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Abstract 

    

The liquid crystalline phase behaviour of a chiral two-site hard Gaussian overlap fluid is examined 

using the well-known Parsons-Lee extension of the theory of Onsager.  The hard-core model is constructed 

such that the vector connecting the centers of two hard Gaussian segments is perpendicular to the long axes of 

both segments. The microscopic chirality of the particle can be controlled with the dihedral angle between the 

long axes of the hard Gaussian segments, the distance between the two segments, and the length-to-breath 

ratios of each segment. In the framework of Parsons-Lee approach three different types of phases are 

considered, namely, the isotropic liquid, and the nematic and the chiral nematic (cholesteric) liquid crystalline 

phases. For simplicity, the orientation of the particles is restricted to the plane perpendicular to the twist axis, 

and the particles do not have internal freedom to rotate around their main symmetry axes.  The geometric 

condition for the formation of a chiral nematic phase, the properties of the helical structure, and the phase 

boundary of the ordering transition are determined by means of a free energy minimization. It is shown that 

steric (shape) chirality always gives rise to helical structure in the nematic phase, and that the low density 

chiral systems can undergo a transition from an isotropic liquid to a twisted nematic phase increasing the 

density. Analytical expressions are obtained for the twist period (pitch) in the limit of parallel stacking of the 

rod-like segments in layers normal to the helical axis, which are only valid for systems characterized by weak 

chiral strengths. A key finding of the numerical calculations is that the pitch is very sensitive to the segment 

separation, but not to the density or aspect ratio. It is interesting to note that the inverse of the pitch is 

predicted to depend linearly on the dihedral angle in all of the cases studied.   

Page 2 of 98

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



F
o
r P

eer R
eview

 O
n
ly

 3 

 

 

1. Introduction 

 

The simplest liquid crystalline (meso) phase is a nematic in which the principal axis of the 

molecules (mesogens) is aligned along a preferential direction (the director) but where the 

distribution of the molecular centres of mass is otherwise isotropic [1,2]. Molecular (microscopic) 

chirality is a fascinating property of mesogens because it can give rise to an additional helical 

structure in the direction normal to the plane of the nematic ordering [1-5]. The helically structured 

nematic phase is often referred to as a chiral nematic or cholesteric phase.  The relation between the 

bulk (macroscopic) liquid crystal phase behaviour and the inherent chirality of the molecules is still 

poorly understood. One example is the liquid crystalline behaviour exhibited by aqueous colloidal 

suspensions of TMV or pf1 viruses, where the molecular chirality does not give rise to a helical 

macroscopic structure, while a stable cholesteric phase is exhibited in aqueous suspensions of fd 

viruses which is structurally very similar to pf1 [6-8]. It is therefore clear that molecular chirality 

does not guarantee the existence of the orientational ordered twisted structure. 

Liquid crystalline phase behaviour was originally thought to be the consequence of 

electrostatic (polar) interactions between the molecular species alone [9,10]. The mean-field Maier-

Saupe treatment of liquid crystalline order [11-13] is consistent with this energetic standpoint, as is 

the common application of the phenomenological Landau-de Gennes description [14-16]. It is now 

well recognised that repulsive (excluded volume) interactions also play a central role in the 

stabilisation of mesophases as Onsager had first suggested in 1942 [17,18]; extensive molecular 

simulation studies of hard discs [19,20], ellipsoids of revolution [21,22], hard spherocylinders [23–

26], and rigid hard-sphere chains [27] certainly support this view. Though anisotropic repulsive 

interactions thus appear to a perquisite for the formation of macroscopic liquid crystalline order, the 

effect of the electrostatic forces cannot be overlooked. The stable orientationally and positionally 
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ordered structures that are observed are very sensitive to the precise features of the electrostatic 

interactions (such as their position and orientation) or the presence of flexible tails as has been 

highlighted in studies of model dipolar hard-core systems [28-32].    

The existence of twisted nematic phases can be attributed to microscopic chiral features which 

are both steric and electrostatic in origin. In most real systems these two types of molecular chirality 

are present but the separate contribution that each interaction makes to the orientational ordering of 

the bulk phase is difficult to identify [1-5]. A full armoury of statistical mechanical and continuum 

theories and molecular simulation techniques has been deployed in studies of model molecules with 

chiral interactions which are of a steric or electrostatic nature (or both), including the development of 

suitable indices to characterise the molecular chirality; see [33-97] and references therein as 

representative examples. Despite this large body of work there is still much debate as to which 

underlying microscopic feature is responsible for the stabilisation of chiral nematic phase. It is 

therefore a highly desirable goal to gain a better understanding of the relation between molecular 

chirality and the helical twist of the bulk phase by studying model systems for which the roles of the 

steric and electrostatic chirality can be examined independently. The effect of electrostatic chiral 

interactions on cholesteric order has been examined in detail with Maier-Saupe mean-field [3-5, 33-

35, 37, 38, 40, 62, 71, 73, 76, 83-85] and Onsager-like [93, 94, 97] theories. In the opposite vein we 

focus on a description of the chiral nematic phase of purely repulsive hard body systems 

characterised by steric chirality in our current work. 

Straley [36] was the first to examine the effect of repulsive steric chirality by studying a 

system of helically threaded hard rods using Onsager’s second-virial theory for orientational order in 

hard anisometric particles [18]. Odijk [44] later extended the approach of Straley to allow for a 

treatment of the molecular flexibility. A surprising finding of these studies is that the helical twist of 

the bulk chiral structure does not depend on the degree of molecular chirality, though the wave 

number (inverse pitch) is found to be proportional to the density, diameter of the molecular core, and 

the thread depth in very ordered twisted nematic phases. In related work Pelcovits [60] examined a 

system of rigid and semi-flexible corkscrew particles finding the more physically intuitive 
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dependence of the cholesteric pitch on the molecular chirality; furthermore, the density dependence 

found for the pitch is different from that described by Straley or Odijk. The chiral nematic phase 

formed by twisted biaxial ellipsoids (with and without isotropic attractive interactions) has also been 

studied by Evans [51] using a Parsons-Lee [98,99] type scaling of the Onsager free energy functional 

to account for the higher virial coefficients in an approximate manner.  In this case Evans did not 

observe a density dependence of the pitch but the bulk chirality was found to be proportional to the 

molecular twist of the hard body. Very recently Dhakal and Selinger [96] have examined a lattice 

model of bent-core molecule with mean-field and Landau-de Gennes theories and by Monte Carlo 

simulation, describing the temperature dependence of the pitch and the underlying mutual 

enhancement of biaxial and chiral order. The model we study here is a continuum analogue of this 

lattice model.  

Simulation studies of chiral nematic phases are comparatively rare [54-56, 61, 63, 67-70, 72, 

77, 79-81, 86, 88, 92, 93, 96], and tend to focus on particles characterized by the electrostatic 

dispersive chiral interaction potential devised by Goossens [33] incorporated within a reference 

system of hard-core or Gay-Berne [100] (GB) mesogens. The first simulations of purely repulsive 

chiral molecules formed from two hard prolate ellipsoidal cores in a crossed configuration was 

presented by Allen [54] to study the dependence of the helical twisting power on the addition of 

these model chiral dopants to the nematic phase of uniaxial molecules; Camp [63] later developed an 

elegant and simple theoretical framework for such a system. Memmer et al. [61] have considered the 

steric chirality in a system of particles comprising two fused GB sites, where the dihedral angle 

between the GB segments governs the chirality of the molecule.  With their canonical Monte Carlo 

simulations they showed that one could stabilize a macroscopic cholesteric structure for the GB 

dimers. A drawback of the study of Memmer et al. [61] is that the underlying dispersive attractive 

interactions of the GB cores also affects the structure of the chiral nematic phase, i.e., the 

contribution due to steric chirality cannot be completely decoupled from the electrostatic chirality.  

The same issue arises in systems of fused two-site GB models with a bent-core [81] or discotic [88] 

geometry; interestingly, though the bent-core GB molecules are biaxial but otherwise achiral, they 
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are found to exhibit twisted grain boundary (TGB) structures with smectic layers rotated relative to 

each other [81].  

To study the effect of steric chirality alone we construct a two-site hard-body model, similar to 

that of Allen [54], which can be considered as the athermal analogue of the model proposed by 

Memmer et al. [61]. It also resembles the single-core chiral model of Harris et al. [3]:  in this very 

simple athermal model only the orientational and the packing entropies are active, and the interplay 

between these two entropic contributions determines the structure of the stable phase.  

Two quantities are required to characterize the structure of the twisted nematic phase: one is 

the local orientational distribution function, and the other is the spatial period of the twist (cholesteric 

pitch) [4]. It is generally accepted that the twist angle between two nematic layers is proportional to 

the distance between the layers, while the orientational distribution function has to be biaxial with a 

higher probability of molecules oriented in the plane than out of the plane. As has been pointed out 

by Harris et al. [5], the twisted structure cannot propagate without (local) biaxial orientational order 

otherwise the macroscopic phase would always be of uniaxial nematic symmetry.  In our model we 

assume that the long axes of the molecular segments are always perpendicular to the helix axis of the 

chiral twist to fulfill the requirement of biaxial orientational order. 

The goal of our work is to study the macroscopic manifestation of chirality in the molecular 

shape for a hard-body system which forms orientationally ordered phases. Using the purely repulsive 

hard Gaussian overlap (HGO) model as building blocks to form a two-site chiral molecule, the 

contribution of steric chirality on the formation of a chiral nematic phase can be studied in isolation. 

No attractive/electrostatic interactions are included, which would otherwise also have an impact on 

the helical structure of the bulk phase. Our model makes it possible to determine explicitly the role 

played by the molecular geometry and the aspect ratio in the stabilization of the bulk helical 

structure. We use the well-known Parsons-Lee [98,99] extension of Onsager’s theory for hard cores 

to determine the stability of the isotropic, nematic, and chiral nematic phases by characterizing the 

structure of the bulk phases. As we have already mentioned, the principal inertial axes of the 

particles are always restricted to stay in a plane, and can either rotate freely in the plane or are 
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orientationally constrained depending on the level of approximation that is employed. The results of 

both approximations are compared to assess the relationship between the orientational entropy and 

the helical wave number of the twisted nematic phase. 

The paper is organized as follows: In the following section the molecular model is presented 

and the geometric conditions that have to be satisfied to represent chiral shapes are discussed.  In 

Section 3. we present the Parsons-Lee theory as applied to chiral nematic phases, and derive our 

working equations using two different approximations for the orientational distribution function. 

Some applications of the theory are then presented for the system of two-site HGO molecules using a 

second-order expansion of the free energy of the twisted nematic phase. In Section 4. the effect of the 

three parameters that govern the molecular chirality, the effect of the aspect ratio, and the effect of 

the packing fraction on the formation of the cholesteric phase is examined in  detail; the role of 

orientational freedom is also assessed. Our conclusions are summarized in Section 5.    
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2. Molecular model and the conditions for microscopic chirality 

 The simplest way to examine steric chirality is to link two uniaxial (achiral) rod-like hard 

cores in such a way that they form a chiral body. To do this of one of the particle has to be twisted 

relative to the other with a finite angle.  We further suppose that the vector connecting the centres of 

the two prolate bodies is perpendicular to the long symmetry axis of each hard-core segment. This 

type of molecular geometry is depicted in Fig. 1, where the dihedral angle (α) between the two main 

symmetry axes of the segments is chosen to be π/6, the length-to-breath ratio of the each segment is 

κ1 = κ2  = κ = 3, and the distance �  between the centres of the segments is equal to the segment 

diameter 0σ  (here 0σ  is the dimension of the short axis of the hard core, i.e., its breadth). There are 

two ways to control the chirality of the molecule shown in Fig. 1: one involves a change in the 

dihedral angle between the long axes of the segments, and the other a variation of the distance 

between the centres of the segments. There are particular cases where the molecule is achiral. The 

parallel and the perpendicular relative alignment of the cores, and the perfectly fused case (the 

distance between the two centres is zero) are clearly achiral (see Fig. 2).  In the case of two different 

fused hard bodies (κ1  ≠  κ2), the chirality is lost by making one of the hard-core segments spherical 

as shown in Fig. 2 d).  The exact form of the hard body interaction will be given later. 

 

3. Parsons-Lee theory of the chiral nematic phase 

 The approach of Onsager [18] is one of the most popular and successful theories for the 

description of nematic order in systems of hard-core mesogens [101,102], hard-core mixtures [103], 

and attractive molecules with anisotropic hard cores [104]. It can be regarded as one of the first 

applications of density functional theory (DFT), where the free energy of the system is described as a 

functional of the single particle orientational distribution function. A DFT treatment provides one of 

the most successful generic platforms for the description of inhomogeneous and anisotropic systems. 

Evans [105,106] has been a key developer and exponent of the approach in its application to free 
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interfaces of fluids and fluid mixtures and systems under confinement. The work of Evans and co-

workers also provides an excellent example of the use of DFT to represent inhomogeneous liquid 

crystalline systems, including the effect of confinement on the isotropic-nematic transition [107] and 

capillary nematization of confined hard rods [108,109].  

