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Abstract.   Ant-Q is an algorithm belonging to the class of ant colony based methods,
that is, of combinatorial optimization methods in which a set of simple agents, called
ants, cooperate to find good solutions to combinatorial optimization problems.  The
main focus of this article is on the experimental study of the sensitivity of the Ant-Q
algorithm to its parameters and on the investigation of synergistic effects when using
more than a single ant.  We conclude comparing Ant-Q with its ancestor Ant System,
and with other heuristic algorithms.
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1 Introduction
In this paper we study some properties of Ant-Q, a novel distributed approach to combi-
natorial optimization based on reinforcement learning. Ant-Q (Gambardella and Dorigo,
1995) finds its ground in one of the authors previous work on the so-called Ant System
(Colorni, Dorigo and Maniezzo, 1991; 1992; Dorigo, 1992; Dorigo, Maniezzo and Colorni,
1996), and in the Q-learning algorithm (Watkins, 1989).   Ant System (AS), which will not
be discussed here, is a distributed algorithm loosely based on the observation of ant
colonies behavior, hence its name.  It has been applied to various combinatorial optimiza-
tion problems like the symmetric and asymmetric traveling salesman problems (TSP and
ATSP respectively), and the quadratic assignment problem (Maniezzo, Colorni and Dorigo,
1994).  Ant-Q is an extension of AS, which is reinterpreted in the light of reinforcement
learning and in particular of Q-learning recent literature.  This paper is devoted to a study
of some of Ant-Q characteristics, and to a comparison of Ant-Q with AS and other
heuristics, in which we show Ant-Q superiority.  Ant-Q is different from Q-learning in that
while typical applications of Q-learning see one single agent exploring the state space, Ant-
Q uses a set of cooperating agents.  These agents cooperate exchanging information in the
form of AQ-values (the analogous of Q-values in Q-learning).  Last, Ant-Q agents have
some memory: this is necessary, as explained in Section 2, due to the different nature of our
application problems (combinatorial optimization) with respect to typical Q-learning ap-
plications.

The article is organized as follows.  In Section 2, we briefly describe the Ant-Q ap-
proach by means of its application to the traveling salesman problem.  In Section 3 we
discuss a few characteristics of the Ant-Q family of algorithms.  In Section 4 we investigate
Ant-Q by experimentation on TSP and ATSP problems.  A brief conclusion is given in
Section 5.

2 The Ant-Q Approach to Combinatorial Optimization
The easiest way to introduce the Ant-Q algorithm is by its application to the traveling
salesman problem (TSP) or to the more general asymmetric traveling salesman problem
(ATSP).  They are defined as follows.

TSP
Let V = {v1, ...  , vn} be a set of cities, A = {(i ,j) : i,j ∈ V} be the edge set, and dij = dji be a
cost measure associated with edge ( i,j) ∈  A.
The TSP is the problem of finding a minimal length closed tour that visits each city.
In the case cities v i ∈  V are given by their coordinates (xi, yi) and dij is the Euclidean
distance between i  and j , then we have an Euclidean TSP.

ATSP
If dij ≠ dji for at least some (i,j)  then the TSP becomes an ATSP.

In the following of this section we will talk generically of ATSP problems, which
include TSP as a special case.

Let k  be an ant whose task is to make a tour: visit all the cities and return to the starting
one.  Associated to k  there is the list Jk(r)  of cities still to be visited, where r  is the current
city (this is equivalent to say that ant k  remembers already visited cities).  An ant k  situated
in city r moves to city s  using the following rule, called pseudo-random-proportional  action
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choice rule (or state transi tion rule) :

s =

 arg max
u∈ Jk r( )

AQ r,u( )[ ]δ ⋅ HE r,u( )[ ]β{ }    if q ≤ q0 

         S                                                     otherwise










(1)

where:
• AQ(r,s), read Ant-Q-value, is a positive real value associated to arc (r,s)  and is the Ant-

Q algorithm counterpart of Q-learning Q-values.  AQ(r,s)'s are changed at run time and
are intended to indicate how useful it is to make move s (i.e., to go to city s ) when in
state r.

