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ABSTRACT
Static analysis is widely used for software assurance. However,
static analysis tools can report an overwhelming number of
warnings, many of which are false positives. Applying static
analysis to a new version, a large number of warnings can be
only relevant to the old version. Inspecting these warnings is
a waste of time and can prevent developers from finding the
new bugs in the new version. In this paper, we report the
challenges of cascading warnings generated from two versions
of programs. We investigated program differencing tools and
extend them to perform warning cascading automatically.
Specifically, we used textual based diff tool, namely SCALe,
abstract syntax tree (AST) based diff tool, namely GumTree,
and control flow graph (CFG) based diff tool, namely Hydro-
gen. We reported our experience of applying these tools and
hopefully our findings can provide developers understandings
of pros and cons of each approach. In our evaluation, we used
96 pairs of benchmark programs for which we know ground-
truth bugs and fixes as well as 12 pairs of real-world open-
source projects. Our tools and data are available at https:
//github.com/WarningCas/WarningCascading_Data.
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1 INTRODUCTION
In an agile software development setting, there is a need
to deliver reliable new software releases in a rapid fashion.
The big challenge is how we can only analyze and report
the software quality issues related to the new version, as the
issues of old versions have been addressed previously when
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shipping the old versions. In particular, static analysis tools,
as an important software assurance technique, often generate
an overwhelming number of warnings for each version of
software [1, 2]. It is confusing which warnings are related to
only the old code and have been reviewed in the previous
versions, which warnings report new issues in the updated
release, and which warnings are about the issues of fixing the
old warnings. Consequently, tremendous time and manual
efforts can be wasted and not spent on the right problems of
the current version.

The goal of static warning cascading (also called matching
or aligning static warnings) is to help developers classify
warnings into several categories: (1) the cascaded warnings
report a same issue in the old and new versions (so we don’t
need to handle it), (2) the warnings in the old version are
fixed in the new version (we can inspect them together to
confirm if the fix is indeed correct), (3) the warnings are
changed from the old version but the old and new warnings
are related (we should inspect them together to understand
the problem), and (4) the warnings only report issues in
the new version (we should inspect them in the new version
of software). For most of static analysis tools, a warning is
reported as a line in the source code file. Thus the warning
cascading problem can be reduced to map a source code
line from the old version to the new version and classify the
mapping to be one of the above categories.

There exist a spectrum of program differencing tools [3–5]
that can match source code lines. Some representative cate-
gories include textual based diff, syntax based diff and control
flow based diff. Textual based diff is typically performed on
two source code files using the longest common sequence
algorithm like the one implemented in the Unix diff tool.
Syntactic based diff tools like GumTree [4] are performed on
the abstract syntax trees (ASTs). It compares ASTs from two
versions of a source code file and determines if the AST nodes
in the two versions should be matched. The control flow based
diff uses a representation of multiple version interprocedural
control flow graphs (MVICFG) [3]. The MVICFG is a union
of Interprocedural Control Flow Graphs (ICFGs) for a set of
program versions. The common nodes and edges in versions
are represented only once and each edge is marked with the
versions it belongs to.

In this paper, we conducted a study of the three represen-
tative program differencing techniques for cascading static
warnings. Our goal is to evaluate the pros and cons of each
tool and report which tools are the most useful and successful
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for cascading warnings. By useful and successful, we mean
when a bug in a program is fixed in the new version, the tool
is able to report the warning of the bug does not cascade to
the one in the fixed version; when a bug in a program still
exists after adding changes, the tool is able to report that the
warning in the buggy version is cascaded to the new version.
They are the same or related warnings.

Specifically, we used an existing texual based warning cas-
cading tool SCALe 1 developed and used at CERT 2; we also
designed and implemented warning cascading routines on
top of other two open source tools, GumTree and Hydrogen.
We applied the three tools for static analysis warnings gen-
erated for two program versions. To compare different tools’
behavior when apply warning cascading, we first constructed
studies on the 96 pairs of benchmark programs where the
ground truth are known. We then collected 12 pairs of real-
world open source projects and investigate the use of the
three tools in practice.

Our results show that Hydrogen has a slight advantage
compared to other two tools for the ground truth benchmarks.
When used for real-world programs such as find, grep, make
and coreutils, Hydrogen is more successful for cascading
same "bugs" across versions compared to two other tools,
where SCALe shows more advantages in cascading the cases
where the warnings for the first version are fixed in the second
versions. We sampled a set of our results and reported the
analysis on these examples (see §4 for details). Our experience
and findings can provide developers knowledge on warning
cascading as well as a more general problem of programming
differencing.

In summary, this paper made the following contributions:
(1) We reported practical challenges of cascading warn-

ings across program versions and proposed what is
considered as a successful warning cascading (§2);

(2) We used and extended three types of programming
differencing tools to perform warning cascading (§3);

(3) We designed and performed comprehensive empirical
studies to compare the three types of approaches to
discover whether, when and why each type of the tools
work best for warning alignment (§4); and

(4) We open source our tools and datasets at https://
github.com/WarningCas/WarningCascading_Data.

2 MOTIVATION AND CHALLENGES
Warning cascading is challenging because when programs are
updated in the new versions, the function and variable names
may change, and the line numbers of the same statements are
also likely changed. Directly performing string matching for
the output from static analysis tools cannot work because of
the change of context in the newer version. In this section, we
provide some examples to explain the challenges of warning
cascading, and we also more precisely define what it means
by a useful and successful cascading.

