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SUMMARY

Fokker-Planck equations, along with stochastic differential equations, play

vital roles in physics, population modeling, game theory and optimization (finite

dimensional or infinite dimensional). In this thesis, we study three topics connected

to them, both theoretically and computationally.

(1) Optimal transport on finite graphs [34, 36, 38];

(2) Numerical algorithms for constrained optimal control [35, 37, 62];

(3) Analysis of stochastic oscillators [42].

This thesis is arranged as follows:

Chapter II gives the necessary mathematics background, which contains a brief

survey of Fokker-Planck equations, gradient flows, optimal control and optimal trans-

port. Through them, we design and analyze practical algorithms for real world prob-

lems.

Chapter III is the theoretical heart of the thesis. In recent years, optimal trans-

port has been considered by many authors and is essential in geometry and partial

differential equations. We consider a similar setting for discrete states which are on

a finite but arbitrary graph. By defining a discrete 2-Wasserstein metric, we derive

gradient flows of discrete free energies. We name gradient flows as Fokker-Planck

equations on graphs, which are ordinary differential equations. Furthermore, we ob-

tain exponential convergence result for such gradient flows. This derivation provides

tools for graphs’ functional inequalities, “geometry” analysis of graphs, modeling in

game theory (Chapter IV) and numerics for nonlinear partial differential equations

(Chapter V).

x



Chapter VI is mainly on the computational part. It proposes a new algorithm,

called method of evolving junctions (MEJ), to compute optimal solutions for a class

of constrained optimal control problems. The main idea is that through the geomet-

ric structures of optimal solutions, we convert the infinite dimensional minimization

problem into finite dimensional optimizations. Then we apply the intermittent dif-

fusion, a stochastic differential equation based global optimization method, to find

the global optimal solution. By numerical examples, MEJ can effectively solve many

problems in Robotics, including the optimal path planning problem in dynamical

environments and differential games.

Chapter VII concerns on modeling problem for stochastic oscillator. We introduce

a new type of noise for the stochastic van der Pol oscillator. We show that the

perturbed solutions under this new noise are globally bounded. Furthermore, we

derive a pair of Fokker-Planck equations for the new noise model.
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CHAPTER I

INTRODUCTION

1.1 Optimal transport on finite graphs

Consider an infinite dimensional minimization problem in kinectic mechanics [2, 94,

95]

min
ρ(x)

∫

Rd

V (x)ρ(x)dx+
1

2

∫

Rd

∫

Rd

W (x, y)ρ(x)ρ(y)dxdy + β

∫

Rd

ρ(x) log ρ(x)dx

subject to
∫

Rd

ρ(x)dx = 1, ρ(x) ≥ 0, x ∈ R
d,

where the variable ρ(x) is a probability density function supported on R
d, V : Rd → R,

W : Rd × R
d → R are given functions with W (x, y) = W (y, x) for any x, y ∈ R

d.

Recently, using the viewpoint of optimal transport, the above minimization prob-

lem has an interesting interpretation. Equipping the probability space P(Rd) with the

2-Wasserstein metric, the gradient flow of the above objective functional (named free

energy) forms a nonlinear partial differential equation (PDE), which is the Fokker-

Planck equation [4, 58, 79]

∂ρ

∂t
= ∇ · [ρ∇(V (x) +

∫

Rd

W (x, y)ρ(t, y)dy)] + β∆ρ.

Problem 1: Can we establish a similar approach on discrete states?

In details, we consider a simple finite graph G = (V,E), where V = {1, 2, · · · , n} is

the vertex set and E is the edge set. The graph G is associated with a probability set

P(G) = {(ρi)ni=1 |
n

∑

i=1

ρi = 1, ρi ≥ 0},

and an objective function, named discrete free energy

F(ρ) =
n

∑

i=1

viρi +
1

2

n
∑

i=1

n
∑

j=1

wijρiρj +
n

∑

i=1

ρi log ρi,

1



where (vi)
n
i=1 is a constant vector and (wij)1≤i,j≤n is a given symmetric matrix.

By this setting, how can we derive the Fokker-Planck equation as the gradient flow

of discrete free energy on probability set? In other words, consider the optimization

min
ρ

n
∑

i=1

viρi +
1

2

n
∑

i=1

n
∑

j=1

wijρiρj +
n

∑

i=1

ρi log ρi s.t.
n

∑

i=1

ρi = 1, ρi ≥ 0, i ∈ V.

What is the gradient flow of the objective function associated with graph G’s structure?

In the literature, the optimal transportation on discrete states is certainly not a

new concept. Ollivier introduces a 1-Wasserstein metric [77], which can not be applied

to Fokker-Planck equation directly; Erbar and Maas [43, 66], Mielke [71] consider a

2-Wasserstein metic on discrete states, which is essential to analyze linear Markov pro-

cesses. However, if we consider the discrete interaction energy 1
2

∑n

i=1

∑n

j=1wijρiρj,

all of above approaches can not answer problem 1 clearly.

In this thesis, motivated by [27], we fully understand problem 1 from the dynamical

viewpoint. Based on a new “discrete 2-Wasserstein metric”, we derive the gradient

flow of F(ρ):

dρi
dt

=
∑

j∈N(i)

(Fj(ρ)− Fi(ρ))+ρj −
∑

j∈N(i)

(Fi(ρ)− Fj(ρ))+ρi, (1)

where Fi(ρ) =
∂
∂ρi

F(ρ) and (h)+ = max{h, 0}. We call (1) the Fokker-Planck equation

on a finite graph.

2



M

P(M)

G

P(G)

Length space Graph

Numerics

Wasserstein metric Model dependence metric

Graph Otto calculusOtto calculus

Fokker-Planck equation

Stochastic process Markov process

Figure 1: Derivation

There are many reasons why we say that (1) is a gradient flow: (i) F(ρ) is a

Lyapunov function of (1),

d

dt
F(ρ(t)) = −

∑

(i,j)∈E
(Fi(ρ)− Fj(ρ))

2
+ρi ≤ 0;

(ii) The minimizers of F(ρ), discrete Gibbs measures1, are equilibria of (1). Thus, a

natural question arises: if ρ0 converges to a strict local minimizer ρ∞, how fast is the

convergence?

Problem 2: Can we analyze the convergence speed of (1) to a Gibbs measure?

From differential geometry, we know that the convergence rate of gradient flow de-

pends on the Hessian operator of the free energy F(ρ) on manifold. Unfortunately,

1ρ∗ is a discrete Gibbs measure, if it solves the fixed point problem:

ρ∗i =
1

K
e−

vi+
∑n

j=1 wijρ
∗

j
β , where K =

n
∑

i=1

e−
vi+

∑n
j=1 wijρ

∗

j
β .

3



this is an open problem in continuous states2. For a special choice of interaction

potential W (x, y) := W (x − y), Carrillo, McCann and Villani [23] discover a nice

formula for the Hessian operator, from which they prove an exponential convergence

result.

In this thesis, motivated by [23], Villani’s open problem and the dynamical view-

point, we fully solve the above problem 2. We derive a formula, which plays the role

of “discrete 2-Wasserstein metric” at discrete Gibbs measures on finite graphs.

Definition 1 Let fij :=
∂2

∂ρi∂ρj
F(ρ) and

hij,kl := fik + fjl − fil − fjk for any i, j, k, l ∈ V .

We define

λF(ρ) := min
(Φi)ni=1

∑

(i,j)∈E

∑

(k,l)∈E
hij,kl(Φi − Φj)+ρi(Φk − Φl)+ρk

s.t.
∑

(i,j)∈E
(Φi − Φj)

2
+ρi = 1.

Based on Definition 1, we show that if the Gibbs measure ρ∞ is a strictly local

minimizer of free energy and ρ0 is in the attraction region of ρ∞, then

F(ρ(t))−F(ρ∞) ≤ e−Ct(F(ρ0)−F(ρ∞)), (2)

where C is a positive constant depending on ρ0 and graph G. Moreover, we prove

that the discrete free energy decreases exponentially with asymptotic dissipation rate

2λF(ρ
∞).

We address problem 1 and 2 as follows. In chapter 3, we discuss mainly the

theoretical derivation and convergence result of (1). Besides those, we study the

following problems.

2See Villani’s open problem 15.11 in [95]: Find a nice formula for the Hessian of the functional
F(ρ).

4



• In section 3.2.4, we show the Hodge decomposition of discrete 2-Wasserstein

metric; In section 3.5, we use the convergence result to prove several functional

inequalities on finite graphs.

• In section 3.8, motived by the convergence result and Villani’s open problem,

we derive a formula for Hessian operator of free energy at the Gibbs measure

in continuous states.

Furthermore, we demonstrate that (1) provides tools for many applications.

• In chapter 4, we derive new evolutionary dynamics in game theory;

• In chapter 5, we introduce new numerical schemes for a certain type of nonlin-

ear PDEs, including nonlinear Fokker-Planck equations and nonlinear diffusion

equations.

1.2 A new algorithm for constrained optimal control

Consider the other type of infinite dimensional optimization problem

min
x,u

∫ T

0

L(x(t), u(t), t)dt+ ψ(x(T ), T ), (3)

where the state, control variable x(t), u(t) are subject to a dynamic system and phase,

control constraints

ẋ = f(x(t), u(t), t), t ∈ [0, T ]; x(0) = x0, x(T ) = xT ;

φ(x(t), t) ≥ 0, ϕ(u(t), t) ≥ 0, t ∈ [0, T ].

Many engineering problems, including path-planning problem in Robotics, can

be formulated into the framework of (3), known as optimal control problems with

constraints. Because the complexity of those applications, few of them can be solved

analytically. Thus numerical methods are often employed. Traditionally, the methods

are divided into three categories, (1) state-space (Hamilton-Jacobi-Bellman equa-

tions) [12, 74]; (2) indirect (Pontryagin’s Maximum Principle) [9, 21, 64, 70]; (3)

5



direct methods (Nonlinear programming) [40, 45, 49, 75]. However, there are some

well-known limitations of the above three general methods. Namely, HJB approach,

which gives the global solution, can be computationally expensive and suffers from the

notorious problem known as “curse of dimensionality”. Indirect methods, which find

local optimal solutions, is numerically painful to handle constraints; Direct methods

require finer discretization (smaller time steps) if better accuracy is expected, and

this leads higher computational cost.

Problem 3: Can we derive a new fast alogrthim for (3)?

In this thesis, for a special class of (3), we design a new method, called Method

of Evolving Junctions (MEJ), to find the global optimal path. MEJ is built on

the following facts. All local and global optimal paths share a similar geometric

structure called Separable, meaning the path can be partitioned into a finite number

of segments, on which the constraints are either active or inactive. There is no

switching between active and inactive inside each segment. We call the partition

points junctions. Using those junctions, we can reduce the optimal control to a finite

dimensional optimization. Such a reduction allows us to find global solution(s) by

SDEs with given initial values.

In chapter 6, we demonstrate MEJ though several numerical examples, including

linear quadratic controls, optimal path planning problems in dynamical environments,

shortest path problems and differential games.

1.3 Analysis for stochastic oscillators

Classical theories [8, 46] predict that solutions of differential equations will leave any

neighborhood of a stable limit cycle, if white noise is added to the system. In reality,

many engineering systems modeled by second order differential equations, like the

6



van der Pol oscillator














dx = ydt

dy = [α(1− x2)y − x]dt+ ǫdWt

show incredible robustness against noise perturbations, and the perturbed trajectories

remain in the neighborhood of a stable limit cycle for all times of practical interest

[26].

Problem 4: Can we propose a new model of noise to bridge this discrepancy

between theory and practice?

In this thesis, we introduce a new model: The key is to consider a new event set:

B = { ω | sup
|t−s|≤T

|Wt(ω)−Ws(ω)| ≤M} .

where T and M are two given positive constants, t and s are any two instants of

time at most T -apart. Restricting to perturbations within this new class of noise,

we consider stochastic perturbations of second order differential systems that –in

the unperturbed case– admit asymptotically stable limit cycles. We show that the

perturbed solutions are globally bounded and remain in a tubular neighborhood of

the underlying deterministic periodic orbit. In addition, we define stochastic Poincaré

map(s), and further derive Fokker-Planck equations under the new noise. We show

all these results in chapter 7.

7



CHAPTER II

PRELIMINARY IN MATHEMATICS

In this chapter, we briefly introduce the mathematics needed in this thesis, which

contains Fokker-Planck equations, gradient flows, optimal control and optimal trans-

portation. These are highly related topics, which are widely used in applied math-

ematics. Based on them, we design algorithms for real world problems. To simply

the illustration, we don’t address on their regularity issues and just perform formal

calculations.

2.1 Fokker-Planck equations

This thesis mainly focus on the Fokker-Planck equation, which is basic in many

subjects, including probability, physics, and modeling. It has the form

∂ρ

∂t
+∇ · (f(x)ρ) = β∇ · (AAT∇ρ), x ∈ R

d, (4)

where AAT = A(x)A(x)T is a nonnegative definite (diffusion) matrix and f(x) ∈ R
d

is a (drift) vector function on x. Here the unknown ρ(t, x) is a probability density

function for given time t, which keeps non-negativity and conserves the total proba-

bility.

Underlying (4) is the stochastic differential equation

dXt = f(Xt)dt+
√

2βA(Xt)dWt, Xt ∈ R
d,

whereWt is a standard Wiener process (Brownian motion). The Fokker-Planck equa-

tion describes the evolution of the transition probability of Markov process Xt. Here

ρ(t, x)dx := Pr(Xt ∈ dx|X0); ∀x ∈ R
d, t > 0 .

8



The underlying state Ω of the Fokker-Planck equation can be a variety other than

R
d. For example, Ω can be a bounded open set, where the boundary can be handled

with either zero-flux condition or periodicity conditions; Ω can aslo be equipped with

a differential structure, such as the Riemannian manifold.

2.2 Gradient flows

Gradient flows are fundamental evolutionary systems associated with (finite or infinite

dimensional) optimization problems, which provide the basis for numerical intituation

methods, known as the gradient descent method. In this thesis, we will discuss this

concept a lot.

Connections with optimization Consider an optimization problem

min
x∈Rd

V (x),

where V (x) ∈ C2(Rd) is called energy (objective) function. A natural way to solve

this minimization is through the gradient flow

dxt = −∇V (xt)dt. (5)

Notice that V (x) is a Lyapunov function of (5).

d

dt
V (xt) = −(∇V (xt),∇V (xt)) ≤ 0.

So if V (x) is a strictly convex function, then the gradient flow (5) converges to the

minimizer. In numerical methods, the steepest descent method arises from this prop-

erty.

But, things are not always perfect. In applications, one often wishes to find the

global minimizer of a non-convex energy function. Now, even assuming that a global

minimizer exists, can we guarantee a numerical method finding it? Unfortunately,

there is no way obtaining a global minimizers other than by comparison of all local

ones.

9



However, the Fokker-Planck equation

∂ρ

∂t
−∇ · (ρ∇V (x)) = β∆ρ (6)

connects this question by using the probability. This connection can be understood

at two levels. On one hand, the SDE associated with (6) is a gradient flow with

stochastic perturbation

dXt = −∇V (Xt)dt+
√

2βdWt.

The solution of this SDE has a positive probability to jump out of any basins of

attraction of local minimizers; On the other hand, the equilibrium of (6) (∂ρ
∂t

= 0),

named Gibbs measure, has an explicit formula

ρ∗ =
1

K
e−

V (x)
β , K =

∫

Rd

e−
V (x)
β dx.

The asymptotic (β → 0) behavior of the Gibbs measure is Dirac mass, which is con-

centrated at global minimizers. Based on the above two hints, people have designed

many global optimization techniques.

What’s more, there is an intrinsic connection between (6) and the optimization

problem. That is the PDE (6) is a gradient flow of a stochastic optimization in

“probability manifold”1. Here the stochastic optimization means

min
r.v. X∈Rd

EV (X) + βH(X)

where X is a random variable with probability density function ρ(x) ∈ P(Rd) and

EV (X) =

∫

Rd

V (x)ρ(x)dx, H(X) =

∫

Rd

ρ(x) log ρ(x)dx.

Riemannian structure To understand this intrinsic connection, we review the def-

inition of gradient flows in a finite dimensional smooth Riemannian manifold (M, g),

where g defines a scalar inner product on the tangent space TxM with x ∈ M.

1Probability set P(Rd) with a 2-Wasserstein metric.
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The differential structure induces gradient flows, since the inner product can iden-

tify the gradient of energy V : M → R on the manifold via two formulas

• Tangency condition:

gradMV (x) ∈ TxM;

• Duality condition:

g(gradMV (x), σ) = dV (x) · σ,

where σ ∈ TxM, dV (x) is the differential of V (x) and the dot in R.H.S means

the direction of derivative along σ.

Then the gradient flow of V on (M, g) forms

dxt = −gradMV (xt)dt.

2.3 Optimal control

Optimal control is an infinite dimensional optimization problem with applications in

physics and engineering. It seeks to determine the input (control) to a dynamical

system that optimizes a given performance functional with certain constraints. We

briefly illustrate several techniques for solving it via a special example.

Consider an optimal control problem

inf
v
{
∫ 1

0

L(t, x, v)dt : ẋ(t) = v(t), x(0) = x0, x(1) = x1},

where the minimizer is among all smooth curves, x : [0, 1] → R
d, and the running

cost L : [0, 1] × R
d × R

d → R is smooth, which is called Lagrangian. Denote

J (x) =
∫ 1

0
L(t, x, v)dt as the cost functional.

There are two angles to solve this problem. The first angle is calculus of variation,

through which we obtain an ODE system for a local minimizer. Let x be a minimizer

and h(t) be an arbitrary function with h(0) = h(1) = 0. Substituting xǫ(t) = x(t) +

11



ǫh(t) into the cost functional, J (xǫ) becomes a function of ǫ, whose stationary point

is at ǫ = 0.

0 =
d

dǫ
J (xǫ)|ǫ=0 =

∫ 1

0

(

∇xL(t, x, v) · h(t) +∇vL(t, x, v) · ḣ(t)
)

dt

=

∫ 1

0

(

∇xL(t, x, v)−
d

dt
∇vL(t, x, v)) · h(t)dt.

Since h is an arbitrary function, the minimizer x satisfies

∇xL(t, x, v)−
d

dt
∇vL(t, x, v) = 0. (7)

(7) is known as the Euler-Lagrange equation. The L.H.S. of (7) is also called the

first variation formula of J with respect to x at point t, denoted as δ
δx(t)

J(x).

Moreover, we can transfer the Euler-Lagrange equation into a Hamiltonian sys-

tem, which enables to access its rich mathematical structure. The Hamiltonian H is

constructed via the Legendre transform:

p = ∇vL(t, x, v), H(t, p, x) = sup
v∈Rd

(p · v − L(t, x, v)).

Through it, (7) is equivalent to

ṗ(t) =−∇xH(t, p(t), x(t))

ẋ(t) =∇pH(t, p(t), x(t)).

(8)

(8) is a special case of Pontryagin maximum principle.

The second angle is dynamic programming, from which we derive a nonlinear

partial differential equation, named Hamilton-Jacobi equation, for the global min-

imizer. Define an optimal cost-to-go function

Φ(t, x) = inf
v
{
∫ t

0

L(t, x(s), v(s))dt : x(t) = x, x(0) = x0}.

By Bellman’s principle of optimality, the sub-arc of optimal path is also optimal.

Going from time t−∆t to t,

Φ(t, x) = inf
v
{
∫ t

t−∆t

L(t, x(s), v(s))dt+ Φ(t−∆t, x(t−∆t))}

= inf
v
{L(t, x, v)∆t+ Φ(t, x)− ∂Φ

∂t
∆t−∇xΦ · v∆t}+ o(∆t)

12



where the second equality is by Taylor expansion. If we cancel out Φ(t, x), divide ∆t

and let ∆t→ 0, then we obtain an equation

∂Φ

∂t
+ sup

v

{∇xΦ · v − L} = 0. (9)

Notice that (9) is a special case of Hamilton-Jacobi-Bellman equation (HJB).

We illustrate these two viewpoints by a simple Lagrangian, L(t, x, v) = v2. Then

the Euler-Lagrange equation (7) becomes

ẋ(t) = v(t), v̇(t) = 0;

While the Hamilton-Jacobi equation forms















ẋ(t) = ∇xΦ(t, x),

∂Φ
∂t

+ 1
2
(∇Φ)2 = 0.

(10)

Notice that the above two system give the same solution: x(t) = x0 +
d(x0,x1)
t1−t0

and

Φ(t, x) = d(x0,x)
t

, where d is the Euclidean distance.

2.4 Optimal transport

Optimal transport is the other infinite dimensional optimization problem. It seeks

to find the optimal cost functional between two probability measures. Nowadays, it

provides more and more powerful tools in both pure and applied mathematics.

The problem2 is to find the optimal transportation plan between two probability

measures

C(µ, ν) = inf
π
{
∫

c(x, y)dπ(x, y) : π with marginals µ and ν} (11)

where c(x, y) is the cost function for transporting one unit of mass from x to y and

µ, ν are two probability measures supported on continuous states. The continuous

2Kantorovich’s formulation
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state can be a variety, including R
d, Riemannian manifold, and a metric space. For

concreteness, we use R
d to illustrate.

Before introducing the associated theory, we illustrate (11) in its “discrete” ver-

sion. The optimal transportation between discrete measures is a linear programing

problem

min
πij

n
∑

i=1

n
∑

j=1

cijπij s.t.
n

∑

i=1

πij = µi,

n
∑

j=1

πij = νi, πij ≥ 0. (12)

From the knowledge of optimization, (12)’s dual problem becomes

max
Φ,Ψ

n
∑

i=1

Ψiνi −
n

∑

j=1

Φjµj s.t. Ψi − Φj ≤ cij.

So it is not hard to guess that the duality problem for (11)

C(µ, ν) = sup
Ψ,Φ

{
∫

Ψdν −
∫

Φdµ : Ψ(x)− Φ(y) ≤ c(x, y)}.

The mathematical structure of the dual problem paves enough regularities to show

the existence of (11)’s minimizer. But there is no end. Duality provides more insight

for the original problem (12). We explain this by a special cost function, which is a

square distance function

c(x, y) = d(x, y)2,

where d(x, y) is the Euclidean distance.

2.4.1 2-Wasserstein metric

Under this cost function,

C(µ, ν) = inf
π
{
∫

d(x, y)2π(x, y) : π with marginals µ and ν}.

W2(µ, ν) :=
√

C(µ, ν) introduces a metric on the probability set P(Rd). Unlike the

“discrete” problem (12), the continuous underlying space provides a way to rewrite

the transport problem (11) into a time-dependent version.
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We explain this by one simple observation: The distance between two Dirac mea-

sures (point measure) is the two points’ Euclidean distance. Recall that the Euclidean

distance has a a time-dependent version,

d(x, y)2 = inf{
∫ 1

0

v(t)2dt : ẋ(t) = v(t), x(0) = x, x(1) = y},

whose solution satisfies (10).

Can we generalize more from the observation of Dirac measures? The answer is

yes. “The geodesic in law space is the law of geodesic in underlying spaces”3. More

precisely, 2-Wasserstein metric has a time-dependent version, which satisfies

W2(µ, ν)
2 = inf{

∫ 1

0

∫

v2ρdxdt :
∂ρt
∂t

+∇ · (vρ) = 0, ρ0 ∼ µ, ρ1 ∼ ν}, (13)

where ρt represents the probability density function at time t. From the duality

of (13) and (11), it is known that the statical and time dependence definitions are

equivalent. Furthermore, the minimizer of (13) satisfies a pair of PDEs















∂ρt
∂t

+∇ · (∇Φtρt) = 0

∂Φt

∂t
+ 1

2
(∇Φt)

2 = 0

(14)

where ρ0 ∼ µ, ρ1 ∼ ν; the first equation is the continuity equation with velocity ∇Φt

and the second equation is a HJB equation, providing the equation for the velocities.

(14) can be viewed as geodesic equations in the probability manifold, which connects

measures µ and ν.

2.4.2 Otto calculus

The 2-Wasserstein metric provides a way to treat probability set P(Rd) as an infinite

dimensional “Riemannian” manifold. Through that, we can connect a certain type of

Fokker-Planck equations as gradient flows of scalar functional (named free energies).

The derivation is named as Otto calculus [95].

3Here the law means the probability measure.
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Simply put, we identify the tangent space of P(Rd) at ρ(x) with potential functions

on R
d (modulo additive constants). In short, a potential function Φ(x) represents a

formula −∇· (ρ∇Φ) in tangent space TρP(Rd). And the inner product in probability

manifold is endowed by

(Φ1,Φ2)ρ :=

∫

∇Φ1 · ∇Φ2ρ(x)dx.

This inner product leads a way to define the gradient of scalar functional on proba-

bility manifold.

We illustrate the above process by a special example. Consider a scalar functional

F(ρ) =

∫

Rd

V (x)ρ(x)dx+ β

∫

Rd

ρ(x) log ρ(x)dx.

Then the gradient of this functional on the probability manifold satisfies

d

dt
F(ρt)|t=0 = (gradP(Rd)F(ρ),Φ)ρ

where ρt is the solution of equation (14) with initial measure ρ. Then

d

dt
F(ρt)|t=0 =

∫

Rd

∂

∂t
{V (x)ρt}dx+ β

∫

Rd

∂

∂t
{ρt log ρt}dx|t=0

=

∫

Rd

∇Φ · ∇(V (x) + β log ρ(x))ρ(x)dx,

where the second equality is through integration by parts. From the identification of

inner product, gradP(Rd)F(ρ) is associated with the potential function V (x)+log ρ(x),

representing formula −∇ · [ρ∇(V (x) + β log ρ)]. In other words, the gradient flow of

F(ρ) is

∂ρ

∂t
= −gradP(Rd)F(ρ) = ∇ · [ρ∇(V (x) + β log ρ)],

which is exactly (6).4

4We summarize the above viewpoint as “The law of gradient flow is the gradient flow in law
space”.
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In general, for any functional F : P(Rd) → R, gradP(Rd)F is associated with

δ
δρ(x)

F(ρ)5, meaning that the gradient flow of F(ρ) is

∂ρ

∂t
= ∇ · (ρ∇ δ

δρ(x)
F(ρ)). (15)

(15) contains a class of PDEs, including nonlinear Fokker-Planck equations.

5It is the first variational formula, (L.H.S. of (7)). Especially, if F(ρ) =
∫

Rd L(x, ρ)dx,

δ

δρ(x)
F(ρ) =

∂

∂ρ
L(x, ρ).
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CHAPTER III

PART 1: OPTIMAL TRANSPORT ON FINITE GRAPHS

This chapter aims to connect Fokker-Planck equations and optimal transport on dis-

crete underlying states, which are finite graphs.

We briefly review some facts on optimal transport theory [2, 94, 95]. Consider a

minimization problem

min
ρ(x)∈P(Rd)

F(ρ) =

∫

Rd

V (x)ρ(x)dx+
1

2

∫

Rd

∫

Rd

W (x, y)ρ(x)ρ(y)dxdy+β

∫

Rd

ρ(x) log ρ(x)dx.

Here the variable ρ(x) is a probability density function supported on R
d and the

objective scalar functional is called free energy, with V : Rd → R, W : Rd × R
d →

R and W (x, y) = W (y, x) for any x, y ∈ R
d. Recently, by equipping probability

set P(Rd) with a 2-Wasserstein metric, the gradient flow of the above minimization

problem forms a nonlinear Fokker-Planck equation [4], which is commonly considered

in granular media [13, 23]

∂ρ

∂t
= ∇ · [ρ∇(V (x) +

∫

Rd

W (x, y)ρ(t, y)dy)] + β∆ρ. (16)

There are many ways to observe (16)’s gradient flow structures. For example, the

free energy is (16)’s Lyapunov function,

d

dt
F(ρ(t, x)) = −

∫

Rd

(∇F (x, ρ))2ρ(t, x)dx, F (x, ρ) =
δ

δρ(x)
F(ρ),

where δ
δρ(x)

is the first variational formula; Under suitable conditions of V andW , the

solution ρ(t, x) converges to the local minimizer of free energy, named Gibbs measure.1

1ρ∗(x) is a Gibbs measure if it solves the fixed point problem

ρ∗(x) =
1

K
e−

V (x)+
∫

Rd
W (x,y)ρ∗(y)dy

β , where K =

∫

Rd

e−
V (x)+

∫

Rd
W (x,y)ρ∗(y)dy

β dx.
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In addition, Carrillo, McCann and Villani show that (16)’s solution converges to the

Gibbs measure exponentially [23].

In this chapter, we plan to establish a similar approach on a finite graph. Here

we consider a simple finite undirected graph G = (V,E), where V = {1, 2, · · · , n} is

the vertex set, E is the edge set which contains no self loops or multiple edges. We

consider the probability set supported on all vertices of G

P(G) = {(ρi)ni=1 |
n

∑

i=1

ρi = 1, ρi ≥ 0},

and a discrete free energy F : P(G) → R. For illustration, we consider mainly

F(ρ) = V(ρ) +W(ρ) +H(ρ),

where V(ρ), W(ρ), H(ρ) represents the discrete linear potential energy, interaction

potential energy and linear entropy, respectively, which means

V(ρ) =
n

∑

i=1

viρi, W(ρ) =
1

2

n
∑

i=1

n
∑

j=1

wijρiρj, H(ρ) =
n

∑

i=1

ρi log ρi.

Here (vi)
n
i=1 and (wij)1≤i,j≤n is a given constant vector and constant symmetric matrix.

Under this setting, can we derive the gradient flow of discrete free energy F(ρ) on

P(G)? In other words, we consider the optimization problem

min
ρ

F(ρ) s.t.
n

∑

i=1

ρi = 1, ρi ≥ 0.

What is the gradient flow for the above optimization associated with the graph G’s

structure?

Despite optimal transport theory has been developed on continuous states, not

much is known on discrete states. There are naturally two difficulties. One is that,

although it is possible to define a metric on the discrete state, the graph is not a

length space, so we can not connect with gradient flow directly; the other is that

the finite graph often introduces more complicated neighborhood information. For

example, consider two sphere like graphs connected by one edge.
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In this chapter, we derive the gradient flow based on a discrete “2-Wasserstein

metric”. Because we are not able to follow the static metric’s definition in continuous

states, we adopt another way in the time dependent version, Benamou-Brenier formula

and up-wind scheme [27], to give the metric’s definition.

M

P(M)

G

P(G)

Length space Graph

Numerics

Wasserstein metric Model dependence metric

Graph Otto calculusOtto calculus

Fokker-Planck equation

Stochastic process Markov process

With the metric in hand, we derive the gradient flow of the discrete free energy

dρi
dt

=
∑

j∈N(i)

(Fj(ρ)− Fi(ρ))+ρj −
∑

j∈N(i)

(Fi(ρ)− Fj(ρ))+ρi, for any i ∈ V , (17)

where Fi(ρ) := ∂
∂ρi

F(ρ), {·}+ = max{·, 0} and N(i) is all adjacent vertices (neigh-

borhood) of i.2 Since this process is motivated by Jordan, Kinderlehrer, and Otto

[58, 79], we name (17) as Fokker-Planck equations on finite graphs, which are ordi-

nary differential equations. There are several interesting questions associated with

the gradient flow (17):

2N(i) = {j ∈ V | (i, j) ∈ E}, where (i, j) means that there is an edge connecting vertices i and
j.
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(i) Does the free energy decrease along (17)? What are the equilibria of (17)?