• HE(r,s),  is a heuristic function which evaluates the goodness of move s  when in city r.
For example, in the ATSP HE(r,s) is the inverse of the distance between cities r  and s.

• Parameters δ and β weigh the relative importance of the learned AQ-values and the
heuristic values.

• q is a value chosen randomly with uniform probability in [0, 1], and q0  (0≤q0≤1) is a
parameter: the smaller q0 the higher the probability to make a random choice.

• S is a random variable selected according to the distribution given by formula (2) which
gives the probability with which an ant in city r  chooses the city s to move to.

p
k
(r,s) =

AQ(r,s)[ ]δ ⋅ HE(r,s)[ ]β

AQ(r, z)[ ]δ ⋅ HE(r, z)[ ]β

z∈ J
k

(r)
∑

      if  s ∈ J
k
(r)

0                                               otherwise











(2)

As we said, the goal of Ant-Q is to learn AQ-values such that they can favor, in
probability, the discovery of good ATSP solutions.  AQ-values are learned by the following
rule1:

AQ r,s( ) ← 1 − α( ) ⋅ AQ r,s( ) + α ⋅ ∆AQ r,s( ) + γ ⋅ Max
z∈ J s( )

 AQ s,z( )





(3)

The update term is composed of a reinforcement term and of the discounted evaluation
of the next state.  In general, the reinforcement ∆AQ can be local (immediate) or global
(delayed).  In the current version of Ant-Q local reinforcement is always zero, while global
reinforcement, which is given after all the ants have finished their tour, is computed by the
following formula:

∆AQ r,s( ) =
   

W

L
Best

     if r,s( ) ∈  tour done by the best agent

     0         otherwise                                          









(4)

where L Best is the length of the tour done by the best ant, that is the ant which did the
shortest tour in the current iteration, and W  is a parameter.  The Ant-Q algorithm used in
this paper is shown in Fig. 1 (the detailed algorithm can be found in (Gambardella and
Dorigo, 1995)).

1 The form of this updating rule, which is very similar to the updating rule used by Q-learning, is
the most relevant difference between Ant System and Ant-Q.  In Ant System formula (3) reduces
to AQ r, s( ) ← 1 − α( ) ⋅ AQ r, s( ) + ∆AQ r, s( ) .
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Ant-Q algorithm

/* Initialization phase */

Set an initial value for AQ-values

/* Main algorithm */

Loop /* This loop is an iteration of the algorithm */
1. /* Initialization of ants data structures */

Choose a starting city for ants

2. /* In this step ants build tours and locally update AQ-values */
Each ant applies the state transition rule (1) to choose the city to
go to, updates the set Jk and applies formula (3) to locally  update
AQ-values (in formula (3) ∆AQ(r,s)=0)

3. /* In this step ants globally update AQ-values */
The edges belonging to the tour done by the best ant are updated using
formula (3) where ∆AQ(r,s) is given by formula (4)

Until (End_condition = True)

Fig. 1.  The Ant-Q algorithm

In words it can be described as follows.  First, there is an initialization phase in which
an initial value AQ0 is given to AQ-values.  Then comes the main algorithm loop which
comprises three steps.  In the first step each ant k  is placed on a city r k-initial chosen
according to some policy, and the set Jk(rk-initial) of the still to be visited cities is initialized.
Then, at Step 2, a cycle, in which each of the m ants makes a move and the AQ(r,s)’s are
updated using only the discounted next state evaluation, is repeated until each ant has
finished its tour and is back in the starting city.  Last, in Step 3 the edges belonging to the
shortest tour are updated using formulas (3) and (4).  The loop is repeated until a
termination condition is met.  Usually the termination condition is verified after a fixed
number of iterations, or when no improvement is obtained for a fixed number of iterations.