1https://github.com/cmu-sei/SCALe/tree/scaife-scale
2https://www.sei.cmu.edu/about/divisions/cert/

2.1 Challenging examples
find.71f10368 has a bug of "crashing in some locales for
find -printf ’%AX’" and a newer version of find added a fix
for this bug and also included many additional new changes.
If we run static analysis tool, we will get 1600+ warnings for
each version. Without a proper warning cascading tool, we
cannot easily find which warnings in the previous version are
changed in the new version, and determine whether the fix is
successful and whether there are more new issues introduced
in the fix and other newly added code.

Warning cascading is challenging for several aspects. First,
there are many identical warnings between the two versions;
however, the same warnings across versions may be reported
as different locations of the same files due to the new code
added or old code deleted, and there can be changes of
variable/function names, e.g., via refactoring, which do not
affect the warning semantics. Second, there are often dead
code in the project, e.g., corebench 3 have gnulib-tests
folders within the projects which did not affect program
behaviors. But static analysis scans all the code to output
the warnings. Developers have to filter out those warnings
irrelevant to the newly developed code. Such dead code can
be project specific and hard to exclude, and thus increase
the overhead of warning cascading.

Here, we further show some real-world examples discovered
in our study. In the first case, when many new lines are added
before the target line, the text diff tools cannot match the
warnings. See Figure 1. In the second case, a line added in
the new version (green at line 5 in Figure 2) is the same as
the target line (blue at line 7 in Figure 2). The diff tools can
be confused and mistakenly match newly added line 5 with
i++ in the old version instead of line 7. In the third case,
there are non-semantic changes, e.g., changing function name
between the two versions or adding a new comment to the
target line. As an example, in Figure 3, fprintf is changed
to checked_fprintf, and the text diff tools cannot match
them. In Figure 4, a statement at line 7 didn’t change at all
in the second version but an extra comment is added. These
cases can challenge the warning cascading tools.

2.2 What is a useful and successful warning
cascading?

In the problem of warning cascading, the tool takes static
warnings generated from one version and determines if there
is a match for the warnings in another version. We consider
a warning is successfully cascaded for the following two cases.
First, the cascading tool reports the two warnings as same
"bugs" if both versions contain the same "bug" located at
the target line (we say the "bugs" in two versions are the
same if the sequences of root cause statements along the
paths are semantically equivalent). In this case, the warnings
have been reviewed in the old version, and developers do not
need to further investigate these warnings. Here, "bug" is
not confirmed but is the output warning from static analysis

3https://www.comp.nus.edu.sg/ release/corebench/
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1
2static char **
3construct_command_argv_internal
4(char *line, char **restp, char *shell,
5char *shellflags, char *ifs, int flags,
6char **batch_filename_ptr)
7{
8...
9
10+ if(one_shell)
11+ {
12+ #if defined __MSDOS__ || defined (__EMX__)
13+ if (unixy_shell)
14+ #else
15+ if (is_bourne_compatible_shell(shell))
16+ #endif
17... // more lines are added here
18
19...
20command_ptr = ap;
21}

Figure 1: Challenge: many lines (lines 9–17) are added before
the target line (line 25)

1static bool
2record_exec_dir (struct exec_val *execp)
3{
4...
5+ i++ // newly added line in version2 could

possibly match two version1
6function1()
7i++ // shared line between version1 and

version2
8...
9}

Figure 2: Challenge: newly add a line the same as the target
line

static reg_errcode_t
internal_function
re_string_reconstruct (re_string_t *pstr, Idx idx, int eflags)
{

...
case KIND_FORMAT:

switch (segment->format_char[0])
case 'a':

- fprintf (fp,segment->text , ctime_format
(get_stat_atime(stat_buf)));

+ checked_fprintf (fp,segment->text , ctime_format
(get_stat_atime(stat_buf)));

break;
case 'b':

- fprintf(fp,segment->txt, human_readable ((unintmax_t)
ST_NBLOCKS (*stat_buf)));

+ checked_fprintf(fp,segment->txt, human_readable
((unintmax_t) ST_NBLOCKS (*stat_buf)));

break;
...

}

Figure 3: Challenge: new name is applied during refactoring

1static bool
2record_exec_dir (struct exec_val *execp)
3{
4
5...
6i++;
7+ i++; //extra comment
8...
9}

Figure 4: Challenge: add a comment

tools. "bug" can be false positives, and we can match them if
the changes newly added do not affect the semantics of the
warnings.

A variant of the first case is that the root cause statements
of the "bug" are not exactly the same but have some changes—
-for a successful cascading, the tool should report the two
warnings as relevant "bugs". So developers can inspect the
two warnings together for diagnosis.

In the second case, one version contains the "bug" at the
target line and the other version added a fix for the "bug".
There is no longer warning reported for this "bug" in the
second version. Here, a successful cascading should report
"bug" fix. This case includes a special situation, where the
buggy code is deleted in the second version. The warning
cascading in this case is useful especially when the second
version aims to fix the bugs in the first version. Warning
cascading is able to help determine if the issues in the first
version likely are addressed in the new versions, and what
are the new issues added in the new version.

If the cascading tools fail to match the same "bugs" (in the
first case) or match any "bug" in one version with irrelevant
"bugs" in another version (in both first and second cases), we
consider such cascading as unsuccessful. In our evaluation,
we used benchmarks that are known with ground truth bugs
and fixes to evaluate such metrics. For the real-world bench-
marks where there is no ground truth, we performed manual
inspection to determine if the warning cascading is successful
(details see §4).