(ii) If the gradient flow converges to a strictly local minimizer ρ∞, how fast is the

convergence rate?

Question (i) is simple. We observe that F(ρ) is a Lyapunov function of (17),

d

dt
F(ρ(t)) = −

∑

(i,j)∈E
(Fi(ρ)− Fj(ρ))

2
+ρi ≤ 0.

It is easy to show that discrete Gibbs measures3 are equilibria of (17). However,

question (ii) is tricky to answer. The optimization of discrete free energy may have

multiple minimizers (Gibbs measures), since the interaction energy can be non convex.

So, in general, it is not possible to find a uniform convergence rate for all initial

measures. It is natural to think of question (ii) in a dynamical way:

(iii) What is the asymptotic convergence rate for a given Gibbs measure?

We adopt the entropy dissipation method to answer (iii) [23, 68]. The concept

of “entropy”, introduced in [23], refers to the difference between two measures’ free

energies. However, we can not apply this method directly on a general free energy.

Since the method requires the explicitly formula of the Hessian operator of free energy

on probability manifold, it is still an open problem for general interaction energy4.

We apply the dynamical viewpoint to conquer this difficulty. That is we find

a formula λF(ρ) on finite graphs, see Definition 4 and Lemma 6, which plays the role

of the smallest eigenvalue of free energy’s “Hessian matrix” at Gibbs measure on

probability manifold. Based on it, we show that if the Gibbs measure ρ∞ is a strictly

3ρ∗ is a discrete Gibbs measure, if it solves the fixed point problem:

ρ∗i =
1

K
e−

vi+
∑n

j=1 wijρ
∗

j
β , where K =

n
∑

i=1

e−
vi+

∑n
j=1 wijρ

∗

j
β .

4Problem 15.11 in [95]: Find a nice formula for the Hessian of F(ρ).
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local minimizer of free energy and ρ0 is in the attraction region of ρ∞, then

F(ρ(t))−F(ρ∞) ≤ e−Ct(F(ρ0)−F(ρ∞)), (18)

where C is a positive constant depending on ρ0 and graph G’s structure. Moreover, we

prove that the discrete free energy decreases exponentially with asymptotic dissipation

rate 2λF(ρ
∞).

In previous works, Ollivier introduces a 1-Wasserstein metric [77], which assumes

that there is a metric on graph. It can not connect with Fokker-Planck equations.

Erbar and Maas [43, 66], and Mielke [71] consider a similar 2-Wasserstein metic on

discrete states, in which the probability set forms a smooth Riemannian manifold.

They provide tools to analyze some linear Markov processes and numerical schemes

for linear Fokker-Planck equations. However, our metric is different from them on two

levels. (1) Our metric is only piecewise smooth, which doesn’t satisfy A1, A5 condition

in [66]. (2) The Fokker-Planck equation associated with our metric keeps the log ρi

term, which deeply impacts the effect of the Laplacian operator. One one hand,

it keeps the gradient flow’s solution inside the probability manifold Po(G), and the

solution of (17) converges to the Gibbs measure automatically; One the other hand,

it induces a discrete version of Hessian matrix of free energy on metric manifold at

Gibbs measure.

We explain the plan of this chapter. We summarize our main results in section

3.1. We introduce the 2-Wasserstein metric in section 3.2. Based on such metric, we

derive the gradient flow of free energy in section 3.3. By dynamical viewpoint, we

show the exponential convergence result to Gibbs measures in section 3.4. Several

examples are discussed in 3.5.

3.1 Main results

In this section, we briefly introduce our main results.
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Discrete 2-Wasserstein metric First, we build a discrete 2-Wasserstein metric

from the time-dependent viewpoint, which is a discrete version of the Benamou-

Brenier formula:

Definition 2 (Discrete 2-Wasserstein metric) For any ρ0, ρ1 ∈ Po(G), we de-

fine

W2;F(ρ
0, ρ1)2 := inf

1

2

∫ 1

0

∑

(i,j)∈E
gij(ρ)(Φi − Φj)

2dt,

where the infimum is taken over piecewise C1 curves ρ : [0, 1] → Po(G) satisfying

continuity equation introduced by measurable vector function (Φi(t))
n
i=1 : [0, 1] → R

n,

dρi
dt

=
∑

j∈N(i)

gij(ρ)(Φi − Φj), ρ(0) = ρ0, ρ(1) = ρ1,

where Fi(ρ) :=
∂
∂ρi

F(ρ) and

gij(ρ) :=































ρi if Fi(ρ) > Fj(ρ), j ∈ N(i);

ρj if Fi(ρ) < Fj(ρ), j ∈ N(i);

ρi+ρj
2

if Fi(ρ) = Fj(ρ), j ∈ N(i).

Derivation of gradient flow Base on the 2-Wasserstein metric, we derive the gra-

dient flow of free energy on probability manifold.

Theorem 3 (Derivation) Given a simple finite graph G = (V,E) and free energy

F(ρ).

(i) The gradient flow of discrete free energy F(ρ) on the metric manifold (Po(G),W2;F)

is

dρi
dt

=
∑

j∈N(i)

ρj(Fj(ρ)− Fi(ρ))+ −
∑

j∈N(i)

ρi(Fi(ρ)− Fj(ρ))+

for any i ∈ V . Recall that Fi(ρ) =
∂
∂ρi

F(ρ).
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(ii) For any initial measure ρ0 ∈ Po(G), there exists a unique solution ρ(t) :

[0,∞) → Po(G) to equation (17) . Moreover, there is a constant ǫ > 0 de-

pending on ρ0, such that ρi(t) ≥ ǫ for all i ∈ V and t > 0.

(iii) The free energy F(ρ) is a Lyapunov function of (17). If ρ(t) is a solution of

(17) with initial measure ρ0 ∈ Po(G), then

d

dt
F(ρ(t)) = −

∑

(i,j)∈E
(Fi(ρ)− Fj(ρ))

2
+ρi ≤ 0.

Moreover, if ρ∞ = limt→∞ ρ(t) exits, then ρ∞ is a Gibbs measure, meaning that

ρ∞ solves the fixed point problem:

ρ∞i =
1

K
e−

vi+
∑n

j=1 wijρ
∞
j

β , where K =
n

∑

i=1

e−
vi+

∑n
j=1 wijρ

∞
j

β .

Remark 1 (i) introduces an explicit formula for the gradient flow; (ii) demonstrate

that (17) is a well defined ODE system; (iii) describes (17)’s gradient flow structure.

Remark 2 (ii) says more than that (17) is well defined. (ii) shows that the

boundary of P(G) is a repeller for (17), meaning that ρi(t) stays positive

for all i ∈ V and t > 0. This property is the key for the convergence

result.

Convergence result How fast is convergence occuring? Since there may exist mul-

tiple minimizers of the free energy, it is not possible to find a unique convergence rate

for all initial measures. Instead, we adopt a dynamical viewpoint. We introduce a

formula, which induces the asymptotic convergence rate of (17) on finite graphs.

Definition 4 Let fij :=
∂2

∂ρi∂ρj
F(ρ) and

hij,kl := fik + fjl − fil − fjk for any i, j, k, l ∈ V .

We define

λF(ρ) := min
Φ

∑

(i,j)∈E

∑

(k,l)∈E
hij,kl(Φi − Φj)+ρi(Φk − Φl)+ρk
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where the minimum is taken among all (Φi)
n
i=1 ∈ R

n with

∑

(i,j)∈E
(Φi − Φj)

2
+ρi = 1.

Based on this quantity λF(ρ), we derive (17)’s convergence result. More precisely,

we assume that ρ0 is in the attraction basin of the Gibbs measure ρ∞, meaning that

ρ(0) = ρ0 implies lim
t→∞

ρ(t) = ρ∞. (A)

Theorem 5 (Convergence) Assume (A) holds and λF(ρ
∞) > 0, then there exists

a constant C > 0, which depends on the initial measure ρ0 and graph structure G,

such that

F(ρ(t))−F(ρ∞) ≤ e−Ct(F(ρ0)−F(ρ∞)).

Moreover, the asymptotic convergence rate is 2λF(ρ
∞). In other words, for any suf-

ficient small ǫ > 0, there exists a constant time T > 0, such that when t > T ,

F(ρ(t))−F(ρ∞) ≤ e−2(λF (ρ∞)−ǫ)(t−T )(F(ρ(T ))−F(ρ∞)).

Remark 3 λF(ρ) plays the role of the smallest eigenvalue of free energy’s

“Hessian” matrix at Gibbs measure on metric manifold Po(G).

Analysis of dissipation rate What is the condition for λF(ρ
∞) > 0? We answer

this question by giving another expression for λF(ρ).

Lemma 6

λF(ρ) = min
Φ

{
(

˜divG(ρ∇GΦ)
)T

HessRnF(ρ) ˜divG(ρ∇GΦ) :
∑

(i,j)∈E
(Φi − Φj)

2
+ρi = 1},

where HessRnF(ρ) := ( ∂2

∂ρi∂ρj
F(ρ))1≤i,j≤n and

˜divG(ρ∇GΦ) :=
(

∑

j∈N(i)

(Φi − Φj)+ρi −
∑

j∈N(i)

(Φj − Φi)+ρj
)n

i=1
.
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Lemma 6 induces a clear relation between (17)’s convergence result and the convexity

of discrete free energy in R
n.

Lemma 7 If the matrix HessRnF(ρ) is positive definite at ρ ∈ Po(G), then λF(ρ) >

0. In particular, if we consider a linear entropy:

H(ρ) =
n

∑

i=1

ρi log ρi.

Then for any ρ ∈ Po(G),

λH(ρ) = min
Φ

{
n

∑

i=1

1

ρi
(divG(ρ∇GΦ)|i)2 :

∑

(i,j)∈E
(Φi − Φj)

2
+ρi = 1} > 0.

Lemma 7 implies the effect of linear entropy, based on which we prove the con-

vergence results of linear and nonlinear Fokker-Planck equations on graphs.

Corollary 8 (Linear Fokker-Planck equation) Consider the gradient flow (17)

of free energy

F(ρ) =
n

∑

i=1

viρi + β

n
∑

i=1

ρi log ρi,

whose unique Gibbs measure is

ρ∞i =
1

K
e−

vi
β , K =

n
∑

i=1

e−
vi
β .

Then there exists a constant C > 0, such that (18) holds with the asymptotic rate

2λF(ρ
∞).

Corollary 9 (Nonlinear Fokker-Planck equation) Consider the gradient flow (17)

of free energy

F(ρ) =
n

∑

i=1

viρi +
1

2

n
∑

i=1

n
∑

j=1

wijρiρj + β

n
∑

i=1

ρi log ρi,

with a semi positive definite matrix (wij)1≤i,j≤n. Then there exists a unique Gibbs

measure

ρ∞i =
1

K
e−

vi+
∑

j∈N(i) wijρ
∞
j

β , K =
n

∑

i=1

e−
vi+

∑
j∈N(i) wijρ

∞
j

β .

Furthermore, there exists a constant C > 0, such that (18) holds with the asymptotic

rate 2λF(ρ
∞).
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3.2 Discrete 2-Wasserstein metric

In this section, we define a discrete 2-Wasserstein metric, which is basic for deriving

the Fokker-Planck equations on graphs.

3.2.1 Motivation

We consider a discrete potential vector field on a graph G:

∇GΦ := (Φi − Φj)(i,j)∈E, where (Φi)i∈V ∈ R
n.

We shall build a discrete Benamou-Brenier formula5. For ρ ∈ Po(G), we introduce a

discrete divergence of ∇GΦ with respect to ρ:

divG(ρ∇GΦ) :=
(

−
∑

j∈N(i)

(Φi − Φj)gij(ρ)
)n

i=1
,

and an inner product of ∇GΦ with respect to ρ:

(∇GΦ,∇GΦ)ρ :=
1

2

∑

(i,j)∈E
(Φi − Φj)

2gij(ρ).

Here for any i, j ∈ V , we define scalar functions gij(ρ) satisfying

gij(ρ) = gji(ρ) and min{ρi, ρj} ≤ gij(ρ) ≤ max{ρi, ρj}. (19)

Notice that there are many choices of gij satisfying (19). In this chapter, we are

particularly interested in one that depends on the given free energy. We define

gij(ρ) :=































ρi if Fi(ρ) > Fj(ρ), j ∈ N(i);

ρj if Fi(ρ) < Fj(ρ), j ∈ N(i);

ρi+ρj
2

if Fi(ρ) = Fj(ρ), j ∈ N(i),

(20)

where Fi(ρ) =
∂
∂ρi

F(ρ).

5We build analogs of ∇ · (ρ∇Φ),
∫

(∇Φ)2ρdx.
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By these settings, we can formally define a discrete 2-Wasserstein metric. For any

two measures, ρ0, ρ1 ∈ Po(G), we consider

W2;F(ρ
0, ρ1) := inf{

(

∫ 1

0

(∇GΦ,∇GΦ)ρdt
) 1

2 :
dρ

dt
+ divG(ρ∇GΦ) = 0, ρ ∈ C},

where C = {ρ(t) is a piecewise C1 curve with ρ(0) = ρ0, ρ(1) = ρ1}. Notice that the

above formula’s explicit form is Definition 2.

3.2.2 Metric

In the sequel, we justify that the discrete 2-Wasserstein metric is well defined.

To do so, we look at the geometry angle6. That is we will endow Po(G) with an

inner product on the tangent space

TρPo(G) = {(σi)ni=1 ∈ R
n |

n
∑

i=1

σi = 0}.

Consider an equivalence relation “∼” in R
n as modulo additive constants, whose

quotient space means

R
n/ ∼= {[Φ] | (Φi)

n
i=1 ∈ R

n}, where [Φ] = {(Φ1 + c, · · · ,Φn + c) | c ∈ R
1}.

We introduce an identification map

τ : R
n/ ∼→ TρPo(G), τ([Φ]) := −divG(ρ∇GΦ).

Lemma 10 The map τ : R
n/ ∼→ TρPo(G) is a well defined, linear one to one map.

Proof 1 At the beginning, we show that τ is well defined. We denote

σi = −divG(ρ∇GΦ)|i =
∑

j∈N(i)

(Φi − Φj)gij(ρ).

6Our approach is a discrete version of Otto calculus. We strongly recommend readers, who are
not familiar with Otto calculus, to learn it in [95], so as to understand the following justification.
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It is equivalent to show
∑n

i=1 σi = 0. Indeed,
n

∑

i=1

σi =
n

∑

i=1

∑

j∈N(i)

(Φi − Φj)gij(ρ)

=
∑

(i,j)∈E
Φigij(ρ)−

∑

(i,j)∈E
Φjgij(ρ)

Relabel i and j on the first formula

=
∑

(i,j)∈E
Φjgji(ρ)−

∑

(i,j)∈E
Φjgij(ρ)

Notice gij = gji

=0.

Hence, we know that the map τ is a well-defined linear map. Since TρPo(G) and

R
n/ ∼ are (n−1) dimensional linear spaces, we only need to prove τ is injective. I.e.

if

σi =
∑

j∈N(i)

gij(ρ)(Φi − Φj) = 0, for any i ∈ V ,

then [Φ] = 0, meaning that Φ1 = Φ2 = · · · = Φn.

Assume this is not true. Let c = maxi∈V Φi. Since the graph G is connected, there

exists an edge (k, l) ∈ E, such that Φl = c and Φk < c. By σl = 0, we know that

Φl =

∑

j∈N(l) glj(ρ)Φj
∑

j∈N(l) glj(ρ)
= c+

∑

j∈N(l) glj(ρ)(Φj − c)
∑

j∈N(l) glj(ρ)
< c,

which contradicts Φl = c.

This identification map induces a scalar inner product on Po(G).

Definition 11 For any tangent vector σ1, σ2 ∈ TρPo(G), we define an inner product

g(·, ·): TρPo(G)× TρPo(G) → R,

g(σ1, σ2) :=
1

2

∑

(i,j)∈E
gij(ρ)(Φ

1
i − Φ1

j)(Φ
2
i − Φ2

j),

where [Φ1], [Φ2] ∈ R
n/ ∼, such that σ1 = τ([Φ1]), σ2 = τ([Φ2]). Moreover, we can

also denote the inner product by:

(∇GΦ
1,∇GΦ

2)ρ := g(σ1, σ2).
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Similarly as Otto calculus7, one can check that the inner product in Definition 11 also

has other formations:

g(σ1, σ2) =
n

∑

i=1

Φ1
iσ

2
i =

n
∑

i=1

Φ2
iσ

1
i . (21)

Proof 2 (Proof of (21)) Without loss of generality, we shall prove

g(σ1, σ2) =
n

∑

i=1

Φ1
iσ

2
i .

Since σ2 = τ([Φ2]) = (
∑

j∈N(i)(Φ
2
i − Φ2

j)gij)
n
i=1,

n
∑

i=1

Φ1
iσ

2
i =

n
∑

i=1

Φ1
i

∑

j∈N(i)

(Φ2
i − Φ2

j)gij

=
1

2
(

n
∑

i=1

Φ1
i

∑

j∈N(i)

(Φ2
i − Φ2

j)gij +
n

∑

i=1

Φ1
i

∑

j∈N(i)

(Φ2
i − Φ2

j)gij)

Relabel i and j on the second formula

=
1

2
(
∑

(i,j)∈E
Φ1

i (Φ
2
i − Φ2

j)gij +
∑

(i,j)∈E
Φ1

j(Φ
2
j − Φ2

i )gji)

=
1

2

∑

(i,j)∈E
(Φ1

i − Φ1
j)(Φ

2
i − Φ2

j)gij.

Under the above setting, we can justify the metric. Notice that the metric is

equivalent to

W2;F(ρ
0, ρ1)2 = inf{

∫ 1

0

g(σ, σ)dt :
dρ

dt
= σ, σ ∈ TρPo(G), ρ ∈ C}.

Since gij is a measurable function, we know W2;F is a well defined metric. More

details are stated in [27].

3.2.3 Piecewise smooth manifold

However, things are not perfect. Fix i and j ∈ V , gij(ρ) may be discontinuous

with respect to ρ, so the inner product g(·, ·) doesn’t induce a smooth Riemannian

manifold.

7Consider two potential functions Φ1, Φ2, then
∫

Φ1(−∇ · (ρ∇Φ2))dx =
∫

∇Φ1∇Φ2ρdx.
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More precisely, the set Po(G) is divided into finite (at most n(n−1)
2

) many of smooth

components. Each one’s boundary is a sub-manifold

Pi,j = {ρ ∈ Po(G) | Fi(ρ) = Fj(ρ), (i, j) ∈ E}.

We observe that all these Pi,j intersect at a set, which contains all of Gibbs measures:

∩(i,j)∈EPi,j ={ρ∗ ∈ Po(G) | ρ∗ is one of Gibbs measures}. (22)

Proof 3 (Proof of (22)) Consider a measure ρ∗ ∈ ∩(i,j)∈EPi,j. Since the graph G

is connected,

F1(ρ
∗) = F2(ρ

∗) = · · · = Fn(ρ
∗).

Define

C := Fi(ρ
∗) = vi +

n
∑

j=1

wijρ
∗
j + β log ρ∗i , for any i ∈ V .

Letting K = e−
C
β and using the fact

∑n

i=1 ρ
∗
i = 1, we have

ρ∗i =
1

K
e−

vi+
∑n

j=1 wijρ
∗
j

β , K =
n

∑

i=1

e−
vi+

∑n
j=1 wijρ

∗
j

β ,

meaning that ρ∗ is a Gibbs measure.

We demonstrate the above facts by a simple example.

Example 1 Consider a three vertex’s lattice graph G and suppose there exists a

unique Gibbs measure for given free energy.

1 2 3

G P(G)

P1,2

P2,3

ρ∗•
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Here P1,2, P2,3 divide the probability manifold (simplex) Po(G) into 4 pieces:

{ρ : F1(ρ) > F2(ρ), F2(ρ) > F3(ρ)}; {ρ : F1(ρ) < F2(ρ), F2(ρ) > F3(ρ)};

{ρ : F1(ρ) > F2(ρ), F2(ρ) < F3(ρ)}; {ρ : F1(ρ) < F2(ρ), F2(ρ) < F3(ρ)}.

Their boundaries intersect at a point {ρ∗ : F1(ρ) = F2(ρ) = F3(ρ)}, which is the

Gibbs measure.

3.2.4 Hodge decomposition

As in optimal transport theory [4], we can justify the discrete 2-Wasserstein metric

that the minimizer of Kinect energy is attached at the potential field on finite graphs.

In details, we consider a discrete vector field on a graph G:

v := (vij)(i,j)∈E, where
∑

j∈N(i)

gij(ρ)
vij + vji

2
= 0.

We shall build a discrete Benamou-Brenier formula for discrete vector field. For

ρ ∈ Po(G), we introduce a discrete divergence of v with respect to ρ:

divG(ρv) :=
(

−
∑

j∈N(i)

vijgij(ρ)
)n

i=1
,

and an inner product of v with respect to ρ:

(v, v)ρ :=
1

2

∑

(i,j)∈E
v2ijgij(ρ).

We are going to show that the discrete 2-Wasserstein metric can be formally

rewritten as

W2;F(ρ
0, ρ1) = inf

v
{
∫ 1

0

(v, v)ρdt :
dρ

dt
+ divG(ρv) = 0, ρ(0) = ρ0, ρ(1) = ρ1}.

Theorem 12 (Hodge decomposition) If ρ0, ρ1 ∈ Po(G), then

W2;F(ρ
0, ρ1)2 = inf

[v],ρ

1

2

∫ 1

0

∑

(i,j)∈E
gij(ρ)v

2
ijdt,
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where the infimum is taken over all C1 curves ρ : [0, 1] → Po(G) satisfying continuity

equation introduced by measurable matrix function v(t) = (vij(t))(i,j)∈V×V : [0, 1] →

R
n2
,

dρi
dt

=
∑

j∈N(i)

gij(ρ)vij,
∑

j∈N(i)

gij(ρ)
vij + vji

2
= 0, for any i ∈ V ,

ρ(0) = ρ0, ρ(1) = ρ1.

The proof is based on the following two lemmas.

Lemma 13 Consider any skew matrix8 (vij)(i,j)∈V×V ∈ R
n2
, (Φ)ni=1 ∈ R

n satisfying

∑

j∈N(i)

gij(ρ)(Φi − Φj) =
∑

j∈N(i)

gij(ρ)vij, for any i ∈ V .

Then
∑

(i,j)∈E
gij(ρ)v

2
ij ≥

∑

(i,j)∈E
gij(ρ)(Φi − Φj)

2.

Proof 4 Since

∑

(i,j)∈E
gij(ρ)v

2
ij

=
∑

(i,j)∈E
gij(ρ)(vij − (Φi − Φj) + Φi − Φj)

2

=
∑

(i,j)∈E
gij(ρ)[(vij − (Φi − Φj))

2 + (Φi − Φj)
2 + 2

(

vij − (Φi − Φj)
)

(Φi − Φj)].

(23)

To prove the main result, it is sufficient to show the following claim.

Claim:
∑

(i,j)∈E
gij(ρ)[vij − (Φi − Φj)](Φi − Φj) = 0, (24)

8It means vij = −vji.
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Proof 5 (Proof of Claim) Since gij = gji and vij = −vji, we have

∑

(i,j)∈E
gij(ρ)[vij − (Φi − Φj)](Φi − Φj)

=
∑

(i,j)∈E
gij(ρ)vij(Φi − Φj)−

∑

(i,j)∈E
gij(ρ)(Φi − Φj)

2

=
∑

(i,j)∈E
gij(ρ)vijΦi −

∑

(i,j)∈E
gij(ρ)vijΦj − 2(∇GΦ,∇GΦ)ρ

=
n

∑

i=1

∑

j∈N(i)

gij(ρ)vijΦi −
∑

(j,i)∈E
gji(ρ)vjiΦi − 2(∇GΦ,∇GΦ)ρ

=
n

∑

i=1

∑

j∈N(i)

gij(ρ)vijΦi +
n

∑

i=1

∑

j∈N(i)

gij(ρ)vijΦi − 2(∇GΦ,∇GΦ)ρ

=2(∇GΦ,∇GΦ)ρ − 2(∇GΦ,∇GΦ)ρ = 0.

Combining the fact (23) and (24), we have

∑

(i,j)∈E
gij(ρ)v

2
ij −

∑

(i,j)∈E
gij(ρ)(Φi − Φj)

2

=
∑

(i,j)∈E
gij(ρ)[vij − (Φi − Φj)]

2 ≥ 0,

which finishes the proof.

The above result can be extended into a more general form.

Corollary 14 For any matrix (vij)(i,j)∈V ∈ R
n2
, (Φi)

n
i=1 ∈ R

n, satisfying

∑

j∈N(i)

gij(ρ)
vij + vji

2
= 0, for any i ∈ V ,

and
∑

j∈N(i)

gij(ρ)(Φi − Φj) =
∑

j∈N(i)

gij(ρ)vij, for any i ∈ V .

Then
∑

(i,j)∈E
gij(ρ)v

2
ij ≥

∑

(i,j)∈E
gij(ρ)(Φi − Φj)

2.
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Proof 6 It is same to prove a new claim.

New claim:

∑

(i,j)∈E
gij(ρ)[vij − (Φi − Φj)](Φi − Φj) = 0.

Proof 7 (Proof of New claim) : To show that, since vij =
vij−vji

2
+

vij+vji
2

and

assumption, for any i ∈ V , we have

σi =
∑

j∈N(i)

gij(ρ)vij

=
∑

j∈N(i)

gij(ρ)[
vij − vji

2
+
vij + vji

2
]

=
∑

j∈N(i)

gij(ρ)
vij − vji

2
.

From lemma 33 and gij = gji, we have

∑

(i,j)∈E
gij(ρ)[vij − (Φi − Φj)](Φi − Φj)

=
∑

(i,j)∈E
gij(ρ)[

vij − vji
2

+
vij + vji

2
− (Φi − Φj)](Φi − Φj)

=
∑

(i,j)∈E
gij(ρ)[

vij − vji
2

− (Φi − Φj)](Φi − Φj) +
∑

(i,j)∈E
gij(ρ)

vij + vji
2

(Φi − Φj)

=
∑

(i,j)∈E
gij(ρ)

vij + vji
2

(Φi − Φj)

=
∑

(i,j)∈E
gij(ρ)

vij + vji
2

Φi −
∑

(i,j)∈E
gij(ρ)

vij + vji
2

Φj

=
∑

(i,j)∈E
gij(ρ)

vij + vji
2

Φi −
∑

(j,i)∈E
gji(ρ)

vij + vji
2

Φi = 0.
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By a direct calculation, we know that

∑

(i,j)∈E
gij(ρ)v

2
ij −

∑

(i,j)∈E
gij(ρ)(Φi − Φj)

2

=
∑

(i,j)∈E
gij(ρ)[(vij − (Φi − Φj))

2 + (Φi − Φj)
2 + 2

(

vij − (Φi − Φj)
)

(Φi − Φj)]

+2
∑

(i,j)∈E
gij(ρ)[vij − (Φi − Φj)](Φi − Φj) By the new claim

≥0,

which finishes the proof.

From Corollary 14, we have proved Theorem 12.

3.3 Fokker-Planck equation on a graph

In this sequel, we derive the gradient flow of F(ρ) on manifold (Po(G),W2;F). Since

the metric manifold is not smooth, we derive an ODE system, which satisfies the

definition of gradient flow on each components of smooth Riemannian manifolds. We

name such ODE system as the Fokker-Planck equation on a graph.

3.3.1 Derivation

Before starting the derivation, we briefly review the definition of gradient flow on a

smooth Riemannian manifold. Abstractly, the gradient flow is defined as

dρ

dt
= −gradPo(G)F(ρ).

Here the gradient is in the tangent space TρPo(G), defined by the duality condition:

g(gradPo(G)F(ρ), σ) = dF(ρ) · σ, for any σ ∈ TρPo(G),

where the dot in R.H.S. represents “dF applies to σ”: dF · σ =
∑n

i=1
∂
∂ρi

F(ρ)σi. In

all, the gradient flow satisfies

(
dρ

dt
, σ)ρ + dF(ρ) · σ = 0, for any σ ∈ TρPo(G). (25)
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Based on (25), we are ready to show Theorem 3.9

Proof 8 (Proof of Theorem 3 (i)) We show the derivation of (17). Note that any

σ ∈ TρPo(G), there exists [Φ] ∈ R
n/ ∼, such that τ([Φ]) = σ = (

∑

j∈N(i) gij(ρ)(Φi −

Φj))
n
i=1. Since

dF(ρ) · σ =
n

∑

i=1

∂

∂ρi
F(ρ) · σi

=
n

∑

i=1

Fi(ρ)
∑

j∈N(i)

gij(ρ)(Φi − Φj)

=
n

∑

i=1

∑

j∈N(i)

gij(ρ)Fi(ρ)Φi −
n

∑

i=1

∑

j∈N(i)

gij(ρ)Fi(ρ)Φj

Relabel i and j on the second formula above.

=
n

∑

i=1

∑

j∈N(i)

gij(ρ)Fi(ρ)Φi −
n

∑

i=1

∑

j∈N(i)

gji(ρ)Fj(ρ)Φi

=
n

∑

i=1

∑

j∈N(i)

gij(ρ)
(

Fi(ρ)− Fj(ρ)
)

Φi.

Combining the above formula and (21) into (25), we have

(
dρ

dt
, σ)ρ + dF(ρ) · σ =

n
∑

i=1

{dρi
dt

+
∑

j∈N(i)

gij(ρ)
(

Fi(ρ)− Fj(ρ)
)

}Φi = 0.

Since the above formula is true for all (Φi)
n
i=1 ∈ R

n,

dρi
dt

+
∑

j∈N(i)

gij(ρ)
(

Fi(ρ)− Fj(ρ)
)

= 0

holds for all i ∈ V . From the definition of gij in (20), we finish the derivation of

(17).

3.3.2 Existence and uniqueness

Secondly, we prove the existence and uniqueness of the solution for ODE (17).

9This proof is mainly based on the result of [27], in which the authors only consider linear
Fokker-Planck equations. We generalize the result to the nonlinear case.
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Proof 9 (Proof of Theorem 3 (ii)) We show the results by the following claim:

Claim: Given ρ0 ∈ Po(G), there exists a compact set B(ρ0) ⊂ Po(G) in Euclidean

metric, such that ρ0 ∈ B(ρ0) and the solution of (17) exists, with ρ(t) : [0,∞) →

B(ρ0).

Proof 10 (Proof of the claim) At the beginning, we construct a compact set B(ρ0) ⊂

Po(G). Denote

M = e2 supi∈V, ρ∈P(G) |vi+
∑n

j=1 wijρj |

and a sequence of constant ǫl, l = 0, 1, · · · , n, where ǫ0 = 1 with

ǫ1 =
1

2
min{ ǫ0

1 + (2M)
1
β

,min
i∈V

ρ0i } and ǫl =
ǫl−1

1 + (2M)
1
β

, for l = 2, · · · , n .

Then we define

B(ρ0) = {(ρi)ni=1 ∈ Po(G) |
l

∑

r=1

ρir ≤ 1− ǫl, for any l indexes 1 ≤ i1 < · · · < il ≤ n,

with l ∈ {1, · · · , n− 1}}.