 In its original form the theory of Onsager is cast at the second virial level. This means 

that it appropriate only at low density. The applicability of the Onsager free energy to higher density  

isotropic and nematic phases of hard body fluids can be extended by following the methodology of  

Parsons [98] and of Lee [99] (also see the detailed exposition in references [25,102]). The theory is 

also appropriate for chiral nematic (cholesteric) phase because the local helical structure is expected 

to be weak in practice and is not likely to give rise to substantial change in the overall free energy of 

the system. In the remainder of this section we reformulate the Parsons-Lee theory for the chiral 

nematic phase in a Cartesian coordinate frame of reference where the helical axis is assumed to be 

parallel with the z axis. 

  For the freely rotating case, the total Helmholtz free energy F of the chiral nematic phase 

can be written as a sum of the ideal and residual contributions resideal FFF += , where the ideal free 

energy is given by 

( ) ( )[ ]zfzfdrd
VV

Fideal ,ln,)ln( 3 ωωω
ρ

ρρρ
β

�+−Λ= ∫ ,    (1) 

while the residual part is approximated by the Parsons-Lee approximation [98,99] as  

( )
( ) ( ) ( )2112222211112

0

2

,,,,
18

34
ωωωωωω

ρ
η
ηηβ

rfzfdrdzfdrd
VvV

F
M

res ∫∫−

−
= .  (2) 

Here, the Mayer function fM provides a direct link to the pair potential u through the following 

relation: ( ) ( )[ ] 1,exp, 12121212 −−= ωβω rurfM . In these expressions TkB/1=β  ( Bk  being the 

Boltzmann constant and T  the temperature), N is the total number of particles, VN /=ρ  is the 

number density (V being the volume of the system), 0vρη =  is the packing fraction, v0
 
is the volume 

of the particle, 
3Λ is the de Broglie volume  (kinetic contribution to the free energy), and 

28π=� for 
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biaxial particles. The orientational distribution function ( )zf ,ω  is used to describe the orientation of 

the particle’s principal symmetry axis in the plane at position z along the helical axis. Since the chiral 

nematic phase is periodic in the direction of the helical axis (chosen as the z axis), the spatial 

integrations can be performed in the layer normal: 

( )
( ) ( ) ( )12122222111

0

12

0

2

,,,
1

18

34

12

γωωωωρ
η
ηηβ

zAzfddzzfddz
PvV

F
exc

Vz

P

res

exc

∫∫∫∫
∈−

−
= ,  (3) 

where P is the helical period (pitch) of the chiral nematic phase, Vexc denotes that region which is 

excluded to a particle around another particle fixed in space, and γ12 is the angle between the 

principal axes of the particles. The excluded area Aexc is the result of twofold integration of the 

Mayer function when the positions of molecular centres are a distance z12 = z1 - z2 apart. 

  Two simplifying assumptions are applied for the orientation distribution function. In the 

simplest approximation, the particle’s orientational unit vector (ω ) is constrained to stay in the plane 

normal to the helical axis, all of the particles are taken to be parallel in a given layer (perfect 2D 

order), and the local nematic director is assumed to vary linearly from layer to layer along the helical 

axis:  

 

( ) ( ) ( )qzf −






 −= ϕδψδ
π

θδω
2

.     (4) 

In this equation δ represents the Dirac delta function, (θ,ψ,ϕ) are the conventional Euler’s angles, 

while q is the wave number (which is proportional to the inverse pitch) prescribing the helical 

structure of the nematic order to vary in a linear fashion along the z axis. The relationship between 

the wave number and the pitch of the chiral nematic phase is simply q = 2π/P.  In the second, more 

realistic, case the particles are still orientated perpendicular to the helical axis, but they are allowed 

to rotate freely within a given plane:  

 

( ) ( ) ( )ϕψδ
π

θδω hf 






 −=
2

,      (5) 
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where h is the corresponding 2D orientational distribution function. The difference between the two 

approximations is that we neglect the contribution due to the orientational entropy completely with  

Eq. (4), while the orientational entropy is partially captured with Eq. (5). 

 After substitution of the perfect 2D order approximation (Eq. (4)) into the expressions for the 

ideal and residual free energy (Eqs. (1-3)) we get 

ρρρ
β

−Λ= )ln( 3

V

Fideal
,       (6)   

and 

( )
( )1212122

0

2

,
18

34

12

qzzAdz
vV

F
exc

Vz

res

exc

∫
∈−

−
= ρ

η

ηηβ
.     (7) 

In this way the total free energy density in the case of the perfect 2D order approximation can be 

written as 

( )
( )

( )1212122

0

2
3 ,

18

34
ln

12

qzzAdz
vV

F
exc

Vz exc

∫
∈−

−
+−Λ= ρ

η

ηη
ρρρ

β
 .    (8) 

For a given molecular model and density, the free energy only depends on the wave number, i.e., the 

equilibrium free energy of the system can be obtained by means of the minimization of  Eq. (8) with 

respect to the wave number: 0
/

=
dq

VFdβ
. As only the excluded area depends on the q parameter, the 

condition of the free energy minimization reduces to the minimization of the excluded volume,  

  
( )

0=
dq

qdVexc
.      (9) 

The integral of the excluded area over the excluded volume regime gives the overall excluded 

volume for a pair of twisted body characterized by the twist q: 

( ) ( )∫
∈

=
excVz

excexc qzzdzAqV , .     (10) 

In this way the problem reduces to looking for the particular helical arrangement which minimizes 

the excluded volume interactions between the particles, or in other words that which maximizes the 

free volume available for the particles in space. One trivial result of the perfect 2D order 
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approximation is that the pitch does not depend on density even at infinitely low densities, and the 

phase can be either nematic or chiral nematic, but not isotropic. To overcome this deficiency of the 

theory, the particles must possess some orientational degrees of freedom.   

 In the case of free planar ordering, after substitution of the orientational distribution function 

(Eq. (5)) into the ideal and residual free energy terms (Eqs. (1-3)) the following relations be derived: 

 

( ) ( )∫∫+−Λ=
π

ϕϕϕ
ρ

ρρρ
β 2

00

3 ,ln,)ln( zhzhddz
PV

F
P

ideal
,    (11) 

 

( )
( ) ( ) ( )121222

2

0

22

2

0

111

0

12

0

2

,,,
18

34

12

ϕϕϕϕϕ
ρ

η

ηηβ ππ

zAzhddzzhddz
PvV

F
exc

Vz

P

res

exc

∫∫∫∫
∈−

−
= .  (12) 

As for the perfect 2D order approximation, the free energy again has to be minimized with respect to 

q, but in addition the orientational distribution function ( )zh ,ϕ   which minimizes the free energy has 

to be determined in order to describe the equilibrium free energy of the system. This can be done by 

solving a nonlinear integral equation for ( )zh ,ϕ , which can be obtained by functional minimization 

of the free energy. In order to reduce the computational burden of the free energy minimization, we 

use a simple helical trial function with a variational parameter λ and wave number q to represent the 

two-dimensional orientational distribution function: 

( ) ( )( )( )

( )( )( )ϕλϕ

ϕλ
ϕ

π

−

−
=

∫ qzd

qz
zh

2cosexp

2cosexp
,

2

0

.      (13) 

Depending on the values of λ and q, Eq. (13) leads to isotropic (λ = 0), nematic (λ ≠ 0 and q = 0) or 

chiral nematic (λ ≠ 0 and q ≠ 0) solutions for the orientational distributions. After inserting Eq. (13) 

into the free energy of freely (in the plane) rotating particles (the sum of Eqs. (11 and 12)) the 

minimization conditions can be written as  

0
/

=
dq

VFdβ
and 0

/
=

λ
β
d

VFd
.     (14) 
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In the result section we will present the equilibrium pitch obtained from both approximations.  

 Before discussing the solution of these coupled equations it is enlightening to first find the 

lowest density at which the nematic or chiral nematic phase becomes stable. We perform a so-called 

bifurcation analysis where the corresponding density is referred to as the bifurcation density [101].  

After substitution of the trial function into the ideal and residual free energy terms (Eqs. (11) and 

(12)) we can expand the free energy as a function of variational parameter λ up to second order. The 

resulting free energy has the form of
2/ λβ baVF += , where the zeroth order term a corresponds to 

the free energy of the isotropic phase, and b is the expansion coefficient of the nematic perturbation. 

Since the free energy of the nematic and the isotorpic phases are identical at the bifurcation point, the 

expansion coefficient of nematic perturbation has to be zero. After some algebra we obtain the 

following expression for the packing fraction at the bifurcation point: 

( )
( )( ) ( )∫∫ =−

−

−
+

∈

π

ϕϕϕ
πη

ηη 2

00

2

2

0,2cos
81

34
1 zAqzddz

v
exc

Vz exc

.    (15) 

 

To determine whether the nematic or the chiral nematic phase is more stable at the bifurcation one 

has to minimize the free energy with respect to the wave number: in this case this corresponds to 

0=
dq

db
.  The result of this minimization is given by 

( )( ) ( )∫∫ =−
∈

π

ϕϕϕ
2

0

0,2sin zAzqzddz exc

Vz exc

.    (16) 

The solution of the coupled equations (15) and (16) gives the bifurcation packing fraction and the 

bifurcation wave number. The results of the bifurcation analysis are presented in Section 4. 

 In order to proceed the molecular model has to be specified. In the following we assume that 

each segment of the dimer molecule is characterised by the so-called hard Gaussian overlap (HGO) 

potential [110,111]. The main advantage of this model is that the distance of closest approach, the 

excluded area, and excluded volume can be expressed in closed analytical forms [112].  For example, 
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the excluded area for a pair of HGO particles (of breadth 0σ , length κσ 0 , and aspect ratio κ ) in a 

2D planar arrangement is given by  

( )
( ) ( )







≤≤−−

−
−

=
otherwise,0

,cos1
1, 00

22
22

0 σσγχ
χ

σπ
γ z

z

zAexc     (17) 

where γ is the angle between the two particles, and χ is an anisotropy parameter defined as  

1

1

2

2

+

−
=

κ

κ
χ . For a spherical shape (κ  =  1) the anisotropy parameter is zero, while it is one for an 

infinite length-to-breath ratio (κ  =  ∞).  One should note that a molecular volume can not be 

associated uniquely to the HGO pair potential, but it is generally accepted that the volume of HGO 

particles can be taken as that of correspond hard ellipsoid of revolution, i.e.,  
3

0
6

κσ
π

=HGOv . 

To construct our chiral dimer HGO particles, two HGO segments are positioned with their 

centres a distance �  apart in a planar alignment with the main symmetry axes of the segments 

twisted relative to each other at a dihedral angle α as shown in Fig. 1; in this particular case the two 

segments are taken to be in contact corresponding to an intramolecular segment separation of 

0σ=� . The resulting chiral HGO particle interacts through its HGO segments.  

It is instructive to start by examining the particular case of a pair of chiral HGO particles with 

a (rather unrealistic hanging) intersegment separation of 02σ=�  and relative orientation γ  for 

which the excluded area can be determined very easily in the planar geometry. The two HGO 

particles start to exclude each other at a relative distance of ⊥−= σ3z  through the interaction 

between the “bottom” segment of the “upper” molecule and “top” segment of the “lower” molecule. 

Here, “upper” or “top” and “lower” or “bottom” refer to the relative position along the helical axis z. 

This interaction persists up to a distance 0σ−=z  for which the excluded area of a single HGO 

particle can be used (cf. Eq. (17)); one should note, however, that the angle between the long axes of 

HGO segments making up the particle is not same as the angle between the two chiral molecules, but 

Page 14 of 98

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



F
o
r P

eer R
eview

 O
n
ly

 15 

is γ  + α  because of the twisted structure of the molecules. In the second regime of 00 σσ ≤≤− z  

“like”  “top-top” and  “bottom-bottom” excluded volume segment-segment interactions take place 

simultaneously, but these interactions are identical and the resulting excluded areas is obtained from  

Eq. (17), as in this case the angle between the two like “top” or two “bottom”  segments is γ.  In the 

third regime of  00 3σσ ≤≤ z , only the “bottom” segment of the “upper” molecule is excluded by the 

“top” segment of  the “lower” molecule in the same way as in the first regime but now for a relative 

angle of γ − α . The excluded area for a pair of chiral HGO particles with an intramolecular segment 

separation of 02σ=�  can thus be summarised with the following relation: 

( )

( )( ) ( )

( ) ( )

( )( ) ( )
















−≤≤−+−
−

+−

≤≤−−
−

−

≤≤−−
−

−−

=

00

22

2

0

2

0

00

22
22

0

00

22

2

0

2

0

12

3,cos1
1

2

,cos1
1

3,cos1
1

2

,

σσαγχ
χ

σσπ

σσγχ
χ

σπ

σσαγχ
χ

σσπ

γ

z
z

z
z

z
z

zAexc  .  (18) 

Note that the expression for the excluded area is much more complicated for smaller values of 

separation between the centres of the two segments making up the HGO molecule ( 020 σ<�≤ ), 

because the excluded volume regimes of the segment-segment interactions do not decouple so simply 

but overlap. In our generalized twisted two-site HGO model, where the HGO segments have the 

same breadth ( 0σ ) but different lengths ( 0201 σκσκ ≠ ), analytical relations can also be derived for 

the excluded area. Without presenting the details, the expression can be written in the following form 

for the intramolecular segment separation of 02σ=� (see reference [113] for shape parameters for 

particles of differnt aspect ratio): 
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( )

( )( ) ( )

( ) ( )

( )( ) ( )

















−≤≤−+−
−−

+−

≤≤−−
−

−

≤≤−−
−−

−−

=

00

2

21

21

2

0

2

0

00

22

1

1

22

0

00

2

21

21

2

0

2

0

12

3,cos1
11

2

,cos1
1

3,cos1
11

2

,

σσαγχχ
χχ

σσπ

σσγχ
χ

σπ

σσαγχχ
χχ

σσπ

γ

z
z

z
z

z
z

zAexc ,  (19) 

where the anisotropy parameters of the segments are defined in terms of length-to-breath ratios 

( 21 ,κκ ) as 
1

1
2

1

2

1

1
+

−
=

κ

κ
χ  and 

1

1
2

2

2

2

2
+

−
=

κ

κ
χ . We must mention that Eq. (19) represents the excluded 

area for  molecular arrangements where the “top” and “bottom” segments of the two molecules are 

commensurate (i.e., geometries where both of the shorter segments are on the  “top” or “bottom”, but 

not one on the  “top” and one on the “bottom”). A more complete treatment of this system would 

involve a binary mixture with equal numbers of molecules in “up” and “down” arrangements. To 

maintain the simplicity of the theory the “up-down” excluded areas are not included in the 

description. In the case of a intramolecular segment separation of 02σ=� , Eqs. (18) and (19) can be 

used, while for 020 σ<�≤  tabulated values of excluded areas obtained numerically (not presented 

here) are used as the input to the theory.  