3 THREE TECHNIQUES OF CASCADING
WARNING

In this paper, we used three different types of program dif-
ferencing tools, namely textual based diff, AST based diff and
CFG based diff, for warning cascading. Specifically, SCALe is
a tool developed by CERT and used Unix diff for cascading
warnings. GumTree is a syntactic differencing tool based on
abstract syntax trees (ASTs). Hydrogen compares programs
based on control flow graphs integrated in MVICFG. We
extended GumTree and Hydrogen for warning cascading.

We compare the output of these tools to understand the
pros and cons of these techniques. We hope our findings can
help developers better select warning cascading tools and
more efficiently improve their code quality in the continuous
integration. In the following, we provide some technical details
of the three tools.
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3.1 Textual based diff tool: SCALe
SCALe [5] takes warnings reported by multiple static analysis
tools and first group the warnings of the same issue (reported
by different static analysis tools) into one warning. It then
applies the textual diff tool 4 to maps lines between versions
and assess whether the source code line associated with a
warning has undergone modification in the updated version.

To apply SCALe, we deployed docker-based virtual ma-
chine 5. For each program analyzed, the static analysis tools
were run, and the output was formatted in a way that SCALe
could process and understand. These output files were up-
loaded into SCALe via their web-based interface. The warn-
ings of the second version of the program are added in the
same way. To compare the different versions of the program,
we leveraged the browser interface’s built-in functions and
employed the diff tool for cascading the differences. This was
executed internally by the browser’s backend, which allowed
for the comparison of the program and performed warning
cascading on the program versions. After that, we can find the
output of it on the GUI page, and the information contains
the verdict value of each warning.

If the warning’s verdict value is true, that means there
is no adjudication on the previous version for the line corre-
sponding to the warning, and there is matched warning in
the first version. If such a value is false, that means there
is a change in the previous version. The warning in the sec-
ond version is not matched. We review any warnings present
in the first version but not matched as same "bug" in the
second version and label them as "bug" fix cascading. We
implemented a script to automate the process of generat-
ing warnings from multiple static analysis tools, uploading
the results to SCALe, and cascading warnings between two
versions of a program.

3.2 AST based diff tool: GumTree
GumTree [4] is a syntactic differencing tool that operates
based on the Abstract Syntax Tree (AST). Unlike SCALe,
which uses the diff tool to compare file versions on a text
line level, GumTree parses each file version into an AST
representation and directly matches the nodes in the two
AST versions. By utilizing the AST representation, GumTree
is able to bypass the influence of minor changes that may
surround warnings, such as changes in spacing or refactoring
of variable names, which are unlikely to affect the warnings.
When the warnings in the two versions correspond to the
aligned nodes identified by GumTree, we consider the warning
is cascaded to the new version.

To perform syntactic warning cascading, we built a custom
client interface for the code release of GumTree6. GumTree’s
objective is to compute an edit script, a sequence of edit
actions made to a source file, which is short and close to
the developer’s intent. It follows a 2-step process. Step 1
computes mappings between similar nodes in the two ASTs;

4https://www.gnu.org/software/diffutils
5https://github.com/cmu-sei/SCALe/tree/scaife-scale
6https://github.com/GumTreeDiff/gumtree

the main contribution of GumTree is to maximize the number
of mapped nodes. Step 2 deduces the edit script from the
AST mapping using the algorithm of Chawathe et al [6]. We
only used the AST mapping and did not compute the edit
script, since our application only needs to match the AST
nodes between two versions of a program.

Given two versions of a source code file 𝑃1 and 𝑃2, the
GumTree parser produces their respective ASTs 𝑇1 and 𝑇2.
Then, GumTree computes the mapping 𝑀𝑇 between the
similar nodes in 𝑇1 and 𝑇2. Finally, our client checks the
mapping 𝑀𝑇 to determine the set of warnings to cascade.

Algorithm 1 defines our cascading algorithm built on top
of the GumTree. Since all warnings are placed on concrete
lines in the code, we traverse only the leaf nodes of the AST.
A warning is cascaded between nodes 𝑡1 ∈ 𝑇1, 𝑡2 ∈ 𝑇2 if and
only if there is at least one warning on the same line as both
𝑡1 and 𝑡2 (line 3), 𝑡1 is mapped to 𝑡2 by GumTree (line 4),
and the warnings attached to 𝑡1 and 𝑡2 have the same CWE
(Common Weaknesses Enumeration) condition (line 5).

Similar to SCALe’s implementation of diff cascading, our
implementation uses the results of running GumTree to cas-
cade the warnings without modifying the GumTree AST
parser and differencing algorithm. Our implementation pre-
serves the stable and efficient implementation and adds only
the little overhead which is necessary for cascading warnings.

Algorithm 1: Cascade Warnings with GumTree
Input : AST for 2 versions 𝑇1, 𝑇2, node mapping

𝑀𝑇 = {𝑡1, 𝑡2}
Output : 𝑀𝑊 = {𝑤1, 𝑤2} matched from 𝑇1 to 𝑇2

1 𝑀𝑊 ← ∅
2 for 𝑤1 ∈𝑊1 do
3 for 𝑡1 ∈ 𝑙𝑒𝑎𝑣𝑒𝑠𝑇1|𝑡1.𝑙𝑖𝑛𝑒 = 𝑤1.𝑙𝑖𝑛𝑒 do
4 if 𝑡1, 𝑡2 ∈𝑀𝑇 then
5 𝑀𝑊 = {𝑤2 ∈𝑊2|𝑡2.𝑙𝑖𝑛𝑒 =

𝑤2.𝑙𝑖𝑛𝑒 ∧ 𝑤1.𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = 𝑤2.𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛}
6 return 𝑀𝑊

3.3 CFG based diff tool: MVICFG
Hydrogen [3] is a tool that differentiates programs with re-
gards to its control flow. It first generates the ICFG based on
IR produced by LLVM [7]. It then combines ICFGs of each
version into one via a graph union. The nodes and edges are
shared across multiple versions and are marked with versions
they belong to. In the end, it builds a program representa-
tion for multiple versions of ICFGs, called MVICFG, which
shows different control flows and paths between two different
program versions.