Notice that B(ρ0) is a compact subset of Po(G) in Euclidean metric.

Firstly, we observe that the R.H.S of (17) is a Lipchitz function when ρ ∈ B(ρ0),

since (Fi(ρ) − Fj(ρ))+ =
|Fi(ρ)−Fj(ρ)|+Fi(ρ)−Fj(ρ)

2
. Then (17) has a unique solution as

long as ρ(t) ∈ B(ρ0).

Secondly, we show that if ρ0 ∈ B(ρ0), then ρ(t) ∈ B(ρ0) for all t ≥ 0. In other

words, the boundary of B(ρ0) is a repeller for the ODE (17). Consider a time t1 with

ρ(t1) ∈ ∂B(ρ0), meaning that there exists indices i1, · · · , il with l ≤ n− 1, such that

l
∑

r=1

ρir(t1) = 1− ǫl. (26)

We are going to show

d

dt

l
∑

r=1

ρir(t)|t=t1 < 0.

38



We begin the proof by letting A = {i1, · · · , il} and Ac = V \ A. On one hand, for

any j ∈ Ac,

ρj(t1) ≤ 1−
l

∑

r=1

ρir(t1) = ǫl. (27)

On the other hand, since ρ(t1) ∈ B(ρ0), for any i ∈ A, then
∑

k∈A\{i} ρk(t1) ≤ 1−ǫl−1

and from assumption (26), ρi(t1) +
∑

k∈A\{i} ρk(t1) = 1− ǫl, we obtain

ρi(t1) ≥ 1− ǫl − (1− ǫl−1) = ǫl−1 − ǫl. (28)

Combining equations (27) and (28), we know that for any i ∈ A and j ∈ Ac,

Fj(ρ)− Fi(ρ) = (vj +
∑

j∈N(i)

wijρi)− (vi +
n

∑

j=1

wijρj) + β(log ρj − log ρi)

≤ 2 sup
i∈V, ρ∈P(G)

|vi +
∑

j∈N(i)

wijρj|+ β(log ǫl − log(ǫl−1 − ǫl))

≤ − log 2,

(29)

where the last inequality is from ǫl =
ǫl−1

1+(2M)
1
β

andM = supi∈V, ρ∈P(G) |vi+
∑

j∈N(i)wijρj|.

Since the graph is connected, there exists i∗ ∈ A, j∗ ∈ Ac ∩N(i∗) such that

∑

i∈A

∑

j∈Ac∩N(i∗)

gij(ρ(t1)) ≥ gi∗j∗(ρ(t1)) > 0. (30)

By combining (29) and (30), we have

d

dt

l
∑

r=1

ρir(t)|t=t1 =
∑

i∈A

∑

j∈N(i)

gij(ρ)[Fj(ρ)− Fi(ρ)]|ρ=ρ(t1)

=
∑

i∈A
{

∑

j∈A∩N(i)

gij(ρ)[Fj(ρ)− Fi(ρ)]

+
∑

j∈Ac∩N(i)

gij(ρ)[Fj(ρ)− Fi(ρ)]}|ρ=ρ(t1)

=
∑

i∈A

∑

j∈Ac∩N(i)

gij(ρ)[Fj(ρ)− Fi(ρ)]|ρ=ρ(t1)

≤− log 2
∑

i∈A

∑

j∈Ac∩N(i)

gij(ρ(t1))

≤− log 2 gi∗j∗(ρ(t1)) < 0,

where the third equality is from
∑

(i,j)∈A gij(Fj − Fi) = 0. In all, we finish the proof.
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From the claim, if the initial measure ρ0 ∈ Po(G), there exists a unique solution

ρ(t) : [0,+∞) → Po(G)

to equation (17). Moreover, since ρ(t) ∈ B(ρ0), there exists a constant ǫ > 0, such

that ρi(t) ≥ ǫ, for any i ∈ V .

3.3.3 Gradient flow structure

Lastly, we show that (17) has the gradient flow structure.

Proof 11 (Proof of Theorem 3 (iii)) Firstly, we show that F(ρ) is a Lyapunov

function of (17). Since

d

dt
F(ρ(t)) =

n
∑

i=1

Fi(ρ) ·
dρi
dt

=
n

∑

i=1

∑

j∈N(i)

Fi(ρ)(Fj(ρ)− Fi(ρ))+ρj −
n

∑

i=1

∑

j∈N(i)

Fi(ρ)(Fi(ρ)− Fj(ρ))+ρi

Switch i, j on the first formula

=
n

∑

i=1

∑

j∈N(i)

Fj(ρ)(Fi(ρ)− Fj(ρ))+ρi −
n

∑

i=1

∑

j∈N(i)

Fi(ρ)(Fi(ρ)− Fj(ρ))+ρi

=−
∑

(i,j)∈E
(Fi(ρ)− Fj(ρ))

2
+ρi ≤ 0.

Next, we show that if ρ∞ is an equilibrium, then ρ∞ is a Gibbs measure. At the

beginning, since limt→∞ ρ(t) = ρ∞ we claim that

lim
t→∞

d

dt
F(ρ(t)) =

n
∑

i=1

∑

j∈N(i)

(Fi(ρ
∞)− Fj(ρ

∞))2+ρ
∞
i = 0. (31)

Assume this is not true, we can easily obtain that inft≥0 F(ρ(t)) = −∞, which con-

tradicts the fact that F(ρ) is bounded when ρ ∈ P(G).

From ρ(t) ∈ B(ρ0), we know that ρ∞ ∈ B(ρ0). Combining this with (31), we

have Fi(ρ
∞) = Fj(ρ

∞), for any (i, j) ∈ E. Since the graph is connected, we obtain

F1(ρ
∞) = · · · = Fn(ρ

∞). Define

C := vi +
n

∑

j=1

wijρ
∞
j + β log ρ∞i , for any i ∈ V .
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Letting K = e−
C
β and using the fact

∑n

i=1 ρ
∞
i = 1, we have

ρ∞i =
1

K
e−

vi+
∑n

j=1 wijρ
∞
j

β , K =
n

∑

i=1

e−
vi+

∑n
j=1 wijρ

∞
j

β ,

which finishes the proof.

3.4 Convergence results

In this section, we show the convergence results for the gradient flow (17).

Motivation Our proof is based on the structure of gradient flow. We illustrate the

idea by a simple example. Consider a energy function g(x) ∈ C2(Rn), whose gradient

flow is

dxt
dt

= −∇g(xt), xt ∈ R
n.

By a simple computation of the first and second derivative of g(xt) with respect to t,

we have

d

dt
g(xt) = −(∇g(xt),∇g(xt)),

d2

dt2
g(xt) = 2(HessRng(xt) · ∇g(xt),∇g(xt)).

Suppose the energy function g(x) is λ-convex, HessRng(x) ≥ λI for all x ∈ R
n, we

have the comparison between the first and second derivative

d2

dt2
g(xt) ≥ −2λ

d

dt
g(xt).

Such comparison induces the convergence result. Taking integration on time interval

[t,+∞) on the above inequality, we have

d

dt
[g(xt)− g(x∞)] ≤ −2λ[g(xt)− g(x∞)];

Applying Gronwall’s inequality on the above formula, we obtain

g(xt)− g(x∞) ≤ e−2λt(g(x0)− g(x∞)),

which shows that the energy decreases exponentially.
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This convergence result can be extended by the dynamical viewpoint. We

obtain a similar result if g is locally strictly convex at the equilibrium. In other

words, if x0 is in the attraction region of a strictly convex local minimizer x∞, then

there exists a constant C > 0, such that

g(xt)− g(x∞) ≤ e−Ct(g(x0)− g(x∞)).

3.4.1 Entropy dissipation method

In this sequel, we prove Theorem 5 similarly. The proof is divided into three parts:

• In preliminary computation, we estimate d2

dt2
F(ρ(t)), the second derivative of

free energy along gradient flow (17);

• In comparison, we use
d2

dt2
F(ρ(t))

d
dt
F(ρ(t))

, the ratio between the first and second derivative

to show the asymptotic convergence result;

• In Main results, we prove the convergence result (18) based on the dynamical

viewpoint.

3.4.1.1 Preliminary computation

In first part, we need an explicit formula for the second derivative. We argue that

d2

dt2
F(ρ(t)) = 2

∑

(i,j)∈E

∑

(k,l)∈E
hij,kl(Fi − Fj)+ρi(Fk − Fl)+ρk + o(

d

dt
F(ρ(t))), (32)

where limh→0
o(h)
h

= 0, hij,kl = fik + flj − fil − fjk and fij =
∂2

∂ρi∂ρj
F(ρ).

Calculation: Recall that the gradient flow (17) is

dρi
dt

=
∑

j∈N(i)

(Fj − Fi)+ρj −
∑

j∈N(i)

(Fi − Fj)+ρi.

We calculate the first derivative of free energy along (17). From Theorem 3 (iii),

d

dt
F(ρ(t)) = −

n
∑

i=1

∑

j∈N(i)

(Fi − Fj)
2
+ρi. (33)
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And we compute the second derivative of free energy along (17).10 By using the

product rule on (33),

d2

dt2
F(ρ(t)) = −

n
∑

i=1

∑

j∈N(i)

(Fi − Fj)
2
+

dρi
dt

♣

− 2
n

∑

i=1

∑

j∈N(i)

(
dFi

dt
− dFj

dt
)(Fi − Fj)+ρi. ♠

Now, we plan to show (32) by two steps.

Step 1 ♣ is the high order term of the first derivative (33):

♣ = o(
d

dt
F(ρ(t)));

Step 2 ♠ has the same order of the first derivative (33):

♠ = 2
∑

(i,j)∈E

∑

(k,l)∈E
hij,kl(Fi − Fj)+ρi(Fk − Fl)+ρk.

Step 1: We start with the estimation of ♣. Observe that when t→ ∞,

♣
d
dt
F(ρ(t))

=

∑n

i=1

∑

j∈N(i)(Fi − Fj)
2
+

dρi
dt

∑n

i=1

∑

j∈N(i)(Fi − Fj)2+ρi
→ 0,

since dρi
dt

→ 0 and ρi(t) → ρ∞i > 0 in Theorem 3 (ii).

Lemma 15 There always exists a constantm(ρ) = max(i,j)∈E(Fi−Fj)+ maxi∈V deg(i)maxi∈V ρi
mini∈V ρi

where deg(i) represents the degree11 of vertex i, such that

♣ ≥ m(ρ(t))
d

dt
F(ρ(t)).

Proof 12 The proof is based on a direct estimation. Denote dρi
dt

=
∑

k∈N(i) ρk(Fk −

10 d2

dt2
F(ρ(t)) exists for all t ≥ 0, since (Fi(ρ) − Fj(ρ))

2
+ is differentiable everywhere with respect

to ρ.
11Number of vertices in N(i).
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Fi)+ −∑

k∈N(i) ρi(Fi − Fk)+. Then

♣ =−
n

∑

i=1

∑

j∈N(i)

(Fi − Fj)
2
+{

∑

k∈N(i)

ρk(Fk − Fi)+ −
∑

k∈N(i)

ρi(Fi − Fk)+}

≥ −
n

∑

i=1

∑

j∈N(i)

∑

k∈N(i)

(Fi − Fj)
2
+(Fk − Fi)+ρk

≥− max
(i,j)∈E

(Fi − Fj)+ max
i∈V

ρi

n
∑

i=1

∑

j∈N(i)

∑

k∈N(i)

(Fi − Fj)+(Fk − Fi)+

≥− max
(i,j)∈E

(Fi − Fj)+ max
i∈V

ρi

n
∑

i=1

∑

j∈N(i)

∑

k∈N(i)

(Fi − Fj)
2
+ + (Fk − Fi)

2
+

2

≥− max
(i,j)∈E

(Fi − Fj)+ max
i∈V

ρi{
n

∑

i=1

∑

j∈N(i)

∑

k∈N(i)

(Fi − Fj)
2
+

2
+

n
∑

i=1

∑

j∈N(i)

∑

k∈N(i)

(Fk − Fi)
2
+

2
}

≥ − max
(i,j)∈E

(Fi − Fj)+ max
i∈V

ρi ·max
i∈V

deg(i) ·
n

∑

i=1

∑

j∈N(i)

(Fi − Fj)
2
+

≥− max
(i,j)∈E

(Fi − Fj)+ max
i∈V

deg(i)
maxi∈V ρi
mini∈V ρi

n
∑

i=1

∑

j∈N(i)

(Fi − Fj)
2
+ρi.

By letting m = max(i,j)∈E(Fi − Fj)+ maxi∈V deg(i)maxi∈V ρi
mini∈V ρi

, we finish the proof.

Step 2: Let’s estimate ♠ though a direct calculation.

Lemma 16

♠ = 2
∑

(i,j)∈E

∑

(k,l)∈E
hij,kl(Fi − Fj)+ρi(Fk − Fl)+ρk.
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Proof 13

−1

2
♠ =

n
∑

i=1

∑

j∈N(i)

(Fi − Fj)+ρi(
d

dt
Fi(ρ(t))−

d

dt
Fj(ρ(t)))

=
n

∑

i=1

∑

j∈N(i)

(Fi − Fj)+ρi(
n

∑

k=1

∂Fi

∂ρk

dρk
dt

−
n

∑

k=1

∂Fj

∂ρk

dρk
dt

)

Recall
∂Fi

∂ρk
=

∂2

∂ρi∂ρk
F(ρ) = fik

=
n

∑

i=1

∑

j∈N(i)

(Fi − Fj)+ρi

n
∑

k=1

(fik − fkj)
dρk
dt

Denote
dρk
dt

=
∑

l∈N(k)

(Fl − Fk)+ρl −
∑

l∈N(k)

(Fk − Fl)+ρk

=
n

∑

i=1

∑

j∈N(i)

(Fi − Fj)+ρi

n
∑

k=1

(fik − fkj)[
∑

l∈N(k)

(Fl − Fk)+ρl −
∑

l∈N(k)

(Fk − Fl)+ρk]

=
n

∑

i=1

∑

j∈N(i)

(Fi − Fj)+ρi{
n

∑

k=1

∑

l∈N(k)

(fik − fkj)(Fl − Fk)+ρl

−
n

∑

k=1

∑

l∈N(k)

(fik − fkj)(Fk − Fl)+ρk}

Relabel k, l for the first formula

=
n

∑

i=1

∑

j∈N(i)

(Fi − Fj)+ρi{
n

∑

k=1

∑

l∈N(k)

(fil − flj)(Fk − Fl)+ρk

−
n

∑

k=1

∑

l∈N(k)

(fik − fkj)(Fk − Fl)+ρk}

=
n

∑

i=1

∑

j∈N(i)

n
∑

k=1

∑

l∈N(k)

(fil − flj − fik + fkj)(Fi − Fj)+ρi(Fk − Fl)+ρk

=
∑

(i,j)∈E

∑

(k,l)∈E
(fil − flj − fik + fkj)(Fi − Fj)+ρi(Fk − Fl)+ρk.

Let hij,kl = fik + flj − fil − fjk, we finish the proof.

Formula (32) is shown by Lemma 15 and 16.

3.4.1.2 Comparison

In part two, we prove the asymptotic convergence result of (17).
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Firstly, we obtain the comparison between the first and second derivative.

Consider

Ratio(ρ) :=

∑

(i,j)∈E
∑

(k,l)∈E hij,kl(Fi − Fj)+ρi(Fk − Fl)+ρk
∑

(i,j)∈E(Fi − Fj)2+ρi
, (34)

where
∑

(i,j)∈E(Fi − Fj)
2
+ρi > 0. By replacing (Fi)

n
i=1 by (Φi)

n
i=1 ∈ R

n, we arrive at

the Definition 4, which gives the lower bound of the ratio function. Recall that

λF(ρ) = min
Φ

∑

(i,j)∈E

∑

(k,l)∈E
hij,kl(Φi − Φj)+ρi(Φk − Φl)+ρk, (35)

where the minimum is taken among all (Φi)
n
i=1 ∈ R

n with

∑

(i,j)∈E
(Φi − Φj)

2
+ρi = 1. (36)

Lemma 17 If ρ ∈ Po(G), then

Ratio(ρ) ≥ λF(ρ).

Proof 14 For any given vector F = (Fi)
n
i=1 ∈ R

n with

C(F ) :=
∑

(i,j)∈E
(Fi − Fj)

2
+ρi > 0,

consider a vector Φ̄ = (Φi)
n
i=1 with Φ̄i =

Fi√
C(F )

. Then we have

∑

(i,j)∈E
(Φ̄i − Φ̄j)

2
+ρi = 1.

From (34),

Ratio(ρ) =
∑

(i,j)∈E

∑

(k,l)∈E
hij,kl(Φ̄i − Φ̄j)+ρi(Φ̄k − Φ̄l)+ρk

≤min
Φ

∑

(i,j)∈E

∑

(k,l)∈E
hij,kl(Φi − Φj)+ρi(Φk − Φl)+ρk = λF(ρ).

Thus, we obtain the comparison between the first and second derivative.
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Lemma 18

d2

dt2
F(ρ(t)) ≥ −

(

2λF(ρ(t))−m(ρ(t))
) d

dt
F(ρ(t)),

where m(ρ(t)) is defined in Lemma 15.

Proof 15 From Lemma 16 and definition 4, we have

♠ =2
∑

(i,j)∈E

∑

(k,l)∈E
hij,kl(Fi − Fj)+ρi(Fk − Fl)+ρk

≥2λF(ρ(t))
∑

(i,j)∈E
(Fi − Fj)

2
+ρi

=− 2λF(ρ(t))
d

dt
F(ρ(t)).

Then combining Lemma 15 and 16, we know

d2

dt2
F(ρ(t)) =♣+♠ ≥ −

(

2λF(ρ(t))−m(ρ(t))
) d

dt
F(ρ(t)).

Secondly, we show limt→∞ λF(ρ(t)) = λF(ρ
∞). The asymptotic comparison rate

is determined by the given Gibbs measure.

Lemma 19 λF(ρ) is a continuous function with respect to ρ ∈ Po(G).

Proof 16 We observe that (35), (36) remains the same for Φ modulo any additive

constant. Without loss of generality, we let Φn = 0, thus (35), (36) is uniquely

determined by (Φi)
n−1
i=1 . In other words, if we denote

D = {(Φi)
n−1
i=1 ∈ R

n−1 | (36) holds with Φn = 0},

and

α(ρ,Φ) =
∑

(i,j)∈E

∑

(k,l)∈E
hij,kl(Φi − Φj)+ρi(Φk − Φl)+ρk,

then, from Lemma 17, λF(ρ) = minΦ∈D α(ρ,Φ).

For any ρ ∈ Po(G), we consider a compact region B ⊂ Po(G) in Euclidean metric,

such that ρ ∈ B. To prove the continuity of λF(ρ), we need to show that α is uniformly

continuous on B ×D. Since α is a continuous function, it is sufficient to show that

D is a compact set.
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Proof 17 (Proof of D being a compact set.) Notice that D is a closed set. It

is sufficient to show D is a bounded set in R
n−1. Since (36) holds, for any fixed

i, j ∈ V with (i, j) ∈ E,

|Φi − Φj| ≤ max{
√

1

ρi
,

√

1

ρj
} ≤

√

1

mink∈V ρk
.

Since G is connected, there exists a finite sequence of edges that connect vertices i

and n. In other words, there exists vertices kl ∈ V , with 1 ≤ l ≤ m, such that k1 = i,

km = n.

|Φi| = |Φi − Φn| ≤
m−1
∑

l=1

|Φkl+1
− Φkl | ≤ (m− 1)

√

1

mink∈V ρk
<∞,

which finishes the proof.

Then, we show that λF is continuous from the uniform continuity of α. For any

ǫ > 0, there exists a constant δ > 0 with

α(Φ1, ρ1) > α(Φ2, ρ2)− ǫ,

when ‖Φ1 − Φ2‖ < δ and ‖ρ1 − ρ2‖ < δ. Here ‖ · ‖ is an Euclidean norm. For fixed

ρ1 ∈ B, there exists a point Φ1 ∈ D with λF(ρ
1) = α(Φ1, ρ1). Hence

λF(ρ
1) > α(Φ2, ρ2)− ǫ ≥ min

Φ∈D
α(Φ, ρ2)− ǫ = λF(ρ

2)− ǫ,

for all ρ1, ρ2 with ‖ρ1 − ρ2‖ < δ. By symmetric ρ1, ρ2, we know

|λF(ρ1)− λF(ρ
2)| < ǫ,

when |ρ1 − ρ2| < δ, which finishes the proof.

In all, we show the asymptotical convergence result.

Lemma 20 Assume (A) holds and λF(ρ
∞) > 0, then for any sufficient small ǫ > 0,

there exists a constant time T > 0, such that when t > T ,

F(ρ(t))−F(ρ∞) ≤ e−2(λF (ρ∞)−ǫ)(t−T )(F(ρ(T ))−F(ρ∞)).
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Proof 18 We know that limt→∞ ρ(t) = ρ∞ implies two facts. On one hand, from

Lemma 19, the continuity of λF(ρ) implies: for 0 < ǫ << λF(ρ
∞), there exists a time

T1, when t > T1,

λF(ρ(t)) ≥ λF(ρ
∞)− ǫ

2
. (37)

On the other hand,

ρ(t) → ρ∞ ⇒ lim
t→∞

max
(i,j)∈E

(Fi(ρ(t))− Fj(ρ(t)))+ = 0,

which further implies

lim
t→∞

m(ρ(t)) = max
(i,j)∈E

(Fi − Fj)+ max
i∈V

deg(i)
maxi∈V ρi
mini∈V ρi

= 0.

It means that there exists a time T2, such that when t > T2, m(ρ(t)) ≤ ǫ.

Let T = max{T1, T2} and consider t ∈ [T,∞). Since (37) and Lemma 18 holds,

d2

dt2
F(ρ(t)) ≥−

(

2λF(ρ(t))−m(ρ(t))
) d

dt
F(ρ(t))

≥− 2(λF(ρ
∞)− ǫ)

d

dt
F(ρ(t)).

(38)

Similar as in motivation, integrating (38) on t ∈ [T,∞),

d

dt
[F(ρ(t))−F(ρ∞)] ≤ −2(λF(ρ

∞)− ǫ)(F(ρ(T ))−F(ρ∞)).

Following the Gronwall’s inequality of (17) with initial condition ρ(T ), we have

F(ρ(t))−F(ρ∞) ≤e−2(λF (ρ∞)−ǫ)(t−T )(F(ρ(T ))−F(ρ∞)).

3.4.1.3 Main result

In part three, we present the proof of main results.

Proof 19 (Sketch of Theorem 5 proof) Our proof is based on the dynamical view-

point. Let T be defined in Lemma 20. We consider the convergence result in two time

zones. If t ≤ T , since the gradient flow can not arrive at the minimizer in finite time,

the first derivative’s lower bound gives one convergence rate C1; If t > T , Lemma

20 has already provided the other exponential convergence rate C2 = 2(λF(ρ
∞) − ǫ).

Combing the above two facts, we obtain the overall convergence rate C = min{C1, C2}.
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Proof 20 (Proof of Theorem 5) If ρ0 = ρ∞, the convergence result (18) is trivial.

From now on, we consider ρ0 6= ρ∞.

We shall discuss two zones, [T,∞) and [0, T ], where T is defined in Lemma 20.

For case one, consider t ∈ [0, T ], we show that (18) holds for a constant C1.

Denote

m2 = min
0≤t≤T

∑

(i,j)∈E
(Fi(ρ(t))− Fj(ρ(t)))

2
+.

We show that m2 > 0. Assume this is not true, suppose m2 = 0. Since ρ(t) is

continuous and [0, T ] is a bounded region, there exists a time T0 ∈ [0, T ], such that

∑

(i,j)∈E
(Fi(ρ(T0))− Fj(ρ(T0)))

2
+ = 0.

Since ρi(T0) > 0 for all i ∈ V , we have F1(ρ(T0)) = · · · = Fn(ρ(T0)). It implies

dρi
dt
|T0 = 0, for any i ∈ V , meaning that the equilibrium of ODE (17) is arrived at a

finite time, which is impossible. Hence

d

dt
(F(ρ(t))−F(ρ∞)) =−

n
∑

i=1

∑

j∈N(i)

(Fi(ρ)− Fj(ρ))
2
+ρi

≤−
∑

(i,j)∈E
(Fi(ρ(t))− Fj(ρ(t)))

2
+ · min

t≥0, i∈V
ρi(t)

≤− min
0≤t≤T0

∑

(i,j)∈E
(Fi(ρ(t))− Fj(ρ(t)))

2
+ · min

t≥0, i∈V
ρi(t)

≤−m2 min
t≥0, i∈V

ρi(t)

=− m2 mint≥0, i∈V ρi(t)

F(ρ(t))−F(ρ∞)
(F(ρ(t))−F(ρ∞))

≤− m2 mint≥0, i∈V ρi(t)

F(ρ0)−F(ρ∞)
(F(ρ(t))−F(ρ∞)),

where the last inequality is from F(ρ(t)) ≥ F(ρ0). From Gronwall’s inequality,

F(ρ(t))−F(ρ∞) ≤ e−C1t(F(ρ0)−F(ρ∞)), (39)

where

C1 =
m2 mint≥0, i∈V ρi(t)

F(ρ0)−F(ρ∞)
.
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For case two, we consider t ∈ (T,∞). Denote

C2 = 2(λF(ρ
∞)− ǫ).

We show that (18) holds for a constant C = min{C1, C2}. Since

F(ρ(t))−F(ρ∞) ≤e−C2(t−T )(F(ρ(T ))−F(ρ∞)) Lemma 20

≤e−C(t−T )e−C1T (F(ρ0)−F(ρ∞)) Since (39) holds

=e−Cte−(C1−C)T (F(ρ0)−F(ρ∞))

≤e−Ct(F(ρ0)−F(ρ∞)),

where the last inequality is from C1 ≥ C, e−(C1−C)T < 1.

By combining the above two steps, we know that (18) holds for all t ≥ 0.

3.4.2 Analysis of dissipation rate

In last section, we show that if λF(ρ
∞) > 0, the convergence result (18) holds. What

is the explicit condition for λF(ρ
∞) > 0?

In this section, we give a clear answer to this question. That is we find the

relation between the Hessian matrix of free energy in R
n and asymptotic convergence

rate λF(ρ). The relation is shown by the following formula:

∑

(i,j)∈E

∑

(k,l)∈E
hij,kl(Φi − Φj)+ρi(Φk − Φl)+ρk =

(

˜divG(ρ∇GΦ)
)T

HessRnF(ρ) ˜divG(ρ∇GΦ),

(40)

where we recall hij,kl = fik + fjl − fil − fjk and denote

˜divG(ρ∇GΦ) :=
(

∑

j∈N(i)

(Φi − Φj)g̃ij
)n

i=1
with g̃ij :=















ρi if Φi > Φj;

ρj if Φi < Φj.

Let’s prove (40) by a direct calculation.

Proof 21 (Proof of Lemma 6) Notice HessRnF(ρ) = (fik)i∈V,k∈V .
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Then

(

˜divG(ρ∇GΦ)
)T

HessRnF(ρ) ˜divG(ρ∇GΦ)

=
n

∑

i=1

n
∑

k=1

fik ˜divG(ρ∇GΦ)|i ˜divG(ρ∇GΦ)|k

=
n

∑

i=1

n
∑

k=1

fik[−
∑

j∈N(i)

(Φi − Φj)g̃ij][−
∑

l∈N(k)

(Φk − Φl)g̃kl]

=
∑

(i,j)∈E
(Φi − Φj)g̃ij

∑

(k,l)∈E
fik(Φk − Φl)g̃kl

=
∑

(i,j)∈E
(Φi − Φj)g̃ij{

∑

(k,l)∈E, Φk>Φl

fik(Φk − Φl)ρk +
∑

(k,l)∈E, Φk<Φl

fik(Φk − Φl)ρl}

Relabel k and l for the second formula

=
∑

(i,j)∈E
(Φi − Φj)g̃ij{

∑

(k,l)∈E, Φk>Φl

fik(Φk − Φl)ρk −
∑

(k,l)∈E, Φk>Φl

fil(Φk − Φl)ρk}

=
∑

(i,j)∈E

∑

(k,l)∈E
(fik − fil)(Φi − Φj)g̃ij(Φk − Φl)+ρk

=
∑

(i,j)∈E, Φi>Φj

∑

(k,l)∈E
(fik − fil)(Φi − Φj)ρi(Φk − Φl)+ρk

+
∑

(i,j)∈E, Φi<Φj

∑

(k,l)∈E
(fik − fil)(Φi − Φj)ρj(Φk − Φl)+ρk

Relabel i and j for the second formula

=
∑

(i,j)∈E, Φi>Φj

∑

(k,l)∈E
(fik − fil)(Φi − Φj)ρi(Φk − Φl)+ρk

−
∑

(i,j)∈E, Φi>Φj

∑

(k,l)∈E
(fjk − fjl)(Φi − Φj)ρi(Φk − Φl)+ρk

=
∑

(i,j)∈E

∑

(k,l)∈E
(fik + fjl − fil − fjk)(Φi − Φj)+ρi(Φk − Φl)+ρk.

(40) immediately induces the relation between the convexity of free energy and

convergence result.

Proof 22 (Proof of Lemma 7) We are going to show

min
Φ∈D

(

˜divG(ρ∇GΦ)
)T

HessRnF(ρ) ˜divG(ρ∇GΦ) > 0.
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Assume this is not true, suppose

min
Φ∈D

(

˜divG(ρ∇GΦ)
)T

HessRnF(ρ) ˜divG(ρ∇GΦ) = 0,

where

D = {(Φi)
n−1
i=1 ∈ R

n−1 | (36) holds with Φn = 0}.

Since D is a compact set in R
n−1, there exists a Φ∗ ∈ D such that

(

˜divG(ρ∇GΦ
∗)
)T

HessRnF(ρ) ˜divG(ρ∇GΦ
∗) = 0.

Since HessRnF(ρ) is a positive definite matrix, divG(ρ∇GΦ
∗) = 0. Similarly as in the

proof of Lemma 10, we claim: Φ∗
1 = Φ∗

2 = · · · = Φ∗
n. If the claim is true, then

∑

(i,j)∈E
(Φ∗

i − Φ∗
j)

2
+ρi = 0,

which contradicts Φ∗ ∈ D.

Proof 23 (Proof of claim) Suppose it is not true. Let c = maxi∈V Φ∗
i . Since the

graph G is connected, there exists (k, l) ∈ E, such that Φ∗
l = c and Φ∗

k < c. By

∑

j∈N(l)(Φ
∗
j − Φ∗

l )g̃lj = 0, we have

Φ∗
l =

∑

j∈N(l) g̃lj(ρ)Φ
∗
j

∑

j∈N(l) g̃lj(ρ)
= c+

∑

j∈N(l) g̃lj(ρ)(Φ
∗
j − c)

∑

j∈N(l) g̃lj(ρ)
< c,

which contradicts Φ∗
l = c.

Moreover, since HessRnH = diag( 1
ρi
)1≤i≤n is a positive definite matrix, we know

λH(ρ) > 0 from the above argument.

From Theorem 5 and Lemma 7, we show convergence results for linear and nonlinear

Fokker-Planck equations on graphs.