It is widely accepted that one can expand the free energy density of the twisted nematic phase 

as a function of wave number up to the quadratic term to obtain the twist torque (h) and the twist 

elastic constant (K22) as  

 

2

22
2

1
qKhq

V

F

V

F

NTN

+−=
ββ

,     (20) 

where the zeroth order term  is the free energy density of the nematic phase.  This truncated free 

energy is often referred to as the Frank free energy for a system with a twist deformation [5].  Such 

an approach can be applied only in those cases where the molecular chirality does not give rise to a 

substantial change in the free energy. This is the case for weakly chiral systems such as aqueous 
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suspension of the fd viruses [6-8] and DNA [114]. The minimization of Frank free energy (Eq. (20)) 

with respect to q allows us to determine the equilibrium wave number in terms of the twist torque 

and twist elastic constant as 22/ Khq = . In our system of two-segment HGO molecules, it is 

reasonable to assume  that the second order expansion will be adequate for small dihedral angles and 

small segment separation. The result of the method for the wave number in the case of perfect 2D 

(planar) order, for molecules with equal segment aspect ratios ( 21 κκ = corresponding to 

χχχ == 21 ) and an intramolecular segment separation of  02σ=�   can be written as   

( )
( ) ( ) ( )

( )

( )3

0

22

42

2

22 43

20

cos1

cos2cos
42

1

cos1

2sin10
α

σ
α

σ
αχ

αχα

χ

αχ

α
Ο+=















−
−

+
−

−
=

⊥

q .   (21) 

It is interesting to note that wave number depends on the molecular anisotropy for moderate values 

the intramolecular dihedral angle α  between the segments. This is not the case, however, for a very 

small dihedral angle where q is found to follow a linear dependence with α. The application of the 

method for the more general case of HGO molecules with segments of unequal size ( 21 χχ ≠ ) at a 

separation of 02σ=� using Eqs. (9), (16) and (19) results in a more general expression for the wave 

number of the chiral nematic phase: 

 

( )
( ) ( ) ( )

( )

( )3

0

212

2

2

11

1
212

2

02

21

4

21
22

11

2

212

1

2

11
42

11
11

20

cos1

cos2cos
42

11

cos11

2sin10

αα

σ
χχχ

χ

χχ

χ
χχχ

χ

σ
αχχ

αχχα
χ

χχ

αχχχ
χ

αχ

Ο+















−−
+

−−
−−

=















−
−

+
−−

−−
=q

.  

 (22) 

This equation reduces to Eq. (21) in case of identical HGO segments χχχ == 21 . There are now, 

however, two parameters governing the macroscopic chiral structure of the phase: one is the dihedral 

angle between the two segments of the molecule, and the other is the anisotropy parameter ( 2χ ). The 
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relation leads one to the conclusion that no twist can take place in the nematic phase of a system of 

achiral particles corresponding to the limits of either 0=α  or 02 =χ .  

 

 

 

4. Results and discussions 

Before presenting the results of the free energy minimizations we demonstrate why twisted 

orientational ordering is favorable in our system of repulsive chiral rod-like particles. As we have 

shown in the case of the perfect 2D order approximation, the system tends to reduce the excluded 

volume as much as possible to maximize the packing entropy (translational entropy) or equivalently 

minimize the free energy (cf. Eq. (9)). In this case the orientational entropy does not counter this 

effect because of the approximation of perfect 2D orientational order. In the case of an 

intramolecular segment-segment separation of 02σ=�  it is very easy to determine the most 

favorable orientations over the entire range of the excluded body (cf. Eq. (18)). In all three regions 

the smallest excluded area can be achieved for relative intermolecular orientations (γ) corresponding 

to parallel interacting HGO segments. This happens at different angles for different pair separations: 

γ  = -α  for 03σ−  < z < 0σ− ; γ = 0  for  0σ− < z < 0σ ; and γ  = α  for 0σ  < z < 03σ . The minimal 

excluded area and the corresponding relative molecular orientation as a function of intermolecular 

distance along the helical axis is shown in Fig. 3. The best linear fit to the discontinuous γ-z function, 

which is given by γ =q z, goes through the middle point of the sectors (continuous line in Fig. 3b).  

The slope of the line (wave number) can be easily determined and it is given by .2/ 0σα=q  

Interestingly the numerical minimization of the free energy for very low values of the dihedral angle 

gives very similar result to that of our simple argument because  
043

20

σ
α

=q  (cf. Eq. (21)). For smaller 

segment-segment distances the excluded regions overlap and the expression for the excluded area 

becomes more complicated. The results of the calculations are presented for more realistic values of 
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the (dimensionless) intramolecular segment separations of 5.0/* 0 =�=� σ , 0.75 and 1 in Fig 4. It 

can be seen that the excluded area is very sensitive to the imposed helical structure. Both weak and 

strong twists result in very high values of the excluded area at some particular distances, which give 

rise to high excluded volume (packing entropy cost). As a result there is an optimum value of the 

wave number where the integrated area (excluded volume) is at a minimum, which is represented by 

a continuous curve for the three cases depicted in Fig. 4. The shift of the excluded area regions for 

the different segment-segment separations can be seen very clearly with increasing �∗
.  At �∗ 

= 0.5 

the presence of the three regions can be seen only at the strongest twist corresponding to a 

dimensionless wave number of 3.0* 0 == σqq , while we get still overlapping regions for  �∗
 = 1 but 

the behavior is closer to that of the totally separated case (cf. Fig. 3.). This feature is due to the fact 

that only two excluded areas can overlap for 1 < �∗ 
< 2, while three overlap for 0 < �∗ 

< 1.  

In light of these results we minimize the excluded volume numerically (see Eq. 9.) and 

determined the relation between the molecular chirality and the macroscopic structure. We start with 

the computationally simplest case of �∗ 
= 2 for which the excluded areas have very simple forms (cf. 

Eqs. (18) and (19)). For molecules comprising identical segments, the dependence of the equilibrium 

wave number on the length-to-breath and intramolecular dihedral angle are shown in Fig. 5. The 

numerical results (Eq. (9)) and the results of the analytical solution (Eq. (21)) are compared to 

determine the range of validity of the Frank analysis. In Fig. 5 a) we show that for small values of the 

intramolecular dihedral angle both methods gives the same results, but a noticeable deviation can be 

seen from α ~ 5°. The numerical result corresponds to a linear dependence between the wave number 

and the dihedral angle, while the analytical solution overestimated the wave number at a given α.  It 

is interesting to note that the first-order Taylor expansion of the analytical solution (Eq. (21)) is 

coincident with the numerical solution at any angle due to the linear dependence of the wave number 

with α. From Fig. 5 b) one can see that the wave number does not depend on the length-to-breath 

ratio which unmasks some of the shortcomings of the Frank analysis. While Eq. (21) leads to a 

strong κ dependence, its linearization does not suggest a length-to-breath ratio dependence (in 
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coincidental agreement with the numerical results). At this point we must mention that even if the 

length-to-breath ratio were not to affect the helical structure it has strong influence on the range of 

stability range of the chiral nematic (and nematic) phase. For molecules with HGO segments of 

different length, the wave number is still characterized by a linear dependence with the dihedral 

angle, but the value now depends on the length-to-breath ratio (see Fig. 6). As one segment is made 

progressively more spherical (κ2 → 1 ) the system is seen to twist to a lesser extent. It can be seen in 

Fig. 6b) that the helical structure does not change substantially on decreasing κ2 to up to 50% of  κ1, 

but then it suddenly becomes progressively less twisted with a further decrease of κ2.  Finally the 

system loses its twisted structure at κ2 = 1 where a normal nematic phase is formed. The agreement 

between the numerical and the analytical calculations is good only for small values of the dihedral 

angles and length-to-breath ratios of one of the segments. The consequence of these findings is that 

the Frank analysis can be adequately applied only for molecules which are weakly chiral. Finally we 

turn to the issue of the effect of the intramolecular segment-segment distance on the helical structure 

using the approximation of perfect orientational planar order. It is easy to explain that a stronger 

twist is necessary along the helical axis if the segments are brought closer for a given dihedral angle. 

The reason for this is that though the molecules have to rotate through a similar angle as before to 

minimize the excluded area, they have to do so over a shorter distance. No bulk helical structure is 

possible for � = 0, because the molecule is not chiral in this limit. As a result of these opposing 

effects there must be a system with 0 <  �∗  
< 2 0σ , which will have the most twisted nematic 

structure. The numerical solution of Eq. (9) supports this expectation and the results of the 

calculations are presented in Fig. 7 for κ = 5 and κ = 10. The maximum value of the wave number is 

located for values of � of about a quarter of the particle diameter, but this depends markedly on the 

dihedral angle. It is interesting to note that the helical structure exhibits a dependence on the length-

to-breath ratio for low values of intramolecular segment-segment separation (�∗
 < 1) so that the 

molecules with shorter segments are seen to be more twisted than those with longer ones.  
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In order to assess the adequacy of the perfect order approximation (cf. Eq. (4)) we have 

performed a bifurcation analysis together with free energy calculations to locate the position of the 

isotropic-chiral nematic transition and determine the packing fraction dependence of the helical 

structure.  By solving Eqs. (15) and (16) we have determined the bifurcation packing fraction (ηbif) 

and the bifurcation wave number (qbif). With these two quantities the lower bound of stability of the 

ordered phase and the extent of twist at the ordering transition can be determined. The results of the 

bifurcation analysis are presented in Fig. 8 for the intramolecular segment separation of �∗
 = 1. The 

most important feature is that the stability of the chiral nematic phase can be enhanced significantly 

by increasing the length-to-breath ratio which is a well-known characteristic of the rod-like systems. 

Another observation is that an increase in the intramolecular segment dihedral angle does not affect 

the lower boundary of stability of the twisted nematic phase to any significant degree, but it induces 

a phase transition between an isotropic and a chiral nematic phase for α  > 0, while an isotropic-

nematic transition is observed for α  = 0. The bifurcation wave number is found to depend linearly 

on the dihedral angle up to very high angles (corresponding to the correlation α7792.0=∗
bifq ). The 

results for the perfect order approximation are in very good agreement with those of the bifurcation 

analysis, which indicates that the incorporation of orientational degrees of freedom will only have a 

small effect on the wave number of the twist. In the case of non equal molecular segments ( κ1  ≠ κ2), 

the range of stability of the isotropic-chiral nematic phase transition is very sensitive to the shape 

anisotropy as can be seen in Fig. 9 (a). As  one of the segments of the HGO molecule becomes more 

and more spherical, the packing fraction of the isotropic-chiral nematic phase boundary increases, 

i.e., the region of the chiral nematic phase is shifted to higher density. This is in agreement with the 

fact that a decrease in the shape anisotropy will lead to a destabilization of the liquid crystalline 

phase. As it can be seen in Fig. 9 (a) the dihedral angle only has a small effect on the phase boundary 

as the ordering tendency of both segments does not change with the dihedral angle. In Fig. 9 (b) we 

show that isotropic-nematic transition takes place only in the achiral limit of κ2  = 1 as in this case the 

bifurcation wave number is zero for any dihedral angle. With increasing shape anisotropy of one of 
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the segments the wave number of the phase transition increases quickly; this dependence becomes 

very weak as the anisotropy of the segment reaches a certain value. This occurs roughly for a shape 

anisotropy at which a stable nematic phase would form for a system of HGO particles. Furthermore, 

it is clear from Fig. 9 (b) that the results obtained with the perfect order approximation (dashed 

curves)  are very close to those for the freely rotating case (continuous curves), i.e,. the bifurcation 

wave number is not sensitive to the approximation used for the orientational degrees of freedom.   

