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Abstract
A major advantage of statistical parametric speech synthe-

sis (SPSS) over unit-selection speech synthesis is its adapt-
ability and controllability in changing speaker characteristics
and speaking style. Recently, several studies using deep neu-
ral networks (DNNs) as acoustic models for SPSS have shown
promising results. However, the adaptability of DNNs in SPSS
has not been systematically studied. In this paper, we conduct
an experimental analysis of speaker adaptation for DNN-based
speech synthesis at different levels. In particular, we augment a
low-dimensional speaker-specific vector with linguistic features
as input to represent speaker identity, perform model adapta-
tion to scale the hidden activation weights, and perform a fea-
ture space transformation at the output layer to modify gen-
erated acoustic features. We systematically analyse the per-
formance of each individual adaptation technique and that of
their combinations. Experimental results confirm the adaptabil-
ity of the DNN, and listening tests demonstrate that the DNN
can achieve significantly better adaptation performance than the
hidden Markov model (HMM) baseline in terms of naturalness
and speaker similarity.
Index Terms: Speech synthesis, acoustic model, deep neural
network, speaker adaptation

1. Introduction
A significant amount of effort have been made to improve the
naturalness of speech synthesis through the annual Blizzard
Challenge1. Apart from naturalness, a speech synthesis system
is also expected to be able to generate an arbitrary speaker’s
voice with minimum training/adaptation data. To respond this
issue, speaker adaptation and voice conversion techniques have
been developed for the two mainstream speech synthesis tech-
niques, statistical parametric speech synthesis (SPSS) and unit
selection speech synthesis, respectively. Due to the robust per-
formance of speaker adaptation, a major advantage of SPSS
over unit-selection speech synthesis is its flexibility in chang-
ing speaker characteristics, speaking styles and emotions [1],
and there has been a significant improvement in naturalness in
recent years [2].

Hidden Markov model (HMM) speech synthesis has domi-
nated SPSS in the past decade. Many speaker adaptation tech-
niques have been explored to improve naturalness and the de-
gree of speaker similarity for HMM speech synthesis. These
techniques can be grouped into two categories: maximum like-
lihood linear regression (MLLR) [3] and maximum a posteri-
ori (MAP) [4] adaptation. The family of MLLR techniques at-
tempt to learn a linear transformation that can transform aver-
age voices to sound like a target speaker, while MAP techniques

1http://www.synsig.org/index.php/Blizzard_
Challenge

employ speaker-independent (or speaker-clustered) models as a
prior distribution to estimate the target speaker model. These
speaker adaptation techniques have been shown to be effective
in mimicking a target speaker’s voice using a small amount of
adaptation data [5].

Recently, deep neural networks (DNNs) have re-emerged
as potential more powerful acoustic models for SPSS follow-
ing the success in automatic speech recognition [6], as DNNs
can learn complex mappings from linguistic features to acous-
tic features. Several independent studies have shown that DNNs
can produce more natural synthesised speech than the conven-
tional HMM-based speech synthesis for a single speaker in var-
ious training conditions [7, 8, 9, 10, 11, 12, 13, 14], but only
few studies have addressed the question of whether DNN-based
speech synthesis can offer adaptation techniques of similar flex-
ibility to HMM-based speech synthesis – even though there has
been successful work in this area in the context of DNN-based
speech recognition [15, 16, 17, 18, 19, 20]. A preliminary study
was conducted on speaker adaptation for DNN synthesis in [21],
but only a feature transformation was used to modify the output
of the DNN.

In this work, we conduct a systematic study of speaker
adaptation techniques for DNN-based speech synthesis. As dis-
cussed in [20], there are three ways to adapt a neural network.
The first way is to perform feature space transformations, the
second one is to augment speaker-specific features as input to
neural nets, and the last one is to perform model adaptation,
that is to modify neural network parameters directly. In this
paper, we perform speaker adaptation at different levels. In par-
ticular, at the input level, we augment an i-vector to represent
speaker identity, do model adaptation using the learning hidden
unit contributions (LHUC) [20] at the middle level and perform
feature space transformations at the output level. As these adap-
tation techniques are performed at different levels, they may be
usefully combined. We have performed experimental analysis
on the performance of each individual adaptation technique and
that of their combinations.