Proof 24 (Proof of corollary 8 and 9) Since HessRnF(ρ) = βdiag( 1
ρi
)1≤i≤n > 0

or (wij)1≤i,j≤n+βdiag(
1
ρi
)1≤i≤n > 0, there exists a unique minimizer ρ∞. From Lemma

7, we have λF(ρ
∞) > 0. From Theorem 5, we have the convergence results of linear

and nonlinear Fokker-Planck equations.
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3.5 Functional inequalities

In this section, we recover several famous functional inequalities on finite graphs,

which are based on the convergence result of Fokker-Planck equation on graphs.

In the literatures, these inequalities have been investigated for a long time, see [16,

41]. Because the lack of 2-Wasserstein metric on discrete states, many other methods

have been adopted. Here we use a different way, which is a direct analog of continuous

state [68, 80] via the discrete 2-Wasserstein metric. In short, we apply the convergence

result to recover graph modified Log-Sobolev inequality (GLSI), which further implies

the graph modified Talagrand’s inequality (GTI) and Poincare inequality (GP).

In details, we introduce three concepts to measure the closeness of discrete mea-

sures. For any µ = (µi)
n
i=1, ν = (νi)

n
i=1 ∈ Po(G), we consider

• Graph relative entropy (H):

Hν(µ) :=
n

∑

i=1

µi log
µi

νi
;

• Graph relative Fisher information (I):

Iν(µ) :=
∑

(i,j)∈E
(log

µi

νi
− log

µj

νj
)2+µi;

• Graph 2-Wasserstein metric (W):

W2;Hν
(µ, ν) := inf{

√

∫ 1

0

(Φ,Φ)µ̄dt :
d

dt
µ̄+divG(µ̄∇GΦ) = 0, µ̄(0) = µ, µ̄(1) = ν}.

We prove several inequalities between H, I and W.

Theorem 21 For any finite simple graph G, there exists a constant λ > 0, such that

the following inequality holds.

• Graph modified Log-Sobolev-inequality:

Hν(µ) ≤
1

2λ
Iν(µ) (GLSI);
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• Graph modified Talagrand inequality:

W2;Hν
(µ, ν) ≤

√

2Hν(µ)

λ
(GT );

• Graph modified Poincare inequality: for any (fi)
n
i=1 ∈ R

n with
∑n

i=1 fiνi = 0,

n
∑

i=1

f 2
i νi ≤

1

λ

∑

(i,j)∈E
(fi − fj)

2
+νi (GP ).

Moreover, for a sufficient small ǫ > 0, there exists a open set D containing ν in

Euclidean metric, such that if µ ∈ D, (GLSI), (GT) hold for λ = λH(ν)− ǫ.

Remark 4 Because the convergence rate is only found in asymptotic sense, we are

not able to find the optimal bound for all inequalities. Instead, we provide an explicit

local bound around a special point, which is the Gibbs measure.

Before showing the proof, we observe that

Hν(µ) =
n

∑

i=1

µi log µi −
n

∑

i=1

log νiµi

is a summation of entropy and linear potential energy, whose minimizer is a Gibbs

measure ν. Notice that the gradient flow of Hν(µ) is

dµi

dt
=

∑

j∈N(i)

(log
µj

νj
− log

µi

νi
)+µj −

∑

j∈N(i)

(log
µi

νi
− log

µj

νj
)+µi. (41)

Along the gradient flow (41), we observe that the “Fisher” information satisfies

Iν(µ(t)) = − d

dt
Hν(µ(t)). (42)

Under this observation, we show the connections between H, W, I.

Proof 25 (Outline of proof) At the beginning, we prove GLSI by the convergence

result, meaning that the convergence rate near the equilibrium ν recovers the GLSI

inequality. Secondly, we use GLSI to show GT. Our proof follows the idea in Theorem

3 of [68]. That is the special calculation law between the metric and gradient flow.

Lastly, we use GLSI to show GP. It follows the linearization idea of Rothaus [83, 68].
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Proof 26 (Proof of Theorem 21) We begin with the proof of GLSI. We shall show

1

2λ
= sup

µ∈Po(G)

Hν(µ)

Iν(µ)
< +∞.

We will prove this by dividing P(G) into two regions. I.e.

P(G) = D ∪ (P(G) \D).

Here D is constructed as follows: Given a sufficiently small ǫ > 0, there exists a

constant δ,

D = {µ ∈ Po(G) : Hν(µ) < δ},

such that when µ ∈ D, λH(µ) > λH(ν)− ǫ.

One one hand, for µ ∈ D, we consider the gradient flow (41), with µ(t) starting at

initial measure µ. Notice that Hν(µ) is a Lyapunov function, µ(t) ∈ D for all t > 0.

Following the convergence result, we have

d2

dt2
Hν(µ(t)) ≥ −2(λH(ν)− ǫ)

d

dt
Hν(µ(t)).

Integrating on both sides for time interval (t,∞), we obtain

d

dt
Hν(µ(t))|t=∞ − d

dt
Hν(µ(t)) ≥ 2(λH(ν)− ǫ)(Hν(µ(t))|t=∞ −Hν(µ(t)).

Notice that d
dt
Hν(µ(t))|t=∞ = Hν(µ(t))|t=∞ = 0, the above formula forms

Iν(µ(t)) = − d

dt
Hν(µ(t)) ≥ 2(λH(ν)− ǫ)Hν(µ(t)),

which implies

λ1 = sup
µ∈D

Hν(µ)

Iν(µ)
≤ 1

2(λH(ν)− ǫ)
<∞.

On the other hand, for µ ∈ P(G) \ D. Since Hν, Iν are continuous functions

with respect to µ, it is not hard to check that Iν(µ) is bounded below 0 and Hν(µ) are

bounded above. Then

λ2 = sup
µ∈P(G)\D

Hν(µ)

Iν(µ)
≤

supµ∈P(G)\D Hν(µ)

infµ∈P(G)\D Iν(µ)
<∞.
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Let 1
2λ

= max{λ1, λ2}, we prove GLSI.

Secondly, we shall prove GT by using GLSI. We construct

ψ(t) = W2;Hν
(µ(t), µ) +

√

2Hν(µ(t))

λ
,

where µ(t) is the solution of gradient flow (41) with µ(0) = µ. If we show ψ(t) is a

decreasing function, we finish the proof of GT. Since ψ(0) ≤ ψ(∞), ψ(0) =
√

2Hν(µ)
λ

and ψ(∞) = W2;Hν
(µ, ν).

In order to show ψ(t) is a decreasing function, we need the following claims:

Claim 1: W2;Hν
(µ(t), µ) is a Lipschitz continuous function with respect to t.

Proof 27 (Proof of Claim 1) For any time a < b, we observe that

W2;Hν
(µ(b), µ)−W2;Hν

(µ(a), µ)

b− a
≤ W2;Hν

(µ(a), µ(b))

b− a
.

And since

W2;Hν
(µ(a), µ(b))2

= inf{
∫ 1

0

(Φ,Φ)µ̄(s)ds :
dµ̄

ds
+ divµ̄(µ̄∇GΦ) = 0, µ̄(0) = µ(a), µ̄(1) = µ(b)},

means the minimum is taken among all possible continuity equation. We consider a

particular continuity equation by letting t = a+ s(b− a), Φ(t) = log µi(t)
νi

,

dµi

dt
= (b− a){

∑

j∈N(i)

(log
µj

νj
− log

µi

νi
)+µj −

∑

j∈N(i)

(log
µi

νi
− log

µj

νj
)+µi}, (43)

Notice that (43) is slight modification of (41), which changes the time variable.

Hence

W2;Hν
(µ(a), µ(b))2 ≤(b− a)2

∫ 1

0

(log
µi(s)

νi
, log

µi(s)

νi
)µ(s)ds

=(b− a)2
∫ 1

0

Iν(µ(s))ds

≤ sup
s∈[0,1]

Iν(µ(s)).
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Since we have proved that for initial condition µ, there exists a compact region

Bo ⊂ Po(G), such that µ(t) ∈ Bo, for any t > 0. Hence

sup
s∈[0,1]

Iν(µ(s)) ≤ sup
µ∈Bo

Iν(µ) <∞.

Hence

W2;Hν
(µ(b), µ)−W2;Hν

(µ(a), µ)

b− a
≤ W2;Hν

(µ(a), µ(b))

b− a
≤ sup

µ∈Bo

Iν(µ) <∞,

which proves the claim.

Claim 2:

d

dt
|+W2;Hν

(µ(t), µ) ≤
√

Iν(µ(t)), for t a.e.

Proof 28 (Proof of claim 2) Since the function W2;Hν
(µ(t), µ0) is Lipschitz con-

tinuous with respect to t, it is also absolutely continuous. We only need to consider

time t, such that d
dt
|+W2;Hν

(µ(t), µ0) exists. Then

d

dt
|+W2;Hν

(µ(t), µ0) = lim
h→0

W2;Hν
(µ(t+ h), µ)−W2;Hν

(µ(t), µ)

h

≤ lim sup
h→0

W2;Hν
(µ(t+ h), µ(t))

h
.

To show the claim, we shall prove

W2;Hν
(µ(t+ h), µ(t))

h
≤

√

Iν(µ(t)).

This can be shown by the definition of metric. Since

W2;Hν
(µ(t+ h), µ(t))2

= inf{
∫ 1

0

(Φ,Φ)µ̄(s)ds :
dµ̄

ds
+ divG(µ̄∇GΦ) = 0, µ̄(0) = µ(t), µ̄(1) = µ(t+ h)},

means the minimum is taken among all possible continuity equation. Here we consider

a particular continuity equation by letting t = sh, Φ = log µ

ν
= (log µi(t)

νi
)ni=1

d

dt
µh − hdivG(µh∇G log

µh

v
) = 0,
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which is a time rescaling version of (41).

Hence

W2;Hν
(µ(t+ h), µ(t))2 ≤h2

∫ 1

0

(log
µh(s)

ν
, log

µh(s)

ν
)µh(s)ds

=h2
∫ 1

0

Iν(µh(s))ds.

Notice that Iν(µ) is a continuous function with respect to µ and µh(s) = µ(t + sh).

Then for any ǫ > 0, there exists a h̄ > 0, such that when 0 < h < h̄,

Iν(µh(s)) ≤ Iν(µ(t)) + ǫ,

which implies

W2;Hν
(µ(t+ h), µ(t))2

h2
≤

∫ 1

0

Iν(µ(s))ds = Iν(µ(t)) + ǫ.

Thus

d

dt
|+W2;Hν

(µ(t), µ) ≤ lim sup
h→0

W2;Hν
(µ(t+ h), µ(t))2

h2
≤ Iν(µ(t)) + ǫ.

Because ǫ is arbitrary, we finish the proof.

Claim 3: If GLSI holds, then

√

Iν(µ) ≤
Iν(µ)

√

2λHν(µ)
.

Proof 29
√

Iν(µ) =
Iν(µ)

√

Iν(µ)
≤ Iν(µ)

√

2λHν(µ)
.

In all, we are ready to show ψ(t) is a decreasing function. Since ψ(t) is an absolute

continuous function from claim 1, for any a > b > 0,

ψ(b)− ψ(a) =

∫ b

a

(
d

dt
|+W2;Hν

(µ(t), µ) +
d

dt

√

2Hν(µ(t))

λ
)dt

≤
∫ b

a

(
√

Iν(µ(t)) +
1

2
Hν(µ(t))

− 1
2 ·

√

2

λ

d

dt
Hν(µ(t)))dt By claim 2

≤
∫ b

a

(
√

Iν(µ(t))−
Iν(µ(t))

√

2λHν(µ(t))
)dt By (43)

≤
∫ b

a

0dt = 0 By claim 3.
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Hence we finish the proof.

Lastly, we prove GP by the linearization of GLSI. Let’s construct µǫ = (µǫ
i)

n
i=1 =

((1 + ǫfi)νi)
n
i=1, with

∑n

i=1 fiνi = 0. Clearly, µǫ ∈ Po(G). As ǫ goes to 0, we show

claim 4:

Hν(µ
ǫ)

ǫ2
→ 1

2

n
∑

i=1

f 2
i νi,

and

Iν(µ
ǫ)

ǫ2
→ 1

2

∑

(i,j)∈E
(fi − fj)

2
+νi.

From claim 4, GLSI implies GP.

Let’s show claim 4 in details. By using the Taylor expansion, log(1 + ǫfi) =

ǫfi − 1
2
(ǫfi)

2 + o(ǫ2),

Hν(µ
ǫ)

ǫ2
=

n
∑

i=1

µi log
µǫ
i

νi

=
n

∑

i=1

(1 + ǫfi)νi log(1 + ǫfi)

ǫ2

=
n

∑

i=1

(1 + ǫfi)(ǫfi − 1
2
(ǫfi)

2)

ǫ2
νi +O(ǫ)

=
n

∑

i=1

1

ǫ
fiνi +

1

2

n
∑

i=1

f 2
i νi +O(ǫ)

=
1

2

n
∑

i=1

f 2
i νi +O(ǫ),

and

Iν(µ
ǫ)

ǫ2
=

∑

(i,j)∈E
(log

µǫ
i

νi
− log

µǫ
j

νj
)2+µ

ǫ
i

=
∑

(i,j)∈E
(
log(1 + ǫfi)− log(1 + ǫfj)

ǫ
)2+(1 + ǫfi)νi

=
∑

(i,j)∈E
(
ǫfi − ǫfj +O(ǫ2)

ǫ
)2+(1 + ǫfi)νi

=
∑

(i,j)∈E
(fi − fj)

2
+νi +O(ǫ).
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3.6 Examples

In this section, we demonstrate Fokker-Planck equations on graphs through several

examples.

3.6.1 Toy examples

Example 2 (Multiple Gibbs measures) Consider a lattice graph with three ver-

tices:

1 2 3

We consider the free energy

F(ρ) =
1

2

3
∑

i=1

3
∑

j=1

wijρiρj + β
3

∑

i=1

ρi log ρi.

with Gibbs measures

ρ∞i =
1

K
e−

∑3
j=1 wijρ

∞
j

β , K =
n

∑

i=1

e−
∑3

j=1 wijρ
∞
j

β .

Let β=0.1 and

(wij)1≤i,j≤3 = −













1 0 0

0 1 1

0 1 1













.

In this case, since (wij)1≤i,j≤3 is semi negative definite, there are two minimizers

(Gibbs measures) of free energy, see Figure 2.

1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2: Plot of two Gibbs measures: one is (0.0001, 0.4729, 0.5270), the other is

(0.9986, 0.0007, 0.0007).

61



Example 3 (Gradient flow) In example 2’s setting, we consider the gradient flow

(17), see Figure 3:

dρi
dt

=
∑

j∈N(i)

ρj(
n

∑

i=1

wijρi −
n

∑

j=1

wijρj + β log ρj − β log ρi)+

−
∑

j∈N(i)

ρi(
n

∑

j=1

wijρj −
n

∑

i=1

wijρi + β log ρi − β log ρj)+.

0

0.2

0.4

0.6

0.8

11

0.8

0.6

0.4

0.2

0

0.1

0.2

0.3

0.4

0.5

0

0.6

1

0.9

0.8

0.7

Figure 3: β = 0.1, vector field of (17).

Example 4 (Convergence rate) Let’s use Theorem 31 to demonstrate the conver-

gence result in example 3. Because this graph has two edges, we know

h12,12 =w11 + w22 − 2w12 + β(
1

ρ1
+

1

ρ2
)

h12,23 =w12 + w23 − w13 − w22 + β(− 1

ρ2
)

h23,23 =w22 + w33 − 2w23 + β(
1

ρ2
+

1

ρ3
).

From Definition 4, we have

λF(ρ) =min
Φ

h12,12(Φ1 − Φ2)
2g212 + 2h12,23(Φ1 − Φ2)g12(Φ2 − Φ3)g23

+ h23,23(Φ2 − Φ3)
2g223

s.t.

(Φ1 − Φ2)
2g12 + (Φ2 − Φ3)

2g23 = 1.
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Here

g12 =















ρ1 if Φ1 ≥ Φ2,

ρ2 if Φ1 < Φ2,

g23 =















ρ2 if Φ2 ≥ Φ3,

ρ3 if Φ2 < Φ3.

By solving the above optimization explicitly, we have

λF(ρ) ≥ min
g12,g23

2g12g23
h12,12h23,23 − h212,23

h12,12g12 + h23,23g23 +
√

(h12,12g12 − h23,23g23)2 + 4h212,23g12g23
. (a)

From Theorem 4, if h12,12h23,23 − h212,23 > 0, the solution of (17) converges to ρ∞

exponentially with asymptotic rate no less than 2(a).

3.6.2 Graph structure

In this sequel, we are curious about how the structure of graph affects the convergence

rate. In particular, we consider a linear entropy

H(ρ) =
n

∑

i=1

ρi log ρi,

whose gradient flow, “Heat flow on a graph”, is

dρi
dt

=
∑

j∈N(i)

(log ρj − log ρi)+ρj −
∑

j∈N(i)

(log ρi − log ρj)+ρi, (44)

with the unique Gibbs measure ρ∞ = 1 = ( 1
n
, · · · , 1

n
).

We design a numerical way to find the asymptotic convergence rate of (44). Fix

a large enough time T , let ρ(T ) be the solution of (44) with initial condition ρ0.

Numerically,

λH(1) ≈
1

2
min

ρ0∈Po(G)
log

H(ρ(T ))−H(1)

H(ρ(T + 1))−H(1)
.

By the above numerical formula, we investigate how the structure of graph affects

the asymptotical convergence rate. In next three examples, we numerically solve the

convergence rates for three well know graphs.

Example 5 Consider a circular graph Cn.
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λH(1) ≈ 4π2

n2 .

Consider a star graph Sn.

λH(1) ≈ 1.

Consider a complete graph Kn.

λH(1) ≈ n.

Remark 5 Above convergence rates are numerically checked for 10 ≤ n ≤ 30.

Furthermore, we investigate how the change of graph structure, adding or deleting

certain edges, affects the convergence rate.

Example 6 One example is that, we consider a 6 vertices’ graph with both cycle and

star graph edges.

λH(1) ≈ 2.055.

By deleting one specify edge, we obtain two different rates.
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λH(1) ≈ 1.509. λH(1) ≈ 1.386.

The other example is that, we consider a graph with two cycles connected by one edge.

λH(1) ≈ 0.1580.

By deleting one specify edge, we obtain three different rates.

(a) λH(1) ≈ 0.0918. (b) λH(1) ≈ 0.1164.

(c) λH(1) ≈ 0.1516.

Figure 4

Another example is that, we consider the following graph:

λH(1) ≈ 0.2426.

By deleting one specify edge, we obtain two different rates.
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(a) λH(1) ≈ 0.2276. (b) λH(1) ≈ 0.2406.

Figure 5

3.7 Conclusions

In this section, we summarize all results. Facing the optimization problem

min
ρ
{F(ρ) = vTρ+

1

2
ρTWρ+ β

n
∑

i=1

ρi log ρi :
n

∑

i=1

ρi = 1, ρi ≥ 0}, (45)

where v = (vi)
n
i=1 is a constant vector and W = (wij)1≤i,j≤n is a constant symmetric

matrix, we introduce a gradient flow of (45) associated with graph structure G.

In details, we define the divergence operator with respect to ρ on finite graphs,

such that the gradient flow of free energy (17) forms

dρ

dt
= divG(ρ∇GF (ρ)), F (ρ) = (

∂

∂ρi
F(ρ))ni=1.

(17) is a gradient flow, since it has the following properties:

(a) F(ρ) is a Lyapunov function of (17):

d

dt
F(ρ(t)) = −(F (ρ), F (ρ))ρ = −g(dρ

dt
,
dρ

dt
);

(b) The minimizers of F(ρ), named Gibbs measures are equilibria of (17);

(c) If a Gibbs measure ρ∞ is a strictly local minimizer of F(ρ), then

F(ρ(t))−F(ρ∞) ≤ e−Ct(F(ρ0)−F(ρ∞)),

where C is a positive constant depending on ρ0 and graph G’s structure.

Importantly, this approach reflects the effect of entropy along with (17).
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(i) The entropy induces the gradient flow (17)’s boundary repeller property. Notice

that this property helps optimization (45) handles the boundary;

(ii) The entropy is the key to (17)’s convergence result. Recall that

d2

dt2
F(ρ(t)) = 2(

dρ

dt
)T
[

W + βdiag(
1

ρi
)1≤i≤n

]dρ

dt
+ o(

d

dt
F(ρ(t))).

One one hand, the entropy improves the convergence rate of (17), since

HessRnH(ρ) = diag(
1

ρi
)1≤i≤n

is a positive definite matrix; On the other hand, the small order term is a result

of boundary repeller property (i), which is crucial for convergence result!

To emphasize the impact of the difference of log ρ term in (17), we define a new

Laplace operator12 on finite graphs:

∆Gρ := divG(ρ∇G log ρ),

where ∇G log ρ = (log ρi − log ρj)(i,j)∈E and gij(ρ) is defined in (19). We name ∆G

as Log-Laplacian, whose behavior in modeling and numerics are studied in next two

chapters.

Remark 6 The Log-Laplacian

∆Gρ =
∑

j∈N(i)

(log ρi − log ρj)gij(ρ),

is clearly different from the currently known graph Laplacian,
∑

j∈N(i)(ρj − ρi).

3.8 Relation with Villani’s open problem

In this sequel, motivated by the convergence result in Theorem 4, we plan to find

its analog in continuous states. Amazingly, this analog is related to Villani’s open

problem 15.11 in [95]:

12In continuous state, ∆ρ = ∇ · (ρ∇ log ρ).
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Find a nice formula for the Hessian of the functional F(ρ).

In general, it is hard to find a nice formula to represent the Hessian of nonlinear

free energy with respect to all measures. However, for a special measure, such as a

Gibbs measure, it is possible to do so. In other words, we find a formula to represent

the Hessian of nonlinear free energy at its critical point. This formula gives us enough

reasons, that the definition 4 plays the role of Hessian operator at Gibbs measure on

discrete states.

3.8.1 Hessian operator of free energy at Gibbs measure

In this sequel, we shall derive the formula directly. We start with some notations:

M is the underlying state, which is a smooth finite (d) dimensional Riemannian

manifold. P2(M) is the probability manifold supported on M embedded with 2-

Wasserstein metric. The smooth functional, named free energy, is F : P(M) → R.

We consider the optimization problem

min
P(M)

F(ρ).

The local minimizer lying in the interior of P(M) is denoted as ρ∗, i.e.

∇ δ

δρ(x)
F(ρ)|ρ=ρ∗ = 0, for any x ∈ M.

In this setting, we will calculate the Hessian operator of objective functional F(ρ)

at the local minimizer ρ∗ on metric manifold P2(M). To do so, we recall the Otto

calculus in [95]. The geodesic on P2(M) satifies















∂ρt
∂t

+∇ · (ρ∇Φt) = 0

∂Φt

∂t
+ 1

2
(∇Φt)

2 = 0.

Here the continuity equation describes the motion of the measure and ∇Φt can be

understood as the velocity of geodesic. It is known that the gradient and Hessian of
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free energy on P2(M) is derived as follows:

(gradP2(M)F ,∇Φ)ρ :=
d

dt
F(ρt)|t=0

(HessP2(M)F · ∇Φ,∇Φ)ρ :=
d2

dt2
F(ρt)|t=0.

Theorem 22

(HessP2(M)F · ∇Φ,∇Φ)ρ∗

=

∫

M

∫

M

δ2

δρ(x)δρ(y)
F(ρ)∇ · (ρ∗(x)∇Φ(x))∇ · (ρ∗(y)∇Φ(y))dxdy

=

∫

M

∫

M
(Dxy

δ2

δρ(x)δρ(y)
F(ρ)∇Φ(x),∇Φ(y))ρ∗(x)ρ∗(y)dxdy,

(46)

where δ2

δρ(x)δρ(y)
F(ρ) is the second variational formula of functional F(ρ), (·, ·) is Eu-

clidean inner product in R
d.

Proof 30 Let ρt satisfy the geodesic equation with initial measure ρ∗. Then the first

derivative is a well known formula in Otto calculus:

d

dt
F(ρt) =−

∫

M

δ

δρ(x)
F(ρt)∇ · (∇Φt(x)ρt(x))dx

=

∫

M
∇ δ

δρ(x)
F(ρt) · ∇Φt(x)ρt(x)dx.

(47)

In addition, the second derivative is derived by the product law on (47):

d2

dt2
F(ρt) =

∫

M

d

dt
[∇ δ

δρ(x)
F(ρt)] · ∇Φt(x)ρt(x)dx (A1)

+

∫

M
∇ δ

δρ(x)
F(ρt) ·

∂

∂t
(∇Φt(x)ρt(x))dx. (A2)

Since ρ0 = ρ∗, ∇ δ
δρ(x)

F(ρt)|t=0 = 0 implies A2|t=0 = 0, we obtain

d2

dt2
F(ρt)|t=0 =(A1) =

∫

M

d

dt
[∇ δ

δρ(x)
F(ρt)] · ∇Φt(x)ρt(x)dx

=

∫

M
∇ d

dt

δ

δρ(x)
F(ρt) · ∇Φt(x)ρt(x)dx

=−
∫

M

d

dt

δ

δρ(x)
F(ρt)∇ · (∇Φt(x)ρt(x))dx

(48)
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Notice that δ
δρ(x)

F(ρ) is also a smooth functional. Run the Otto calculus on this new

functional, we have

d

dt

δ

δρ(x)
F(ρt) = −

∫

M

δ2

δρ(x)δρ(y)
F(ρt)∇ · (∇Φt(y)ρt(y))dy. (49)

Substitute (49) into (48), we finish the first equality. Through integration by parts

with respect to x and y respectively, we can prove the second equality. In all, we finish

the proof.

We illustrate the formula (46) by three examples.

Example 7 Consider a free energy with linear potential energy and linear entropy

with underlying state R
d.

F(ρ) =

∫

Rd

V (x)ρ(x)dx+ β

∫

Rd

ρ(x) log ρ(x)dx.

Here the Gibbs measure is

ρ∗(x) =
1

K
e−

V (x)
β , K =

∫

Rd

e−
V (x)
β dx.

The formula (46) shows that

(HessP2(Rd)F · ∇Φ,∇Φ)ρ = β

∫

Rd

(∇ · (ρ∗∇Φ))2
1

ρ∗(x)
dx. (50)

We demonstrate that (50) is a new representation of the well known Hessian operator.

Lemma 23

∫

Rd

[(D2V · ∇Φ,∇Φ) + βtr(D2ΦD2ΦT )]ρ∗(x)dx = β

∫

Rd

(∇ · (ρ∗∇Φ))2
1

ρ∗(x)
dx, (51)

where ρ∗ is the Gibbs measure

ρ∗(x) =
1

K
e−

V (x)
β , K =

∫

Rd

e−
V (x)
β dx,

and (·, ·) is an inner product in R
d.
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Remark 7 L.H.S. of the above formula is a well known Hessian operator in optimal

transport [95].

Proof 31 To simplify this validation, we let β = 1. It is not hard to check that the

latter proof works for any β > 0. Since
∫

Rd

(∇ · (ρ∗∇Φ))2
1

ρ∗(x)
dx =

∫

Rd

(∆Φρ∗(x) +∇ρ∗ · ∇Φ)2
1

ρ∗(x)
dx

=

∫

Rd

(∆Φ)2ρ∗(x) + 2∆Φ(∇ρ∗ · ∇Φ) +
1

ρ∗(x)
(∇ρ∗ · ∇Φ)2dx

Since ∇ρ∗ = −∇V ρ∗

=

∫

Rd

(∆Φ)2ρ∗(x) + 2∆Φ(∇ρ∗ · ∇Φ) + (∇V · ∇Φ)2ρ∗dx.

(a) (b) (c)

Let’s calculate (a), (b) separately. We start with (a).

(a) =

∫

Rd

(∆Φ)2ρ∗(x)dx =

∫

Rd

∇ · (∇Φ)∆Φρ∗dx

=−
∫

Rd

∇Φ · ∇(∆Φ)ρ∗dx−
∫

Rd

(∇Φ · ∇ρ∗)∆Φdx.

Since13

−∇Φ · ∇(∆Φ) = −∆
|∆Φ|2
2

+ tr(D2ΦD2ΦT ),

we have

(a) =

∫

Rd

(−∆
|∇Φ|2

2
+ tr(D2ΦD2ΦT ))ρ∗dx−

∫

Rd

(∇Φ · ∇ρ∗)∆Φdx

=−
∫

Rd

(D2Φ · ∇Φ,∇ρ∗)dx+
∫

Rd

tr(D2ΦD2ΦT )ρ∗dx− 1

2
(b).

Let’s estimate (b).

1

2
(b) =

∫

Rd

∇ · (∇Φ)(∇ρ∗ · ∇Φ)dx

=−
∫

Rd

∇Φ · ∇(∇ρ∗ · ∇Φ)dx

=−
∫

Rd

[(D2ρ∗ · ∇Φ,∇Φ) + (D2Φ · ∇ρ∗,∇Φ)]dx

=

∫

Rd

[(D2V · ∇Φ,∇Φ)ρ∗ − (∇V · ∇Φ)2ρ∗] + (D2Φ · ∇ρ∗,∇Φ)dx,

13It is a Bochner’s formula in R
d with the Ricci curvature tensor as 0.
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where the last equality is from D2ρ∗ = −D2V ρ∗ +∇V ⊗∇V ρ∗.

In all,

(a) + (b) + (c) =

∫

Rd

[(D2V∇Φ,∇Φ) + tr(D2ΦD2ΦT )]ρ∗(x)dx

which finishes the proof.

Example 8 We consider a free energy with linear, interaction potential energy and

linear entropy with underlying state R
d.

F(ρ) =

∫

Rd

V (x)ρ(x)dx+
1

2

∫

Rd×Rd

W (x, y)ρ(x)ρ(y)dxdy + β

∫

Rd

ρ(x) log ρ(x)dx.

Here the Gibbs measure is

ρ∗(x) =
1

K
e−

V (x)+
∫

Rd
W (x,y)ρ∗(y)dy

β , K =

∫

Rd

e−
V (x)+

∫

Rd
W (x,y)ρ∗(y)dy

β dx.

(46) shows that

(HessP2(Rd)F · ∇Φ,∇Φ)ρ∗ =

∫

Rd×Rd

(DxyW (x, y)∇Φ(x),∇Φ(y))ρ∗(x)ρ∗(y)dxdy

+ β

∫

Rd

(∇ · (ρ∗∇Φ))2
1

ρ∗(x)
dx.

3.8.2 Connections with Yano’s formula

In this sequel, we show that (46) connects with an important equality in Riemannian

geometry, named Yano’s formula [97, 98].

∫

M

[Ric(X,X) +
∑

i,j

∇jXi∇iXj]dx =

∫

M
(∇ ·X)2dx. (52)

The formula is valid for any vector field X in a compact orientable finite dimensional

Riemannian manifold M, ∇i is the operator of covariant differentiation for ∇∂i , Ric

is a Ricci curvature tensor and dx is the volume element of the space.

In details, we consider a free energy containing only linear entropy.

F(ρ) =

∫

M
ρ(x) log ρ(x)dx,
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where the underlying state is a Riemannian manifold M. The minimizer of this free

energy, Gibbs measure ρ∗, is a uniform measure on M. I.e.