3 The Family of Ant-Q Algorithms
To apply the Ant-Q algorithm of Fig. 1 a set of somewhat arbitrary choices have to be done.
These are: the value of parameters δ, β, and q0  in formula (1), α  and γ in formula (3) , the
constant W in formula (4), the initial AQ-values AQ0 , and  the  number  m  of ants  and  the
choice  of  their  starting  city rk-initial.  Moreover, some structural characteristics like the
state transition rule (1), the chosen heuristic function, and the kind of global reinforcement
used, are worth investigating. In this section we discuss some of the most interesting
alternative choices.

3.1 Parameters
In the experiments reported in this paper the value of parameters was determined as fol-
lows.  Each of the parameters was optimized using Ant-Q applied to a set of benchmark
problems: grid problems2, Oliver30 (see for example Whitley, Starkweather and Fuquay,
1989), ry48p (see TSPLIB, in Reinelt, 1994).  The experimentally determined best values
are δ=1, β=2 , q0=0.9, α=0.1, γ=0.2÷0.6, W=10, AQ0 =1/(average_length_of_edges·n).
Regarding the number m of ants and their initial positioning we decided to use m=n ants
and to put one ant in each city.  Results on the parameters α, γ, q0, and m are discussed in
Section 4.

2 A grid problem is a problem in which cities are evenly distributed on a squared grid.
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3.2 Structural Choices
The Ant-Q approach to combinatorial optimization provides a family of algorithms.
Members of the family are characterized by:  ( i) the action choice rule, (ii) the heuristic
used to bias the choice of the next city, and (iii) the kind of global reinforcement provided
to the system.
(i) The action choice rule we use in our experiments, called pseudo-random-
proportional, is a compromise between the pseudo-random  action choice rule typically
used in Q-learning (with the pseudo-random rule the chosen action is the best one with
probability q0 , and a random one with probability 1-q0), and the random-proportional ac-
tion choice rule typically used in Ant System3 (with the random-proportional rule the action
is chosen randomly with a probability distribution given by the AQ-values).  Experiments
reported in (Gambardella and Dorigo, 1995) have shown that the pseudo-random-
proportional action choice is by far the best choice for Ant-Q algorithms.
(ii) A result of our experiments is that the heuristic function HE is fundamental in
making the algorithm find good solutions in a reasonable time.  In fact, if we set β=0 the
algorithm does not find any good solution at all.  The use of HE requires to define its form,
which in this paper has been chosen to be the inverse of the distance, and the way in which
it is used to direct the search.  We chose to multiply HE  by the corresponding AQ-value, as
shown in formulas (1) and (2). This choice was suggested by the desire of favoring AQ-
values belonging to shorter edges;  also, it maintained a continuity with our previous work
on Ant System; other ways of composing HE and AQ-values may be worth investigating.
(iii) In the experiments presented in this paper only the best performing ant in the current
iteration contributes to the global reinforcement.  In previous work on Ant System all the
ants contributed to the global reinforcement:  the contribution of each ant was proportional
to how short was its tour.  This and other ways to provide reinforcement are discussed in
(Gambardella and Dorigo, 1995).

4 Ant-Q: Experimental Study
In this section we experimentally study the functioning of the Ant-Q algorithm.  Tests were
run on the following problems:  6x6 grid and Oliver30, two TSP problems, and ry48p, an
ATSP problem.  Each trial was divided into two phases: a learning phase and a test session.
The learning phase follows the algorithm reported in Fig. 1, while in the test session the
updating of AQ-values is switched off and each ant deterministically chooses the arc with
the highest AQ-value among those leading to a not yet vis ited city.  The result of the trial is
given by the performance of the best ant.  Each experiment consisted of at least 30 trials, so
to have some statistical information.  In all experiments of this section the parameters,
except when differently indicated, were set to the values reported in Section 3.1.