Up to this point we have not performed a thorough stability analysis of the chiral nematic 

phase with respect to the isotropic and nematic phases. To determine which phase is the most stable 

at given packing fraction the free energies of all phases are determined by solving Eq. (14). It is 

found in all cases that the free energy of the chiral nematic phase is the lowest for densities above the 

bifurcation point as long as the molecules are chiral. This is demonstrated with two examples for 

systems differing only in the intramolecular segment dihedral angle in Fig. 10. It can be seen that for 

the molecules characterised by a weaker microscopic chirality, the difference between the free 

energies of the nematic and chiral nematic phases is very small up to a very high nematic order of 

( ) ( ) 









= ∫

π

ϕϕϕ
2

0

2cos dhS  = 0.9, and the bifurcation to the ordered phase take place at almost the same 

packing fraction. However, the second system with a greater molecular chirality behaves in a 

different way, as the nematic phase is seen to bifurcate from the isotropic phase at a significantly 

higher packing fraction than that of chiral nematic phase; differences in the free energies are 

significant even close to the isotropic-nematic bifurcation point. The reason for this is due to the 

large dihedral angle since the (artificial) ordering of the molecules with their different segments in 

one direction gives rise to a large cost in terms of excluded volume as the arrangement with different 

segments in opposite directions would be preferred. Changing the helical direction of the two 

molecular segments from a parallel arrangement will reduce the excluded volume and stabilize the 

ordered phase at lower packing fractions. This is also the reason why the bifurcation packing fraction 

of the isotropic-chiral nematic phase is not very sensitive to the dihedral angle. In all cases the 

isotropic-chiral nematic phase transition is found to be second order as the order parameter goes to 
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zero continuously at the bifurcation point (see the inset of Fig. 10), and apart from at the bifurcation 

point no common tangent can be constructed between the free energy densities of the isotropic and 

chiral nematic phases.   As far as the helical structure of the bulk chiral nematic phase is concerned, 

the wave number is plotted as a function of the packing fraction in Fig. 11 for both systems. The 

strongly chiral system is about three times more twisted than the weakly chiral system. The systems 

do not appear to exhibit a strong dependence on the packing fraction; a slight dependence can be 

seen in the inset in which we show the behaviour for a dihedral angle of α  = 30° where starting from 

the bifurcation point the wave number first decreases, exhibits a minimum at around η = 0.18, and 

then increases with increasing packing fraction. This tendency can also be observed for weak 

chiralities (α  = 10°), but the change in the wave number is even less marked. This kind of density 

dependence has not been observed in hard-core models of sterically chiral molecules such as twisted 

ellipsoid [51], threaded hard rod [36,44] or corkscrew [60] models.  To assess the adequacy of the 

perfect order approximation, the wave number obtained from Eq. (9) are also shown in Fig. 11. As 

can be seen the wave number is found to be constant at any density and is very close to the wave 

number determined for the freely rotating case. Finally in Fig. 12 we present the effect of varying the 

segment anisotropy on the order parameter-packing fraction and wave number-packing fraction 

dependencies obtained from the minimization of the free energy (cf. Eq. (14)). As before the free 

energy of the chiral nematic phase is always less than that of nematic phase if the molecule is chiral. 

The order parameter curves suggest that decreasing the shape anisotropy of one of the segments has 

an effect not only on the location of the bifurcation point but also on the degree of ordering at a given 

density, as the molecules are less anisotropic are less ordered. The wave number is affected by the 

value of κ2 as it decreases with increasing packing fraction. There is a linear decrease in the wave 

number with density, but the slope increases with decreasing shape anisotropy (see lower panel of 

the Fig. 12).  It can also be seen that the perfect planar order leads to an underestimate in the wave 

number with decreasing shape anisotropy of one of the segments and it does not take into account the 

density dependence. 
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5. Conclusion 

 

We have considered a simple steric molecular model for chiral liquid crystals. The 

representation is an extension of hard-body models of the nematic phase constructed by fusing two 

uniaxial hard bodies with a relative twist between the long axes of the segments.  The hard Gaussian 

overlap (HGO) potential is used to represent the interaction between the segments of the chiral 

molecules to isolate the link between the shape chirality and the bulk properties of the chiral nematic 

phase. The electrostatic and other dispersive interactions are not included in the model to avoid 

complicating the analysis due to collective effects of the different types of chiralities. The Parsons-

Lee extension of the Onsager theory is used to describe the isotropic, nematic, and chiral nematic 

(cholesteric) phases of system. To simplify the calculations and at the same time to capture the key 

physical factors that influence the ordering phenomena we have used several approximations for the 

orientational distribution function. We have assumed that the long axes of the HGO segments that 

make up the chiral molecules are constrained to stay in the plane normal to the helical axis. 

Moreover no internal rotation is allowed around the symmetry axis of the molecule.  In this way the 

molecules are allowed to rotate freely only in the direction normal to the helical axis and the vector 

connecting the centres the two molecular HGO segments is always parallel to the helical axis. Two 

types of single particle orientational distribution functions have been introduced to account for the 

orientational ordering and helical structure inherent in chiral liquid crystals. In the simplest 

approximation the particles are perfectly aligned in the planes but they twist in a linear fashion in the 

direction of helical axis. In the second approximation a trial function has been introduced for the 

representation of the orientational distribution function which is able to describe isotropic, nematic, 

and chiral nematic phases. Moreover it gives the exact bifurcation densities and wave numbers of the 
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orientational ordering transitions. Both approximations have proved to be very useful in the 

determination of the structure and stability of the phases. The first approximation allows one to 

obtain analytical equations which relate the wave number of the twisted nematic phase and the 

molecular properties such as the intramolecular segment dihedral angle and length-to-breath ratios. 

The second approximation gives rise to two coupled equations for the wave number and variational 

parameter which makes it possible to determine the phase boundaries and the order parameter of the 

nematic phases.  

From our findings it is clear that the intramolecular dihedral angle (between the two HGO 

segments) is the only chiral parameter which determines the handedness of the molecules and the 

bulk phases;  the two other chiral parameters, the asymmetry in the shape anisotropy of the HGO 

segments and the intramolecular distance between the two HGO segments, only have an effect on the 

wave number of the twisted phase. The wave number is found to depend linearly on the 

intramolecular segment dihedral angle in all cases, i.e., the handedness of the phase is determined by 

the sign of the dihedral angle and no twist takes place in the achiral limit of α  = 0.  Decreasing the 

shape anisotropy of one of the molecular segments does not effect the helical structure substantially 

up to a weakly anisotropic particle shape, and then the wave number rapidly drops to zero (untwisted 

structure) in the limit of an achiral shape (κ2  = 0). The relation between macroscopic twist and the 

intramolecular segment-segment distance is more complicated between the achiral ( � = 0) and the 

larger separation limits, but in all cases the twist reaches a maximum value at a segment-segment 

separation close to a quarter of the segment diameter. The free energy calculations reveal that the 

isotropic-nematic transition is always metastable with respect to isotropic-chiral nematic transition 

for chiral molecules, the latter only being stable in the achiral limits.  Interestingly the pitch depends 

very weakly on density for molecules with identical HGO segments, but it increases linearly with the 

density as the shape anisotropy of the one of the segments is decreased. It is also shown that the 

difference between the numerically obtained free energy and the second order Frank free energy 
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increases with increasing molecular chirality to such an extent that the Frank expression for the wave 

number cannot be applied for  a molecular twist above α ~ 5°. 

The effect of higher order (cosine) terms in the orientational distribution function and the 

case of complete 3D rotational degrees of freedom are not considered in our current work. It would 

be desirable to see unambiguously the packing fraction dependence of the helical wave number.  In 

addition it would of interest to explore the impact of other types of steric chiralities such as single 

and double helices, on the macroscopic chirality. In this way it would be possible to determine the 

separate roles of steric and electrostatic chiralities in the helical structure of chiral macromolecules 

such as DNA, or viral systems, where both types of chiralities are present. We leave this for future 

work. 
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Figures 

Figure 1) 

Top view and side views of a chiral two-segment HGO particle. The intramolecular segment dihedral 

angle is α = 30°, the segment length-to-breadth ratio is  κ = 3, and the intramolecular segment-

segment separation is � = σ0 , where 0σ is the segment breadth. 

Figure 2)  

Side views of four achiral two-site HGO particles with α  the intramolecular segment dihedral angle, 

κ  the segment length-to-breadth ratio, and �  the intramolecular segment-segment separation: a) 

α = 90°  for κ = 3 and � = σ0; b) α = 0° for κ = 3 and � = σ0; c) α = 30° for  κ = 3 and � = 0 ; and d) 

α = 30° for κ2 = 1,   κ1 = 3,  and � = σ0,  where 0σ is the segment breadth.  

Figure 3) 

Excluded area of the most favorable configuration for the chiral two-segment HGO particle (with 

α  the intramolecular segment dihedral angle, κ  the segment length-to-breadth ratio, and �  the 

intramolecular segment-segment separation) and the corresponding twist angle as a function of 

distance along the helical axis chosen as a z axis for α  = 10°, κ  = 10 and �∗ = 2. In lower panel the 

horizontal dashed segments indicate the most favourable twist angles, while the continuous line is a 

guide to the eye which is given by 
∗= z

2

α
γ .  The excluded area and the distances are in 

dimensionless unit: 0

2

0

* /,/ σσ �=�= ∗
excexc AA  and 0

* /σzz = ,  where 0σ is the segment breadth.    
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Figure 4) 

Excluded area of a chiral two-segment HGO particle (with α  the intramolecular segment dihedral 

angle, κ  the segment length-to-breadth ratio, and �  the intramolecular segment-segment separation)  

as a function of distance along the direction of helical axis chosen as a z axis for different value of 

wave number (q) for α = 10°  and  κ = 10: a) q* = 0.1 (dashed), 0.2 (continuous) and 0.3 (short 

dashed) for �∗ = 0.5  b) q*=0.05 (dashed), 0.2 (continuous) and 0.3 (short dashed) for �∗=0.75, c) 

q*=0.05 (dashed), 0.15 (continuous) and 0.25 (short dashed) for �∗=1. The excluded area, centre-to-

centre segment separation, distance along the helical axis, and wave number are in dimensionless 

units: 0

2

0

* /,/ σσ �=�= ∗
excexc AA , 0

* /σzz = ,  and 0

* σqq = , where 0σ  is the segment breadth. 

 

Figure 5) 

The wave number Pq /2π=  (inverse pitch) of a system of chiral two-segment HGO particles as a 

function of: a) the intramolecular segment dihedral angle α ; and  b) the segment length-to-breath 

ratio κ  are shown in the case of perfect 2D order  for an intramolecular segment-segment separation 

of �∗ 
= 2.  The continuous curves represent the results of numerical calculations (cf. Eq. (9)), while 

the dashed curves the results of the Frank analysis (cf. Eq. (21)). The numerically obtained pitches 

are depicted in the insets. The wave number and the pitch are in dimensionless units:   0

* σqq = , 

0

* /σPP = , where 0σ  is the segment breadth. 

Figure 6) 

The effect of varying the length-to-breath ratio κ2 of a segment for a system of chiral two-segment 

HGO particles (with α  the intramolecular segment dihedral angle, and �  the intramolecular 

segment-segment separation)  on the helical period of the nematic nematic phase. a) The wave 

number Pq /2π=  (inverse pitch) is plotted as a function dihedral angle α  for κ1 = 10 and �∗ 
= 2. 

The values of κ2 are indicated on the figure. b) The dependence of the wave number on the length-to-

breath ratio κ2 for some values of dihedral angle. The continuous curves correspond to numerically 
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obtained using Eq. (9), while the dashed curves are the results of the Frank analysis (cf. Eq. (22). In 

the insets we show the dependence of the  pitch 0

* /σPP = , where 0σ  is the segment breadth, as a 

function of the  dihedral angle and  κ2  obtained with Eq. (9).     

 

 

 

Figure 7) 

The effect of varying the intramolecular segment-segment distance � of a system of chiral two-

segment HGO particles (with α  the intramolecular segment dihedral angle, and κ  the segment 

length-to-breath ratio)  on the helical structure of the chiral nematic phase in the case of dihedral 

angles of α = 5°, 10° and 20° for different values of molecular elongations: a) κ = 5 and b) κ = 10  . 

The curves are the results obtained with Eq. (9). In the inset we show the corresponding pitch 

0

* /σPP =  and a function of  

Figure 8) 

Dihedral angle α  dependence of the bifurcation packing fraction η of the isotropic-chiral nematic 

phase transition for a chiral two-segment HGO system (with α  the intramolecular segment dihedral 

angle, κ  the segment length-to-breath ratio, and �  the intramolecular segment-segment separation)  

with 1/ 0

* =�=� σ , where 0σ  is the segment breadth.   The values of the aspect ratios are indicated 

on the curves.  The results are obtained using Eqs. (15) and (16). 

Figure 9) 

The effect of varying the anisotropy of one of the segments (κ2) on the bifurcation packing fraction 

η  and wave number q of the isotropic-chiral nematic phase transition for a chiral two-segment HGO 

system (with α  the intramolecular segment dihedral angle, κ  the segment length-to-breadth ratio, 

and � the intramolecular segment-segment separation)  with �∗ = 2 and κ1 = 5.  Values of the dihedral 

angle of α =  5°, 10°, and 20° are examined (from bottom to top in the figures). In a) the curves for 
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α = 5° and α = 10° cannot be distinguished at the current resolution. The curves are obtained with 

Eqs. (15) and (16). The dashed curves in b) represent the solutions of perfect order approximation (cf. 

Eq. 22). Dimensionless units are employed: 0/σ�=�∗
 and 0

* σqq = , where 0σ  is the segment 

breadth.   