ρ∗(x) =
1

vol(M)
, for any x ∈ M.

In this case, if we look at the Hessian operator of free energy on P2(M) at the

Gibbs measure, we observe an interesting equality

(HessP2(M)F · ∇Φ,∇Φ)ρ∗

=

∫

M
[Ric(∇Φ,∇Φ) + tr(D2ΦD2ΦT )]ρ∗(x)dx

=

∫

M
[∇ · (ρ∗∇Φ)]2

1

ρ∗(x)
dx.

Here the first equality is known by optimal transport [95], while the second equality

is proved by Theorem 46. Since ρ∗ is a uniform measure, then the above formula

means nothing but

∫

M
[Ric(∇Φ,∇Φ) + tr(D2ΦD2ΦT )]dx =

∫

M
[∇ · (∇Φ)]2dx. (53)

Interestingly, if we denote ∇Φ = X, (53) reflects the famous Yano’s formula (52).

In all, there is a subtle relationship between the Hessian operator at Gibbs measure

and the geometry of underlying space.

73



CHAPTER IV

APPLICATION I: EVOLUTIONARY DYNAMICS

4.1 Introduction

In this chapter, we illustrate the first application of Fokker-Planck equations on

graphs, which is the evolutionary game theory.

Games play fundamental roles in many real world problems [19, 73, 96], including

Social Networks, Virus, Biology species, Trading, Cancer. Game theory study a situ-

ation that all players are selfish, who want to maximize their own payoffs. Currently,

people model games in two ways. One is through some statical equilibria, e.g. Nash

equilibria. The other is through a dynamical model. It means that all players are

making decisions through a Markov process, whose transition law are governed by a

dynamical system. Nowadays, the second approach is adopted vastly, which is known

as evolutionary game theory [55, 76, 84, 86].

In the literature, people propose many different dynamics models, e.g. Replicator

dynamics [1], Best response dynamics [69] and Smith dynamics [87]. However, one

fundamental question is still unclear: In games with discrete strategies, how can we

model uncertainties in player’s decision process?

In continuous strategy games, the question is easy to answer. The white noise is

widely used to model uncertainties. For example, players’ decisions are characterize by

SDEs, whose transition laws are governed by Fokker-Planck equations, see examples

in Mean field games [3, 14, 15, 22, 39, 48, 61]. However, these theories can not be

applied to the discrete strategy directly.

In this chapter, we bridge this gap by using Fokker-Planck equations on graphs,

which provide evolutionary dynamics to model finite players’ game, population game
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and spatial population game.

4.2 Review in Game theory

In this sequel, we briefly review some concepts in game theory. Quantitively speaking,

the game contains three components: players, strategy sets, and payoffs. It refers a

situation that each player picks up a choice in strategy set. The player receives his

own payoff depending on all others’ choices. The goal of the game is to investigate

how players make decisions under this setting.

In the literature, many different types of games are discussed. Depending on the

number of players, the game can be either finite players’ or infinite players’ (population

game); Depending on strategy sets, the game can be with either continuous or discrete

strategy; Depending on payoffs, the game can be either statical or dynamical. In this

chapter, we focus on the statical game, meaning that there is no time variable in the

description of games.

4.2.1 Games

We begin with describing a finite players’ game. It describes a situation where finite

players try to find a strategy in their own strategy set with the “best” payoff. More

precisely, player v picks a choice xv in pure strategy set Sv, then he receives a payoff

depending on all others, Fv : S1 × · · · × SN → R. The game forms a multiple goal

optimization problem 1

max
xv∈Sv

Fv(xv, x−v), v ∈ {1, · · · , N}.

Compare with the optimization, there is no unique objective function for all play-

ers. So other than looking at the “maximizer”, people describe a special status for

all players, which is named Nash equilibrium, meaning that no player is willing to

change his current strategy unilaterally.

1We use a convention that, x−v = (x1, · · · , xv−1, xv+1, · · · ) for all players’ choices other than
player i’s, ui(xi, x−i) := ui(x1, · · · , xN ).
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Definition 24 A strategy profile x∗ is a Nash equilibrium (NE) if

Fv(x
∗
v, x

∗
−v) ≥ Fv(xv, x

∗
−v) for any player v with xv ∈ Sv.

In general, the strategy set can be either continuous set (Borel set) or discrete set.

For example, consider a game with continuous strategy set.

Example 9 Let S1 = S2 = R
1. Player 1 or 2 wants to maximize his own payoff.

max
x1∈R1

F1(x1, x2) = −(x1 − 1)2 − x2,

and

max
x2∈R1

F2(x1, x2) = −x22.

It is easy to check that (1, 0) is a NE.

In this chapter, we mainly consider the discrete strategy set, in which games are

called normal games. Because of strategy sets being discrete, the payoff functions

naturally form matrices. We adopt a two players’ game to illustrate. Suppose the

strategy set is S1 = {1, · · · ,m}, S2 = {1, · · · , n}. If player 1 chooses i ∈ S1 and

player 2 picks j ∈ S2, they receive payoff values F1(i, j) and F2(i, j). It is customary

to denote payoffs as a bi-matrix form (A,BT ), where matrix A = (aij)1≤i≤n,1≤j≤m and

BT = (bji)1≤i≤n,1≤j≤m, with aij = F1(i, j) and bji = F2(j, i).

For example, we consider the “Prisoner’s dilemma”.

Example 10 Two members of a criminal gang are arrested and imprisoned. Each

prisoner is given the opportunity to cooperate or defect. Their payoff matrixes are

given by

player 2 C player 2 D

player 1 C (-1, -1) (-3, 0)

player 1 D (0, -3) (-2, -2)
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In this case, the strategy set is S = {C,D}, where C represents “Cooperation” and D

represents “Defection”. Here the game’s payoff matrix is

A =







−1 −3

0 −2






, BT =







−1 0

−3 −2






.

By comparing matrix values, we know that (D,D) is a NE.

Secondly, we consider population game, which contains countably infinite many

identical players [84].

To illustrate, we begin by considering a special finite (N) players’ game, named

autonomous game. It means that the player’s payoff doesn’t rely on the player’s

identity. More precisely, suppose all players are with the same strategy set S and

each player’s payoff function Fv : S
N → R is specially symmetric:

FN
v (x1, · · · , xN) = FN

σ(v)(xσ(1), · · · , xσ(N)),

for all permutations σ on {1, · · · , N}. Suppose this game contains a large number

of players, meaning that N is large enough. Under this setting, we assume that the

payoff function FN : S×SN−1 → R can be generalized to a map F : S×P(S) → R.

Here P(S) is the probability set supported on S, meaning

F (y, ρN) := FN
v (x1, · · · , xv−1, y, xv+1, · · · , xN), for any (x1, · · · , xN) ∈ SN ,

and ρN = 1
N−1

∑

l 6=v δxl
is the empirical distribution for other N − 1 players. Imagine

that as N goes to infinity, the empirical measure approaches a limit, say ρN → ρ

and the payoff forms F (y, ρN) → F (y, ρ). This limiting process defines a population

game, where the strategy set is S, players forms the probability set P(S) with payoff

function F : S × P(S) → R.

Similarly, one can define the Nash equilibrium in population game.

Definition 25 ρ∗ is a NE if

Support of ρ∗ ⊂ argmax
y∈S

F (y, ρ∗).

77



Again, NE tells the fact that no player can improve his payoff by switching strategies

in population games.

In particular, we are interested in the discrete strategy set. Let the strategy set

be S = {1, · · · , n}, whose probability set is a simplex,

P(S) = {(ρi)ni=1 ∈ R
n |

n
∑

i=1

ρi = 1, ρi ≥ 0}.

with payoff function F (ρ) = (Fi(ρ))
n
i=1, representing that a player in game choosing

a strategy i receives the payoff Fi(ρ). Again, we describe a NE

Definition 26 Population state ρ∗ is a Nash equilibrium if

ρ∗i > 0 implies that Fi(ρ
∗) ≥ Fj(ρ

∗), for all j ∈ S.

Let’s illustrate this game by an example.

Example 11 Suppose infinite many players play Prisoner’s Dilemmas. Each player

is random matched to play the game; The player choosing strategy i receives the payoff

by the expectation of all other players. I.e. Fi(ρ) =
∑

j∈S aijρj.

In Example 10, the population state is ρ = (ρC , ρD). If a player in the game

chooses strategy C, he will receive the payoff FC(ρ) = −3ρC −ρD. Similarly, FD(ρ) =

−ρD. By the definition, (0, 1) is a NE, meaning that all players choose the strategy

D.

4.2.2 Potential games

Althrough the game is very different from optimization, we introduce a particular

type of game, potential game, to bridge them [54, 72]. The potential game means

that there exists an objective function, named potential, which is the maximization

goal of all players.

Let’s illustrate potential games by various types of games. We start with finite

players’ games. Let the strategy set be S, payoff functions be Fv : SN → R, v ∈

{1, · · · , N}.
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If the strategy set is continuous, for example S = R
1:

Definition 27 A game is a potential game, if there exists a function φ(x) ∈ C1(RN),

such that

∂

∂xv
φ(x) =

∂

∂xv
Fv(x), for any v ∈ {1, · · · , N}.

Example 12 Let S1 = S2 = R
1. Player 1 and 2 wants to maximize their own payoffs.

max
x1∈R

F1(x1, x2) = −x21,

and

max
x2∈R

F2(x1, x2) = −x22.

It is a potential game with potential

φ(x1, x2) = −(x21 + x22).

In mathematics, it is easy to check that maximizers of potentials are NEs.

If the strategy set is discrete, for example S = {1, · · · , n}:

Definition 28 A game is a potential game if there exists a function φ : SN → R

such that for any x1v, x
2
v ∈ S, x−v ∈ SN−1,

φ(x1v, x−v)− φ(x2v, x−v) = Fv(x
1
v, x−v)− Fv(x

2
v, x−v).

Example 13 Prisoner dilemma in Example 10 is a potential game with

φ(x) = −F1(x1, x2) + F2(x1, x2)

2
, x = (x1, x2) ∈ {(C,C), (C,D), (D,C), (D,D)}.

Again, we can easily observe that maximizers of potentials φ(x) are NEs.

Secondly, we consider potential games in population games. Let the strategy set

be S, payoff functions be F : S × P(S) → R. If the strategy is continuous, say

S = R
1:
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Definition 29 The population game is a potential game, if there exists a potential

functional F : P(S) → R, such that 2

δ

δρ(x)
F(ρ) = F (x, ρ), for any x ∈ S.

One can show directly that maximizers of potential functional F(ρ) are NEs.

If the strategy set is discrete, S = {1, · · · , n}:

Definition 30 The population game is a potential game, if there exists a differen-

tiable potential function F : P(S) → R, such that

∂

∂ρi
F(ρ) = Fi(ρ), for any i ∈ S.

We illustrate this concept by an example.

Example 14 If we consider a population game in Example 11 and the payoff matrix

A is a symmetric matrix, then the game becomes a potential game with potential

function F(ρ) = 1
2
ρTAρ, since

∇F(ρ) = Aρ = F (ρ).

Again, by first order conditions, one can show that maximizers of F(ρ) are NEs.

4.2.3 Fokker-Planck equations and Evolutionary dynamics

In above, we have discussed the concept of games and NEs, which are statical de-

scriptions and special statuses of the game. In the real world, players are making

decisions dynamically. In order to model such behaviors, people introduce the dy-

namics to investigate games. This is known as Evolutionary game theory. Meanwhile,

Fokker-Planck equations, along with SDEs, are fundamental tools for modeling. In

this sequel, we explain the connection between Fokker-Planck equation and evolu-

tionary game theory through continuous strategy set.

2 δ
δρ

is the notation of first variational formula.
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At the beginning, we consider a finite players’ game. To better illustrate, we

assume that the game contains N players; Each player v chooses a strategy in Sv = R
d

with a payoff function FN
v : S1 × · · · × SN → R. In other words, the game describes

a situation:

max
xv∈R1

FN
v (x1, · · · , xv, · · · , xN), v ∈ {1, · · · , N}.

To build a dynamical model, we make following assumptions.

• Players are making decisions dynamically;

• Each player is myopic and greedy. He chooses a direction that increases his

current payoff most rapidly;

• There are some inevitable uncertainties when players are making decisions.

In mathematics, we consider a SDE system

dxv = ∇xv
FN
v (x)dt+

√

2βdW v
t , v ∈ {1, · · · , N}, (54)

where β > 0 and W 1
t , · · · ,WN

t are N independent Wiener processes. (54) reflects all

quantitive assumptions: Its solution, a stochastic process x(t) = (xv(t))
N
i=1 indicates

that players are dynamically making decisions; The “most rapidly” direction implies

the gradient direction of each player’s payoff, ∇xv
FN
v and the white noise effects

represent uncertainties.

Things become more interesting if we look at the probability. The Fokker-Planck

equation

∂ρ

∂t
+∇ ·

(

ρ(∇xv
FN
v (x))dv=1

)

= β∆ρ, (55)

describes (54)’s probability transition equation. Here the unknown ρ(t, x) is a prob-

ability density function. Under suitable conditions, as the time variable t goes to

infinity, (55) converges to a stationary solution, named invariant measure, which tells

us more information about Nash equilibria.
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Secondly, the interplay between SDE and Fokker-Planck equation can also be

applied to model population games. Recall that the population game is a special

symmetric game with the number of players goes to infinity. As in last section, the

empirical measure of all players ρN converges to one probability measure ρ, with

F (x, ρN) = FN(x1, · · · , xN) → F (x, ρ).

By the assumption in “propagation of chaos”, the limit process of SDE system

dxv = ∇xv
FN
v (x)dt+

√

2βdWvt, v ∈ {1, · · · , N},

becomes a nonlinear SDE, meaning that its transition law3 satisfies

dx̄ =∇x̄F (x̄, ρ(t, x̄))dt+
√

2βdWt

ρ(t, ·) ∼ Law(x̄(t)).

In other words, the transition equation satisfies a “mean field” equation, which is a

nonlinear Fokker-Planck equation

∂ρ

∂t
+∇ · (ρ∇x̄F (x̄, ρ)) = β∆x̄ρ,

where the unknown ρ(t, x̄) is probability density function supported on R
d and the

“mean field” reflects that one uses a “mean” payoff as the approximation of larger

number of players’, i.e. F (x, ρ) ≈ FN(x1, · · · , xN).

In all, Fokker-Planck equation, along with the SDE system introduces many in-

teresting properties of limiting behaviors in games.

4.2.4 Gradient flows on strategy sets

This derivation is more natural if we look at a special type of game, potential game.

The best-reply dynamics is nothing but gradient flows.

3We call law as the transition probability
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In finite player’s game, the potential game means that there exists a function φ(x),

such that ∇φ(x) = (∇xv
Fv(x))

d
v=1. Hence (54) is nothing but a perturbed gradient

flow in R
Nd

dx = ∇φ(x)dt+
√

2βdWt,

whose transition law obeys the Fokker-Planck equation

∂ρ

∂t
+∇ · (ρ∇φ(x)) = β∆ρ.

In population game, there exists a functional F(ρ), such that δ
δρ(x)

F(ρ) = F (x, ρ).

Hence the SDE is also a perturbed gradient flow [24]

dx̄ =∇x̄F (x̄, ρ)dt+
√

2βdWt

ρ(t, ·) ∼ Law(x̄(t)).

Its transition density satisfies a nonlinear Fokker-Planck equation

∂ρ

∂t
+∇ · (ρ∇x̄F (x̄, ρ)) = β∆ρ.

Notice that, in above two cases, all players is making decisions according gradient

flows in strategy sets. In the viewpoint of optimal transport, we can say more. All

players’ probability transition equation, Fokker-Planck equation, can also be viewed

as gradient flows in probability set.

As we can see in above, there are strong connections between Fokker-Planck equa-

tions and evolutionary dynamics on continuous strategy set. Later on, we will build

a similar connection on discrete strategy sets.

4.3 Finite players’ games

In this sequel, we focus on finite (N) players’ games on discrete strategy sets. We

will establish Fokker-Planck equations on graphs as evolutionary dynamics.

Recall that the game is described as follows: Player v picks a choice xv in a discrete

strategy set

Sv = {sv1, . . . , svnv
},
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with payoff matrix Fv : S1 × · · · × SN → R. Notice that the game forms

max
xv∈Sv

Fv(x1, · · · , xv, · · · , xN), v ∈ {1, · · · , N}.

Our goal is to derive this game’s evolutionary dynamics.

4.3.1 Gradient flows on strategy graphs

We start with considering potential games, meaning that there exists a potential

function φ : S → R, under which the game forms

max
(x1,··· ,xN )∈S1×···×SN

φ(x1, · · · , xN).

A natural dynamics to connect this optimization is gradient flow. The meaning

of gradient flow is based on three assumptions:

(i) All players don’t obtain a “far” viewpoint. They don’t know the “best” strate-

gies immediately. As an alternative, all players are making decisions dynami-

cally and simultaneously;

(ii) At the decision time, the player knows all other players’ choices. The player

chooses his “best” strategy in current “available strategy set”.

(iii) All players are not purely “rational”. There is always some “uncertainties” that

affects players’ decision procedures.

We explain these assumptions in details. (i) is the fundamental assumption. Since

the strategy set is discrete, all players can’t make their decisions “purely” as differen-

tial equations. As an alternative, all players are making decisions by continuous time

stochastic processes, where the dynamics means the transition equation of probability

measures.

(ii) introduces the concept of “Available strategy set” , which requires a discrete

set’s topology (neighborhood information). To model that, we introduce a strategy
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graph, meaning that the strategy set is settled on a finite graph. “Available strategy

set” represents the adjacency set on the graph.

More precisely, assume that player v’s strategy set Sv is on graphGv = (Sv, E(Sv)),

v ∈ {1, · · · , N}. The joint strategy set is settled on a Cartesian product graph

G = (S,E(S)) = G1✷ · · ·✷GN , where the vertex set is

S = S1 × · · · × SN = {x = (x1, · · · , xN) | xv ∈ Sv, v ∈ {1, · · · , N}},

and the edge set is E(S) = E(S1)× · · · × E(SN). Under this setting, we denote the

“available strategy set” as

N(x) = {y ∈ S | (x, y) ∈ E(S)},

where the notation (x, y) is short for an edge on G connecting vertices x and y.

Example 15 Let’s consider a two players’ Prisoner’s Dilemma, where S1 = S2 =

{C,D}. We connect the strategy set with graph:

C,C C,D

D,C D,D

(iii) considers the “uncertainties” among players. To quantify that, we borrow a

concept from kinetic mechanics in physics, named free energy 4

F(ρ) = −
∑

x∈S
φ(x)ρ(x) + β

∑

x∈S
ρ(x) log(x).

4Its full notation is

F(ρ) = −
N
∑

v=1

∑

xv∈Sv

φ(x1, · · · , xN )ρ(x1, · · · , xN ) + β

N
∑

v=1

∑

xv∈Sv

ρ(x1, · · · , xN ) log ρ(x1, · · · , xN ).
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It is a summation of negative potential and Boltzmann-Shannon entropy from left to

right. The notation of negative potential is just for mathematical convenient, which is

to transfer “maximizing payoff” to “minimizing cost”. The highlight here is the usage

of Boltzmann-Shannon entropy (short as linear entropy), which is a quantity to model

the total disorder of all players’ decisions, with a positive constant β representing the

strength of disorder.

In mathematics, we shall derive the gradient flow of free energy F(ρ) associated

with the strategy graph G. By the optimal transport on graphs, we derive the new

evolutionary dynamics:

Theorem 31 Given a potential game with a strategy graph G = (S,E(S)), a poten-

tial φ(x) and a constant β ≥ 0. Then the gradient flow of F(ρ),

F(ρ) = −
∑

x∈S
φ(x)ρ(x) + β

∑

x∈S
ρ(x) log ρ(x),

on the metric space (Po(G),W2;F) is

dρ(t, x)

dt
=

∑

y∈N(x)

ρ(t, y)[φ(x)− φ(y) + β(log ρ(t, y)− log ρ(t, x))]+

−
∑

y∈N(x)

ρ(t, x)[φ(y)− φ(x) + β(log ρ(t, x)− log ρ(t, y))]+ .

(56)

4.3.2 Markov process

As is well known, Fokker-Planck equation is a transition equation of Markov process.

In this section, we shall connect a Markov process underlying (56).

In details, we introduce a continuous time stochastic process Xβ(t) on a finite

state S. Its transition law, the transition probability from state x to state y, is as
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follows:

Pr(Xβ(t+ h) = y | Xβ(t) = x)

=































(φ̄(x)− φ̄(y))+h+ o(h) if j ∈ N(i);

1−
∑

j∈N(i)(φ̄(x)− φ̄(y))+h+ o(h) if j = i;

0 otherwise,

where limh→0
o(h)
h

= 0 and φ̄(x) = −φ(x, ρ) + β log ρ(x).

Notice that Xβ(t) is a nonlinear Markov process, whose generating matrix Q(ρ) =

(Qij(ρ))1≤i,j≤n is defined as follows. If i 6= j

Qij(ρ) =















(φ̄(x)− φ̄(y))+ if (i, j) ∈ E,

0 otherwise,

and Qii = −
∑n

j=1,j 6=iQij. Let ρ(t) = (ρ(t, x))ni=1, ρ(t, x) = Pr(Xβ(t) = x). Then the

time evolution of ρ(t) satisfies the Kolmogorov forward equation

dρ

dt
= ρQ(ρ),

whose explicit formula is (56).

Interestingly, Xβ(t) gives a nice explanation of assumptions (i), (ii), (iii). Firstly,

(i) is explained by the definition of continuous time Markov process. It means that

in probability sense, all players are making decisions continuously on time. Secondly,

(ii) is demonstrated by a “greedy” transition kernel Q. Whenever new strategies with

better payoff are available (in strategy neighbor), the player will switch to them with

probabilities proportional to the benefits (the difference of payoffs). Such behavior

fills a “gradient” logic that the player improves his mean payoff “most rapidly”, which

is in the sense of

d

dt
E payoff = −E (Benefit2),

meaning that

d

dt
F(ρ(t)) = −

∑

(x,y)∈E
(φ̄(x)− φ̄(y))2+ρ(x).
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Last and most interestingly, (iii) introduces a quantitative description of “uncer-

tainties” in discrete states, which is through the Log-Laplacian. Heuristically, the

uncertainties’ logic is as follows: “The more precious the strategy is, the more players

are willing to choose.” In formulas,

“strategy x is precious” ⇒ ρ(x) is small ⇒ “payoff” φ(x)− log ρ(x) is large.

As a consequence, even if x’s true payoff φ(x) is not better than others, players are

still willing to switch their strategies towards x.

4.3.3 Fokker-Planck equations on strategy graphs

(56) guides evolutionary dynamics for general games. Notice that potential game

means

φ(x)− φ(y) = Fv(x)− Fv(y), if y ∈ Nv(x).

where Nv(x) is the adjacent set of graph Gv = (Sv, E(Sv)). By this setting, (56) can

be rewritten as

dρ(t, x)

dt
=

N
∑

v=1

∑

y∈Nv(x)

[F̄v(y)− F̄v(x)]+ρ(t, y)−
N
∑

v=1

∑

y∈Nv(x)

[F̄v(x)− F̄v(y)]+ρ(t, x), (57)

where F̄v(x) = −Fv(x) + β log ρ(t, x). (57) is also a transition equation for Markov

process Xβ(t),

Pr(Xβ(t+ h) = y | Xβ(t) = x)

=































(F̄v(x)− F̄v(y))+h if y ∈ Nv(x);

1−
∑N

v=1

∑

y∈Nv(x)
(F̄v(x)− F̄v(y))+h+ o(h) if y = x;

0 otherwise.

We can check that (57) doesn’t depend on the existence of potential. Because of this

special relationship, we call (57) as the Fokker-Planck equation on graphs.

(57), along with Markov process Xβ(t) provides many interesting asymptotic be-

haviors of games. For example, the Fokker-Planck equation provides many vital
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informations, including the “order” of NEs. To illustrate, we start with considering

potential game. In such game, it is natural to use potential to give an “order” of

Nash equilibria. In other words5, if x1, · · · , xk ∈ S are distinct NEs, we define

x1 ≺ x2 · · · ≺ xk, if φ(x1) ≤ · · · ≤ φ(xk). (58)

The unique equilibrium of Fokker-Planck equation (57) always implies this order,

since

ρ∗(x) =
1

K
e

φ(x)
β , x ∈ S.

It tells that the better (larger) is the potential, the larger is the probability in ρ∗(x).

So the above definition is equivalent to

x1 ≺ x2 · · · ≺ xk, if ρ∗(x1) ≤ · · · ≤ ρ∗(xk). (59)

Let’s consider a general game, which doesn’t have the potential. In this case, the

order in (58) is not valid. However, the order in (59) still holds. In a word, we adopt

the equilibrium of Fokker-Planck equation (57) to rank the “order” of NEs.

4.3.4 Examples

We explain several examples to demonstrate Fokker-Planck equations on strategy

graphs.

Example 16 Let’s consider the Prisoner’s Dilemma with the payoff matrix

A = B = −







1 3

0 2






.

Here the strategy set is S1 × S2 = {(C,C), (C,D), (D,C), (D,D)}. In this setting,

the game is a potential game with potential

φ(x) = −F1(x1, x2) + F2(x1, x2)

2
, where (x1, x2) ∈ S1 × S2.

We connect this game with graph K2✷K2

5x ≺ y is to say strategy y is better than strategy x.
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C,C C,D

D,C D,D

In this case, the transition measure function is

ρ(t) = (ρCC(t), ρCD(t), ρDC(t), ρDD(t))
T ,

which satisfies Fokker-Planck equation (57)















































































































ρ̇CC = [F̄1(D,C)− F̄1(C,C)]+ρDC + [F̄2(C,D)− F̄2(C,C)]+ρCD

−[F̄1(C,C)− F̄1(D,C)]+ρCC − [F̄2(C,C)− F̄2(C,D)]+ρCC

ρ̇CD = [F̄1(D,D)− F̄1(C,D)]+ρDD + [F̄2(C,C)− F̄2(C,D)]+ρCC

−[F̄1(C,D)− F̄1(D,D)]+ρCD − [F̄2(C,D)− F̄2(C,C)]+ρCD

ρ̇DC = [F̄1(C,C)− F̄1(D,C)]+ρCC + [F̄2(D,D)− F̄2(D,C)]+ρDD

−[F̄1(D,C)− F̄1(C,C)]+ρDC − [F̄2(D,C)− F̄2(D,D)]+ρDC

ρ̇DD = [F̄1(C,D)− F̄1(D,D)]+ρCD + [F̄2(D,C)− F̄2(D,D)]+ρDC

−[F̄1(D,D)− F̄1(C,D)]+ρDD − [F̄2(D,D)− F̄2(D,C)]+ρDD

where F̄v(x1, x2) = −Fv(x1, x2) + βρx1x2, v = 1, 2. By numerically solving (57) for

ρ∗ = lim
β→0

lim
t→∞

ρ(t),

we obtain a unique measure ρ∗ for any initial condition ρ(0), see Figure 6.
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1

Figure 6: Two player’s game: Prisoner’s Dilemma

In this case, ρ∗ ≈ (0, 1), which implies that two players will choose (D,D) even-

tually.

Example 17 Let’s consider a non autonomous game, meaning that players’ payoff

depends on his identity, i.e. A 6= B. For example, let A = −







1 2

2 1






and B =

−







1 3

2 1






. We connect the game with graph K2✷K2.

C,C C,D

D,C D,D

Again, by numerically solving (57) for

ρ∗ = lim
β→0

lim
t→∞

ρ(t),

we obtain a unique measure ρ∗ for any initial measure ρ(0), which is demonstrated in

Figure 7.
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0
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Figure 7: Two player’s game: Asymmetric game

In this case, ρ∗ only supports at (C,C) and (D,D), which are Nash equilibria of the

game. Moreover, ρ∗CC is larger than ρ∗DD, which implies that (C,C) is more “stable”

than (D,D). This result reflect the intuition of the game. Look at the situation player

1, 2 is at strategy (C,D). player 2 is more willing to change than player 1. Because

if doing so, player 2 gains more benefits than player 1, i.e. F2(C,D) − F2(C,C) =

2 > 1 = F1(C,D)− F1(D,D).

Example 18 Let’s consider the Rock-Scissors-Paper. Each player plays against oth-

ers with strategies: Rock, Scissor and paper, which is short as r, s, p. Depending on

win or lose, he receives a payoff 1 or −1. In other words, the game is with strategy

sets S1 = S2 = {r, s, p} and payoff matrixes

A = B = −













0 −1 1

1 0 −1

−1 1 0













We connect the game with the strategy graph K3✷K3.
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r, r

r, s r, p

s, r

s, s s, p

p, r

p, s p, p

Again, by numerically solving (57),

ρ∗ = lim
β→0

lim
t→∞

ρ(t).

We obtain a unique measure ρ∗ for any initial measure ρ(0), which is demonstrated

in Figure 8.

(r,r) (r,s) (r,p) (s,r) (s,s) (s,p) (p,r) (p,s) (p,p)
0

0.02

0.04

0.06

0.08

0.1

0.12

Figure 8: Two player’s game: Rock-Paper-Scissors

In this case, ρ∗ is a uniform mass function, which implies that two players will

eventually choose their strategy uniformly.
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4.4 Population games

In this section, we focus on population games with discrete strategy sets. We de-

velop Fokker-Planck equations on graphs as new evolutionary dynamics. The game

is described as follows: The strategy set is

S = {1, · · · , n}.

The infinite players (population state) form a probability manifold

P(S) = {(ρi)ni=1 | ρi ≥ 0,
n

∑

i=1

ρi = 1, i ∈ S}

with payoff vector function F (ρ) = (Fi(ρ))
n
i=1. To better illustrate, we consider norm

game as in example 11. It means that F (ρ) = Aρ, where A = (aij)1≤i,j≤n is the

interaction matrix.

4.4.1 Gradient flows on strategy graphs

We start with considering a potential game. The potential is 1
2

∑n

i=1

∑n

j=1 aijρiρj,

where A is a symmetric matrix.

A natural dynamics to connect this optimization is gradient flow. Similarly in

finite player games, the gradient flow is based on following assumptions.

(i) All players don’t obtain a “far” viewpoint. They don’t know the “best” strate-

gies immediately. As an alternative, all players are making decisions dynami-

cally and simultaneously;

(ii) At the decision time, the player knows all other players’ choices. The player

chooses his “best” strategy in current “available strategy set”.

(iii) All players are not purely “rational”. There is always some “uncertainties” that

affects players’ decision procedures.
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In details, (i) and (ii) are similarly to the finite games’ case. More precisely, the

strategy graph is a finite graph G = (S,E) , where S, E is the graph vertex and edge

set. The “available strategy set” is

N(i) = {j ∈ S | (i, j) ∈ E},

where the notation (i, j) is short for an edge on G connecting vertices i and j.

(iii) introduces “uncertainties” among the population. Similarly as finite players’

games, we borrow the concept of free energy in kinetic mechanics

F(ρ) = −1

2

n
∑

i=1

n
∑

j=1

aijρiρj + β
n

∑

i=1

ρi log ρi.

It is a summation of negative potential and Boltzmann-Shannon entropy from left to

right. Again, the highlight here is the usage of linear entropy, which is a quantity to

model the total disorder of population, with a positive constant β representing the

strength of disorder.

