, the three agents
cannot simulate the desired triple joint distribution. Calculation shows

ρ(X,Z;Y ) =
1− 2ǫ√
1− ǫ

, (5.36)

ρ(U,W ;V ) =
1− 2ǫ√

1− 2ǫ+ 2ǫ2
. (5.37)



CHAPTER 5. NON-INTERACTIVE SIMULATION OF JOINT DISTRIBUTIONS 64

For 0 < ǫ < 1
2
, we have 1−2ǫ+2ǫ2 < 1− ǫ, which gives ρ(X,Z;Y ) < ρ(U,W ;V ). This shows

that even if agents A and C were merged into one agent Ã, then Ã and B cannot achieve
the desired non-interactive simulation.
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Chapter 6

Discussion and concluding remarks

In this dissertation, we studied a simple outer bound for the capacity region of wireline
and wireless networks - the Generalized Network Sharing bound. This bound turned out
to be strong enough to show approximate optimality of routing in wireline networks and
simple separation strategies in wireless networks under suitable symmetry assumptions. The
following are some future directions:

Generalized Network Sharing bound for general

networks

The cutset bound [21, 14] is a general outer bound on the capacity region of a general
discrete memoryless network. A natural direction is to use the simple idea of the GNS
bound to obtain a new bound for a general discrete memoryless network that is always at
least as good as the cutset bound and gives an improvement whenever the GNS idea can kick
in. This can be useful in other network problems such as broadcast packet erasure networks.

Boolean functions

The following interesting conjecture appeared recently in [42]:

Conjecture 3 (from [42]) Let X ∼ Ber
(

1
2

)

and let Y be the output of a binary symmetric
channel with crossover probability ǫ, under input X. If {(Xi, Yi)}ni=1 are independent and
identically distributed with the same distribution as (X, Y ), and b : {0, 1}n → {0, 1} is any
Boolean function, then I(b(Xn);Y n) ≤ 1− h(ǫ), where h(ǫ) = ǫ log2

1
ǫ
+ (1− ǫ) log2

1
1−ǫ

.

It can be shown that using maximal correlation to constrain the set of possible joint
distributions that (b(Xn), Y n) can have is not sufficient to prove this conjecture. From
Theorem 19, we can show that hypercontractivity is stronger at constraining the set of
possible joint distributions. This sounds like a promising approach to prove the conjecture.
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