 

 

Figure 10) 

The free energy density ( VFvf /0

* β= ) as a function of packing fraction η of the three different 

phases for a chiral two-segment HGO system (with α  the intramolecular segment dihedral angle, 

κ  the segment length-to-breadth ratio, and � the intramolecular segment-segment separation)  with 

κ = 10 and 1/ 0

* =�=� σ , where 0σ  is the segment breadth. The values of the dihedral angle are 

α = 10° in a) and α = 30° in b). In the inset we represent the order parameter ( ) ( ) 









= ∫

π

ϕϕϕ
2

0

2cos dhS  

as a function of packing fraction for nematic and chiral nematic phases. The curves are the results of 

the free energy minimization of Eq. (14). 

Figure 11) 

The packing fraction η dependence of the wave number q of the chiral nematic phase for a chiral 

two-segment HGO system (with α  the intramolecular segment dihedral angle, κ  the segment length-

to-breadth ratio, and � the intramolecular segment-segment separation)  with κ  = 10, �∗ = 1, α = 10°  

and κ  = 10, �∗  = 1, α  = 30°. The continuous curves represent the results of the free energy 

minimization of Eq. (14), while the dashed curves are the results of Eq. (9). In the inset we highlight 

the density dependence of the wave number q for the system of κ  = 10, �∗  = 1, α = 30°. 

Dimensionless units are employed: 0/σ�=�∗
 and 0

* σqq = , where 0σ  is the segment breadth.    
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Figure 12) 

The packing fraction η dependence of the order parameter ( ) ( ) 









= ∫

π

ϕϕϕ
2

0

2cos dhS  and the wave 

number q  of the twisted nematic phase for a chiral two-segment HGO system (with α  the 

intramolecular segment dihedral angle, κ  the segment length-to-breadth ratio, and �  the 

intramolecular segment-segment separation)  with κ1 = 5, �∗ = 2, α = 30°  for a varying anisotropy of 

the second segment κ2. The curves are the results of the free energy minimization of Eq. (14), while 

the dashed curves are the results obtained with Eq. (9). The values of the segment anisotropy are κ2  = 

5, 3, 2, and 1.5 from left to right in a),  and from top to bottom in b). Dimensionless units are 

employed: 0/σ�=�∗
 and 0

* σqq = , where 0σ  is the segment breadth.    

 

Page 35 of 98

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



F
o
r P

eer R
eview

 O
n
ly

 36 

 

 

 

 

 

 

 

Figure 1. 
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Figure 2.  

γγγγ    (°°°°) 

c) d) 
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Figure 3  
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Figure 4 b) 
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Figure 4 c) 
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Figure 5 a) 
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Figure 5 b)  
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Figure 6 a) 
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Abstract 

    

The liquid crystalline phase behaviour of a chiral two-site hard Gaussian overlap fluid is examined 

using the well-known Parsons-Lee extension of the theory of Onsager.  The hard-core model is constructed 

such that the vector connecting the centers of two hard Gaussian segments is perpendicular to the long axes of 

both segments. The microscopic chirality of the particle can be controlled with the dihedral angle between the 

long axes of the hard Gaussian segments, the distance between the two segments, and the length-to-breath 

ratios of each segment. In the framework of Parsons-Lee approach three different types of phases are 

considered, namely, the isotropic liquid, and the nematic and the chiral nematic (cholesteric) liquid crystalline 

phases. For simplicity, the orientation of the particles is restricted to the plane perpendicular to the twist axis, 

and the particles do not have internal freedom to rotate around their main symmetry axes.  The geometric 

condition for the formation of a chiral nematic phase, the properties of the helical structure, and the phase 

boundary of the ordering transition are determined by means of a free energy minimization. It is shown that 

steric (shape) chirality always gives rise to helical structure in the nematic phase, and that the low density 

chiral systems can undergo a transition from an isotropic liquid to a twisted nematic phase increasing the 

density. Analytical expressions are obtained for the twist period (pitch) in the limit of parallel stacking of the 

rod-like segments in layers normal to the helical axis, which are only valid for systems characterized by weak 

chiral strengths. A key finding of the numerical calculations is that the pitch is very sensitive to the segment 

separation, but not to the density or aspect ratio. It is interesting to note that the inverse of the pitch is 

predicted to depend linearly on the dihedral angle in all of the cases studied.   
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1. Introduction 

 

The simplest liquid crystalline (meso) phase is a nematic in which the principal axis of the 

molecules (mesogens) is aligned along a preferential direction (the director) but where the 

distribution of the molecular centres of mass is otherwise isotropic [1,2]. Molecular (microscopic) 

chirality is a fascinating property of mesogens because it can give rise to an additional helical 

structure in the direction normal to the plane of the nematic ordering [1-5]. The helically structured 

nematic phase is often referred to as a chiral nematic or cholesteric phase.  The relation between the 

bulk (macroscopic) liquid crystal phase behaviour and the inherent chirality of the molecules is still 

poorly understood. One example is the liquid crystalline behaviour exhibited by aqueous colloidal 

suspensions of TMV or pf1 viruses, where the molecular chirality does not give rise to a helical 

macroscopic structure, while a stable cholesteric phase is exhibited in aqueous suspensions of fd 

viruses which is structurally very similar to pf1 [6-8]. It is therefore clear that molecular chirality 

does not guarantee the existence of the orientational ordered twisted structure. 

Liquid crystalline phase behaviour was originally thought to be the consequence of 

electrostatic (polar) interactions between the molecular species alone [9,10]. The mean-field Maier-

Saupe treatment of liquid crystalline order [11-13] is consistent with this energetic standpoint, as is 

the common application of the phenomenological Landau-de Gennes description [14-16]. It is now 

well recognised that repulsive (excluded volume) interactions also play a central role in the 

stabilisation of mesophases as Onsager had first suggested in 1942 [17,18]; extensive molecular 

simulation studies of hard discs [19,20], ellipsoids of revolution [21,22], hard spherocylinders [23–

26], and rigid hard-sphere chains [27] certainly support this view. Though anisotropic repulsive 

interactions thus appear to a perquisite for the formation of macroscopic liquid crystalline order, the 

effect of the electrostatic forces cannot be overlooked. The stable orientationally and positionally 
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ordered structures that are observed are very sensitive to the precise features of the electrostatic 

interactions (such as their position and orientation) or the presence of flexible tails as has been 

highlighted in studies of model dipolar hard-core systems [28-32].    

The existence of twisted nematic phases can be attributed to microscopic chiral features which 

are both steric and electrostatic in origin. In most real systems these two types of molecular chirality 

are present but the separate contribution that each interaction makes to the orientational ordering of 

the bulk phase is difficult to identify [1-5]. A full armoury of statistical mechanical and continuum 

theories and molecular simulation techniques has been deployed in studies of model molecules with 

chiral interactions which are of a steric or electrostatic nature (or both), including the development of 

suitable indices to characterise the molecular chirality; see [33-97] and references therein as 

representative examples. Despite this large body of work there is still much debate as to which 

underlying microscopic feature is responsible for the stabilisation of chiral nematic phase. It is 

therefore a highly desirable goal to gain a better understanding of the relation between molecular 

chirality and the helical twist of the bulk phase by studying model systems for which the roles of the 

steric and electrostatic chirality can be examined independently. The effect of electrostatic chiral 

interactions on cholesteric order has been examined in detail with Maier-Saupe mean-field [3-5, 33-

35, 37, 38, 40, 62, 71, 73, 76, 83-85] and Onsager-like [93, 94, 97] theories. In the opposite vein we 

focus on a description of the chiral nematic phase of purely repulsive hard body systems 

characterised by steric chirality in our current work. 

Straley [36] was the first to examine the effect of repulsive steric chirality by studying a 

system of helically threaded hard rods using Onsager’s second-virial theory for orientational order in 

hard anisometric particles [18]. Odijk [44] later extended the approach of Straley to allow for a 

treatment of the molecular flexibility. A surprising finding of these studies is that the helical twist of 

the bulk chiral structure does not depend on the degree of molecular chirality, though the wave 

number (inverse pitch) is found to be proportional to the density, diameter of the molecular core, and 

the thread depth in very ordered twisted nematic phases. In related work Pelcovits [60] examined a 

system of rigid and semi-flexible corkscrew particles finding the more physically intuitive 
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dependence of the cholesteric pitch on the molecular chirality; furthermore, the density dependence 

found for the pitch is different from that described by Straley or Odijk. The chiral nematic phase 

formed by twisted biaxial ellipsoids (with and without isotropic attractive interactions) has also been 

studied by Evans [51] using a Parsons-Lee [98,99] type scaling of the Onsager free energy functional 

to account for the higher virial coefficients in an approximate manner.  In this case Evans did not 

observe a density dependence of the pitch but the bulk chirality was found to be proportional to the 

molecular twist of the hard body. Very recently Dhakal and Selinger [96] have examined a lattice 

model of bent-core molecule with mean-field and Landau-de Gennes theories and by Monte Carlo 

simulation, describing the temperature dependence of the pitch and the underlying mutual 

enhancement of biaxial and chiral order. The model we study here is a continuum analogue of this 

lattice model.  

Simulation studies of chiral nematic phases are comparatively rare [54-56, 61, 63, 67-70, 72, 

77, 79-81, 86, 88, 92, 93, 96], and tend to focus on particles characterized by the electrostatic 

dispersive chiral interaction potential devised by Goossens [33] incorporated within a reference 

system of hard-core or Gay-Berne [100] (GB) mesogens. The first simulations of purely repulsive 

chiral molecules formed from two hard prolate ellipsoidal cores in a crossed configuration was 

presented by Allen [54] to study the dependence of the helical twisting power on the addition of 

these model chiral dopants to the nematic phase of uniaxial molecules; Camp [63] later developed an 

elegant and simple theoretical framework for such a system. Memmer et al. [61] have considered the 

steric chirality in a system of particles comprising two fused GB sites, where the dihedral angle 

between the GB segments governs the chirality of the molecule.  With their canonical Monte Carlo 

simulations they showed that one could stabilize a macroscopic cholesteric structure for the GB 

dimers. A drawback of the study of Memmer et al. [61] is that the underlying dispersive attractive 

interactions of the GB cores also affects the structure of the chiral nematic phase, i.e., the 

contribution due to steric chirality cannot be completely decoupled from the electrostatic chirality.  

The same issue arises in systems of fused two-site GB models with a bent-core [81] or discotic [88] 

geometry; interestingly, though the bent-core GB molecules are biaxial but otherwise achiral, they 
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are found to exhibit twisted grain boundary (TGB) structures with smectic layers rotated relative to 

each other [81].  

To study the effect of steric chirality alone we construct a two-site hard-body model, similar to 

that of Allen [54], which can be considered as the athermal analogue of the model proposed by 

Memmer et al. [61]. It also resembles the single-core chiral model of Harris et al. [3]:  in this very 

simple athermal model only the orientational and the packing entropies are active, and the interplay 

between these two entropic contributions determines the structure of the stable phase.  

Two quantities are required to characterize the structure of the twisted nematic phase: one is 

the local orientational distribution function, and the other is the spatial period of the twist (cholesteric 

pitch) [4]. It is generally accepted that the twist angle between two nematic layers is proportional to 

the distance between the layers, while the orientational distribution function has to be biaxial with a 

higher probability of molecules oriented in the plane than out of the plane. As has been pointed out 

by Harris et al. [5], the twisted structure cannot propagate without (local) biaxial orientational order 

otherwise the macroscopic phase would always be of uniaxial nematic symmetry.  In our model we 

assume that the long axes of the molecular segments are always perpendicular to the helix axis of the 

chiral twist to fulfill the requirement of biaxial orientational order. 

The goal of our work is to study the macroscopic manifestation of chirality in the molecular 

shape for a hard-body system which forms orientationally ordered phases. Using the purely repulsive 

hard Gaussian overlap (HGO) model as building blocks to form a two-site chiral molecule, the 

contribution of steric chirality on the formation of a chiral nematic phase can be studied in isolation. 

No attractive/electrostatic interactions are included, which would otherwise also have an impact on 

the helical structure of the bulk phase. Our model makes it possible to determine explicitly the role 

played by the molecular geometry and the aspect ratio in the stabilization of the bulk helical 

structure. We use the well-known Parsons-Lee [98,99] extension of Onsager’s theory for hard cores 

to determine the stability of the isotropic, nematic, and chiral nematic phases by characterizing the 

structure of the bulk phases. As we have already mentioned, the principal inertial axes of the 

particles are always restricted to stay in a plane, and can either rotate freely in the plane or are 
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orientationally constrained depending on the level of approximation that is employed. The results of 

both approximations are compared to assess the relationship between the orientational entropy and 

the helical wave number of the twisted nematic phase. 

The paper is organized as follows: In the following section the molecular model is presented 

and the geometric conditions that have to be satisfied to represent chiral shapes are discussed.  In 

Section 3. we present the Parsons-Lee theory as applied to chiral nematic phases, and derive our 

working equations using two different approximations for the orientational distribution function. 