To perform warning cascading, we developed an extension
to Hydrogen’s original algorithm. This extended algorithm
utilizes various graph traversals to detect the cascading of
warnings, shown in Algorithms 2 and 3.

Algorithm 2 takes as input the two program versions (𝑉1
& 𝑉2) and their respective collection of static warnings (𝑆𝑊1
& 𝑆𝑊2). The algorithm outputs (𝑊𝑚 & 𝑊𝑢) as a matched

https://www.gnu.org/software/diffutils
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https://github.com/GumTreeDiff/gumtree
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warning (cascading bugs) and unmatched warning (cascading
fixes) respectively.

We generate MVICFG of the two versions of the program
at line 3 of Algorithm 2. Then we embed the warnings from
both versions of 𝑆𝑊1 and 𝑆𝑊2 into the MVICFG at line
4, based on its location in the code, including the file path,
file name, function name, and line number. After embedding,
each warning contains meta-data that specifies the version
from which it originates, the type and message associated
with the warning, and its node in MVICFG. At lines 5 and
6, we iterate through all the warnings from 𝑆𝑊1. For each
warning, we obtain its corresponding MVICFG node based
on the metadata provided by the warning, and we then see
if node 𝑛 is a common node shared across two versions [8].
If so, the warnings at these locations have the possibility of
being cascaded. If the node is a common node and it also
contains the warning from the second version, we add it into
𝑊𝑚. Otherwise, if the node is not a common node, we put
it into CheckBetween (discussed later) function to further
identify whether it can be cascaded.

Algorithm 2: Cascade warnings
Input : Program versions [𝑉1, 𝑉2],

Resp. warning sets [𝑆𝑊1, 𝑆𝑊2]
Output : Matched warnings [𝑊𝑚],

Exclusive warnings [𝑊𝑢]
1 Initialize 𝑊𝑚, 𝑊𝑢, MVICFG;
2 Function CascadeWarning(𝑉1, 𝑉2, 𝑆𝑊1, 𝑆𝑊2)
3 MVICFG ← GenMVICFG(𝑉1, 𝑉2);
4 EmbedInMVICFG(𝑆𝑊1, 𝑆𝑊2);
5 while 𝑆𝑊1 ≠ ∅ do
6 Remove a warning w from 𝑆𝑊1;
7 n ← GetNodeFromWarningData(MVICFG, w);
8 if n.IsSharedNode and n.HasWarning_2 then
9 Add w to 𝑊𝑚;

Since there is a possibility of the line being marked as
modified due to changes surrounding it, Unix diff tool will
report the line as changed. MVICFG used Unix diff tool and
thus the changed lines will be represented in two different
nodes. But we can recover such weakness of Unix diff tools
by further checking if the (buggy) paths lead to this line in
two versions are actually the same. If so, we can category the
warnings as matched. See Algorithm 3 CheckBetween.

In Algorithm 3, at lines 2 and 3, we traverse MVICFG to
get the divergent/convergent nodes nearest to 𝑛. A divergent
node of 𝑛 on the MVICFG is defined as a nearest matched
node (matched across two versions) found by traversal of the
predecessor edges from 𝑛. A convergent node of 𝑛 is a nearest
matched node found by traversal of a successor edge of 𝑛.
We provide an example to further clarify the two definitions.
Figure 9 showed a snippet of MVICFG. Node 𝑛1 is a matched
node shared between two versions. From this node, there are
two edges which are called version branches in the MVICFG.
Nodes 𝑛 and 𝑛2 on the left version-branch belong to version

Algorithm 3: Categorize matched warnings
Input : Warning w at MVICFG node n
Output : Updated 𝑊𝑚, 𝑊𝑢

1 Function CheckBetween(w,n)
2 DivN ← FirstDivNodeInMVICFG(n);
3 ConvN ← FirstConvNodeInMVICFG(n);
4 Stmt ← Statement at n;
5 MN ← StmtInMVICFG(Stmt,DivN,ConvN,𝑉2);
6 if MN ≠ ∅ and MN.HasWarning_2 then
7 Add w to 𝑊𝑚;
8 else
9 Add w to 𝑊𝑢

1. Node 𝑛 on the right version-branch belongs version 2. Here,
node 1 is the divergent node for 𝑛 and 𝑛2, and 𝑛3 is the
convergent node for 𝑛 and 𝑛2. The two nodes 𝑛 along the
two version branches have the same statements. We will use
algorithm 3 to mark those two as matched by leveraging the
use of divergent and convergent nodes.