2. DNN adaptation

As discussed above, we perform speaker adaptation at three dif-
ferent levels (Fig. 1): At the input layer, we augment a speaker-
specific vector, namely i-vector, with linguistic features; at the
middle model level, we employ the recently proposed learn-
ing hidden unit contributions approach (LHUC) [20] to perform
model-based adaptation; and at the output layer, we use a linear
transformation approach to perform feature space adaptation,
that is to modify the output of a DNN directly. These individual
adaptation techniques are briefly introduced in following para-
graphs.

http://www.synsig.org/index.php/Blizzard_Challenge
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Figure 1: Three ways to do speaker adaptation for DNN-based
speech synthesis. LHUC=Learning Hidden Unit Contributions.

2.1. i-vector

An i-vector is a low-dimensional vector representing speaker
identity. I-vectors have dramatically improved the performance
of text-independent speaker verification and now define the
state-of-the-art [22]. Given a speaker-dependent GMM, the cor-
responding mean supervector s can be represented as,

s ≈m+Ti, i ∼ N (0, I), (1)

where m is the super-vector defined by the mean super-vector
of a speaker-independent universal background model (UBM)
that benefits from multiple speakers training corpora, s is the
speaker super-vector which is the mean super-vector of the
speaker-dependent GMM model (adapted from the UBM), T
is the total variability matrix estimated on the background data,
and i is the speaker identity vector, also called the i-vector.

In the context of DNN synthesis, when training a speaker-
independent DNN model – an average voice model (AVM) –
linguistic features are augmented with an i-vector as an addi-
tional to capture speaker identity. With the augmented i-vector,
inputs with the same linguistic content but spoken by different
speakers can be distinguished. At the adaptation phase, the tar-
get speaker’s i-vector is first estimated by using the adaptation
data and the total variability T through Eq. (1), and then the i-
vector is appended with linguistic features as input to generate
the target speaker’s voice. As suggested in the literatures [23],
length normlisation is performed on all the i-vectors. In prac-
tice, we used the ALIZE toolkit [24] to extract i-vectors.

2.2. Learning hidden unit contribution (LHUC)

An average voice, or speaker independent, DNN is build using a
number of hidden units hierarchically structured into a sequence
of layers implementing some non-linear transformations. Each
such unit, at training stage, act as an adaptable basis function
capturing certain patterns in its inputs. A learning process of all
the units in the model is driven by a single objective (e.g., to
minimize the squared error as in this work) and the units, in or-
der improve the objective, are encouraged to specialize and be-
come complementary to each other in explaining different pat-
terns in training data well – they learn some joint representation
of the problem the model was tasked to solve.

However, when the model is applied to unseen data, the
relative importance of particular units may no longer be opti-
mal. LHUC, given adaptation data, rescales the contributions
(amplitudes) of the hidden units in the model without actually

modifying their feature receptors. In this work, contrary to [20],
we use an unconstrained variant of LHUC, i.e. its amplitudes
are not re-parametrised in any way. This decision was moti-
vated by preliminary results and the need to limit the number of
comparisons for evaluation tests.

Another way to re-weight hidden units is their interpolation
within pooling regions [25], however, this method is model de-
pendent requiring certain differentiable pooling operators to be
implemented across layers, while LHUC is model-agnostic and
can work with arbitrary model non-linearities [20] and architec-
tures [26].

2.3. Feature space transformation

At the output level, we perform a feature space transformation
to modify the output of a DNN as

y ≈ F(y′), (2)

where y′ is the output feature of a DNN, y is the reference target
vocoder parameter, and F(·) is the transformation function.