Some applications of the theory are then presented for the system of two-site HGO molecules using a 

second-order expansion of the free energy of the twisted nematic phase. In Section 4. the effect of the 

three parameters that govern the molecular chirality, the effect of the aspect ratio, and the effect of 

the packing fraction on the formation of the cholesteric phase is examined in  detail; the role of 

orientational freedom is also assessed. Our conclusions are summarized in Section 5.    
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2. Molecular model and the conditions for microscopic chirality 

 The simplest way to examine steric chirality is to link two uniaxial (achiral) rod-like hard 

cores in such a way that they form a chiral body. To do this of one of the particle has to be twisted 

relative to the other with a finite angle.  We further suppose that the vector connecting the centres of 

the two prolate bodies is perpendicular to the long symmetry axis of each hard-core segment. This 

type of molecular geometry is depicted in Fig. 1, where the dihedral angle () between the two main 

symmetry axes of the segments is chosen to be /6, the length-to-breath ratio of the each segment is 

= = 3, and the distance between the centres of the segments is equal to the segment 

diameter 0  (here 0  is the dimension of the short axis of the hard core, i.e., its breadth). There are 

two ways to control the chirality of the molecule shown in Fig. 1: one involves a change in the 

dihedral angle between the long axes of the segments, and the other a variation of the distance 

between the centres of the segments. There are particular cases where the molecule is achiral. The 

parallel and the perpendicular relative alignment of the cores, and the perfectly fused case (the 

distance between the two centres is zero) are clearly achiral (see Fig. 2).  In the case of two different 

fused hard bodies (≠ ), the chirality is lost by making one of the hard-core segments spherical 

as shown in Fig. 2 d).  The exact form of the hard body interaction will be given later. 

 

3. Parsons-Lee theory of the chiral nematic phase 

 The approach of Onsager [18] is one of the most popular and successful theories for the 

description of nematic order in systems of hard-core mesogens [101,102], hard-core mixtures [103], 

and attractive molecules with anisotropic hard cores [104]. It can be regarded as one of the first 

applications of density functional theory (DFT), where the free energy of the system is described as a 

functional of the single particle orientational distribution function. A DFT treatment provides one of 

the most successful generic platforms for the description of inhomogeneous and anisotropic systems. 

Evans [105,106] has been a key developer and exponent of the approach in its application to free 
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interfaces of fluids and fluid mixtures and systems under confinement. The work of Evans and co-

workers also provides an excellent example of the use of DFT to represent inhomogeneous liquid 

crystalline systems, including the effect of confinement on the isotropic-nematic transition [107] and 

capillary nematization of confined hard rods [108,109].  

 In its original form the theory of Onsager is cast at the second virial level. This means 

that it appropriate only at low density. The applicability of the Onsager free energy to higher density  

isotropic and nematic phases of hard body fluids can be extended by following the methodology of  

Parsons [98] and of Lee [99] (also see the detailed exposition in references [25,102]). The theory is 

also appropriate for chiral nematic (cholesteric) phase because the local helical structure is expected 

to be weak in practice and is not likely to give rise to substantial change in the overall free energy of 

the system. In the remainder of this section we reformulate the Parsons-Lee theory for the chiral 

nematic phase in a Cartesian coordinate frame of reference where the helical axis is assumed to be 

parallel with the z axis. 

  For the freely rotating case, the total Helmholtz free energy F of the chiral nematic phase 

can be written as a sum of the ideal and residual contributions resideal FFF  , where the ideal free 

energy is given by 

    zfzfdrd
VV

Fideal ,ln,)ln( 3 
  ,    (1) 

while the residual part is approximated by the Parsons-Lee approximation [98,99] as  

 
     2112222211112

0

2

,,,,
18

34 



rfzfdrdzfdrd
VvV

F
M

res 


 .  (2) 

Here, the Mayer function fM provides a direct link to the pair potential u through the following 

relation:      1,exp, 12121212   rurfM . In these expressions TkB/1  ( Bk  being the 

Boltzmann constant and T  the temperature), N is the total number of particles, VN /  is the 

number density (V being the volume of the system), 0v   is the packing fraction, v0
 
is the volume 

of the particle, 
3 is the de Broglie volume  (kinetic contribution to the free energy), and 

28 for 
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biaxial particles. The orientational distribution function  zf ,  is used to describe the orientation of 

the particle’s principal symmetry axis in the plane at position z along the helical axis. Since the chiral 

nematic phase is periodic in the direction of the helical axis (chosen as the z axis), the spatial 

integrations can be performed in the layer normal: 

 
     12122222111

0

12

0

2

,,,
1

18

34

12





zAzfddzzfddz
PvV

F
exc

Vz

P

res

exc





 ,  (3) 

where P is the helical period (pitch) of the chiral nematic phase, Vexc denotes that region which is 

excluded to a particle around another particle fixed in space, and  is the angle between the 

principal axes of the particles. The excluded area Aexc is the result of twofold integration of the 

Mayer function when the positions of molecular centres are a distance z12 = z1 - z2 apart. 

  Two simplifying assumptions are applied for the orientation distribution function. In the 

simplest approximation, the particle’s orientational unit vector ( ) is constrained to stay in the plane 

normal to the helical axis, all of the particles are taken to be parallel in a given layer (perfect 2D 

order), and the local nematic director is assumed to vary linearly from layer to layer along the helical 

axis:  

 

     qzf 





  

2
.     (4) 

In this equation  represents the Dirac delta function, () are the conventional Euler’s angles, 

while q is the wave number (which is proportional to the inverse pitch) prescribing the helical 

structure of the nematic order to vary in a linear fashion along the z axis. The relationship between 

the wave number and the pitch of the chiral nematic phase is simply q = 2/P.  In the second, more 

realistic, case the particles are still orientated perpendicular to the helical axis, but they are allowed 

to rotate freely within a given plane:  

 

      hf 





 

2
,      (5) 
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where h is the corresponding 2D orientational distribution function. The difference between the two 

approximations is that we neglect the contribution due to the orientational entropy completely with  

Eq. (4), while the orientational entropy is partially captured with Eq. (5). 

 After substitution of the perfect 2D order approximation (Eq. (4)) into the expressions for the 

ideal and residual free energy (Eqs. (1-3)) we get 




 )ln( 3

V

Fideal
,       (6)   

and 

 
 1212122

0

2

,
18

34

12

qzzAdz
vV

F
exc

Vz

res

exc





 




.     (7) 

In this way the total free energy density in the case of the perfect 2D order approximation can be 

written as 

 
 

 1212122

0

2
3 ,

18

34
ln

12

qzzAdz
vV

F
exc

Vz exc





 




 .    (8) 

For a given molecular model and density, the free energy only depends on the wave number, i.e., the 

equilibrium free energy of the system can be obtained by means of the minimization of  Eq. (8) with 

respect to the wave number: 0
/


dq

VFd
. As only the excluded area depends on the q parameter, the 

condition of the free energy minimization reduces to the minimization of the excluded volume,  

  
 

0
dq

qdVexc
.      (9) 

The integral of the excluded area over the excluded volume regime gives the overall excluded 

volume for a pair of twisted body characterized by the twist q: 

   



excVz

excexc qzzdzAqV , .     (10) 

In this way the problem reduces to looking for the particular helical arrangement which minimizes 

the excluded volume interactions between the particles, or in other words that which maximizes the 

free volume available for the particles in space. One trivial result of the perfect 2D order 
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approximation is that the pitch does not depend on density even at infinitely low densities, and the 

phase can be either nematic or chiral nematic, but not isotropic. To overcome this deficiency of the 

theory, the particles must possess some orientational degrees of freedom.   

 In the case of free planar ordering, after substitution of the orientational distribution function 

(Eq. (5)) into the ideal and residual free energy terms (Eqs. (1-3)) the following relations be derived: 

 

   



 2

00

3 ,ln,)ln( zhzhddz
PV

F
P

ideal
,    (11) 

 

 
     121222

2

0

22

2

0

111

0

12

0

2

,,,
18

34

12



 

zAzhddzzhddz
PvV

F
exc

Vz

P

res

exc





 .  (12) 

As for the perfect 2D order approximation, the free energy again has to be minimized with respect to 

q, but in addition the orientational distribution function  zh ,   which minimizes the free energy has 

to be determined in order to describe the equilibrium free energy of the system. This can be done by 

solving a nonlinear integral equation for  zh , , which can be obtained by functional minimization 

of the free energy. In order to reduce the computational burden of the free energy minimization, we 

use a simple helical trial function with a variational parameter  and wave number q to represent the 

two-dimensional orientational distribution function: 

     

   

 






 qzd

qz
zh

2cosexp

2cosexp
,

2

0

.      (13) 

Depending on the values of  and q, Eq. (13) leads to isotropic (= 0), nematic (≠  and q = 0) or 

chiral nematic (≠  and q ≠ 0) solutions for the orientational distributions. After inserting Eq. (13) 

into the free energy of freely (in the plane) rotating particles (the sum of Eqs. (11 and 12)) the 

minimization conditions can be written as  

0
/


dq

VFd
and 0

/




d

VFd
.     (14) 
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In the result section we will present the equilibrium pitch obtained from both approximations.  

 Before discussing the solution of these coupled equations it is enlightening to first find the 

lowest density at which the nematic or chiral nematic phase becomes stable. We perform a so-called 

bifurcation analysis where the corresponding density is referred to as the bifurcation density [101].  

After substitution of the trial function into the ideal and residual free energy terms (Eqs. (11) and 

(12)) we can expand the free energy as a function of variational parameter  up to second order. The 

resulting free energy has the form of
2/  baVF  , where the zeroth order term a corresponds to 

the free energy of the isotropic phase, and b is the expansion coefficient of the nematic perturbation. 

Since the free energy of the nematic and the isotorpic phases are identical at the bifurcation point, the 

expansion coefficient of nematic perturbation has to be zero. After some algebra we obtain the 

following expression for the packing fraction at the bifurcation point: 

 
     












 2

00

2

2

0,2cos
81

34
1 zAqzddz

v
exc

Vz exc

.    (15) 

 

To determine whether the nematic or the chiral nematic phase is more stable at the bifurcation one 

has to minimize the free energy with respect to the wave number: in this case this corresponds to 

0
dq

db
.  The result of this minimization is given by 

     





2

0

0,2sin zAzqzddz exc

Vz exc

.    (16) 

The solution of the coupled equations (15) and (16) gives the bifurcation packing fraction and the 

bifurcation wave number. The results of the bifurcation analysis are presented in Section 4. 

 In order to proceed the molecular model has to be specified. In the following we assume that 

each segment of the dimer molecule is characterised by the so-called hard Gaussian overlap (HGO) 

potential [110,111]. The main advantage of this model is that the distance of closest approach, the 

excluded area, and excluded volume can be expressed in closed analytical forms [112].  For example, 

Page 62 of 98

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



F
o
r P

eer R
eview

 O
n
ly

 14 

the excluded area for a pair of HGO particles (of breadth 0 , length  0 , and aspect ratio  ) in a 

2D planar arrangement is given by  

 
   












otherwise,0

,cos1
1, 00

22
22

0 



 z

z

zAexc     (17) 

where  is the angle between the two particles, and  is an anisotropy parameter defined as  

1

1

2

2








 . For a spherical shape () the anisotropy parameter is zero, while it is one for an 

infinite length-to-breath ratio (∞).  One should note that a molecular volume can not be 

associated uniquely to the HGO pair potential, but it is generally accepted that the volume of HGO 

particles can be taken as that of correspond hard ellipsoid of revolution, i.e.,  
3

0
6


HGOv . 

To construct our chiral dimer HGO particles, two HGO segments are positioned with their 

centres a distance  apart in a planar alignment with the main symmetry axes of the segments 

twisted relative to each other at a dihedral angle  as shown in Fig. 1; in this particular case the two 

segments are taken to be in contact corresponding to an intramolecular segment separation of 

0 . The resulting chiral HGO particle interacts through its HGO segments.  

It is instructive to start by examining the particular case of a pair of chiral HGO particles with 

a (rather unrealistic hanging) intersegment separation of 02  and relative orientation   for 

which the excluded area can be determined very easily in the planar geometry. The two HGO 

particles start to exclude each other at a relative distance of  3z  through the interaction 

between the “bottom” segment of the “upper” molecule and “top” segment of the “lower” molecule. 

Here, “upper” or “top” and “lower” or “bottom” refer to the relative position along the helical axis z. 

This interaction persists up to a distance 0z  for which the excluded area of a single HGO 

particle can be used (cf. Eq. (17)); one should note, however, that the angle between the long axes of 

HGO segments making up the particle is not same as the angle between the two chiral molecules, but 
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is because of the twisted structure of the molecules. In the second regime of 00   z  

“like”  “top-top” and  “bottom-bottom” excluded volume segment-segment interactions take place 

simultaneously, but these interactions are identical and the resulting excluded areas is obtained from  

Eq. (17), as in this case the angle between the two like “top” or two “bottom”  segments is   In the 

third regime of  00 3  z , only the “bottom” segment of the “upper” molecule is excluded by the 

“top” segment of  the “lower” molecule in the same way as in the first regime but now for a relative 

angle of . The excluded area for a pair of chiral HGO particles with an intramolecular segment 

separation of 02  can thus be summarised with the following relation: 

 

    

   

    





























00

22

2

0

2

0

00

22
22

0

00

22

2

0

2

0

12

3,cos1
1

2

,cos1
1

3,cos1
1

2

,


















z
z

z
z

z
z

zAexc  .  (18) 

Note that the expression for the excluded area is much more complicated for smaller values of 

separation between the centres of the two segments making up the HGO molecule ( 020  ), 

because the excluded volume regimes of the segment-segment interactions do not decouple so simply 

but overlap. In our generalized twisted two-site HGO model, where the HGO segments have the 

same breadth ( 0 ) but different lengths ( 0201   ), analytical relations can also be derived for 

the excluded area. Without presenting the details, the expression can be written in the following form 

for the intramolecular segment separation of 02 (see reference [113] for shape parameters for 

particles of differnt aspect ratio): 
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 

    

   

    

































00

2

21

21

2

0

2

0

00

22

1

1

22

0

00

2

21

21

2

0

2

0

12

3,cos1
11

2

,cos1
1

3,cos1
11

2

,
















z
z

z
z

z
z

zAexc ,  (19) 

where the anisotropy parameters of the segments are defined in terms of length-to-breath ratios 

( 21 , ) as 
1

1
2

1

2

1
1








  and 
1

1
2

2

2

2
2








 . We must mention that Eq. (19) represents the excluded 

area for  molecular arrangements where the “top” and “bottom” segments of the two molecules are 

commensurate (i.e., geometries where both of the shorter segments are on the  “top” or “bottom”, but 

not one on the  “top” and one on the “bottom”). A more complete treatment of this system would 

involve a binary mixture with equal numbers of molecules in “up” and “down” arrangements. To 

maintain the simplicity of the theory the “up-down” excluded areas are not included in the 

description. In the case of a intramolecular segment separation of 02 , Eqs. (18) and (19) can be 

used, while for 020   tabulated values of excluded areas obtained numerically (not presented 

here) are used as the input to the theory.  