Figure 5: Divergent and Convergent Nodes on the MVICFG

Specifically, at line 2 in Algorithm 3, FirstDivNodeInMVICFG
performs a breadth-first search backwards from n and returns
the divergent node with the shortest path to n. Similarly,
at line 3, FirstConvNodeInMVICFG performs a breadth-first
search forwards from n and returns the convergent node with
the shortest path from n. Because n is a modified node, there
will be at least one divergent node in its ancestors and at
least one convergent node in its successors. At line 10, we
extract the statement as a string and trim whitespace char-
acters. Then, at line 11, StmtInMVICFG searches all nodes
between 𝐷𝑖𝑣𝑁 and 𝐶𝑜𝑛𝑣𝑁 for a node in 𝑉2 whose text ex-
actly matches 𝑆𝑡𝑚𝑡 after trimming whitespace. If such a
node exists and it contains a warning for the second version,
we consider it as matched with n and categorize the warning
as cascaded 𝑤𝑚; otherwise, we add it into 𝑊𝑢

4 EVALUATION
In the evaluation, we plan to investigate:

(1) Which approaches perform the best for static warning
cascading?

(2) When and why each approach does not perform well?
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4.1 Experimental setup
Experiments. We designed two experiments, namely a

ground-truth setting and a real-world setting. In the ground-
truth setting, we collected a set of buggy programs, where we
know the location of the bugs in each program. Each buggy
program has two variants: a buggy-buggy variant consisting of
the original buggy program and a version in which a refactor-
ing irrelevant to the bug is introduced, and a buggy-fix variant,
consisting of the original buggy program and a version in
which the bug is fixed. We selected the buggy programs such
that at least one of our static analysis tools can correctly
report the warnings for the known bugs. That way, we can
count and analyze how these warnings are cascaded in its
variants, and compare the cascading results with the ground
truth.

In the real-world setting, we collected a set of programs
consisting of real-world bugs and their fixed versions from
open source projects. We then observed the cascading of static
warnings from the first version to the second version. This
setting helps us understand the usefulness and challenges of
cascading approaches in the real-world application settings.

Software subject selection. To fulfill the two experiment
settings, we used C programs from two benchmarks: SARD [9]
and CoREBench [10]. From the SARD dataset, we used ABM
and Toyota as the ground truth setting. The two benchmarks
consist of 96 pairs of synthetic programs, where static analysis
tools are able to report warnings for the buggy version.

CoREBench consists of a total 12 pairs of real-world
projects, including make, find, grep, and coreutils. These
are open-source programs with a long contribution history of
over 33k commits. Each program is documented with real-
world bug reports and their corresponding fix introducing
commit. The program represents a wide variety of project
sizes, ranging in size from 9.4k LOC (grep) to 83.1k LOC
(coreutils).

Static analysis tools. To generate the static warnings for
cacading, we used five different tools: GCC [11], Clang [12],
Cppcheck [13], Rosecheckers [14] and CodeSonar[15]. These
tools are currently supported by SCALe and frequently used
in CERT [16] for scanning vulnerabilities. We used SCALe
first to aggregate the warnings generated from different static
analysis tools into one warning. We then cascade the warning
using the three tools.

Metrics and confirmation of the results. : For the bench-
marks where we know the ground-truth bugs, we used the
warnings reported at the buggy lines in the first version
as subjects and determined the successfulness of warning
cascading based on our criteria given in Section 2.2.

For the real-world programs, we sampled 12% of total
warnings from one version and manually inspected if the
warnings are cascaded successfully. For each pair of programs,
we report (1) the warnings of the two versions are matched as
"bugs", and (2) the warnings in the first version are removed
in the second versions. We then compared the results from
three tools and also performed manual inspection to evaluate

whether such two types of match are performed correctly
by the three tools. For example, in case (1), a mistake is
reported if the two warnings are not the same but paired
incorrectly by a tool, or the two warnings are supposed to be
matched, but one tool fails to do so; in case (2), the warning
is supposed to be removed in the second version; however, it
is matched with some random warning incorrectly.

All the manual inspection is done by two code reviewers.
The code reviewers first inspect the cascaded warnings by
themselves and then compared and discussed the results with
another code reviewer so that we report confident results.

Running experiments. We ran all of our experiments on
RedHat 20.4 Linux distribution on a virtual machine with
32 GB of memory and 32 cores available. We implemented
our tools using LLVM-8.0, Python 3 and Bash scripts.

4.2 Results for RQ1

Table 1: Successful cascading for buggy-buggy versions

Benchmark Total Hydrogen SCALe GumTree
ABM 20 20 19 20
Toyota 37 36 35 36
Both 57 56 54 56

Table 2: Successful cascading for buggy-fixed versions

Benchmark Total Hydrogen SCALe GumTree
ABM 13 13 3 10
Toyota 26 26 5 23
Both 39 39 8 33

4.2.1 Results for the ground-truth setting. Tables 1 and 2
show the results of each cascading tool for the benchmarks
of ABM and Toyota. We leverage the ground truth bugs and
patches in the benchmarks to confirm the successfulness of our
warning cascading. Table 1 lists a total of 57 (20 from ABM
and 37 from Toyota) pairs of programs in the two benchmarks.
Each pair of programs contains two buggy versions, where
each version contains one bug, and the second buggy version
is a refactored version of the first buggy version. The two
versions contain the same bug. In Table 2, under Total, we
show that there are 39 (13 from ABM and 26 from Toyota)
pairs of programs. Each pair of programs contains a buggy
version and a fixed version. The buggy version contains one
bug. The fixed version is the patched version for this bug. For
both the cases, we focused on the static warnings generated
for the buggy lines for this study (the fault locations are
provided by the benchmarks) and determine if this warning
is successfully cascaded.