For adaptation, the AVM is first used to predict a sequence
of vocoder parameters given a sequence of linguistic features
extracted from adaptation material. Then, a transformation
function is built based the parallel data: predicted vocoder pa-
rameters and reference vocoder parameters of the target speaker.
At runtime synthesis, the transformation function is applied to
the predicted vocoder parameters of the AVM DNN to perform
feature space adaptation to mimic the target speaker’s voice.

In practice, we employed joint density Gaussian mixture
model (JD-GMM) with full-covariance matrices to implement
the transformation function, since JD-GMM is current state-of-
the-art voice conversion technique [27], and can perform feature
space mapping well.

3. Experiments
3.1. Experimental setup

In the experiments, we used the Voice Bank corpus [28] to as-
sess the performance of the adaptation techniques. 96 speakers
– 41 male and 55 female – were used to train a DNN average
voice model (AVM). Two speakers, one male and one female,
were used as target speakers for speaker adaptation. We consid-
ered two training conditions: 10 utterances and 100 utterances
of adaptation data for both target speakers. 70 utterances were
used as a development set and 72 utterances were used as a test-
ing set for both target speakers.

The sampling rate of the corpus was 48 kHz. The
STRAIGHT vocoder [29] was employed to extract 60-
dimensional Mel-Cepstral Coefficients (MCCs), 25 band ape-
riodicities (BAPs) and F0 in log-scale at 5 msec step.

We trained context-dependent hidden Semi-Markov mod-
els (HSMMs) as the baseline. The HSMMs have 5 states with
separate output distributions representing the 60-D MCCs, 25-
D BAPs, F0 in log-scale and their delta and delta-features.
The global variances are also used to refine the parameter tra-
jectories using the Maximum likelihood parameter generation
(MLPG) algorithm, and spectral enhancement post-filtering is
applied to the MCCs. Finally, separate decision trees are used
to cluster the state duration probabilities and the state output
probabilities using input linguistic features such as quinphone,
part-of-speech, phoneme, syllable, word and phrase positions.
The 96 speakers of the Voice Bank corpus are used for learning
an average voice model and the CSMAPLR algorithm is em-
ployed for adaptation [5].



Table 1: Objective results of DNN adaptation techniques. MCD and BAP are Mel-Cepstral Distortion and Band APeriodicity dis-
tortion, respectively. V/UV error means frame-level voiced/unvoiced swipping error. Root Mean Squared Error (RMSE) of F0 was
calculated in linear frequency.

DNN adaptation 10 utterances adaptation 100 utterances adaptation
MCD BAP F0 V/UV error MCD BAP F0 V/UV error

i-vector LHUC FT (dB) (dB) RMSE (Hz) rate (%) (dB) (dB) RMSE (Hz) rate (%)
Y 6.56 2.68 25.99 14.51 6.38 2.63 26.07 14.33

Y 5.72 2.44 24.54 11.77 5.58 2.39 23.97 11.16
Y 5.57 2.45 24.51 13.39 5.28 2.38 24.51 13.10

Y Y 5.93 2.46 26.84 12.43 5.98 2.47 26.23 12.15
Y Y 5.66 2.49 26.02 14.51 5.30 2.39 25.69 14.33

Y Y 5.53 2.41 24.22 11.71 5.27 2.35 24.20 11.97
Y Y Y 5.60 2.43 25.82 12.43 5.31 2.37 24.98 12.71

The input of a DNN contained 592 binary linguistic fea-
tures, 9 numerical features and 1 binary feature to represent gen-
der information. The linguistic features included quinphone,
part-of-speech, phoneme, syllable, word and phrase positions.
The 9 numerical features involved frame position in the HMM
state and phoneme, state position in phoneme and state and
phoneme duration. We note that when applying i-vector based
speaker adaptation, an i-vector was appended with the linguistic
features. The output acoustic features comprised 60-D MCCs,
25-D BAPs, 1-D F0, their corresponding delta and delta-delta
features, and a voice/unvoiced binary value. In total, the acous-
tic feature vector was 259 dimension. F0 was linearly inter-
polated before extracting dynamic features, and the V/UV fea-
ture was used to decide the voiced and unvoiced region at run-
time synthesis. The input features were normalised to the range
of [0.01, 0.99], and the output features were normalised by
speaker-dependent mean and variance. Similar normalisation
was applied to the adaptation data. We applied the maximum
likelihood parameter generation (MLPG) algorithm to the out-
put features to generate smoothed parameter trajectories, fol-
lowed by spectral enhancement post-filtering in the cepstral do-
main.