In all, we shall derive an evolutionary dynamics, which is the gradient flow of free

energy F(ρ) associated with the strategy graph G.

Theorem 32 Given a potential game with a strategy graph G = (S,E(S)) and a

constant β ≥ 0. Then the gradient flow of free energy F(ρ),

F(ρ) = −1

2

n
∑

i=1

n
∑

j=1

aijρiρj + β

n
∑

i=1

ρi log ρi,

on the metric space (Po(G),W2;F) is

dρi
dt

=
∑

j∈N(i)

ρj(
n

∑

i=1

aijρi −
n

∑

j=1

aijρj + β log ρj − β log ρi)+

−
∑

j∈N(i)

ρi(
n

∑

j=1

aijρj −
n

∑

i=1

aijρi + β log ρi − β log ρj)+.

(60)

4.4.2 Markov process

In this section, we shall connect a Markov process underlying (60), through which we

explain (60)’s meaning in modeling level.
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More precisely, we introduce a continuous time stochastic process Xβ(t) on a finite

state S. Its transition law, the transition probability from state i to state j, is as

follows:

Pr(Xβ(t+ h) = j | Xβ(t) = i)

=































(F̄i(ρ)− F̄j(ρ))+h if j ∈ N(i);

1−∑

j∈N(i)(F̄i(ρ)− F̄j(ρ))+h+ o(h) if j = i;

0, otherwise,

(61)

where limh→0
o(h)
h

= 0 and F̄i(ρ) = −Fi(ρ) + β log ρi.

Notice that Xβ(t) is a nonlinear Markov process, whose generating matrix Q(ρ) =

(Qij(ρ))1≤i,j≤n is

Qij :=















(F̄i(ρ)− F̄j(ρ))+ if (i, j) ∈ E,

0 if (i, j) 6∈ E, i 6= j.

, and Qii := −
n

∑

j=1,j 6=i

Qij.

Let ρ(t) = (ρi(t))
n
i=1, ρi = Pr(Xβ(t) = i). Then the time evolution of ρ(t) satisfies

the Kolmogorov forward equation

dρ

dt
= ρQ(ρ).

whose explicit formula is exactly (60),

dρi
dt

=
∑

j∈N(i)

ρj(F̄j(ρ)− F̄i(ρ))+ −
∑

j∈N(i)

ρi(F̄i(ρ)− F̄j(ρ))+.

Let’s focus on the modeling explanations of Xβ(t), whose transition law gives a

detailed description of assumptions (i), (ii), (iii). Notice that this understanding can

be viewed as the limiting behavior of finite players’ games. Firstly, (i) is explained

by the definition of continuous time Markov process. Secondly, (ii) is showed by a

“greedy” decision rule. Whenever new strategies with better payoff are available (in

strategy neighbor), the player will switch to them with probabilities proportional to
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the benefits (the difference of payoffs). Such behavior fills a “gradient” logic: All

players are to improve his mean payoff “most rapidly”, in the sense of

d

dt
E payoff = −E (Benefit2),

meaning that

d

dt
F(ρ(t)) = −

∑

(i,j)∈E
(F̄i(ρ)− F̄j(ρ))

2
+ρi.

Last and most interestingly, (iii) introduces a quantitative description of “uncertain-

ties” in discrete states, which is through the Log-Laplacian term. Heuristically, the

uncertainties’ logic is as follows: “The more precious the strategy is, the more players

are willing to choose.” In formula,

strategy i is precious ⇒ ρi is small ⇒ “payoff” Fi(ρ)− log ρi is large.

As a consequence, even if i’s true payoff Fi(ρ) is not better than others, the player is

still willing to switch their strategies towards i.

4.4.3 Fokker-Planck equations on strategy graphs

In this sequel, we consider Fokker-Planck equations on graphs for general population

games.

Notice that (60) is always a well defined flow in P(S); Xβ(t) is always a Markov

process underlying (60). They don’t depend on the existence of potential. So we

apply them as the dynamics and Markov process to model general games:

We name (60) as a Fokker-Planck equation on a strategy graph

dρi
dt

=
∑

j∈N(i)

(F̄j(ρ)− F̄i(ρ))+ρj −
∑

j∈N(i)

(F̄i(ρ)− F̄j(ρ))+ρi.

(60), along with Xβ(t), provides many interesting asymptotic behaviors of games

from the variation of parameter β on Log-laplacian. If the game is a potential game,

(60) is a well-known gradient system, whose equilibria are Gibbs measures. Moreover,
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if the game doesn’t have potential, there may exhibit a more complicit phenomenal

other than Gibbs measures. For example, there is a situation with Hopf bifurcation

in Example 21.

In addition, the concept of “order” among NEs can be introduced in population

games. But it is different from finite players’ games. There are two things to be

noticed. One is that there may not exist the unique equilibrium (invariant measure)

of (60). For example, in potential games, there is a case with multiple Gibbs measures.

The other is that the probability measure itself is a NE. To conquer these conceptual

differences, we need to consider a flow in the “probability” of probability sets, P(P(S))

to discuss the “order” of measures. It is certainly beyond the scope of this thesis,

which will be studied in the future work.

4.4.4 Examples

In this section, we demonstrate (60) on several population games.

Example 19 (“Irrationality”) We start with the Stag hunt. It is a normal game with

payoff matrix

A =







h h

0 s







The game is described as follows. Each player faces a choice, hunting for a hare (h)

or a stag (s). The stag is worth more that hare, e.g. s = 3, h = 2. The game is

with strategy set {h, s}, population state ρ = (ρh, ρs) and payoff functions Fh(ρ) = 2,

Fs(ρ) = 3ρs. It implies three Nash equilibria : (0, 1), (1, 0), and (1
3
, 2
3
).

We apply the evolutionary dynamics (60) with the strategy graph: sh .














ρ̇h = ρs[2− 3ρs + β log ρs − β log ρh]+ − ρh[−2 + 3ρs + β log ρh − β log ρs]+

ρ̇s = ρh[3ρs − 2 + β log ρh − β log ρs]+ − ρs[−3ρs + 2 + β log ρs − β log ρh]+.

We explain (60)’s asymptotic property through its vector field on the probability man-

ifold P(S) (line segment).
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(d) β = 0

Figure 9: Population game: Stag hunt.

We show some interesting behaviors of the game by varying the parameter β in

(60). If β is too large, as in Figure (A), the asymptoticly population state is (1
2
, 1
2
).

It means that all players are totally irrational, they flip a fair coin to decide what to

hunt; If β is certainly large, as in Figure (B), all players will choose to hunt a hare

(NE (1, 0)). It means that all players are partially rational. They know that the hare

is always a safe choice, in the sense that they will get a hare not matter how the others

choose; If β is small, as in Figure (C) and (D), all players choose a stag (0, 1) or a

hare (1, 0), depending on initial state. It means that all players are rational enough,

such that each player will make decisions according to the others.

99



Example 20 We consider the Rock-Scissors-Paper played by the population. Its pay-

off matrix is

A =













0 −1 1

1 0 −1

−1 1 0













.

The game is with strategy set S = {r, s, p}, population state ρ = (ρr, ρs, ρp) and payoff

functions Fr(ρ) = −ρs + ρp, Fs(ρ) = ρs − ρp, Fp(ρ) = −ρr + ρs. It is with the unique

Nash equilibrium ρ∗ = (1
3
, 1
3
, 1
3
).

Again, let’s look at the evolutionary dynamics (60) with the strategy graph:

r

s p .

We demonstrate (60)’s vector field on the probability manifold (triangular) in Figure

10.
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Figure 10: Population game: Rock-Paper-Scissors

In this case, the asymptoticly behavior of (60) is around (1
3
, 1
3
, 1
3
). There is no

much difference by varying parameter β.
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Example 21 (Hopf) We consider the Bad Rock-Paper-Scissors, whose payoff ma-

trix is

A =













0 −2 1

1 0 −2

−2 1 0













which is slight different from the Rock-Paper-Scissors. In this case, the game is

with strategy set S = {r, s, p}, population state ρ = (ρr, ρs, ρp), and payoff func-

tions Fr(ρ) = −2ρs + ρp, Fs(ρ) = ρs − 2ρp, Fp(ρ) = −2ρr + ρs. By the same setting

of Example 20, we demonstrate (60)’s vector field.
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(c) β = 0

Figure 11: Population game: Bad Rock-Paper-Scissors

Observe that there is a Hopf bifurcation of (60) for parameter β, see Figure 11.

If β is large, there is a unique equilibrium of (60) around (1
3
, 1
3
, 1
3
); If β goes to 0,
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(60)’s solution approaches to a stable limit cycle.

Example 22 (Multiple Gibbs measures) We consider a potential game with the

payoff matrix

A =













1 0 0

0 1 1

0 1 1













.

Here the game is with strategy set S = {1, 2, 3}, population state ρ = (ρ1, ρ2, ρ3) and

payoff functions F1(ρ) = ρ1, F2(ρ) = ρ2 + ρ3 and F3(ρ) = ρ2 + ρ3. It contains three

sets of Nash equilibria :

{ρ | ρ1 =
1

2
} ∪ {(1, 0, 0)} ∪ {ρ | ρ1 = 0},

where the first and third one are lines on P(S). By applying (60) with a complete

graph, we obtain two Gibbs measures near

{(0, 1
2
,
1

2
)} ∪ {(1, 0, 0)}.

See (60)’s vector field in Figure 12.
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Figure 12: Population game: Multiple Gibbs measures

Example 23 (Unique Gibbs measure) Let’s consider the other potential game
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with the payoff matrix

A =













1
2

0 0

0 1 1

0 1 1













.

The game is with strategy set S = {1, 2, 3}, population state ρ = (ρ1, ρ2, ρ3) and payoff

functions F1(ρ) =
1
2
ρ1, F2(ρ) = ρ2 + ρ3, F3(ρ) = ρ2 + ρ3. It is with three sets of Nash

equilibria

{ρ | 1− 1

2
ρ1 = ρ2 + ρ3} ∪ {(1, 0, 0)} ∪ {ρ |1 = ρ2 + ρ3}.

By applying (60) on a complete graph, there is the unique Gibbs measures near

(0,
1

2
,
1

2
).

See (60)’s vector fields in Figure 13.
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Figure 13: Population game: Unique Gibbs measure

4.5 Spatial population games

Spatial population games consider population games with spatial structures, which

are widely used in population models, including crimes, disease spreading and biology

etc. In this sequel, we build Fokker-Planck equations on spatial-strategy graphs to

model this game.
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The game is described as follows: infinite identical players are settled in vertices

of a spatial graph. Each vertex of such spatial graph represents a place, where many

players stay. The individual player plays games with his spatial neighbors, and re-

ceives a payoff vector depending on all. In this game, individual player tries to move

his position and change his strategy, so as to improve his own payoff vectors.

In order to characterize the game quantitively, we discuss the strategy set, players

and payoff in details.

For strategy set, we consider a strategy-spatial graph. Consider a population

game with strategy graph GS = (S,E(S)), where the vertex set is S = {s1, · · · , sn}

and the edge set is E(S). Suppose the population is settled on a spatial graph

GL = (L,E(L)), where the vertex set is L = {l1, · · · , lm} and the edge set is E(L).

The spatial-strategy graph is a graph G = GL✷GS = (V,E), where ✷ means the

cartesian product of graphs and

V = L× S, E = E(S)× E(L).

Example 24 Let’s consider a “Rock(r)-Scissors(s)-Paper(p)” game played by popu-

lation in a spatial graph. Let the strategy space S be a complete graph k3, and the

spatial space L be a 2 × 2 lattice graph with S = {r, s, p} and L = {l1, l2, l3, l4}. We

connect the game with the spatial-strategy graph:

(l1, r)

(l1, s) (l1, p)

l1 l2

l3 l4

GS GL

For players, we consider the population forming probability set supported on both
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spatial and strategy set:

P(G) = {(ρij)1≤i≤n, 1≤j≤m |
∑

(li,sj)∈L×S

ρij = 1, ρij ≥ 0},

where ρij represents the proportion of people choosing spatial li and strategy sj. Each

player at position li ∈ L choosing strategy sj ∈ S receives a vector function (Eij(ρ),

Fij(ρ)), which are associated with spatial and strategy graphs.

For payoff functions, we consider a special case: suppose a normal game is played

on a spatial graph; the payoff functions for spatial and strategy are same, which is

according to the average of all the players’ spatial neighbors6, i.e. the individual

player at position li, choosing strategy sj receives payoff

Eij(ρ) = Fij(ρ) =
∑

(k,s)∈N(i,j)

asjρks +
∑

s∈NS(j)

asjρis + ajjρij.

Here A = (als)(sl,ss)∈S×S is a payoff matrix and NL(i), NS(j), N(i, j) represents

adjunct set of li, sj on graphs GL, GS, G, meaning

NL(i) = {lk | (li, lk) ∈ E(L)}, NS(j) = {sl | (sj, sl) ∈ E(S)}, N(i, j) = NL(i)×NS(j).

In addition, we introduce a special type, potential game. If A is a symmetric

matrix, then the game is a potential game with potential 1
2

∑

(li,sj)∈L×S Fij(ρ)ρij. In

other words, the game describes a maximization problem

max
ρ∈P(G)

1

2

∑

(li,sj)∈L×S

Fij(ρ)ρij.

4.5.1 Gradient flows on spatial-strategy graphs

In this sequel, we shall derive a new evolutionary dynamics, which is the gradient

flow of free energy associated with the spatial-strategy graph G = GL✷GS.

6Here we consider the self-interaction case. It means that the play also plays with others who
lives in the same spatial node.
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Theorem 33 Given a potential game with a spatial-strategy graph G = GL✷GS and

a constant β ≥ 0. Then the gradient flow of free energy

F(ρ) = −1

2

∑

li∈L

∑

sj∈S
Fij(ρ)ρij + β

∑

(li,sj)∈L×S

ρij log ρij

on metric space (Po(G),W2;F) is

dρij
dt

=
∑

(k,s)∈N(i,j)

ρks(Fij(ρ)− Fks(ρ) + β log ρks − β log ρij)+

−
∑

(k,s)∈N(i,j)

ρij(Fks(ρ)− Fij(ρ) + β log ρij − β log ρks)+.

(62)

4.5.2 Markov process

In this section, we build a joint Markov process underlying (62).

Let’s introduce a joint Markov process (Lβ(t), Xβ(t)) on a finite state L × S,

whose transition law, the transition probability from state (li, sj) to state (lk, ss), is

as follows:

P (Lβ(t+ h) = lk, Xβ(t+ h) = ss | Lβ(t) = li, Xβ(t) = sj)

=































(F̄ij(ρ)− F̄ks(ρ))+h if (k, s) ∈ N(i, j);

1−∑

(k,s)∈N(i,j)(F̄ij(ρ)− F̄ks(ρ))+h+ o(h) if (k, s) = (i, j);

0 otherwise,

where Fij(ρ) = −Fij(ρ) + βρij, for any li ∈ L, sj ∈ S. Simiarly, (Lβ(t), Xβ(t))’s

transition function is given by the Kolmogorov forward equation

dρij
dt

=
∑

(k,s)∈N(i,j)

ρks(F̄ks(ρ)− F̄ij(ρ))+ −
∑

(k,s)∈N(i,j)

ρij(F̄ij(ρ)− F̄ks(ρ))+,

which is same as (62).

4.5.3 Fokker-Planck equations on spatial-strategy graphs

In this sequel, we derive an evolutionary dynamics on general spatial games. In other

words, if a spatial game is not a potential game, the evolutionary dynamics is just a

flow in P(G), not a gradient flow.
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Replacing the payoff vector (Fij, Fij) to a general form (Eij, Fij) in (62), we obtain

dρij
dt

=
∑

k∈NL(i)

(Ēkj(ρ)− Ēij(ρ))+ρkj −
∑

k∈NL(i)

(Ēij(ρ)− Ēkj(ρ))+ρij

+
∑

s∈NS(j)

(F̄is(ρ)− F̄ij(ρ))+ρis −
∑

s∈NS(j)

(F̄ij(ρ)− F̄is(ρ))+ρij ,

(63)

where Ēij = −Eij +β log ρij, F̄ij = −Fij +β log ρij for any (li, sj) ∈ L×S. We notice

that (63) is an extension of (62), which doesn’t depend on potentials. We call (63)

as the Fokker-Planck equation on spatial-strategy graph. It connects a joint

Markov process (Lβ(t), Xβ(t)), whose transition law is given by

P (Lβ(t+ h) = k,Xβ(t+ h) = s | Lβ(t) = i, Xβ(t) = j)

=































































(Ēij(ρ)− Ēkj(ρ))+h if k ∈ NL(i), s = j;

(F̄ij(ρ)− F̄is(ρ))+h if s ∈ NS(j), k = i;

1−∑

k∈NL(i)
(Ēij(ρ)− Ēkj(ρ))+h

−∑

l∈NS(j)
(F̄ij(ρ)− F̄is(ρ))+h+ o(h) if (k, s) = (i, j);

0 otherwise.

(63), along with Markov process (Lβ(t), Xβ(t)), provides many interesting asymp-

totic behaviors of games including spatial structures.

4.5.4 Examples

In this section, we demonstrate (63) by several spatial population games.

Example 25 (Spatial Prisoner’s dilemma) Here the Prisoner’s dilemma [86] is

with strategy set S = {C,D}, representing “Cooperation” and “Defection”, and payoff

matrix A =







−1 −3

0 −2






. And we assume the spatial graph is a Lattice graph.

We apply the Fokker-Planck equation (63) to model this game. Here we want to

investigate how a defector invades the cooperators.7 I.e. we consider a special initial

7The cooperator means a player who chooses C while the defector means a player who chooses D.
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condition of (63), meaning that there is a vertex li∗ ∈ L with

ρi∗D(0) =
1

m
− η, ρi∗C(0) = η, and ρiC(0) =

1

m
− η, ρiD(0) = η, for all i 6= i∗,

(64)

where m is the number of vertices in GL and η is a sufficient small value.

At the beginning, we consider a 3×3 lattice spatial graph. Let the initial condition

satisfy (64), with β = 0.01, η = 10−4, m = 9, where i∗ is the left corner of lattice.

We plot ρ(t) = (ρij(t))(i,j)∈L×S at t = 0.3, see Figure 14. Here the red, green graphs

represent ρiC(t), ρiD(t), for any li ∈ L.

(a) C t = 0 (b) D t = 0

(c) C t = 0.3 (d) D t = 0.3

Figure 14: Spatial Prisoner’s Dilemma, 3× 3 spatial lattice

Secondly, we show that there exists multiple equilibria of (63). For example, we

consider an initial measure (64) with β = 0.01, η = 10−4, m = 36, i∗ being at the

left corner (Figure 15) or middle (Figure 16) of lattice graph. We show that there are

two equilibria with respect to different initial conditions.
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(a) C t = 0 (b) D t = 0

(c) C t = 0.75 (d) D t = 0.75

Figure 15: Spatial Prisoner’s Dilemma, 6× 6 spatial lattice I

(a) C t = 0 (b) D t = 0

(c) C t = 1 (d) D t = 1

Figure 16: Spatial Prisoner’s Dilemma, 6× 6 spatial lattice II

Example 26 (Spatial Hawk-Dove game) We consider a spatial Hawk-Dove game

[60]. Let the payoff matrix be A =







−1 −3

−5 0






and the spatial graph be a 3×3 lattice.
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We apply Fokker-Planck equation (63) to model this game. As in spatial Prisoner’s

Dilemma, let the initial condition (64) be with η = 10−4, m = 9, and i∗ be the left

corner of lattice, we demonstrate the equilibrium of (63), see Figure 17.

(a) C t = 2 (b) D t = 2

Figure 17: Spatial Hawk-Dove game, 3× 3 spatial lattice

Example 27 (Potential games) We consider a potential game. Let the payoff ma-

trix be A =







1 0

0 2






and the spatial graph be a 6 × 6 lattice. In this case, Figure 18

shows that there is one unique equilibrium of (63). This is true for considering dif-

ferent initial position li∗ in (64) with η = 10−4, m = 36.

(a) C t = 2 (b) D t = 2

Figure 18: Spatial potential game, 6× 6 spatial lattice
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CHAPTER V

APPLICATION II: NUMERICAL SCHEMES FOR

FOKKER-PLANCK EQUATIONS

5.1 Introduction

In this chapter, we introduce the second application of Fokker-Planck equations on

finite graphs, which is new numerical scheme for a certain type of drift diffusion

equations.

Consider a nonlinear Fokker-Planck equation

∂ρ

∂t
= ∇ · [ρ∇(V (x) +

∫

Rd

W (x, y)ρ(t, y)dy)] + β∆ρ. (65)

Here the solution ρ(t, x) is a probability density function supported on R
d, which

maintains positivity and conserves the total probability. And V : R
d → R, W :

R
d × R

d → R are functions with W (x, y) = W (y, x) for any x, y ∈ R
d. From the

viewpoint of optimal transport [4, 95], (65) is a gradient flow of the following scalar

functional, named free energy

F(ρ) =

∫

Rd

V (x)ρ(x)dx+
1

2

∫

Rd×Rd

W (x, y)ρ(x)ρ(y)dxdy+β

∫

Rd

ρ(x) log ρ(x)dx, (66)

There are many gradient flow structures of (65). For example, the free energy is the

Lyapunov function of (65):

d

dt
F(ρ) = −

∫

Rd

(∇F (x, ρ))2ρ(t, x)dx;
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The minimizer of free energy, Gibbs measure is the equilibrium of (65);1 Under suit-

able conditions, ρ(t, x) converges to a Gibbs measure exponentially [23].

In this chapter, we derive a semi scheme 2 for (65) with a gradient flow structure.

In details, we shall consider a finite graph G = (V,E) to discretize the domain, where

V is a vertex set {1, 2, · · · , n} ⊂ R
d and E is an edge set. For concreteness, we will

assume that G is a lattice graph corresponding to a uniform discretization of the

domain with equal space.

We consider a discrete probability set supported on all vertices of G:

P(G) = {(ρi)ni=1 ∈ R
n |

n
∑

i=1

ρi = 1, ρi ≥ 0, i ∈ V }.

Notice that (ρi)
n
i=1 with graph G is a finite volume discretization of P(Rd). In other

words, ρi indicts a discrete probability measure

ρi =

∫

Ci

ρ(t, x)dx,

where Ci is a cube in R
d centered at point i and of width 2∆x.

We consider a discrete free energy of F(ρ)3

F(ρ) =
n

∑

i=1

viρi +
1

2

n
∑

i=1

n
∑

j=1

wijρiρj + β
n

∑

i=1

ρi log ρi,

where vi = V (i) and wij = W (i, j).

In this setting, the semi scheme is nothing but the gradient flow of discrete free

energy with respect to discrete 2-Wasserstein metric. Similarly to chapter 3, the semi

flow is

dρi
dt

=
1

∆x2
{
∑

j∈N(i)

ρj(Fj(ρ)− Fi(ρ))+ −
∑

j∈N(i)

ρi(Fi(ρ)− Fj(ρ))+}, (67)

1ρ∗(x) is a Gibbs measure, if it solves the fixed point problem

ρ∗(x) =
1

K
e−

V (x)+
∫

Rd
W (x,y)ρ∗(y)dy

β , where K =

∫

Rd

e−
V (x)+

∫

Rd
W (x,y)ρ∗(y)dy

β dx.

2We only discretize the spatial variable, not the time variable
3It is the first order discretization of (66).
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where Fi(ρ) =
∂
∂ρi

F(ρ), for any i ∈ V and (·)+ = max{·, 0}.

As in continuous states, we can demonstrate (67)’s gradient flow structure. Firstly,

the free energy is a Lyapunov function of (67), since

d

dt
F(ρ(t)) = −

∑

(i,j)∈E
(
Fi(ρ)− Fj(ρ)

∆x
)2+ρi ≤ 0;

Secondly, (67)’s equilibrium is a discrete Gibbs measure

ρ∞i =
1

K
e−

vi+
∑n

j=1 wijρ
∞
j

β , K =
n

∑

i=1

e−
vi+

∑n
j=1 wijρ

∞
j

β ;

Last and most importantly, we investigate the convergence speed to the discrete Gibbs

measure. We show

F(ρ(t))−F(ρ∞) ≤ e−Ct(F(ρ0)−F(ρ∞)),

where C is a positive constant. We can say more for this convergence, that is the

asymptotic convergence rate is determined by the Hessian matrix of free energy on

“Wasserstein” metric manifold at Gibbs measure.

This chapter is arranged as follows. In section 5.2, we derive (67) based on the

chapter 3. Furthermore, we introduce a semi discretization for general Fokker-Planck

equations in section 5.3. Several examples are demonstrated in section 5.4.

5.2 Gradient flows

Let’s begin with the derivation of gradient flow. By modifying the inner product 1
∆x2

in chapter 3,

∆x2gij(ρ) :=































ρi if Fi(ρ) > Fj(ρ), j ∈ N(i);

ρj if Fi(ρ) < Fj(ρ), j ∈ N(i);

ρi+ρj
2

if Fi(ρ) = Fj(ρ), j ∈ N(i),

we derive the semi-discretization in Theorem 34.
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Theorem 34 (Derivation) Given a graph G and a constant β > 0. Then the “gen-

eralized ” gradient flow of discrete free energy F(ρ) on metric manifold (Po(G),W2;F)

is

dρi
dt

=
1

∆x2
{
∑

j∈N(i)

ρj(Fj(ρ)− Fi(ρ))+ −
∑

j∈N(i)

ρi(Fi(ρ)− Fj(ρ))+},

for any i ∈ V . Here

Fi(ρ) = vi +
n

∑

j=1

wijρj + β log ρi + β.

(i) For any initial ρ0 ∈ Po(G), there exists a unique solution ρ(t) : [0,∞) → Po(G)

to equation (67) . Moreover, there is a constant ǫ > 0 depending on ρ0, such

that ρi(t) ≥ ǫ for all i ∈ V and t > 0.

(ii) The free energy F(ρ) is a Lyapunov function of (67): If ρ(t) is a solution of

(67), then

d

dt
F(ρ(t)) = −

∑

(i,j)∈E
(
Fi(ρ)− Fj(ρ)

∆x
)2+ρi.

Moreover, if ρ∞ is an equilibrium of (67), then ρ∞ is a Gibbs measure.

Proof 32 For any σ ∈ TρPo(G), there exists [Φ] ∈ R
n/ ∼, such that τ([Φ]) = σ.

Since

dF(ρ) · σ =
n

∑

i=1

∂

∂ρi
F(ρ) · σi

=
1

∆x2

n
∑

i=1

Fi(ρ)
∑

j∈N(i)

gij(ρ)(Φi − Φj)

=
1

∆x2
{

n
∑

i=1

∑

j∈N(i)

gij(ρ)Fi(ρ)Φi −
n

∑

i=1

∑

j∈N(i)

gij(ρ)Fi(ρ)Φj}

Relabel i and j on second formula

=
1

∆x2
{

n
∑

i=1

∑

j∈N(i)

gij(ρ)Fi(ρ)Φi −
n

∑

i=1

∑

j∈N(i)

gji(ρ)Fj(ρ)Φi}

=
1

∆x2
{

n
∑

i=1

∑

j∈N(i)

gij(ρ)
(

Fi(ρ)− Fj(ρ)
)

Φi}.
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Combining the above formula into the definition of gradient flow, we have

(
dρ

dt
, σ)ρ + dF(ρ) · σ

=
n

∑

i=1

{dρi
dt

+
1

∆x2

∑

j∈N(i)

gij(ρ)
(

Fi(ρ)− Fj(ρ)
)

}Φi

=0.

Since the above formula is true for all (Φi)
n
i=1 ∈ R

n,

dρi
dt

+
1

∆x2

∑

j∈N(i)

gij(ρ)
(

Fi(ρ)− Fj(ρ)
)

= 0

holds for all i ∈ V . From the definition of gij, we derive (67).

(i)’s proof is similarly to chapter 3. Here we only show (ii), which is to motivate

readers to why (67) forms a gradient system. We show that F(ρ) is a Lyapunov

function:

d

dt
F(ρ(t)) =

n
∑

i=1

Fi(ρ) ·
dρi
dt

=
1

∆x2
{

n
∑

i=1

∑

j∈N(i)

Fi(ρ)(Fj(ρ)− Fi(ρ))+ρj −
n

∑

i=1

∑

j∈N(i)

Fi(ρ)(Fi(ρ)− Fj(ρ))+ρi}

Switch i, j on the first formula

=
1

∆x2
{

n
∑

i=1

∑

j∈N(i)

Fj(ρ)(Fi(ρ)− Fj(ρ))+ρi −
n

∑

i=1

∑

j∈N(i)

Fi(ρ)(Fi(ρ)− Fj(ρ))+ρi}

=−
∑

(i,j)∈E
(
Fi(ρ)− Fj(ρ)

∆x
)2+ρi ≤ 0.

We show that if ρ∞ = limt→∞ ρ(t) exists, then ρ∞ is a Gibbs measure. Since F(ρ)

is bounded in P(G), then limt→∞
d
dt
F(ρ(t)) = 0. And from (i), we know ρ∞ ≥ ǫ > 0,

then
n

∑

i=1

∑

j∈N(i)

(Fi(ρ
∞)− Fj(ρ

∞))2+ρ
∞
i = 0,

which implies Fi(ρ
∞) = Fj(ρ

∞) for any (i, j) ∈ E. Since the graph is connected,

Fi(ρ
∞) = Fj(ρ

∞), for any i, j ∈ V .
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Let

C := vi +
n

∑

j=1

wijρ
∞
j + β log ρ∞i , for any i ∈ V ,

K = e−C and use the fact
∑n

i=1 ρ
∞
i = 1, we have

ρ∞i =
1

K
e−

vi+
∑n

j=1 wijρ
∞
j

β , K =
n

∑

j=1

e−
vi+

∑n
j=1 wijρ

∞
j

β .

Hence ρ∞ is a Gibbs measure, which finishes the proof.

An interesting question associated with gradient flow arises. How fast is the con-

vergence towards to the Gibbs measure? In this part, we answer the question from

dynamical viewpoint. We introduce a quantity playing the role of smallest eigenvalue

of Hessian matrix at the Gibbs measure:

Definition 35 Let

hij,kl = fik + fjl − fil − fjk for any i, j, k, l ∈ V .

We define

λF(ρ) = min
Φ

1

∆x4

∑

(i,j)∈E

∑

(k,l)∈E
hij,kl(Φi − Φj)+ρi(Φk − Φl)+ρk

where the minimum is taken among all (Φi)
n
i=1 ∈ R

n with

∑

(i,j)∈E
(
Φi − Φj

∆x
)2+ρi = 1.

Theorem 36 (Convergence) If ρ∞ is a strict minimizer of F(ρ), then there exists

a constant C > 0, such that

F(ρ(t))−F(ρ∞) ≤ e−Ct(F(ρ0)−F(ρ∞)).

Moreover, the asymptotic convergence rate is 2λF(ρ
∞). I.e. for any sufficient small

ǫ > 0, there exists a time T > 0, such that when t > T ,

F(ρ(t))−F(ρ∞) ≤ e−2(λF (ρ∞)−ǫ)t(F(ρ(T ))−F(ρ∞)).