In Tables 1 and 2, each cell in columns Hydrogen, SCALe,
and GumTree reported the number of targeted warnings that
were successfully cascaded by the tool. Specifically, following
in the criteria in Section 2.2, for Table 1, we say a tool made
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a successful cascading if each warning of the buggy version
in the first version is aligned with the warning of the same
bug in the second version. For Table 2, we say a tool made a
successful cascading if each warning of the buggy line (first
versions) did not find any match on a fixed version (second
version). Here, the bug is fixed, and there is no warning for
the same bug in the second version. Thus the warning in the
first version should not match any other random warnings in
the second version.

As shown in Table 1, out of the 57 buggy-buggy program
pairs, Hydrogen and GumTree cascaded 56 paired programs
successfully, followed by SCALe at 54. For buggy-fixed pairs,
as shown in Table 2, out of the total 39 pairs of programs,
Hydrogen was able to correctly cascade all 39 of them, fol-
lowed by GumTree at 33 and SCALe at 8. The results based on
the known ground truths show that Hydrogen outperformed
the other baselines by successfully cascading 95 out of the
total 96 pairs, followed by GumTree of 89 successful pairs and
SCALe with 62 successful pairs. SCALe performed very poorly
for cascading warnings for buggy-fixed pairs.

4.2.2 Results for the real-world setting. In this section, we
compared the output generated from the three tools by cas-
cading the warnings from real-world benchmarks and dis-
played the results using the Venn diagrams. We ran static
analysis tools to generate the warnings for 12 pairs of pro-
grams. After obtaining the warnings, we did a preprocessing
step before providing the warnings to the cascading tools,
which included: 1) removing all the irrelevant warnings that
have no effect on the execution of the programs, e.g., files
from testing folders, obsolete library code, 2) aggregating
warnings from different static analysis tools and removing all
the duplicate warnings that are reported by different static
analysis tools. After the preprocessing step, the warnings (of
the first version) were reduced from 19305 to 2113. These
are the warnings we used for cascading.

In Figures 6 and 7, the blue, red, and green circles represent
GumTree, Hydrogen, and SCALe results respectively. Figure
6 is a Venn diagram to show how many warnings are cascaded
to the same "bugs" between the two versions. Figure 7 shows
how many of warnings are cascaded as the "bug" fix between
the two versions.

The numbers located in the intersections of circles repre-
sent the shared cascading results across multiple tools. For
example, 1101 on the center of Figure 6 represents warnings
that have the same cascading across the three tools. 1254 at
the intersection of the blue and red circles represents warn-
ings that have the same cascading between Hydrogen and
GumTree, including the ones shared by the three tools. The
number located in the circle alone (not in the intersection
area) represents the number of warnings cascaded by that
tool, including the ones shared with other tools. For exam-
ple, 1301 in the center of the red circle in Figure 6 means
the total number of warnings cascaded by Hydrogen. Venn
diagrams show that the three tools share a large part of
warning cascading results, which brings in confidence that
these cascading results are correct

1301Hydrogen

1474GumTree

1220 SCALe

1254

1272

1188
1101

Figure 6: Number of warnings cascaded as same "bugs" (de-
fined in Section 2.2)

812Hydrogen

639GumTree

893 SCALe

592

764

606
576

Figure 7: Number of warnings cascaded as "bug" fixes (defined
in Section 2.2)

We randomly selected 12% of total warnings from the
results, covering each category of overlapped sets. The results
of manual inspection are shown in Tables 3 and 4. The
numbers presented in Tables 3 and 4 represent warnings of
the first version that has been successfully cascaded. For
example, in Table 3 Row find and Column Total, we show
that we inspected a total of 33 warnings from the first version
that are cascaded as same "bugs". Hydrogen successfully
cascaded all the warnings, SCALe successfully cascaded 31
and GumTree matched 32. As shown in Table 3, out of the
total 132 warnings that we inspected, Hydrogen was able to
successfully cascade all 132 of them, followed by GumTree and
SCALe with the same result at 99.

The results of "bug" fixes type of cascading are shown in
Table 4. Out of the 120 total warnings, SCALe cascaded 112
warnings correctly, followed by GumTree at 91 and Hydrogen
at 85. It indicated that compared with other tools, Hydrogen
has higher accuracy when detecting cascading bugs, and
SCALe has more accuracy when determining if the "bug" is
fixed. GumTree performed as a middle ground where have
a better result than Hydrogen on cascading related to fixes
and a better results than SCALe on cascading bugs.



ISSTA 2023, 17-21 July, 2023, Seattle, USA Xiuyuan Guo, Ashwin Kallingal Joshy, Benjamin Steenhoek, Wei Le, and Lori Flynn

Table 3: Successful cascading of same "bugs" in real-world
program pairs

Benchmark Total Hydrogen SCALe GumTree
find 33 33 31 32
grep 22 22 2 20
make 25 25 25 20
coreutil 52 52 41 27
Total 132 132 99 99

Table 4: Successful cascading of "bug" fixes in real-world pro-
gram pairs

Benchmark Total Hydrogen SCALe GumTree
find 21 20 24 1
grep 24 24 21 20
make 10 10 10 10
coreutil 65 31 57 60
Total 120 85 112 91

4.3 Results for RQ2
To answer RQ2, we further analyzed and grouped the warning
cascading results from the three tools into the following
categories:

(1) GumTree failed to cascade
(2) SCALe failed to cascade
(3) SCALe and GumTree failed to cascade
(4) Hydrogen failed to cascade

4.3.1 GumTree failed to cascade. GumTree can fail for two
reasons. The first reason is that GumTree cannot process
macros in the programs. In the presence of macros, the ASTs
sometimes are parsed incorrectly and do not match the source
code. This prevents GumTree from matching the warnings
correctly. The second reason is that GumTree used a heuristic
algorithm to map the AST nodes based on their syntax,
regardless of their semantic meaning. This approach can
lead to incorrect mapping of the AST nodes across versions,
causing warning cascading to fail.