The DNN systems had 6 hidden layers, and each hidden
layer had 1536 units. A hyperbolic tangent function was used
in the hidden layers followed by a linear activation at the output
layer. During AVM training and LHUC adaptation, the mini-
batch size was set to 256, and momentum was adopted to ac-
celerate convergence. For the first 10 epochs, the momentum
was set to 0.6, and was then increased to 0.9. A fixed learning
rate of 0.0008 was used in the first 10 epochs for AVM DNN
training. During LHUC adaptation, the learning rates were set
to 0.06 for female speaker and 0.02 for male speaker for the
first 10 epochs. In all cases, after 10 epochs, the learning rates
were halved at each epoch. L2 regularization was applied to the
weights with a penalty factor of 0.00001. The maximum num-
ber of epochs was set to 30 for AVM DNN training and LHUC
adaptation. In the implementation, we used the CUDAMat li-
brary2 which is a Python module for matrix calculations on a
GPU using CUDA [30].

To extract i-vectors, the 96 speakers’ data were used to train
gender-dependent UBM and total variability. The dimensional-
ity of i-vectors was set to 32. In the implementation of feature
transformation, single mixture full-covariance JD-GMMs were
trained for 10 utterances adaptation condition, while 4 mixture
JD-GMMs were trained when adapting with 100 utterances.

3.2. Objective evaluation

We conducted objective evaluation to analyse the performance
of each individual adaptation technique as well as their combi-

2https://github.com/cudamat/cudamat

nations. Even though objective results might not correlate with
the perceived naturalness and speaker similarity, they are good
predictors to optimise DNN hyper-parameters. Here, we only
report the average distortions of the two target speakers.

The results are presented in Table 1. Across the three in-
dividual adaptation techniques, the feature transformation (FT)
approach achieves the lowest Mel-Cepstral Distortions (MCDs)
and BAP distortions, and LHUC achieves the lowest F0 RMSE
and V/UV error rates, suggesting complementarity. In all cases,
i-vector gives the highest distortions.

When combining two individual adaptation techniques,
LHUC+FT gives the lowest distortions for all the measures
and under all the adaptation conditions. Surprisingly, when i-
vector is integrated with LHUC or FT, i-vector+LHUC and i-
vector+FT achieve higher distortions than LHUC and FT, re-
spectively.

We then compared the performance of these adaptation
techniques by using different amounts of adaptation materials.
When the adaptation data is expanded from 10 utterances to 100
utterances, all the techniques or combinations reduce the distor-
tions except i-vector+LHUC. I-vector+LHUC slightly increases
the MCD from 5.93 dB to 5.98 dB.

3.3. Subjective evaluation

We conducted listening tests to assess the naturalness and
speaker similarity of the synthesised speech obtained using var-
ious combinations of adaptation techniques.

We first evaluated the adaptation performance of DNN sys-
tems. Four MUSHRA (MUltiple Stimuli with Hidden Refer-
ence and Anchor) tests were conducted to assess the naturalness
and speaker similarity. 30 native English listeners participated
in each test. Each listener rated 20 sets which were randomly
selected from the testing utterances, and each set consisted of
8 stimuli of the same sentence generated by each of the seven
adaptation systems plus the copy-synthesis speech used as the
hidden reference. The listeners were asked to rate each stimu-
lus from 0 (extremely bad for naturalness test or totally different
speaker for similarity test) to 100 (same naturalness as the ref-
erence speech or same speaker identity as the reference speech),
and they were also instructed to give exactly one of the 8 stim-
uli in every set a rating of 100 in both naturalness and similarity
tests.