This section is divided into three parts.  First, we study the synergistic effect generated
by the use of more than one ant; here we used Oliver30 as a test-bed.  Second, we study the
behavior of Ant-Q with respect to α , γ, and q0 again using Oliver30.  Last, we repeat a
similar study on the ry48p problem.  It is important to note that while the 6x6 grid and
Oliver30 are relatively simple problems that are easily solved to optimality by many
general purpose (like genetic algorithms) and specialized algorithms, ry48p is much more

3 A random-proportional rule is also often used in genetic algorithms to select individuals to
reproduce.
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difficult (Fischetti and Toth, 1992; 1994) and the fact that Ant-Q was able to find the
optimal value is remarkable and encouraging.

4.1 Multiple Ants:  Synergistic Effects
Cooperation between ants is one of the key characteristics of Ant-Q.  In this section we
show that ants cooperation is essential, and that this cooperation bears a synergistic effect.
We show the importance of cooperation by setting δ=0 in formulas (1) and (2):   This
corresponds to a complete inhibition of communication between ants, which are no longer
guided by AQ-values.  The result is a very low performance level.

To further investigate the existence of synergistic effects, we ran the following exper-
iments: (i) we evaluate the performance of Ant-Q varying the number m of ants from 1 to n,
given a fixed number of iterations (200 iterations per trial); (ii) we evaluate the per-
formance of Ant-Q varying the number of ants from 1 to n, given a fixed number of ants
tours (6,000 tours per trial).  In both experiments in the initialization phase in each city was
placed at most one ant.  In the first experiment, by fixing the number of iterations we fix the
number of times global reinforcement is given, which therefore is independent of the
number m of ants; on the contrary, the computational effort changes with m given that each
ant causes the application of formula (3) at each state transition.  In the second experiment,
we fix the total number of ants tours (6,000), and therefore the computational effort is
independent of the number m of ants; on the contrary, in experiments with fewer ants (that
is, with a small m) the trials last a greater number of iterations (the number of iterations is
given by 6,000/m ) and therefore the number of times that global reinforcement is provided
is greater.  Results of the first experiment clearly show that, given the same total amount of
global reinforcement, the performance of the algorithm increases with the number of ants.
In fact, the number of times Ant-Q finds the optimal solution increases with m, as shown in
Fig. 2.  Moreover, Fig. 3 shows that for all experiments with m≥20 (with the only exception
of m=28) the result of the test session is as good as the best result of the learning phase.
This result suggests that for m≥20 the learnt AQ-values are effectively used by the ants to
find short tours.

The second experiment, see Figures 4 and 5, shows that, given the same number of ant
tours per trial, which implies a higher number of global reinforcements for trials with lower
values of m, the number m of ants used is less important.  In fact, the number of optimal
values found by the ants is largely independent of m. Nevertheless, Fig. 5 shows that good
test session performances where achieved only for high values of m.  In particular, the test
session solution was much worse than the best solution of the learning phase for most
values of m≤20.  These results were confirmed by further experiments run on the ry48p
problem.
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Fig. 2.  Ant-Q performance for different values
of m.  Test problem: Oliver30. Averages on 30
trials, 200 iterations per trial, γ=0.4.

Fig. 3.   Ant-Q performance for different values
of m. Test problem: Oliver30. Averages on 30
trials, 200 iterations per trial, γ=0.4.
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Fig. 4.   Ant-Q performance for different values
of m.   Test problem: Oliver30. Averages on 30
trials, 6000/m iterations per trial, q0 = 0.9 ,
α=0.1, γ=0.4.

Fig. 5.   Ant-Q performance for different values
of m.   Test problem: Oliver30. Averages on 30
trials, 6000/m iterations per trial, q0 = 0.9 ,
α=0.1, γ=0.4.