The proof of above theorem can be found in chapter 3.
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5.3 Semi-discretizations

Motived by (67), we introduce a semi-discretization for general Fokker-Planck equa-

tion.

In details, we consider a general Fokker-Planck equation

∂ρ

∂t
= ∇ · [ρ

(

fv(x, ρ)
)d

v=1
]. (68)

If (68) is a gradient flow, the vector field (fv)
d
v=1 is a gradient field, which implies

that there exists a scalar functional F (x, ρ), such that

∇F (x, ρ) := (fv(x, ρ))
d
v=1.

But for general vector fields, such F doesn’t exist. However, there always exists a

vector functional (uv(x, ρ))
d
i=1, such that

∇xv
uv(x, ρ) = fv(x, ρ), for v ∈ {1, · · · , d}.

In others words, the gradient flow

∂ρ

∂t
= ∇ · [ρ

(

∇xv
F (x, ρ))dv=1],

is a special case of flow (68)

∂ρ

∂t
= ∇ · [ρ

(

∇xv
uv(x, ρ)

)d

v=1
].

This observation still holds for the semi-discretization. Notice that the gradient

flow (30)4

dρ

dt
=

1

∆x2
{

d
∑

v=1

∑

j∈Nv(i)

ρj(Fj(ρ)− Fi(ρ))+ −
d

∑

v=1

∑

j∈Nv(i)

ρi(Fi(ρ)− Fj(ρ))+},

4Here Nv is the adjacency set for the discretization of dimension v. Notice that G is a cartesian
product of d’s one dimensional lattice, G = G1✷ · · ·✷Gd with Gv = (Vv, Ev). We denote a node by
i = (i1, · · · , id). Then

Nv(i) = {(i1, · · · , iv−1, jv, iv+1, · · · , id) | (iv, jv) ∈ Ev}.
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is a special case of formulation

dρi
dt

=
1

∆x2
{

d
∑

v=1

∑

j∈Nv(i)

[uv(j, ρ)−uv(i, ρ)]+ρj−
d

∑

v=1

∑

j∈Nv(i)

[uv(i, ρ)−uv(j, ρ)]+ρi}. (69)

In all, we derive a new semi-discretization (69). We demonstrate an example of

this new semi-discretization.

Example 28 (van der Pol oscillator) Consider a 2 dimensional Fokker-Planck equa-

tion:

∂ρ

∂t
=−∇ · (ρ







x2

α(1− x21)− x2






) +

∂2ρ

∂x22

=∇ · (ρ







−x2
−α(1− x21) + x2 +∇x2 log ρ






).

where f1(x, ρ) = −x2 and f2(x, ρ) = −α(1− x21) + x2 +∇x2 log ρ. We let

u1(x, ρ) =

∫

f1(x, ρ)dx1 = −x1x2,

and

u2(x, ρ) =

∫

f2(x, ρ)dx2 = −α(1− x21)x2 +
1

2
x22 + log ρ(x1, x2).

Hence the semi-discretization (69) becomes

dρi
dt

=
1

∆x2
{

∑

j∈N1(i)

ρj[u1(j, ρ)− u1(i, ρ)]+ −
∑

j∈N1(i)

ρi[u1(i, ρ)− u1(j, ρ)]+

+
∑

j∈N2(i)

ρj[u2(j, ρ)− u2(i, ρ)]+ −
∑

j∈N2(i)

ρi[u2(i, ρ)− u2(j, ρ)]+},

where u1(i, ρ) = u1(x(i), ρ), u2(i, ρ) = u2(x(i), ρ).

Remark 8 (Handling boundaries of PDE) The semi-discretization works on a

generality of graphs, which leads to a way to handle various boundaries of the PDE

(65). We investigate mainly three cases, the domain of (65) is (i) Rd; (ii) a bounded

open set, with a zero-flux condition; (iii) a bounded open set with periodicity condition.

118



The discretization graph can cover all three cases: (i) The graph is a large enough

lattice in R
d; (ii)The graph is a discretization of open set with equal distance; (iii)

The graph is similar to (ii), by considering periodic points as one node.

As a completion, we show that (69) is a consistent semi-discretization.

Theorem 37 The semi-discretization (69) is a consistent finite volume scheme for

the PDE (68).

Proof 33 Let’s prove the consistency. For any v = 1, · · · , d, ev denote the vector

ev = (0, · · · , 1, · · · , 0)T , where 1 is in the v-th position. Recall that i ∈ R
d represents

the position of the point xi. Notice that Nv(i) contains points xi − ev∆x, xi + ev∆x

on R
d, and Ci is a cube in R

d centered at point i with equal width 2∆x.

Without loss of generality, we assume uv(xi + ev∆x, ρ) ≥ uv(xi, ρ) ≥ uv(xi −
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ev∆x, ρ). By using Taylor expansion on R.H.S of (69) in the direction ei, we obtain

1

∆x2
{

∑

j∈Nv(i)

[uv(j, ρ)− uv(i, ρ)]+ρj −
∑

j∈Nv(i)

[uv(i, ρ)− uv(j, ρ)]+ρi}

=
1

∆x2
{[uv(xi + ev∆x, ρ)− uv(xi, ρ)]

∫

Ci+ev∆x

ρ(t, x)dx

− [uv(xi, ρ)− uv(xi − ev∆x, ρ)]

∫

Ci

ρ(t, x)dx}

=
1

∆x2
{[∂uv(xi, ρ)

∂xv
∆x+

1

2

∂uv(xi, ρ
)

∂xv
∆x2]

∫

Ci+ev∆x

ρ(t, x)dx

− [
∂uv(xi, ρ)

∂xv
∆x− 1

2

∂uv(xi, ρ
)

∂xv
∆x2]

∫

Ci+ev∆x

ρ(t, x)dx+O(∆x3)}

=
1

∆x

∂uv(xi, ρ)

∂xv
[

∫

Ci+ev∆x

ρ(t, x)dx−
∫

Ci

ρ(t, x)dx]

+
1

2

∂2uv(xi, ρ)

∂x2i
[

∫

Ci+ev∆x

ρ(t, x)dx+

∫

Ci

ρ(t, x)dx] +O(∆x3)

=
∂uv(xi, ρ)

∂xv

∫

Ci

ρ(t, x+ ev∆x)− ρ(t, x)

∆x
dx

+
∂2uv(xi, ρ)

∂x2i

∫

Ci

ρ(t, x+ ev∆x) + ρ(t, x)

2
dx+O(∆x)

=

∫

Ci

[fv(x, ρ)
∂ρ(t, x)

∂xv
+
∂fv(x, ρ)

∂xv
ρ(t, x)]dx+O(∆x) (Since

∂uv(x, ρ)

∂xv
= fv(x, ρ))

=

∫

Ci

∇xv
·
(

ρ(t, x)∇xv
fv(x, ρ)

)

dx+O(∆x) .

(70)

Similarly, we can show the same results for other possible permutations, such as

uv(xi − ev∆x, ρ) ≥ uv(xi, ρ) ≥ uv(xi + ev∆x, ρ), uv(xi, ρ) ≥ uv(xv − ev∆x, ρ) ≥

uv(xi + ev∆x, ρ) etc.

Therefore, the R.H.S. of (69) becomes the sum of Fi(x)

dρi
dt

− 1

∆x2

d
∑

v=1

{
∑

j∈Nv(i)

[uv(j, ρ)− uv(i, ρ)]+ρj −
∑

j∈Nv(i)

[uv(i, ρ)− uv(j, ρ)]+ρj}

=

∫

Ci

{∂ρ(t, x)
∂t

−
d

∑

v=1

∇xv
·
(

ρ(t, x)∇xv
fv(x, ρ)

)

}dx+ dO(∆x)

=dO(∆x),

which is the proposed first order discretization for PDE (68).
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5.4 Examples

We illustrate the proposed semi discretization by some numerical experiments.

Example 29 We consider a 2 dimensional nonlinear interaction-diffusion equation

in granular gas [13, 93],

∂ρ

∂t
= ∇ · [ρ∇

(

W ∗ ρ
)

] + β∆ρ,

where W (x− y) = ‖x− y‖3 and ‖ · ‖ is a 2 norm. This PDE has a unique stationary

measure (Gibbs measure),

ρ∗(x) =
1

K
e−

∫

R2
W (x−y)ρ∗(y)dy

β , where K =

∫

R2

e−
∫

R2
W (x−y)ρ∗(y)dy

β dx.

To approximate the solution of the above PDE, we apply the semi-discretization

(69)

dρi
dt

=
1

∆x2
{
∑

j∈N(i)

ρj(
n

∑

i=1

wijρi −
n

∑

j=1

wijρj + β log ρj − β log ρi)+

−
∑

j∈N(i)

ρi(
n

∑

j=1

wijρj −
n

∑

i=1

wijρi + β log ρi − β log ρj)+}.

Let β = 0.01 and ∆x = 0.5 on the lattice [−10, 10] × [−10, 10]. We solve the above

ODE system by Euler method with time step ∆t = 10−4.

5

0

-5-5

0

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

5

Figure 19: Stationary measure of interaction diffusion equation.
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Theoretically, it is known that the Gibbs measure converges to a Delta measure

supported at origin when β → 0. In above figure, the behavior of Log-Laplacian reflects

such result. Furthermore, as in Figure 20, Log-Laplacian reflects that the free energy

decreases exponentially.

We illustrate the semi-discretization for general diffusion PDEs, which are not

gradient flows.

Example 30 We consider the Fokker-Planck equation

∂ρ

∂t
+∇ · (ρ







x2

α(1− x21)− x2






) = β∆x2ρ,

whose underlying state is the stochastic van der Pol oscillator

dx1 = x2dt

dx2 = [α(1− x21)x2 − x1]dt+
√

2βdWt.

We apply the semi-discretization (69) to solve this PDE:

dρi
dt

=
1

∆x2
{

∑

j∈N1(i)

ρj[u1j − u1i]+ −
∑

j∈N1(i)

ρi[u1i − u1j]+

+
∑

j∈N2(i)

ρj[u2j − u2i]+ −
∑

j∈N2(i)

ρi[u2i − u2j]+},

where

u1j = −x1x2|x=j, u2j = −α(1− x21)x2 +
1

2
x22 + β log ρj|x=j.
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Let α = 1, ǫ = 0.5 with the square lattice on [−10, 10]×[−10, 10] with ∆x = 0.4082.

We apply Euler method with step size ∆t = 1.67×10−4 to approximate the stationary

measure.
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Figure 21: Stationary measure of stochastic van der Pol oscillator.

Similarly, we consider the Fokker-Planck equation

∂ρ

∂t
+∇ · (ρ







x2

−2ξωx2 + ωx1 − ω2rx31






) = β∆x2ρ,

associated with the stochastic Duffing oscillator

dx1 = x2dt

dx2 = [−2ξωx2 + ωx1 − ω2rx31]dt+ ǫdWt.

Let ξ = 0.2, ω = 1, r = 0.1, ǫ = 0.5 with a square lattice on [−10, 10]× [−10, 10].

The computed invariant measure is shown below.
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Figure 22: Stationary measure of stochastic Duffing oscillator.

5.5 Discussions

In this chapter, we have derived a semi-discretization scheme for a certain type of

PDEs. Compared with traditional discretization methods, the new rule scheme fol-

lowing distinct properties:

• It brings the effect of Log Laplacian. The difference of log term coincides with

the rule of Laplacian in PDE, from its “boundary repeller property” to the

asymptotic convergence result;

• If the PDE is a gradient flow, the semi-discretization keeps the gradient flow

structure;

• The graph in scheme naturally handles PDEs’ underlying states and boundary

conditions.

In addition, our semi-discretization can be applied to the other type of PDEs. For

example, consider the nonlinear diffusion PDE in R
d

∂ρ

∂t
= ∇ · [ρ∇(V (x) + β∆(ρm)], m > 1,

which is associated with the free energy

F(ρ) =

∫

Rd

V (x)ρ(x)dx+ β

∫

Rd

1

m− 1
ρ(x)mdx.
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Thus, our discretization rule provides the following result.

Corollary 38 The gradient flow of a discrete free energy

F(ρ) =
n

∑

i=1

viρi + β
n

∑

i=1

1

m− 1
ρmi , m > 1,

on the metric manifold (Po(G),W2;F) is

dρi
dt

=
1

∆x2
{
∑

j∈N(i)

ρj[Fj(ρ)− Fi(ρ)]+ −
∑

j∈N(i)

ρi[Fi(ρ)− Fj(ρ)]+}, (71)

for any i ∈ V . Here

Fi(ρ) = vi + β
m

m− 1
ρm−1
i .

There exists a unique solution ρ(t) : [0,∞) → P(G) to equation (71) with initial

measure ρ0 ∈ P(G).

Proof 34 Since Fi(ρ) is a Lipschitz continuous function on a bounded manifold

P(G), there exists a unique solution of (71) if ρ(t) ∈ P(G). So we only need to

show that ρ(t) ∈ P(G) for any t ≥ 0. Since ρ(0) ∈ P(G), it is only sufficient to show

that the boundary of probability manifold ∂P(G) is a repeller. Claim: for any t ≥ 0,

i∗ ∈ L with ρi∗(t) = 0, d
dt
ρi∗(t) ≥ 0. Proof of claim: Since F (ρ) is continuous on

a bounded manifold, then Fi(ρ) is bounded for all i ∈ L. Combining with the fact

ρi∗(t) = 0, we have

d

dt
ρi∗(t) =

1

∆x2
{

∑

j∈N(i∗)

ρj[Fj(ρ)− Fi∗(ρ)]+ −
∑

j∈N(i∗)

ρi∗ [Fi∗(ρ)− Fj(ρ)]+}

=
1

∆x2
{

∑

j∈N(i∗)

ρj[Fj(ρ)− Fi∗(ρ)]+} ≥ 0 ,

.

We demonstrate the above result through a numerical example.

Example 31 Consider the 2 dimensional nonlinear diffusion PDE in [23].

∂ρ

∂t
= ∇ · [ρ∇

(

V (x)
)

] + β∆(ρm),
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where V (x) = x2

2
and m = 2. We solve this PDE by the semi-discretization (71)

dρi
dt

=
1

∆x2
{
∑

j∈N(i)

ρj[vj − vi +
βm

m− 1
(ρm−1

j − ρm−1
i )]+

−
∑

j∈N(i)

ρi[vi − vj +
βm

m− 1
(ρm−1

i − ρm−1
j )]+}

with β = 0.01 and ∆x = 0.2 on a lattice [−2, 2] × [−2, 2]. The solution of the semi

discretization is approximated by Euler method with time step ∆t = 0.1.
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Figure 23: Stationary measure and convergence speed of Nonlinear diffusion equation
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CHAPTER VI

PART 2: A NEW ALGORITHM FOR OPTIMAL

CONTROL WITH CONSTRAINTS

In this chapter, we focus on the computation part of this thesis. We design a SDE

based algorithm for optimal control with constraints.

Optimal control with constraints seeks to determine the input (control) to a dy-

namical system that optimizes a given performance functional (maximize profit, min-

imize cost, etc), while satisfying different kinds of constraints. Mathematically, the

problem can usually be posed as

min
x,u

∫ tf

t0

L(x(t), u(t), t)dt+ ψ(x(tf ), tf ), (72)

where the state variable x(t) ∈ R
n, and the control u(t) ∈ R

r are subject to a

dynamical system

ẋ = f(x(t), u(t), t), t0 ≤ t ≤ tf ,

x(t0) = x0, M(tf , x(tf )) = 0,

with state (phase) and control constraints

φ(x(t), t) ≥ 0, ϕ(u(t), t) ≥ 0, t0 ≤ t ≤ tf .

In literature, x(t) is called the trajectory or path. L : Rn × R
r × R

+ → R is the

Lagrangian; ψ : Rn × R
+ → R the terminal cost, and tf the terminal time, which

may be undetermined in some problems. φ : Rn × R
+ → R

p is the state constraint

and ϕ : Rr × R
+ → R

q the control constraint. For technical simplicity, we assume that

L, φ, ϕ, M are continuously differentiable with respect to x and t in this chapter.
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Because many engineering problems can be formulated into the framework of op-

timal control (72) [57, 67], the optimal control theory has vast applications [5, 6, 20].

However, due to the complexity of those applications, few of them can be solved an-

alytically. Thus numerical methods are often employed instead. Traditionally, the

methods are divided into three categories, (1) state-space, (2) indirect, and (3) di-

rect methods. State-space approaches apply the principle of dynamic programming,

which states that each sub-arc of the optimal trajectory must be optimal. It leads

to the well-known Hamilton-Jacobi-Bellman (HJB) equations, which are non-linear

partial differential equations (PDEs) [12, 74]. Indirect methods employs the neces-

sary condition of optimality known as Pontryagin’s Maximum Principle [81]. This

leads to a boundary value problem, which is then solved by numerical methods. Thus

this approach is also referred to as “first optimize, then discretize”. The bound-

ary value problem is usually solved by shooting techniques or by collocation, for

examples, neighboring extremal algorithm, gradient algorithm, quasi-linearization al-

gorithm [9, 21, 64, 70], just to name a few. Direct methods take the “first discretize,

then optimize” idea. They convert the original continuous infinite dimensional control

problem into a finite dimensional optimization problem. This conversion is achieved

by, for example, approximating the original control by piecewise constant controls.

The resulting discrete problem becomes a large scale standard nonlinear program-

ming problem (NLP) which can be solved by many well established algorithms such

as Newton’s method, Quasi-Newton methods [40, 45, 49, 75]. Direct methods are

nowadays the most widespread and successfully used techniques.

Different from the existing methods, in this chapter, we design a new fast numeri-

cal method focusing on a special class of problem (72). That is the optimal trajectory

exhibits certain structures, known as separability [29, 30, 31, 65]. Simply put, a path

γ : [t0, tf ] → R
n is said to be separable, if there exists finite number of points, called
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junctions

(x̃0, , x̃1, · · · , x̃N+1), x̃i = (ti, xi) ∈ R
+ × R

n

such that γ can be represented as

γ0(x̃0, x̃1) · γc(x̃1, x̃2) · γ0(x̃2, x̃3) · γc(x̃3, x̃4) · · · γ0(x̃N , x̃N+1)

where γ0(x̃i, x̃i+1) is the optimal trajectory connecting x̃i and x̃i+1 with inactive con-

straints and γc(x̃i, x̃i+1) is the optimal trajectory connecting x̃i and x̃i+1 with active

constraints and γ0 · γc is the concatenation of two trajectories.

The significance of being separable is that the determination of the entire path

boils down to the determination of only a finite number of junctions and the determi-

nation of a finite number of optimal trajectories of smaller sizes, namely, γ0 and γc,

for which the constraints are either inactive or active on the entire segment. On the

other hand, in many applications, γ0 and γc can be computed either analytically or

numerically by more efficient algorithms. In this way, the original infinite dimensional

problem of finding the whole path is converted into a finite dimensional problem -

determine a finite number of junctions, while the constraints can also be naturally

handled as functions of junctions. Thus one gains a tremendous dimension reduction.

The resulting finite dimensional problem can be handled by many established

algorithms, for example, the gradient descent method. In this case, each steady state

of the gradient descent flow is a, possibly local, minimizer. It is evident from many

applications that the total number of minimizers can often be very large. Therefore,

it is highly desirable to design methods that are capable of obtaining the global

optimal trajectory. In this chapter, we adopt a recently developed global optimization

strategy, called intermittent diffusion (ID) [32], to do so. The idea is to add noise

(diffusions) to the gradient flow intermittently. When the noise is turned off, one

gets a pure gradient flow and it quickly converges to a local minimizer. On the other

hand, when the noise is turned on, the perturbed flow becomes stochastic differential

129



equations (SDEs), and it has positive probability to jump out of the local traps and

converges to other minimizers, including the global one. It can be shown that the local

minimizers obtained will include the global one with probability arbitrarily close to

1 if appropriate perturbations are added. We call the method outlined above Method

of Evolving Junctions (MEJ).

In the literature, the concept of junction has been introduced in the past [51], and

used in Indirect methods [17, 18]. Most of them use junctions as shooting parameters

to solve the Hamiltonian systems. For example, the one proposed in [17] uses a con-

tinuation method, also called homotopy method, together with the shooting method

for the boundary value ODEs derived from maximum principle. This is different from

how we use junctions, namely, we directly derive equations that govern the evolution

of junctions to achieve the optimal control requirements.

Because MEJ is designed for separable problems and leverage the structure of the

optimal solutions, it is able to overcome some well-known limitations of the aforemen-

tioned three general methods. Namely, HJB approach, which gives the global solution,

can be computationally expensive and suffers from the notorious problem known as

“curse of dimensionality”. Indirect methods guarantee to find local optimal solutions,

while carefully designed, if possible, initializations are needed when one wants to find

the global optimal solutions. Direct methods require finer discretization (smaller time

steps) if better accuracy is expected, and this leads to higher computational cost.

We arrange this chapter as follows. In section 2, we explain the idea of separability

and give the algorithm for MEJ. In section 3, we use the new method to solve two

linear quadratic optimal control problems. One is the test problem introduced in [63],

the other is the robot path-planning problem. Through them, we demonstrate the

advantages of MEJ.
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6.1 Method of Evolving Junctions

In this section, we derive MEJ to solve the optimal control (72) by three steps.

Firstly, we introduce the separable structure, and search the global minimizer from all

trajectories determined by such a structure. This allows us to convert (72) into a finite

dimensional optimization problem. Secondly, we apply the intermittent diffusion (ID)

to find the global minimizer by solving initial value SDEs. In the third step, we present

the criteria to add and remove junctions dynamically during the process. In the end

of this section, we combine the three steps together and form an algorithm for MEJ.

In order to better explain our idea, we consider (72) only with state constraints,

and the control constraints are omitted in the introduction of MEJ. However, with

nominal modifications, the proposed method can be applied to problems with control

constraints as well. In this chapter, the two presented numerical experiments contain

both state and control constraints.

6.1.1 The Separable Structure

We start with the definition of separability.

Definition 39 A path x(t) is said to be separable if there exists a finite partition:

t0 < t1 < t2 < · · · < tN < tN+1 = tf such that x(t)|[ti,ti+1] alternates between the free

space and on the boundary of the constraints φ = (φk)
p
k=1 ∈ R

p. In other words,

φ̂(x(t), t)















= 0, t ∈ [ti, ti+1], i odd;

> 0, t ∈ (ti, ti+1), i even,

where φ̂(x(t), t) = mink∈{1,··· ,p} φk(x(t), t).

Remark 9 To simplify our derivation, we consider the case where the optimal tra-

jectory is in the free space at the beginning, which implies that i is even for free space

and i is odd for constraints.
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The notion of separability has been given in [88] in which only trajectories consisting

of three parts are considered (N = 2). In this chapter, we denote x̃i := (ti, x(ti))

and call them junctions. Two junctions x̃i = (ti, xi), x̃i+1 = (ti+1, xi+1) define the

optimal control in the free space as

J0(x̃i, x̃i+1) := min
x,u

∫ ti+1

ti

L(x(t), u(t), t)dt,

where ẋ = f(x, u, t), x(ti) = xi, x(ti+1) = xi+1, φ̂(x(t), t) > 0, t ∈ (ti, ti+1), with

optimal trajectory denoted as

γ0(x̃i, x̃i+1) := argmin
x

∫ ti+1

ti

L(x(t), u(t), t)dt;

and the optimal control problem on the boundary of the constraints as (subscript “c”

means constrained)

Jc(x̃i, x̃i+1) := min
x,u

∫ ti+1

ti

L(x(t), u(t), t)dt,

where ẋ = f(x, u, t), x(ti) = xi, x(ti+1) = xi+1, φ̂(x(t), t) = 0, t ∈ [ti, ti+1], with

optimal trajectory denoted as

γc(x̃i, x̃i+1) := argmin
x

∫ ti+1

ti

L(x(t), u(t), t)dt.

The separability of the optimal trajectory enables us to restrict our search of

optimal trajectories in a subset H,

H := {γ : γ is determined by finitely many junctions}.

More precisely, if γ ∈ H, there exists a finite sequence of junctions on the boundary

of the constraints, (x̃0, x̃1, · · · , x̃N+1) such that γ can be represented as

γ0(x̃0, x̃1) · γc(x̃1, x̃2) · γ0(x̃2, x̃3) · γc(x̃3, x̃4) · · · γ0(x̃N , x̃N+1). (73)

Here γ0 · γc is the concatenation of two trajectories.
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As a result, if the trajectory of (72) is separable and determined by junctions,

then the cost functional of (72) can be represented by junctions:

J(x̃0, x̃1, · · · , x̃N+1) :=
∑

1≤i≤N, i odd

[J0(x̃i−1, x̃i) + Jc(x̃i, x̃i+1)].

Moreover, there is a hidden constraint. That is, the optimal trajectory in the free

space connecting x̃i and x̃i+1 must not violate the constraints. In other word, we

require that for i even,

V (x̃i, x̃i+1) := min
ti≤t≤ti+1

φ̂(γ0(x̃, x̃i+1)(t), t) = 0. (74)

It ensures that the trajectory determined by junctions satisfies (72)’s constraints.

Here we call V (x̃i, x̃i+1) = 0 as the visbility constraints.

For problems with separable structures, any optimal trajectories must be in H.

As a result, in order to find an optimal trajectory, only the optimal junctions need

to be computed. We gain a tremendous dimension reduction since the number of

junctions is finite. In other words, problem (72) becomes

min
x̃0,··· ,x̃N+1

J(x̃0, x̃1, · · · , x̃N+1), (75)

subject to V (x̃i, x̃i+1) = 0, for i even.

Remark 10 Here we require that (72) on free space or constraints can be solved eas-

ily, either by an analytical solution or other rapid numerical methods. Indeed, linear

quadratic optimal control problems with proper constraints satisfies these criteria.

We emphasize that solving optimization problem (75) has two challenges. One is

that we intend to solve for the global minimizer. The other is that the dimension

of optimization problem is unknown, since the number and index of junctions are

unknown for the optimal trajectory. We apply the intermittent diffusion (ID) to

conquer the first problem, and a new inserting and removing junctions from the

system to treat the second challenge. They are presented in the next two subsections.
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6.1.2 Intermittent Diffusion

ID is a global optimization strategy developed in [32]. It is to find minimizers of (75)

by stochastic differential equations on a boundary manifold :

dx̃ = Px̃[−∇J(x̃)dθ + σ(θ)dW (θ)], (76)

where x̃ = (x̃0, · · · , x̃N+1); W (θ) is the standard Brownian motion in R
n; θ is an

artificial time variable that is different from t, the time variable used in problem (72);

Px̃ is the orthogonal projection onto the tangent plane to x̃. In other words, if we

denote a feasible direction set

F(x̃) := {q | ∇V (x̃i, x̃i+1) · q = 0, for i even, ‖q‖ = 1},

then Px̃(p), representing the projection of any vector p onto the feasible direction of

F(x̃), is defined by

− Px̃(p)

‖Px̃(p)‖
:= arg min

q∈F(x̃)
q · p, ‖Px̃(p)‖ := min

q∈F(x̃)
|q · p|.

Here σ(θ) is a piecewise constant function, which is used to add the noise inter-

mittently. More precisely, σ(θ) =
∑m

j=1 σjχ[Sj ,Tj ](θ), where 0 = S1 < T1 < S2 <

T2 < · · · < Sm < Tm < Sm+1 = T and χ[Sj ,Tj ] is the characteristic function of inter-

val [Sj, Tj]. If σ(θ) 6= 0 (76) is a well-defined SDE [56], whose solution has positive

probability to escape the attraction of any local minimizers; If σ(θ) = 0, we obtain

the projected gradient flow, whose solution has the ability to visit a particular local

minimizer. Here we denote

∇cJ(x̃) := Px̃(∇J(x̃)).

Remark 11 Here the computation of ∇J(x̃) and ∇V (x̃) depends on (72) in free

space or constraints. If γ0(x̃i, x̃i+1), γc(x̃i, x̃i+1) have analytic solutions, e.g. example

2, then they can be found accordingly; If γ0(x̃i, x̃i+1), γc(x̃i, x̃i+1) are not easy to

obtain, e.g. example 1, they are approximated by finite differences.
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6.1.3 Handling Dimension Changes

To maintain separability, we introduce the following two operations in the process to

add or remove junctions as needed.

Insert junctions. During the evolution of junctions according to (76), γ0(x̃k, x̃k+1)

may intersect with the interior of the constrained region. In other words, there may

exist a time t such that φ̂(t, γ0(x̃k, x̃k+1)(t)) < 0. In order to maintain separability, we

insert the intersection points into the set of junctions. Let (x̃0, x̃1, · · · , x̃N , x̃N+1) be

the set of junctions representing the current path and assume γ0(x̃k, x̃k+1) intersects

with φ̂ = 0 at ỹ where φ̂(ỹ) = 0 for the first time (without loss of generality, assume

there is only one such intersection). We add ỹ as a new junction and the path becomes

(x̃0, · · · , x̃k, ỹ, ỹ, x̃k+1, · · · , x̃N , x̃N+1). It is easy to see that the cost of the new path

remains the same

J(x̃0, . . . , x̃k, y, y, x̃k+1, · · · , ỹn+1)− J(x̃0, . . . , x̃N+1)

= J0(x̃k, ỹ) + Jc(ỹ, ỹ) + J0(ỹ, x̃k+1)− J0(x̃k, x̃k+1)

= J0(x̃k, ỹ) + J0(ỹ, x̃k+1)− J0(x̃k, x̃k+1) = 0.

With the new set of junctions, we have another gradient flow for {ỹk} which is also

expressed by (76). However, the number of equations is strictly larger. Remove

junctions. Junctions need to be removed if doing so results in a path with smaller

cost. This case happens when two junctions x̃k and x̃k+1 on the boundary meet each

other during the flow, i.e. x̃k = x̃k+1. By the triangle inequality, we have

J0(x̃k−1, x̃k+2) ≤ J0(x̃k−1, x̃k) + J0(x̃k+1, x̃k+2),

The original path (· · · , x̃k−1, x̃k, x̃k+1, x̃k+2, · · · ) can be shortened to obtained the path

(· · · , x̃k−1, x̃k+2, · · · ). However, γ0(x̃k−1, x̃k+2) may intersect with φ̂ = 0. Hence, to

maintain separability, as in the insertion case, we add the intersections into the set of

junctions. It should be noted that unlike the process of adding junctions, removing

junctions causes a jump in the gradient flow.
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6.1.4 Algorithm

With all the components discussed above, we are ready to state our algorithm.

Method of Evolving Junctions

Input: Constraint φ and ψ,

starting and ending points x0 and M ,

running cost L, terminal time tf , and ODE f ,

number of intermittent diffusion intervals m.

Output: The optimal set γopt of junctions.

1. Initialization. Find the initial path γ(0) = (x̃0, · · · , x̃n+1);

2. Select duration of diffusion ∆Tl, l ≤ m;

3. Select diffusion coefficients σl, l ≤ m;

4. for l = 1 : m

5. γ(l) = γ(0);

6. for j = 1 : ∆Tl

7. Find ∇cJ(γ(l)).

8. Update γ(l) according to (76) with σ(θ) = σl;

9. Remove junctions from or add junctions to γ(l) when necessary;

10. end

11. while ‖∇cJ(γ(l))‖ > ǫ

12. Update γ(l) according to (76) with σ(θ) = 0;

13. end

14. end

15. Compare J(γ(l)), l ≤ m and set γopt = argminl≤m J(γ
(l));
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Remark 12 For step 12, problem (72) becomes a usual optimization problem with

fixed dimensions, hence we can apply other efficient constrained optimization method

to solve, such as Newton Method, quasi Newton Method and so on. An example in a

shortest path problem has been studied in next section .