Figure 8 shows an example that only GumTree made the
wrong cascading among the three tools. In this example, a
section of code is surrounded by a conditional compilation
using the macro _AMIGA. The presence of such a macro, caused
the AST to parse the information in the incorrect way. In
the AST diff, this region of code is considered as deleted in
the second version, which fails to match the rest of the AST
nodes in the two versions. SCALe and Hydrogen both can
handle such a case and made a correct cascading.

GumTree makes mistakes also because of its syntactic diff
algorithm. In Figure ??, we showed diffs of two functions:
wrong_001 (abbreviated) and wrong_014. GumTree AST diff
algorithm incorrectly matched the first version of wrong_001
to the second version of wrong_014 (an irrelevant function),
instead of the second version of wrong_001. The blue arrow
shows the nodes which GumTree considers to be matched

static char **
construct_command_argv_internal
(char *line, char **restp, char *shell,
char *shellflags, char *ifs, int flags,
char **batch_filename_ptr)
{

...
#ifdef _AMIGA
+ if(one_shell)
+ {
+ #if defined __MSDOS__ || defined (__EMX__)
+ if (unixy_shell)
+ #else
+ if (is_bourne_compatible_shell(shell))
+ #endif
...

ap = new_line;
memcpy (ap, shell, shell_len);
ap += shell_len;
*(ap++) = '␣';
memcpy (ap, shellflags, sflags_len);
ap += sflags_len;
*(ap++) = '␣';
command_ptr = ap;
...
#endif _AMIGA

}

Figure 8: GumTree failed due to macro

between the two versions. The nodes a, fptr, and arr in
function wrong_001 were mapped to identify nodes in the
irrelevant function wrong_014, but they should have been
mapped to the version 2 of wrong_001. This incorrect map-
ping caused the warning on line 8 to be incorrectly cascaded
to line 26 (version 2 of wrong_014) instead of line 10 (version
2 of wrong_001).

4.3.2 SCALe failed to cascade. SCALe can generate two
types of errors when performing warning cascading. First,
two snippets of code may match textually but a change in
referenced elements, e.g., a change in the called function, can
cause different execution behaviors. SCALe can incorrectly
match the warnings. Second, some textual differences have
no impact on program behaviors related to the warnings, but
SCALe would falsely report the warnings cannot match. In
the following, we further provide two examples to demonstrate
the weakness of SCALE.

Figure 10 shows the diff between versions 401d8194 (shown
in red) and 54d55bba (green) of kwset.c in Grep. The static
analysis tool reports a warning at line 22 (shown in blue) for
both the versions as -1 is coerced from int to unsigned long.
SCALe, however, reports the lines 7-22 as being modified
instead of just the lines 7-18. Due to the line containing the
warning (line 22) being misclassified as modified, SCALe
fails to cascade this warning. However, this warning should
have been matched because (1) line 22 was not modified
between the versions and (2) adding the keywords "register"
at lines 13–19 should not change the semantics related to
this type of bug.
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Figure 9: GumTree failed to cascade Toyota warnings because
AST diff algorithm cannot align ASTs of the two versions cor-
rectly

1static size_t
2cwexec (kwset_t kws, char const *text,
3size_t len, struct kwsmatch *kwsmatch)
4{
5struct kwset const *kwset;
6...
7- unsigned char c;
8- unsigned char const *delta;
9- int d;
10- char const *end, *qlim;
11- struct tree const *tree;
12- char const *trans;
13+ register unsigned char c;
14+ register unsigned char const *delta;
15+ register int d;
16+ register char const *end, *qlim;
17+ register struct tree const *tree;
18+ register char const *trans;
19...
20kwset = (struct kwset *) kws;
21if (len < kwset->mind)
22return -1;
23...
24}

Figure 10: SCALe failed to cascade grep warnings

Figure 11 shows an example that only SCALe made the
wrong match cascading among the three tools. Similar to the
example shown in Figure 10, this program has a newly added

static void
bytes_split (uintmax_t n_bytes, char *buf,
size_t bufsize)
{

size_t n_read;
bool new_file_flag = true;
size_t to_read;
uintmax_t to_write = n_bytes;
char *bp_out;
+ uintmax_t opened = 0;
...

}

Figure 11: SCALe fails to casade

+ # MACRO_BEGIN
char
human_readable (...
- uintmax_t from_block_size, uintmax_t to_block_size)

+ uintmax_t from_block_size, uintmax_t to_block_size)
{

...
unsigned int base = human_base_1024 ? 1024 : 100;
...

}
+ # MACRO_END

Figure 12: GumTree and SCALe fail to cascade

line below the target line that we aim to cascade. Due to
this change, the Unix diff reported that the target line has
changed in the new version, which caused SCALe to fail to
match warnings where AST and CFG-based diff tools can
cascade successfully.

4.3.3 SCALe and GumTree failed to cascade. Figure 12 illus-
trates a scenario in which both GumTree and SCALe made
incorrect warning cascading. In the case of GumTree, the
failure is due to a large macro that surrounds the warning
location on the second version. This macro makes it difficult
for GumTree to parse the code into an AST, which results in
a failure to match the warnings. In the case of SCALe, the
failure is caused by a difference in the text located directly
above the warning statement. This difference affects the re-
sults of the Unix diff tool but does not change the semantics
of code. On the other hand, Hydrogen will not be affected
by such changes because 1) it successfully parses the code
within macro and built it into the MVICFG; 2) it uses control
flow graphs to perform diff. It can confirm that this change
does not affect program control flow and semantics, and thus
will mark the blue statement as the matched warnings in
MVICFG (See algorithm 2).