It is widely accepted that one can expand the free energy density of the twisted nematic phase 

as a function of wave number up to the quadratic term to obtain the twist torque (h) and the twist 

elastic constant (K22) as  

 

2

22
2

1
qKhq

V

F

V

F

NTN




,     (20) 

where the zeroth order term  is the free energy density of the nematic phase.  This truncated free 

energy is often referred to as the Frank free energy for a system with a twist deformation [5].  Such 

an approach can be applied only in those cases where the molecular chirality does not give rise to a 

substantial change in the free energy. This is the case for weakly chiral systems such as aqueous 
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suspension of the fd viruses [6-8] and DNA [114]. The minimization of Frank free energy (Eq. (20)) 

with respect to q allows us to determine the equilibrium wave number in terms of the twist torque 

and twist elastic constant as 22/ Khq  . In our system of two-segment HGO molecules, it is 

reasonable to assume  that the second order expansion will be adequate for small dihedral angles and 

small segment separation. The result of the method for the wave number in the case of perfect 2D 

(planar) order, for molecules with equal segment aspect ratios ( 21   corresponding to 

  21 ) and an intramolecular segment separation of  02   can be written as   

 
     

 

 3

0

22

42

2

22 43

20

cos1

cos2cos
42

1

cos1

2sin10 




































q .   (21) 

It is interesting to note that wave number depends on the molecular anisotropy for moderate values 

the intramolecular dihedral angle   between the segments. This is not the case, however, for a very 

small dihedral angle where q is found to follow a linear dependence with . The application of the 

method for the more general case of HGO molecules with segments of unequal size ( 21   ) at a 

separation of 02 using Eqs. (9), (16) and (19) results in a more general expression for the wave 

number of the chiral nematic phase: 

 

 
     

 

 3
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212

2

2
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212
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11

20

cos1

cos2cos
42

11

cos11

2sin10















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
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




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


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








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













q

.  

 (22) 

This equation reduces to Eq. (21) in case of identical HGO segments   21 . There are now, 

however, two parameters governing the macroscopic chiral structure of the phase: one is the dihedral 

angle between the two segments of the molecule, and the other is the anisotropy parameter ( 2 ). The 
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relation leads one to the conclusion that no twist can take place in the nematic phase of a system of 

achiral particles corresponding to the limits of either 0  or 02  .  

 

 

 

4. Results and discussions 

Before presenting the results of the free energy minimizations we demonstrate why twisted 

orientational ordering is favorable in our system of repulsive chiral rod-like particles. As we have 

shown in the case of the perfect 2D order approximation, the system tends to reduce the excluded 

volume as much as possible to maximize the packing entropy (translational entropy) or equivalently 

minimize the free energy (cf. Eq. (9)). In this case the orientational entropy does not counter this 

effect because of the approximation of perfect 2D orientational order. In the case of an 

intramolecular segment-segment separation of 02  it is very easy to determine the most 

favorable orientations over the entire range of the excluded body (cf. Eq. (18)). In all three regions 

the smallest excluded area can be achieved for relative intermolecular orientations () corresponding 

to parallel interacting HGO segments. This happens at different angles for different pair separations: 

= -for 03  < z < 0 ;  = 0  for  0 < z < 0 ; and =   for 0  < z < 03 . The minimal 

excluded area and the corresponding relative molecular orientation as a function of intermolecular 

distance along the helical axis is shown in Fig. 3. The best linear fit to the discontinuous -z function, 

which is given by =q z, goes through the middle point of the sectors (continuous line in Fig. 3b).  

The slope of the line (wave number) can be easily determined and it is given by .2/ 0q  

Interestingly the numerical minimization of the free energy for very low values of the dihedral angle 

gives very similar result to that of our simple argument because  
043

20




q  (cf. Eq. (21)). For smaller 

segment-segment distances the excluded regions overlap and the expression for the excluded area 

becomes more complicated. The results of the calculations are presented for more realistic values of 
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the (dimensionless) intramolecular segment separations of 5.0/* 0   , 0.75 and 1 in Fig 4. It 

can be seen that the excluded area is very sensitive to the imposed helical structure. Both weak and 

strong twists result in very high values of the excluded area at some particular distances, which give 

rise to high excluded volume (packing entropy cost). As a result there is an optimum value of the 

wave number where the integrated area (excluded volume) is at a minimum, which is represented by 

a continuous curve for the three cases depicted in Fig. 4. The shift of the excluded area regions for 

the different segment-segment separations can be seen very clearly with increasing 
.  At 

= 0.5 

the presence of the three regions can be seen only at the strongest twist corresponding to a 

dimensionless wave number of 3.0* 0  qq , while we get still overlapping regions for  
 = 1 but 

the behavior is closer to that of the totally separated case (cf. Fig. 3.). This feature is due to the fact 

that only two excluded areas can overlap for 1 <
< 2, while three overlap for 0 <

< 1.  

In light of these results we minimize the excluded volume numerically (see Eq. 9.) and 

determined the relation between the molecular chirality and the macroscopic structure. We start with 

the computationally simplest case of 
= 2 for which the excluded areas have very simple forms (cf. 

Eqs. (18) and (19)). For molecules comprising identical segments, the dependence of the equilibrium 

wave number on the length-to-breath and intramolecular dihedral angle are shown in Fig. 5. The 

numerical results (Eq. (9)) and the results of the analytical solution (Eq. (21)) are compared to 

determine the range of validity of the Frank analysis. In Fig. 5 a) we show that for small values of the 

intramolecular dihedral angle both methods gives the same results, but a noticeable deviation can be 

seen from ~ 5. The numerical result corresponds to a linear dependence between the wave number 

and the dihedral angle, while the analytical solution overestimated the wave number at a given .  It 

is interesting to note that the first-order Taylor expansion of the analytical solution (Eq. (21)) is 

coincident with the numerical solution at any angle due to the linear dependence of the wave number 

with . From Fig. 5 b) one can see that the wave number does not depend on the length-to-breath 

ratio which unmasks some of the shortcomings of the Frank analysis. While Eq. (21) leads to a 

strong  dependence, its linearization does not suggest a length-to-breath ratio dependence (in 
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coincidental agreement with the numerical results). At this point we must mention that even if the 

length-to-breath ratio were not to affect the helical structure it has strong influence on the range of 

stability range of the chiral nematic (and nematic) phase. For molecules with HGO segments of 

different length, the wave number is still characterized by a linear dependence with the dihedral 

angle, but the value now depends on the length-to-breath ratio (see Fig. 6). As one segment is made 

progressively more spherical () the system is seen to twist to a lesser extent. It can be seen in 

Fig. 6b) that the helical structure does not change substantially on decreasing  to up to 50% of  , 

but then it suddenly becomes progressively less twisted with a further decrease of  Finally the 

system loses its twisted structure at = 1 where a normal nematic phase is formed. The agreement 

between the numerical and the analytical calculations is good only for small values of the dihedral 

angles and length-to-breath ratios of one of the segments. The consequence of these findings is that 

the Frank analysis can be adequately applied only for molecules which are weakly chiral. Finally we 

turn to the issue of the effect of the intramolecular segment-segment distance on the helical structure 

using the approximation of perfect orientational planar order. It is easy to explain that a stronger 

twist is necessary along the helical axis if the segments are brought closer for a given dihedral angle. 

The reason for this is that though the molecules have to rotate through a similar angle as before to 

minimize the excluded area, they have to do so over a shorter distance. No bulk helical structure is 

possible for = 0, because the molecule is not chiral in this limit. As a result of these opposing 

effects there must be a system with 0 <
< 2 0 , which will have the most twisted nematic 

structure. The numerical solution of Eq. (9) supports this expectation and the results of the 

calculations are presented in Fig. 7 for = 5 and = 10. The maximum value of the wave number is 

located for values of  of about a quarter of the particle diameter, but this depends markedly on the 

dihedral angle. It is interesting to note that the helical structure exhibits a dependence on the length-

to-breath ratio for low values of intramolecular segment-segment separation (
 < 1) so that the 

molecules with shorter segments are seen to be more twisted than those with longer ones.  
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In order to assess the adequacy of the perfect order approximation (cf. Eq. (4)) we have 

performed a bifurcation analysis together with free energy calculations to locate the position of the 

isotropic-chiral nematic transition and determine the packing fraction dependence of the helical 

structure.  By solving Eqs. (15) and (16) we have determined the bifurcation packing fraction (bif) 

and the bifurcation wave number (qbif). With these two quantities the lower bound of stability of the 

ordered phase and the extent of twist at the ordering transition can be determined. The results of the 

bifurcation analysis are presented in Fig. 8 for the intramolecular segment separation of 
 = 1. The 

most important feature is that the stability of the chiral nematic phase can be enhanced significantly 

by increasing the length-to-breath ratio which is a well-known characteristic of the rod-like systems. 

Another observation is that an increase in the intramolecular segment dihedral angle does not affect 

the lower boundary of stability of the twisted nematic phase to any significant degree, but it induces 

a phase transition between an isotropic and a chiral nematic phase for > 0, while an isotropic-

nematic transition is observed for = 0. The bifurcation wave number is found to depend linearly 

on the dihedral angle up to very high angles (corresponding to the correlation 7792.0
bifq ). The 

results for the perfect order approximation are in very good agreement with those of the bifurcation 

analysis, which indicates that the incorporation of orientational degrees of freedom will only have a 

small effect on the wave number of the twist. In the case of non equal molecular segments (≠ ), 

the range of stability of the isotropic-chiral nematic phase transition is very sensitive to the shape 

anisotropy as can be seen in Fig. 9 (a). As  one of the segments of the HGO molecule becomes more 

and more spherical, the packing fraction of the isotropic-chiral nematic phase boundary increases, 

i.e., the region of the chiral nematic phase is shifted to higher density. This is in agreement with the 

fact that a decrease in the shape anisotropy will lead to a destabilization of the liquid crystalline 

phase. As it can be seen in Fig. 9 (a) the dihedral angle only has a small effect on the phase boundary 

as the ordering tendency of both segments does not change with the dihedral angle. In Fig. 9 (b) we 

show that isotropic-nematic transition takes place only in the achiral limit of = 1 as in this case the 

bifurcation wave number is zero for any dihedral angle. With increasing shape anisotropy of one of 
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the segments the wave number of the phase transition increases quickly; this dependence becomes 

very weak as the anisotropy of the segment reaches a certain value. This occurs roughly for a shape 

anisotropy at which a stable nematic phase would form for a system of HGO particles. Furthermore, 

it is clear from Fig. 9 (b) that the results obtained with the perfect order approximation (dashed 

curves)  are very close to those for the freely rotating case (continuous curves), i.e,. the bifurcation 

wave number is not sensitive to the approximation used for the orientational degrees of freedom.   

Up to this point we have not performed a thorough stability analysis of the chiral nematic 

phase with respect to the isotropic and nematic phases. To determine which phase is the most stable 

at given packing fraction the free energies of all phases are determined by solving Eq. (14). It is 

found in all cases that the free energy of the chiral nematic phase is the lowest for densities above the 

bifurcation point as long as the molecules are chiral. This is demonstrated with two examples for 

systems differing only in the intramolecular segment dihedral angle in Fig. 10. It can be seen that for 

the molecules characterised by a weaker microscopic chirality, the difference between the free 

energies of the nematic and chiral nematic phases is very small up to a very high nematic order of 

    







 




2

0

2cos dhS  = 0.9, and the bifurcation to the ordered phase take place at almost the same 

packing fraction. However, the second system with a greater molecular chirality behaves in a 

different way, as the nematic phase is seen to bifurcate from the isotropic phase at a significantly 

higher packing fraction than that of chiral nematic phase; differences in the free energies are 

significant even close to the isotropic-nematic bifurcation point. The reason for this is due to the 

large dihedral angle since the (artificial) ordering of the molecules with their different segments in 

one direction gives rise to a large cost in terms of excluded volume as the arrangement with different 

segments in opposite directions would be preferred. Changing the helical direction of the two 

molecular segments from a parallel arrangement will reduce the excluded volume and stabilize the 

ordered phase at lower packing fractions. This is also the reason why the bifurcation packing fraction 

of the isotropic-chiral nematic phase is not very sensitive to the dihedral angle. In all cases the 

isotropic-chiral nematic phase transition is found to be second order as the order parameter goes to 
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zero continuously at the bifurcation point (see the inset of Fig. 10), and apart from at the bifurcation 

point no common tangent can be constructed between the free energy densities of the isotropic and 

chiral nematic phases.   As far as the helical structure of the bulk chiral nematic phase is concerned, 

the wave number is plotted as a function of the packing fraction in Fig. 11 for both systems. The 

strongly chiral system is about three times more twisted than the weakly chiral system. The systems 

do not appear to exhibit a strong dependence on the packing fraction; a slight dependence can be 

seen in the inset in which we show the behaviour for a dihedral angle of = 30 where starting from 

the bifurcation point the wave number first decreases, exhibits a minimum at around = 0.18, and 

then increases with increasing packing fraction. This tendency can also be observed for weak 

chiralities (= 10), but the change in the wave number is even less marked. This kind of density 

dependence has not been observed in hard-core models of sterically chiral molecules such as twisted 

ellipsoid [51], threaded hard rod [36,44] or corkscrew [60] models.  To assess the adequacy of the 

perfect order approximation, the wave number obtained from Eq. (9) are also shown in Fig. 11. As 

can be seen the wave number is found to be constant at any density and is very close to the wave 

number determined for the freely rotating case. Finally in Fig. 12 we present the effect of varying the 

segment anisotropy on the order parameter-packing fraction and wave number-packing fraction 

dependencies obtained from the minimization of the free energy (cf. Eq. (14)). As before the free 

energy of the chiral nematic phase is always less than that of nematic phase if the molecule is chiral. 