4.2 The Effect of Parameters q0, α, and γ  on Ant-Q Performance
In this section we report the results of some experiments run to evaluate the best value for
the following parameters: q0, α, and γ.  Each experiment consists of 30 trials, and each trial
was stopped after 200 iterations of the algorithm.  In the experiment to evaluate q0 we set
γ=0.4.

In Fig. 6 we show the average length of the best tours found by Ant-Q during the
learning phase and in the test session.  It is interesting to note that the result of the test
session is always equal to or better than the best found solution during learning.  This result
suggests that the learnt AQ-values are effectively used by the ants to find short tours.
Another interesting observation is that the algorithm performance suddenly decreases when
q0 changes from 0.9 to 1.  This indicates that exploration is necessary to find good
solutions.  Ant-Q was able to find the best known solution (423.741) only for 0.6≤q0≤0.9,
and the best result was obtained with q0=0.9:  in this case Ant-Q found the optimal value 10
times out of 30 trials, with an average number of iterations of 96.6.  In Fig. 7 we show the
average length of the best tour found by Ant-Q and its standard deviation.

In Figures 8 and 9 we show the behavior of Ant-Q when changing α  and γ.  These bar
graphs show that γ is much more important than α .  In particular, good values of γ are
found in the range 0.2÷0.6, while the value of α  seems to be irrelevant.  Further analysis of
the results, and in particular of the number of times the algorithm was able to find the
optimum, suggested that α =0.1 was the best value for this parameter.  An interesting
observation is that the performance of Ant-Q in the test session is worse than the
performance measured in the learning phase only for bad parameter settings:  once again,
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this indicates that, for good values of the parameters, the learned AQ-values are useful to
direct the search for good solutions.
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Fig. 7.   Ant-Q performance for different values
of q 0.  Test problem: Oliver30. Avg. and Std.
dev. on 30 trials, 200 iterations per trial.
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Fig. 8.   Performance of Ant-Q for different
values of α  and γ.  The main category is the
parameter α .  Within each value of α  the
parameter γ varies from 0 to 1 with steps of 0.2.
Test problem: Oliver30. Averages on 30 trials,
200 iterations per trial.

Fig. 9.   Performance of Ant-Q for different
values of α  and γ.   The main category is the
parameter γ.  Within each value of γ  the
parameter α varies from 0.1 to 0.9 with steps of
0.2. Test problem: Oliver30. Averages on 30
trials, 200 iterations per trial.

4.3 Ant-Q Applied to ry48p
In this last experiment we apply Ant-Q to a rather difficult asymmetric TSP, ry48p.  Beside
the fact that Ant-Q was able to find the optimal result for this problem,  it is interesting to
note that the (experimentally obtained) optimal value of most parameters remained the
same as for the Oliver30 experiments (this property was found to hold also for a set of
experiments run on grid problems whose results are not reported here because of space
constraints).  In Figures 10 and 11 we report the results of two experiments in which we
show the influence that γ and α  have on Ant-Q performance.  Here the influence of α is
higher than in the previous experiment on Oliver30.
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Fig. 11.  Performance of Ant-Q for different val-
ues of α ; γ was set to 0.45. Test problem: ry48p.
Avg on 5 trials,  400 iterations per trial.

5 Ant-Q:  A Summary of Results
In this section we present a summary of results obtained on some test problems.  (Most of
the test problems we used can be found in TSPLIB: http://www.iwr.uni-
heidelberg.de/iwr/comopt/soft/TSPLIB95/TSPLIB.html.)  First, we report detailed results
obtained with Ant-Q.  For each of three test problems (Oliver30, 6x6 grid, and ry48p), in
Table 1 we report the value of parameter γ used by Ant-Q (as always in this section, not
tested parameters have the values reported in Section 3.1), the optimal solution, the best
solution found by Ant-Q, and the number of tours (that is, the number of iterations of the
algorithm multiplied by the number m of ants) it took to find it.