The MUSHRA scores for all the DNN-based adaptation
techniques that use 10 utterances as adaptation data are pre-
sented in Fig. 2. We used a paired t-test to examine the
significance between systems. In the naturalness test, across
the three individual adaptation techniques, FT achieves signifi-
cantly better performance than i-vector and LHUC, and i-vector
is slight better than LHUC, but the difference is not significant.
When combining any two adaptation techniques, LHUC+FT
achieves significantly better performance than other combina-

https://github.com/cudamat/cudamat


tions, and i-vector+LHUC is significantly better than i-vector +
FT. Even though i-vector+LHUC is slightly better than i-vector
and LHUC, but the differences are not significant. Surprisingly,
i-vector+FT is slightly worse than FT or i-vector, even though i-
vector+FT achieves much better objective results than i-vector.
The difference between i-vector+FT and i-vector is not signif-
icant, but the difference between i-vector+FT and FT is signif-
icant. When combining all the adaptation techniques, surpris-
ingly, the resulted naturalness is almost the same as LHUC+FT.
The performance of i-vector+LHUC+FT is significantly better
than other systems except FT and LHUC+FT.
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Figure 2: Box plot of MUSHRA results for DNN systems with
10 utterance adaptation data. (a) naturalness test results; and (b)
speaker similarity test results.

The observations based on the similarity test are similar to
that in the naturalness test, but here LHUC is significantly bet-
ter than i-vector. i-vector+FT is still not as good as FT, but it
is significantly better than i-vector. The difference between i-
vector+LHUC+FT and LHUC+FT is not significant, but they
are significantly better than all the other systems.

The MUSHRA scores for all the DNN-based adaptation
techniques that use 100 utterances as adaptation data are shown
in Fig. 3. The trend is similar to that using 10 utterances for
adaptation. Comparing with the objective results, one interest-
ing observation is that even though i-vector+FT achieves much
lower spectral distortions than i-vector+LHUC in all conditions,
the subjective results suggest that i-vector+LHUC is signifi-
cantly better than i-vector+FT.

We then conducted preference tests to compare the natu-
ralness and speaker similarity between the DNN and HMM
adapted systems. Here we use the DNN systems with i-
vector+LHUC+FT adaptation as they achieved relative better
performance than other adaptation techniques. 27 listeners par-
ticipated in each test. In the naturalness test, each listener lis-
tened to two samples generated by either DNN or HMM, and
was asked to choose the one they preferred. In the similarity
test, each listener first listened to the reference target speech,
and then listened two samples generated by either DNN or
HMM, after that, was asked to choose the one which is closer
to the target speech.

The preference results are presented in Fig. 4. It is observed
that in all the adaptation conditions, DNN achieves significantly
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Figure 3: Box plot of MUSHRA results for DNN systems with
100 utterance adaptation data. (a) naturalness test results; and
(b) speaker similarity test results.

better performance than HMM baseline in terms of naturalness
and speaker similarity. This confirms the adaptability of DNN,
and shows the effectiveness of i-vector, LHUC and FT based
adaptation techniques.
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Figure 4: Preference scores between DNN and HMM adapta-
tions. 10 and 100 mean the number of adaptation utterances.

4. Conclusions
In this paper, we performed a systematic and experimental anal-
ysis of speaker adaptation for deep neural network (DNN) based
speech synthesis. The experimental results confirmed the flex-
ibility of DNN-based synthesis, also demonstrated that DNN-
based adaptation can achieve even better performance than
HMM-based adaptation. We also found that feature transfor-
mation at the output layer works well and the adaptation per-
formance can be improved by combining with model based
adaptation in this work the learning hidden unit contributions
(LHUC). However, even though experimental results show that
i-vector with combined LHUC can achieve good performance,
it does not work well as expected when combined with feature
transformation. Further analysis is required to understand the
phenomenon much better.

The samples and listening test results used in the experi-
ments are available online via this link: http://dx.doi.
org/10.7488/ds/259.
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