The order parameter curves suggest that decreasing the shape anisotropy of one of the segments has 

an effect not only on the location of the bifurcation point but also on the degree of ordering at a given 

density, as the molecules are less anisotropic are less ordered. The wave number is affected by the 

value of  as it decreases with increasing packing fraction. There is a linear decrease in the wave 

number with density, but the slope increases with decreasing shape anisotropy (see lower panel of 

the Fig. 12).  It can also be seen that the perfect planar order leads to an underestimate in the wave 

number with decreasing shape anisotropy of one of the segments and it does not take into account the 

density dependence. 
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5. Conclusion 

 

We have considered a simple steric molecular model for chiral liquid crystals. The 

representation is an extension of hard-body models of the nematic phase constructed by fusing two 

uniaxial hard bodies with a relative twist between the long axes of the segments.  The hard Gaussian 

overlap (HGO) potential is used to represent the interaction between the segments of the chiral 

molecules to isolate the link between the shape chirality and the bulk properties of the chiral nematic 

phase. The electrostatic and other dispersive interactions are not included in the model to avoid 

complicating the analysis due to collective effects of the different types of chiralities. The Parsons-

Lee extension of the Onsager theory is used to describe the isotropic, nematic, and chiral nematic 

(cholesteric) phases of system. To simplify the calculations and at the same time to capture the key 

physical factors that influence the ordering phenomena we have used several approximations for the 

orientational distribution function. We have assumed that the long axes of the HGO segments that 

make up the chiral molecules are constrained to stay in the plane normal to the helical axis. 

Moreover no internal rotation is allowed around the symmetry axis of the molecule.  In this way the 

molecules are allowed to rotate freely only in the direction normal to the helical axis and the vector 

connecting the centres the two molecular HGO segments is always parallel to the helical axis. Two 

types of single particle orientational distribution functions have been introduced to account for the 

orientational ordering and helical structure inherent in chiral liquid crystals. In the simplest 

approximation the particles are perfectly aligned in the planes but they twist in a linear fashion in the 

direction of helical axis. In the second approximation a trial function has been introduced for the 

representation of the orientational distribution function which is able to describe isotropic, nematic, 

and chiral nematic phases. Moreover it gives the exact bifurcation densities and wave numbers of the 
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orientational ordering transitions. Both approximations have proved to be very useful in the 

determination of the structure and stability of the phases. The first approximation allows one to 

obtain analytical equations which relate the wave number of the twisted nematic phase and the 

molecular properties such as the intramolecular segment dihedral angle and length-to-breath ratios. 

The second approximation gives rise to two coupled equations for the wave number and variational 

parameter which makes it possible to determine the phase boundaries and the order parameter of the 

nematic phases.  

From our findings it is clear that the intramolecular dihedral angle (between the two HGO 

segments) is the only chiral parameter which determines the handedness of the molecules and the 

bulk phases;  the two other chiral parameters, the asymmetry in the shape anisotropy of the HGO 

segments and the intramolecular distance between the two HGO segments, only have an effect on the 

wave number of the twisted phase. The wave number is found to depend linearly on the 

intramolecular segment dihedral angle in all cases, i.e., the handedness of the phase is determined by 

the sign of the dihedral angle and no twist takes place in the achiral limit of = 0.  Decreasing the 

shape anisotropy of one of the molecular segments does not effect the helical structure substantially 

up to a weakly anisotropic particle shape, and then the wave number rapidly drops to zero (untwisted 

structure) in the limit of an achiral shape (= 0). The relation between macroscopic twist and the 

intramolecular segment-segment distance is more complicated between the achiral (  = 0) and the 

larger separation limits, but in all cases the twist reaches a maximum value at a segment-segment 

separation close to a quarter of the segment diameter. The free energy calculations reveal that the 

isotropic-nematic transition is always metastable with respect to isotropic-chiral nematic transition 

for chiral molecules, the latter only being stable in the achiral limits.  Interestingly the pitch depends 

very weakly on density for molecules with identical HGO segments, but it increases linearly with the 

density as the shape anisotropy of the one of the segments is decreased. It is also shown that the 

difference between the numerically obtained free energy and the second order Frank free energy 
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increases with increasing molecular chirality to such an extent that the Frank expression for the wave 

number cannot be applied for  a molecular twist above ~ 5. 

The effect of higher order (cosine) terms in the orientational distribution function and the 

case of complete 3D rotational degrees of freedom are not considered in our current work. It would 

be desirable to see unambiguously the packing fraction dependence of the helical wave number.  In 

addition it would of interest to explore the impact of other types of steric chiralities such as single 

and double helices, on the macroscopic chirality. In this way it would be possible to determine the 

separate roles of steric and electrostatic chiralities in the helical structure of chiral macromolecules 

such as DNA, or viral systems, where both types of chiralities are present. We leave this for future 

work. 
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Figures 

Figure 1) 

Top view and side views of a chiral two-segment HGO particle. The intramolecular segment dihedral 

angle is  the segment length-to-breadth ratio isand the intramolecular segment-

segment separation is, where 0 is the segment breadth. 

Figure 2)  

Side views of four achiral two-site HGO particles with the intramolecular segment dihedral angle 

the segment length-to-breadth ratio, and the intramolecular segment-segment separation: a) 

forandb) for and; c) forand; and d) 

forand where 0 is the segment breadth.  

Figure 3) 

Excluded area of the most favorable configuration for the chiral two-segment HGO particle (with 

the intramolecular segment dihedral angle the segment length-to-breadth ratio, and the 

intramolecular segment-segment separation) and the corresponding twist angle as a function of 

distance along the helical axis chosen as a z axis for = 10, = 10 and . In lower panel the 

horizontal dashed segments indicate the most favourable twist angles, while the continuous line is a 

guide to the eye which is given by 
 z

2

 .  The excluded area and the distances are in 

dimensionless unit: 0

2

0

* /,/   
excexc AA  and 0

* /zz  ,  where 0 is the segment breadth.    
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Figure 4) 

Excluded area of a chiral two-segment HGO particle (with the intramolecular segment dihedral 

angle the segment length-to-breadth ratio, and the intramolecular segment-segment separation)  

as a function of distance along the direction of helical axis chosen as a z axis for different value of 

wave number (q) for  and: a) q* = 0.1 (dashed), 0.2 (continuous) and 0.3 (short 

dashed) for   b) q*=0.05 (dashed), 0.2 (continuous) and 0.3 (short dashed) for, c) 

q*=0.05 (dashed), 0.15 (continuous) and 0.25 (short dashed) for . The excluded area, centre-to-

centre segment separation, distance along the helical axis, and wave number are in dimensionless 

units: 0

2

0

* /,/   
excexc AA , 0

* /zz  ,  and 0

* qq  , where 0  is the segment breadth. 

 

Figure 5) 

The wave number Pq /2  (inverse pitch) of a system of chiral two-segment HGO particles as a 

function of: a) the intramolecular segment dihedral angle ; and  b) the segment length-to-breath 

ratio are shown in the case of perfect 2D order  for an intramolecular segment-segment separation 

of 
= 2.  The continuous curves represent the results of numerical calculations (cf. Eq. (9)), while 

the dashed curves the results of the Frank analysis (cf. Eq. (21)). The numerically obtained pitches 

are depicted in the insets. The wave number and the pitch are in dimensionless units:   0

* qq  , 

0

* /PP  , where 0  is the segment breadth. 

Figure 6) 

The effect of varying the length-to-breath ratio  of a segment for a system of chiral two-segment 

HGO particles (with the intramolecular segment dihedral angle and the intramolecular 

segment-segment separation)  on the helical period of the nematic nematic phase. a) The wave 

number Pq /2  (inverse pitch) is plotted as a function dihedral angle  for = 10 and 
= 2. 

The values of  are indicated on the figure. b) The dependence of the wave number on the length-to-

breath ratio  for some values of dihedral angle. The continuous curves correspond to numerically 
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obtained using Eq. (9), while the dashed curves are the results of the Frank analysis (cf. Eq. (22). In 

the insets we show the dependence of the  pitch 0

* /PP  , where 0  is the segment breadth, as a 

function of the  dihedral angle and   obtained with Eq. (9).     

 

 

 

Figure 7) 

The effect of varying the intramolecular segment-segment distance  of a system of chiral two-

segment HGO particles (with the intramolecular segment dihedral angle and the segment 

length-to-breath ratio)  on the helical structure of the chiral nematic phase in the case of dihedral 

angles of 5°, 10° and 20° for different values of molecular elongations: a) = 5 and b) = 10  . 

The curves are the results obtained with Eq. (9). In the inset we show the corresponding pitch 

0

* /PP   and a function of  

Figure 8) 

Dihedral angle dependence of the bifurcation packing fraction of the isotropic-chiral nematic 

phase transition for a chiral two-segment HGO system (with the intramolecular segment dihedral 

angle the segment length-to-breath ratio, and the intramolecular segment-segment separation)  

with 1/ 0

*   , where 0  is the segment breadth.   The values of the aspect ratios are indicated 

on the curves.  The results are obtained using Eqs. (15) and (16). 

Figure 9) 

The effect of varying the anisotropy of one of the segments () on the bifurcation packing fraction 

and wave number q of the isotropic-chiral nematic phase transition for a chiral two-segment HGO 

system (with the intramolecular segment dihedral angle the segment length-to-breadth ratio, 

and the intramolecular segment-segment separation)  with = 2 and = 5.  Values of the dihedral 

angle of  5, 10, and 20 are examined (from bottom to top in the figures). In a) the curves for 
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= 5 and = 10 cannot be distinguished at the current resolution. The curves are obtained with 

Eqs. (15) and (16). The dashed curves in b) represent the solutions of perfect order approximation (cf. 

Eq. 22). Dimensionless units are employed: 0/  and 0

* qq  , where 0  is the segment 

breadth.   

 

 

Figure 10) 

The free energy density ( VFvf /0

*  ) as a function of packing fraction of the three different 

phases for a chiral two-segment HGO system (with the intramolecular segment dihedral angle 

the segment length-to-breadth ratio, and the intramolecular segment-segment separation)  with 

= 10 and 1/ 0

*   , where 0  is the segment breadth. The values of the dihedral angle are 

= 10 in a) and = 30 in b). In the inset we represent the order parameter     







 




2

0

2cos dhS  

as a function of packing fraction for nematic and chiral nematic phases. The curves are the results of 

the free energy minimization of Eq. (14). 

Figure 11) 

The packing fraction dependence of the wave number q of the chiral nematic phase for a chiral 

two-segment HGO system (with the intramolecular segment dihedral angle the segment length-

to-breadth ratio, and the intramolecular segment-segment separation)  with = 10, = 1, = 10  

and = 10, = 1, = 30. The continuous curves represent the results of the free energy 

minimization of Eq. (14), while the dashed curves are the results of Eq. (9). In the inset we highlight 

the density dependence of the wave number q for the system of = 10, = 1, = 30. 

Dimensionless units are employed: 0/  and 0

* qq  , where 0  is the segment breadth.    
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Figure 12) 

The packing fraction dependence of the order parameter     







 




2

0

2cos dhS  and the wave 

number q  of the twisted nematic phase for a chiral two-segment HGO system (with the 

intramolecular segment dihedral angle the segment length-to-breadth ratio, and the 

intramolecular segment-segment separation)  with = 5, = 2, = 30  for a varying anisotropy of 

the second segment . The curves are the results of the free energy minimization of Eq. (14), while 

the dashed curves are the results obtained with Eq. (9). The values of the segment anisotropy are = 

5, 3, 2, and 1.5 from left to right in a),  and from top to bottom in b). Dimensionless units are 

employed: 0/  and 0

* qq  , where 0  is the segment breadth.    
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Figure 1. 
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Figure 2.  
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Figure 4 a) 
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Figure 4 b) 
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Figure 4 c) 
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Figure 5 b)  
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Figure 6 b) 
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Figure 12 b) 
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