Second, in Table 2 the same three test problems are used to compare Ant System and
Ant-Q.  We report the optimum, and the average over five trials of the best-found solution,
of the number of tours which were necessary to find it (only in case the algorithm always
found the optimal solution), and of the error percentage (computed as 100·((Ant-
Q_best_result - Optimum)/Optimum)).  The main observations are that Ant-Q always
outperformed AS, and that Ant-Q was in the average always very close to the optimal
solution.

Third, we compare Ant-Q with other approaches using as test problems Eil50, Eil75,
and KroA100. We compared ACS with the genetic algorithm (GA), evolutionary
programming (EP), and simulated annealing (SA).  In Table 3 we report the best integer
tour length, the best real tour length (in parentheses) and the number of tours required to
find the best integer tour length (in square brackets).  Results using EP are from (Fogel,
1993) and those using GA are from (Bersini, Oury and Dorigo, 1995) for KroA100, and
from (Whitley, Starkweather and Fuquay, 1989) for Eil50, and Eil75. Results using SA are
from (Lin, Kao and Hsu, 1993).  Eil50 and Eil75 are from (Eilon, Watson-Gandy and
Christofides, 1969), and are included in TSPLIB with an additional city as Eil51.tsp and
Eil76.tsp. KroA100 is also in TSPLIB.  Results show that the ACS performance is always
better than that of the other algorithms: the only case in which EP found a slightly better
solution it took a much higher number of tours.
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Table 1.  Best results obtained by Ant-Q on three test problems: 6x6 grid, Oliver30, and ry48p.

Problem γ Optimum Best-found Mean Std.dev.
#tours

best-found

Oliver30 (a 30-city TSP) 0.46 423.74 423.74 424.44 0.46 180
6x6 grid (a 36-city TSP) 0.40 360 360 360 0 72
ry48p (a 48-city ATSP) 0.45 14,422 14,422 14,690 157 11,136

Table 2.  A comparison of Ant-Q and AS on three test problems: 6x6 grid, Oliver30, and ry48p.
Averages on 5 trials, γ=0.4.

Problem Algorithm Optimum  Avg. best-
found

 Avg.
#tours  %Err

Oliver30 (a 30-city TSP) Ant-Q 423.74 424.44 N/A 0.09
Grid6x6 (a 36-city TSP) Ant-Q 360 360 677 0.00
ry48p (a 48-city ATSP) Ant-Q 14,422 14,690 N/A 1.47

Oliver30  (a 30-city TSP) AS 423.74 425.46 N/A 0.41
Grid6x6 (a 36-city TSP) AS 360 360 2160 0.00
ry48p (a 48-city ATSP) AS 14,422 14,889 N/A 3.30

Table 3.   Comparison of Ant-Q with some others “nature inspired” algorithms.   We report the best
integer tour length, the best real tour length (in parentheses) and the number of tours required to find
the best integer tour length (in square brackets).  The best result for each problem is in boldface.

Problem name Ant-Q GA EP SA

Eil50

(50-city problem)

426

(428.83)

[10,640]

428

(N/A)

[25,000]

426

(427.86)

[100,000]

443

(N/A)

[68,512]

Eil75

(75-city problem)

535

(542.31)

[8,970]

545

(N/A)

[80,000]

542

(549.18)

[325,000]

580

(N/A)

[173,250]

KroA100
(100-city problem)

21282
(21,285.44)
[59,150]

21761
(N/A)

[103,000]

N/A
(N/A)
[N/A]

N/A
(N/A)
[N/A]

6 Conclusions
In this paper we studied some aspects of the functioning of Ant-Q, an algorithm belonging
to the class of ant colony based search methods, and we presented some interesting
computational results (e.g., Ant-Q was able to find the optimal solution of a difficult 48-city
ATSP).  Current research directions include the study of the meaning of AQ-values, and the
identification of the set of problems that can be efficiently solved by Ant-Q.
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