The main reason Hydrogen fails in some cases is that it
used LLVM to compile the program, and some code that
cannot be handled by LLVM is excluded from MVICFG.
For example, if statements that do not have brackets, a
statement expanding across multiple lines (it covers 46.8%
undetected cascading for Hydrogen), the internal function
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used for library and some conditional compilation code is not
covered by this build.

Hydrogen used textual diff tool to build MVICFG and
sometimes has the disadvantage similar to SCALe. In Section
2.1, Figure 3 shows a snippet of code where function fprintf
is refactored to checked_fprintf. In this example, the text
has changed between two versions of a related statement.
However, the functionality still remains the same. Thus the
warnings should be cascaded as the same "bug". Hydrogen
fails to cascade this warning correctly because the target line
has been marked as modified (unmatched node in MVICFG).
If the textual statement wasn’t changed, Hydrogen could
possibly make a correct detection by using algorithm 3. How-
ever, since the function names in the statements have been
changed, Hydrogen is not able to handle it. GumTree is able
to make a correct cascading by leveraging the AST structures.

5 THREATS TO VALIDITY
To address the external threats to validity, we applied 12
pairs of C real-world projects as well as 96 pairs of bench-
mark programs where we know ground truth. We applied
a set of static analysis tools often used by CERT to make
sure we generated all types of practical static warnings. The
benchmarks also had varying commits between versions to
ensure heterogeneous diffs.

To address the internal threat to validity, we first inspected
the output of three tools to make sure the implementations of
the warning cascading algorithms are correct. We inspected
100% of cascaded warnings from the ground truth and 12% for
real-word programs across by two code reviewers to confirm
our findings.

6 RELATED WORK
There have been many works that focus on matching and
prioritizing warnings or faults between multiple versions of
a program [17–25] . [17–19, 24] uses GNU diff, AST, and
Verification Modulo Versions to provide matching, while [21,
22] use source control revisions to prioritize static warnings.
To the best of our knowledge, there has been no study on
tools of warning cascading.

Spacco et al. [20] developed two methods to match warn-
ings in the static analysis tool FindBugs at the line granularity
level. The first approach, ‘pairing’, matches warnings based
on their source code location. First, it identifies exact matches
of package, class, and method name. Then, for those warnings
that do not match exactly, the approach uses progressively
‘fuzzier’ criteria. The second approach is called ‘warning sig-
natures’. This approach transforms each warning into a string
format that includes information about the warning, and
then matches string-formatted warnings with the same MD5
code. Both the ‘pairing’ and ‘warning signature’ methods
perform best when using a single static analyzer tool and use
textual diff to identity places to do the cascading.

Logozzo et al. [18] present a solution to the common prob-
lem of verifying software with multiple versions. To tackle this

challenge, the authors introduce a novel verification frame-
work called Verification Modulo Versions (VMV), which is
specifically designed to enhance the efficiency and effective-
ness of software verification for multi-version systems. While
this work does verification and relies on their own framework,
our work tackles cascading warnings generated by off-the
static analyzers and compares the usefulness and efficiency
of different cascading methods independently of the specific
analyzer.

Palix et al. [19] build an AST based on code changes to
improve tracking changes similar to GumTree[4]. However,
their work focuses on tracking changes between multiple
versions, while our work focuses on studying how different
change-tracking methodologies affect warning cascading.

Finally, there are many methods to track changes [4, 26–
30] which can be roughly separated into textual, syntactic,
and semantic methods. None of them directly deals with the
problem of matching warnings between versions, but some
of them are used in other works about matching warnings.
Here, we discuss the state of the art for each category.

Syntactic methods such as GumTree [4] work at the gran-
ularity of ASTs, which reflects the source code structure and
hence can be more precise than textual diff. AST helps in
avoiding common pitfalls of textual based diff like missing
refactoring based changes and spacing issues. Yang et al. [26]
developed a syntactic-based comparing method for dynamic
programming languages like scheme. Similar to GumTree,
Fluri et al. [28] also proposed an AST based approach using a
tree-differencing algorithm to detect source code changes. We
choose GumTree because it is recent, open-source, and has
been widely used by other works. Huang et al. [31] present
an approach called ClDiff to linked code differences with
the aim of simplifing code review. While these works aim to
improve tracking changes between versions, our work focuses
on studying the impact of using different tracking methods
for cascading warnings.

7 CONCLUSIONS AND FUTURE WORK
Cascading static warnings is a practical but challenging prob-
lem. This paper applied three tools to explore their pros and
cons of addressing this problem. We found that SCALe, the
textual diff based tool, fails when there are textual changes
but not semantics changes related to the bugs. It also fails
when the referred calls or global variables have changed out-
side the current functions. GumTree has the weakness of not
being able to handle macros, and the AST tree matching
algorithm faces some failures due to its heuristic nature. Hy-
drogen relied on LLVM and cannot process all the code in the
repositories due to the requirement of building the project. It
used textual diff tool to build MVICFG and sometimes has
the disadvantage similar to SCALe. In the future, we plan
to integrate more static analysis tools like CodeSonar. Such
tools produce paths as static warnings, and we envision that
CFG based diffs can have greater advantages.
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