6.2 Examples

In this section, we present two examples solved by MEJ.

6.2.1 Example 1: A standard linear quadratic control problem

Let us consider

min
x1,x2,u

∫ 1

0

x1(t)
2 + x2(t)

2 + 0.005u(t)2dt,

subject to

ẋ1(t) = x2(t),

ẋ2(t) = −x2(t) + u(t), t ∈ [0, 1],

x1(0) = 0, x2(0) = −1,

with a state constraint

x2(t) ≤ d(t), t ∈ [0, 1],

and control constraints

−20 ≤ u(t) ≤ 20, t ∈ [0, 1],

where

d(t) = 8(t− 1

2
)2 − 1

2
.

This is the linear quadratic problem considered in [63, 82].

First, through the following three steps, we reformulate this optimal control prob-

lem into a finite dimensional optimization problem following the idea of MEJ.

For convenience, we denote a junction x̃i = (ti, x1(ti), x2(ti), u(ti)).

137



Step 1: The optimal trajectory in the free space can be solved analytically. Here

free space means both state and control constraint are not active in a period (ti, ti+1).

In this case, we just need to consider trajectory solving the following control problem:

J0(x̃i, x̃i+1) = min
x,u

∫ ti+1

ti

L(x1(t), x2(t), u(t))dt (77)

subject to

ẋ1(t) = x2(t), ẋ2(t) = −x2(t) + u(t), ti ≤ t ≤ ti+1,

and x1(ti), x2(ti), x2(ti+1) is fixed by x̃1 and x̃2. Here x1(ti+1) is not fixed since the

state constraint is only for x2(t), while x1(t) is free.

We notice that (98) is an optimal control problem without a state constraint, and

it can be solved by Pontryagin’s maximum principle. Let us define Hamiltonian

H(λ, x1, x2, u) = L(x1, x2, u) + λTf(x, u),

where x = (x1, x2)
T , λ = (λ1, λ2)

T , f(x, u) = (x2,−x2 + u)T . Then the optimality

conditions become






























∂H
∂x

= −λ̇

∂H
∂u

= 0

ẋ = f(x, u)

(78)

with boundary condition x1(ti), x2(ti), x2(ti+1) are fixed by x̃i, x̃i+1 and λ1(ti+1) = 0.

Moreover, since H is quadratic and f is linear, system (78) is reduced to a linear

system of ODEs:


















ẋ1

ẋ2

u̇

λ̇1



















=



















0 1 0 0

0 −1 1 0

0 200 1 100

−2 0 0 0





































x1

x2

u

λ1



















,



















x1(ti)

x2(ti)

x2(ti+1)

λ1(ti+1)



















=



















x̃i|x1

x̃i|x2

x̃i+1|x2

0



















. (79)

Its solution x∗(t), u∗(t) can be calculated analytically in term of (x̃i, x̃i+1):

(x∗(t), u∗(t), λ∗1(t))
T = c1e

10
√
2tv1 + c2e

−10
√
2tv2 + c3e

tv3 + c4e
−tv4
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where v1, v2, v3, v4 are eigenvectors corresponding to eigenvalues 10
√
2, −10

√
2, 1 and

−1 respectively, and c1, c2, c3, c4 are constants determined by (x̃i, x̃i+1). Hence, if we

substitute x∗(t), u∗(t) into the running cost, then

J0(x̃i, x̃i+1) =

∫ ti+1

ti

L(x∗1(t), x
∗
2(t), u

∗(t))dt ,

becomes a function of x̃i, x̃i+1.

Step 2: We consider the optimal trajectory with active constraints. In general,

the active constraints can be divided into three types. In first case, both state and

control constraints are active, i.e. x2(t) = d(t), |u(t)| = 20 for t ∈ [ti, ti+1]. In this

example, this case is not possible since |u(t)| = |ḋ(t)+d(t)| < 20, for any t ∈ [0, 1]. In

second case, the control constraint is active while the state constraint is not active,

i.e. u∗(t) = 20 or −20 for t ∈ [ti, ti+1]. Since the control is known, the path is uniquely

determined by ODE system

ẋ∗1(t) = x∗2(t), ẋ∗2(t) = −x∗2(t) + u∗(t), ti ≤ t ≤ ti+1,

where are given junctions x̃i, x̃i+1. In third case, state constraint is active while

control constraint is not active. I.e.

ẋ1(t) = x2(t), ẋ2(t) = −x2(t) + u(t), x2(t) = d(t), ti ≤ t ≤ ti+1.

From the state constraint

x∗2(t) = d(t) = 8(t− 1

2
)2 − 1

2
,

we can directly solve

u∗(t) = d(t) + ḋ(t) = 8(t− 1

2
)2 + 16(t− 1

2
)− 1

2

and

x∗1(t) =x
∗
1(ti) +

∫ t

ti

x∗2(s)ds

=x∗1(ti) +
8

3
[(t− 1

2
)3 − (ti −

1

2
)3]− 1

2
(t− ti)
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for t ∈ (ti, ti+1].

For these cases, by substituting x∗(t), u∗(t) into the running cost, we obtain

Jc(x̃i, x̃i+1) =

∫ ti+1

ti

L(x∗1(t), x
∗
2(t), u

∗(t))dt,

as a function of x̃i and x̃i+1.

Step 3: The visibility function becomes

V (x̃i, x̃i+1) = min
ti≤t≤ti+1

d(t)− x∗2(t),

where i is even and x∗2(t) is from (79). Moreover, we can obtain control constraints

by junctions

|U(x̃i, x̃i+1)| = max
ti≤t≤ti+1

|x∗2(t) + ẋ∗2(t)|.

Combining the above three steps, we achieve the finite dimensional optimization

problem:

min
x̃1,··· ,x̃n

∑

1≤i≤n, i odd

[J0(x̃i−1, x̃i) + Jc(x̃i, x̃i+1)] (80)

subject to

V (x̃i, x̃i+1) = 0, i even; −20 ≤ U(x̃i, x̃i+1) ≤ 20 for all i.

We give more details about the algorithm. Although there are four components

in each junction x̃i = (ti, x1(ti), x2(ti), u(ti)), the later three are functions of ti. In

other words, if we know ti, we can compute the other three analytically. From the

constraint, x2(t) = d(t), we know x2(ti) = d(ti). Substituting this to the equation

ẋ2(t) = −x2(t) + u(t), we obtain u(ti) = d(ti) − ḋ(ti). Then using ẋ1(t) = x2(t), we

obtain

x1(ti) = x1(ti−1) +

∫ ti

ti−1

d(t)dt

if i is even. When i is odd, equation (79) gives the value of x1(ti) directly. Using this

knowledge, we conclude if we know tis, we know all the junctions. This enables us to

write the optimization (80) as a problem depending only on ti’s.
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Then we apply ID as given in (76) to this optimization problem:

dti = Px̃(−∇ti Ĵ(t1, · · · , tn)dθ + σ(θ)dW (θ)).

In our implementation, we evaluate the gradient by finite difference:

∂Ĵ(t1, · · · , tn)
∂ti

≈ Ĵ(t1, · · · , ti + h, · · · , tn)− Ĵ(t1, · · · , ti, · · · , tn)
h

where the step size h = 10−9. While V̂ (ti, ti+1) = minti≤t≤ti+1
(d(t) − x∗2(t)) is a one

dimensional optimization problem, we compute it by the Newton’s method. We stop

the gradient flow at ‖∇cĴ(t1, · · · , tn)‖ ≤ 10−6.

Our experiment with m = 4 finds two minimizers. One of global minimizers is

with objective function value 0.1721 as shown in Figure 24. The other shown in

Figure 25 is a local minimizer with objective function value 0.1725. Both are smaller

than the optimal objective value 0.1727 reported in [63, 82].
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Figure 24: Linear quadric control: Global minimizer
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Figure 25: Linear quadric control I: Local minimizer

It is evident that the difference between the global and local minimizers is very

small in terms of the objective function values, but the junctions in the control u(t)

are quite different and they are located at different positions. For example, the first

junction for the global minimizer is around t = 0.2658, while the first junction for

the local minimizer is around t = 0.3156. In addition, the control variable u(t) at the

first junction of the global minimizer is discontinuous, while its counterpart in the

local minimizer is continuous in Figure 25.

Furthermore, in this example, there are two junctions, resulting a system of SDEs

with 2 unknowns. This means that to compute the solutions, we only numerically

solve an initial value problem for a system of SDEs with 2 equations by the simple

Euler-Maruyama scheme. Compared the Direct methods, the dimension reduction in

MEJ is significant.

We would like to point out that MEJ can be easily extended to handle more

complicated situation for this type of linear quadratic optimal control problems. Here

we give another example with the same objective functional, the same initial and

terminal conditions, but replace the constraint by d(t) = 8(t− 1
2
)2− 1

2
+ 4

5
sin(5πt). As

indicated in Figure 26, there are two humps in the constraints, leading to 4 junctions

in MEJ. The dimension of the gradient flow is 4. We depict the identified a global
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Figure 26: Global minimizer

optimal solution in Figure 26, and the objective functional values is 0.50825, where

the tolerance is ‖∇cJ‖ < 10−6. In contrast, the Direct method needs a special

discretization to handle this situation, as reported in [82].

In summary, compared to the Direct methods in [63, 82], MEJ has the following

advantages:

1. The dimension is changed fundamentally. All direct methods approximate,

via discretization in t, the infinite dimensional Banach space by R
n with n

large enough to meet the accuracy requirements, while our method leverage the

separability, and only consider trajectories determined by a finite number of

junctions.

2. MEJ can obtain the global minimizer and achieve desirable accuracy without

suffering the restrictions on the discretization in t. This is not the case for the

Direct methods. For instance, as we observed in Figures 24 and 25, the local

minimizer is very similar to the global one. The Direct method needs to use

very small discretization step size, meaning large n, to achieve enough accuracy

to distinguish them. In MEJ, it only needs two junctions to compute both.

3. MEJ treats the constraints in a natural way, through the visibility function. The

equations governing the evolution of the junctions are defined on the boundaries

of the constraints. The Direct methods [63, 82] require all discretization points
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satisfying the constraints and the dynamical systems.

6.2.2 Example 2: Path planning in dynamic environments

In this example, we use MEJ to find the minimal cost path in an environment where

obstacles are moving obstacles. This example is motivated by practical problems in

robotics, in which it is considered as a very challenging problem on its own. To the

best of our knowledge, only a few studies have been devoted to the optimal solution

for such a problem [47, 91]. Due to its complexity, it is not our intention to a give full

description on how to apply MEJ to the general situation of this problem, rather, we

refer readers to our recent study reported in [28] for the complete details.

In simple words, our goal is to find the optimal path for a robot in the plane

moving from a starting point to a target location with minimal cost, such as fuel

consumption, while avoiding collisions with several obstacles that also move in the

environment. To be mathematically precise, we want to solve the following optimal

control problem:

min
γ,v

∫ T

0

L(t, γ, v)dt, (81)

subject to

γ̇ = v, t ∈ [0, T ],

γ(0) = x, γ(T ) = y,

γ(t) ∈ R
2
c(t),

||v(t)|| ≤ vm,

where γ(t) ∈ R
2 is the parametrization of the robot moving path, v and t represent the

velocity and time respectively, γ(0), γ(T ) are the initial and terminal points, constant

vm is the maximal speed that the robot can move, ‖ · ‖ is the 2-norm, and R
2
c(t) is

the time dependent obstacle-free space defined as follows: Let P1(t), · · · , PN(t) be

N time-dependent open subsets of R2 representing obstacles, which are moving at
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constant speed,

Pk(t) = {p+ vkt | p ∈ Pk}, vk is a constant velocity of Pk,

and R
2
c(t) = R

2 \ (∪N
i Pi(t)). We consider the Lagrangian

L(t, γ(t), γ̇(t)) = γ̇(t)2 + c, c ∈ R
1 is a given constant.

Hence the cost functional J(γ) =
∫ T

0
γ̇2dt+cT represents the robot’s fuel consumption,

meaning it costs more for fast speed while stalled (or slow) motion is also inefficient.

It can be viewed as the weighted average of kinetic energy consumption and arrival

time.

For convenience, we denote a junction x̃i = (ti, xi), where xi = γ(ti).

Step 1: The optimal trajectory in the free space can be solved analytically.

Lemma 40 The optimal path γi connecting the junction pair (x̃i, x̃i+1) with inactive

constraint is a line with constant speed. I.e.

γi(t) =
xi+1 − xi
ti+1 − ti

(t− ti) + xi.

Proof 35 It is a classical problem in calculus of variation. Denote L(t, x, v) = v2+c,

then the optimal path satisfies the Euler-Lagrange equation

∇xL(t, γ, γ̇)−
d

dt
∇vL(t, γ, γ̇) = 0 ⇒ −2

d

dt
(γ̇) = 2γ̈ = 0,

meaning that the optimal solution is with zero acceleration.

If we substitute such optimal path into the running cost, we obtain

J0(x̃i, x̃i+1) =
(xi+1 − xi)

2

ti+1 − ti
+ c(ti+1 − ti),

as a function of x̃i, x̃i+1.

Step 2: We consider the optimal trajectory with active constraints.
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Lemma 41 The optimal path γi connecting a junction pair (x̃i, x̃i+1) with active

constraint is one of follows:

(a) It is a line with maximal speed;

(b) It is a geodesic on moving obstacle with relative constant speed;

(c) It is a geodesic on moving obstacle with maximal speed.

Proof 36 It contains three cases:

(a) The speed constraint is active while the path constraint is not. I.e.

‖γ̇(t)‖ = vm;

(b) The path constraint is active while the speed constraint is not. I.e. there exists

an obstacle Pk, such that

γ(t) ∈ ∂Pk(t);

(c) Both path and speed constraints are active. I.e. there exists an obstacle Pk, such

that

γ(t) ∈ ∂Pk(t) and ‖γ̇(t)‖ = vm.

Let’s illustrate three cases separately. For case (a), it is not hard to show that the

optimal path is a line with maximal speed ‖γ̇‖ = vm.

For case (b), the control problem forms

min{
∫ ti+1

ti

(γ̇2(t) + c)dt | γ(ti) = xi, γ(ti+1) = xi+1, φk(t, γ(t)) = 0}. (82)

Let’s solve it explictily. We parametrize the boundary of obstacle Pk by α(u), where

u ∈ [0, lk] is an arc-length parameter and lk is the obstacle’s perimeter. Hence γ(t) is

represented by its relative position u(t) on the obstacle

γ(t) = α(u(t)) + vk · t.
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Then (82) is equivalent to a new form

min{
∫ ti+1

ti

L1(t, u, u̇)dt | u(ti) = ui, u(ti+1) = ui+1},

where

L1(t, u, u̇) = u̇(t)2 + 2(αu(u(t)) · vk)u̇(t) + v2k + c, (83)

and xi = α(ui) + vk · ti, xi+1 = α(ui+1) + vk · ti+1.

Again, it is a standard calculus of variation problem. Notice that

∂

∂u
L1 = 2(αuu · vk)u̇,

∂

∂u̇
L1 = 2u̇+ 2(αu · vk),

and d
dt
L1u̇ = 2ü+ 2(αuu · vk)u̇. Then from the Euler-Lagrange equation

∂

∂u
L1(t, u, u̇)−

d

dt

∂

∂u̇
L1(t, u, u̇) = 0 ⇒ ü = 0.

Hence the optimal path is with a relative constant speed.

Hence we can obtain γi. Since the obstacle is connected set in R
2, there are two lo-

cal minimizer paths, which is from either clockwise u+(t) direction or counterclockwise

direction u−(t):

u+(t) = ui +
ui+1 − ui
ti+1 − ti

(t− ti); u−(t) = ui − lk +
(ui+1 − ui + lk)

ti+1 − ti
(t− ti). (84)

If we denote γ+(t), γ−(t) by u+(t), u−(t), the optimal path γi satisfies

γi(t) = arg min
γ+,γ−

{J(γ+), J(γ−)}.

For case (c), the robot’s path is uniquely determined by both path and speed con-

straints:

φk(t, γ(t)) = 0, ‖γ̇(t)‖ = vm.

Similarly in case (b), by the arc-length parametrization,

u̇2 + 2αu(u) · vku̇+ v2k = v2m.
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There are two solutions depending on clockwise or counter-clockwise direction

u̇+ =− αu(u+) · vk +
√

αu(u+)2 + (v2m − v2k);

u̇− =− αu(u−) · vk −
√

αu(u−)2 + (v2m − v2k).

Similarly as in case (b), we find

γi(t) = arg min
γ+,γ−

{J(γ+), J(γ−)}.

If we substitute the optimal path into running cost, we obtain Jc(x̃i, x̃i+1) as a function

of x̃i and x̃i+1.

Step 3: We express the constraints by junctions.

Given two junctions x̃i and x̃i+1, the visibility function V (x̃i, x̃i+1) determines

whether the line connecting them with a constant velocity only intersects the moving

obstacles at junctions. A point γ(t) on the line, outside the obstacle Pk is according

to:

φk(γ(t), t) ≥ 0,

where φk is the sign distance function,

φk(t, y) =















dist(y, ∂Pk(t)), if y ∈ Pk(t) ;

−dist(y, ∂Pk(t)), if y ∈ R
2 \ Pk(t),

with dist(y, ∂Pk(t)) = infx∈∂Pk(t) ‖x− y‖.

Then the visibility function becomes,

V (x̃i, x̃i+1) = min
ti≤t≤ti+1

φk(γ(t), t) = 0,

and the minimizer can only be achieved at the junction points x̃i or x̃i+1.

Moreover, the control constraints can also be determined by junctions.

U(x̃i, x̃i+1) = max
ti≤t≤ti+1

‖γ̇(t)‖ ≤ vm, for all i.
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Combining all steps, the optimal control has been transformed to the following

finite dimensional optimization problem:

min
x̃1,...,x̃n

∑

1≤i≤n, i odd

[J0(x̃i−1, x̃i) + Jc(x̃i, x̃i+1)]

subject to

V (x̃i, x̃i+1) = 0, i even; U(x̃i, x̃i+1) ≤ vm, all i.

We give more details about the algorithm by considering two cases.

Fixed terminal time At the beginning, let the terminal time be fixed at T = 1

and the running cost be L = γ̇2. The starting and ending points are X = (−2, 0.5),

Y = (20, 0.5). The obstacles are all disks, with centers (0, 0), (4.5, 3), (8,−3), (10, 4),

(12,−3), (15,−4) and radiuses 1, 1, 1, 1.2, 1, 1. They all move at constant velocities,

which are (3, 5), (−2,−5), (−2, 4.5), (0,−5.5), (1, 5.5) and (1, 5.5).

By letting m = 6 in MEJ, the algorithm finds two minimizers. One is a global

minimizer with cost 510.353, whose trajectory passes four moving obstacles, see Figure

27 or movie in https://youtu.be/ziq0GQZGVeE.

The other is a local minimizer with cost 535.273, whose trajectory passes five

moving obstacles, see movie in https://youtu.be/AO3Cy5J1-Rg. Here we want to

emphasize the speed of this algorithm. By doing simulations on a 2013 Macbook

Air with CPU core i5, 1.8G HZ, RAM 4GB, the average time of finding one local

minimizer is around 20 seconds.

Undetermined terminal time Secondly, we show that MEJ can work with a

unknown terminal time T , which is also a variable in (72). Let the running cost be

L = γ̇2+200. The starting and ending points are X = (−2, 0.5), Y = (10, 0.5). There

are two obstacles, which are disks with centers (0, 0), (6.5, 3) and radiuses 1, 1. They

move at constant velocities (5, 0), (−5, 0). The local minimizer is with cost 353.16 and

terminal time 0.895, see Figure 28 or movie in https://youtu.be/KDKLCW1bFYw.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 27: Optimal path in dynamic environments: Fixed terminal time: This is a
snapshot of the global optimal path (red) for the drone while avoiding collisions with
6 moving obstacles (blue). The green part of the path indicates that the path travels
along the moving obstacle boundary.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 28: Optimal path in dynamic environments: Undetermined terminal time:
This is a snapshot of the global optimal path (red) for the drone while avoiding
collisions with 6 moving obstacles (blue). The green part of the path indicates that
the path travels along the moving obstacle boundary.
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Remark 13 There are some additional interesting observations from MEJ. The op-

timal path in step 2 case (b) can be easily derived from geometry viewpoint. If we

denote the robot’s path by its relative position γr on ∂Pk, then

γ(t) = γr(t) +

∫ ti+1

ti

vk(t)dt, t ∈ [ti, ti+1], γr(t) ∈ ∂Pk.

Hence the running cost becomes

L(t, γ, γ̇) := Lr(γ̇r) = [(γ̇r(t) + vk)]
2 + c.

The the orignal optimal control problem forms

inf{
∫ ti+1

ti

Lr(γ̇r)dt : γr(ti) = xi, γr(ti+1) +

∫ ti+1

ti

vkdt = xi+1}.

By the Euler-Lagrange equation in geometry,

d

dt
∇γ̇rLr(γ̇r) = ∇γrLr(γ̇r) ⇒ 2

D

dt
γ̇r +

D

dt
vk = 0.

Notice carefully that the left-hand side of the equation involves the time-derivative of

a curve which is valued in tangent space. Hence D
dt

is a covariant derivative along the

curve γ in ∂Pk. So if vk is a constant, we have D
dt
γ̇r = 0. It means that the relative

path γr(t) is a constant speed geodesic.

6.3 Acceleration technique

In this section, we further improve the MEJ presented in previous section. In short,

we use an approximated Newton method to replace the gradient flow in MEJ, while

retaining the overall MEJ framework including the SDEs to help the solution jump

out of the traps of local minimizers. Such a replacement significantly reduces the

computational time in finding the local minimizers.

In particular, we use a shortest path problem to illustrate the idea. Mathemat-

ically, the problem can be formulated as following. Let (X, d) be a length space,

such as R
2, where d is the distance defined on X, and P1, · · · , PN be N open
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subsets of X, representing obstacles with boundaries {∂Pk}Nk=1. Given two points

x, y ∈ Xc = X \ ∪N
i=1Pi, we define the admissible set of paths connecting x and y to

be the curves that have no intersection with all the interior of obstacles, i.e.

A(x, y,Xc) = { γ : [0, 1] → X | γ(0) = x, γ(1) = y, γ ∈ Xc},

where γ is absolutely continuous. For each admissible path, its length in Euclidean

space is

J(γ(θ)) =

∫ 1

0

|γ̇(θ)| dθ.

Then finding the shortest path can be posed as an optimization problem:

γ∗ = argminγ∈A(x,y,Xc) J(γ). (85)

Let’s review MEJ. We start with a geometric structure, called separable, possessed

by all shortest paths.

Definition 42 A path γ : [0, 1] → Xc is separable if there exists a finite number of

points {x1, x2, · · · , xn} with xi ∈ ∂Pki, ki ≤ N , such that γ concatenates line segments

and partial curves on the boundaries of the obstacles, i.e.

γ = γ0(x, x1) · γc(x1, x2) · γ0(x2, x3) · γc(x3, x4) · · · γ0(xn, y), (86)

where γ0(xi−1, xi) is the line segment connecting xi−1 and xi and γc(xi−1, xi) is the

geodesic on the boundary ∂Pki between the two points.

A simple example is shown in Figure 29, and we call xi a junction,

Theorem 43 Let ∂Pk be a finite combination of convex and concave curves (sur-

faces). Then γ∗ is separable. Moreover, each line segment xi−1xi is tangent to the

obstacle ∂Pki.

153



Figure 29: Each connecting point between a line segment and a boundary of the
obstacles is a junction.

xi−1

xi xi+1

Figure 30: Each junction on a boundary is connected to the points before and after
it by a straight line segment and an arc of the boundary.

Therefore the length of the shortest path is a function depending on the junctions

{x1, . . . , xn},

J(x1, . . . , xn) =
n

∑

i=1

J(xi−1, xi),

where J(xi−1, xi) represents the distance connecting (xi−1, xi):

J(xi−1, xi) =















‖xi−1 − xi‖, if i is odd;

distc(xi−1, xi), if i is even,

in which ‖ · ‖ is the Euclidean norm.

Based on this theorem, MEJ restricts the search space to the set of all admissible

paths with separable structures, a finite dimensional subset of A(x, y,Xc). More

precisely, MEJ finds the shortest path by solving the following optimization problem,

min
x1,··· ,xn

J(x1, · · · , xn). (87)
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To find the global solution of (87), MEJ uses the intermittent diffusion (ID), a

SDE based global optimization method developed in [32]. More precisely, it solves

dx̂ = −∇J(x̂)dt+ σ(t)dWt, (88)

where x̂ = {x1, · · · , xn} represents the junctions, Wt the standard Brownian motion

in R
n, and σ(t) a piecewise constant function

σ(t) =
m
∑

j=1

σjχ[Sj ,Tj ](t), (89)

with 0 = S1 < T1 < · · · < Sm < Tm < Sm+1 = T and χ[Sj ,Tj ] being the characteristic

function of interval [Sj, Tj].

If σ(t) = 0, the equation (88) becomes a gradient descent flow which converges to

a local minimizer; if σ(t) > 0, the path has a certain (positive) probability, controlled

by σ(t), to jump out of the local traps, and therefore to reach the global solution.

6.3.1 The Newton-like algorithm

In this subsection, we present a new approximate Newton method in R
2 shortest path

problem, by finding the line segments tangent to the obstacles directly, to replace the

gradient flow in (88) when σ(t) = 0.

In order to explain our method more clearly, we introduce an arc-length parameter

θ to represent junctions. Let xi = x(θi), x
s
i = x(θsi ), x

c
i = x(θci ), where θi, θ

s
i , θ

c
i are

arc-length parameters on the corresponding boundaries, and super index s indicates

the junction connected to xi by a straight line, c denotes the junction connected

to xi by a boundary arc, see Figure 31 for an illustration. With these notations,

the length of the curve containing one straight line segment and the boundary arc

γ0(x
s
i , xi) · γc(xi, xci) becomes

Ji(θ) = ‖x(θi)− x(θsi )‖+ d(θi, θ
c
i ),

where d(θi, θ
c
i ) = min{d+(θi, θci ), d−(θi, θci )}, with d+, d− representing the counter-

clockwise and clockwise distance on the obstacle boundary between x(θci ) and x(θi)
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as illustrated in Figure 31.

xsi

xi xci

(a)

xsi

xci
xi

(b)

Figure 31: Two different scenarios for each junction on a boundary that is connected

to the points before and after it by a straight line segment and an arc of the boundary.

Thus, the optimization problem (87) becomes

min
θ1,··· ,θn

J(θ) =
1

2

n
∑

i=1

Ji(θ),

where θ = (θ1, · · · , θn). And the intermittent diffusion (88) is

dθ = −∇J(θ)dt+ σ(t)dWt, (90)

in which we have

∂J

∂θi
=

x(θi)− x(θsi )

‖x(θi)− x(θsi )‖
· ẋ(θi) + sign(d+(θi, θ

c
i )− d−(θi, θ

c
i )),

where ẋ(θi) =
dx(θi)
dθi

.

Our main idea of this section is that instead of using the gradient flow to find

local minimizer of (87), we apply the Newton method to solve ∇J(θ) = 0 directly.

And this is equivalent to solving the tangent condition in Theorem 43 as stated in

the next theorem. Here we denote J
(k)
i (θ) = ∂kJi

∂θki
(θ), k = 2, 3.

Theorem 44 If θ∗ is the local minimizer of (87), then the following statements are

equivalent:

(i) The line segment is tangent to the obstacle;
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(ii) The second order derivative J
(2)
i (θ∗) = 0, for i = 1, . . . , n.

Moreover, the third order derivative satisfies

|J (3)
i (θ∗)| = |κ(θ∗i )|2,

and

∂J
(2)
i

∂θj
(θ∗) = 0,

for any i, j = 1, . . . , n and i 6= j.

Proof 37 First, we show that solving ∇J(θ) = 0 implies the line connecting the

junctions being tangent to the obstacles. Since

∂J

∂θi
= g(θi, θ

s
i ) + sign(d+(θi, θ

c
i )− d−(θi, θ

c
i )) = 0, (91)

where

g(θi, θ
s
i ) =

x(θi)− x(θsi )

‖x(θi)− x(θsi )‖
· ẋ(θi). (92)

Hence ∇J(θ) = 0 is to solve g(θi, θ
s
i )

2 = 1 for each i. Moreover, since θ is the

arc length parameter, ẋ(θi) is a unit vector, which implies that g(θi, θ
s
i ) is the inner

product of two unit vectors. Then g(θi, θ
s
i )

2 = 1 means x(θi) − x(θsi ) is parallel to

tangent vector ẋ(θi), which implies tangent property.

To show the equivalence of (i) and (ii), we need to prove that (i) implies (ii):

Without loss of generality, let us assume sign(d+(θi, θ
c
i ) − d−(θi, θ

c
i )) = −1. Since

g(θi, θ
s
i ) ≤ 1, solving (91) is equivalent to finding the maximizer θ∗ of

max
θi,θ

s
i

g(θi, θ
s
i ).

then it must satisfy

gθi(θ
∗
i , θ

s∗
i ) = 0.

Since J
(2)
i (θ) = gθi(θi, θ

s
i ), we have J

(2)
i (θ∗) = 0.
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(ii) implies (i): A direct computation gives the second order derivative of J :

J
(2)
i (θ) =

1− g(θi, θ
s
i )

2 + (x(θi)− x(θsi )) · ẍ(θi)
‖x(θi)− x(θsi )‖

. (93)

If J
(2)
i (θ∗) = 0 for all i = 1, . . . , n, we have

1− g(θ∗i , θ
s∗
i )2 + (x(θ∗i )− x(θs∗i )) · ẍ(θ∗i ) = 0.

Notice that 1 − g(θ∗i , θ
s∗
i )2 ≥ 0. Moreover, since x(θ∗i )x(θ

s∗
i ) first intersects obstacle

Pki at point x(θ
∗
i ), which implies angle between vector x(θ∗i )− x(θs∗i ) and ẍ(θ∗i ) is not

larger than π
2
, (x(θ∗i )− x(θs∗i )) · ẍ(θ∗i ) ≥ 0. Hence the solution satisfies g(θ∗i , θ

s
i )

2 = 1,

which implies the tangent property.

xsi

xi
ẋi

ẍi

The third derivative is

J
(3)
i (θ) =(

1

‖x(θi)− x(θsi )‖
)(1) · J (2)

i (θ)+

1

‖x(θi)− x(θsi )‖
· [2ẋ(θi) · ẍ(θi)− 2g(θi) · J (2)

i (θ)

+ (x(θi)− x(θsi )) ·
...
x (θi)].

Considering that θi is an arc-length parameter, we have ẋ(θi) · ẍ(θi) = 0. Com-

bining it with J
(2)
i (θ∗) = 0, we can show

J
(3)
i (θ∗) =

(x(θ∗i )− x(θ∗si )) · ...x (θ∗i )
‖x(θ∗i )− x(θ∗si )‖ .

By the tangent property, (37) can be formulated as

|J (3)
i (θ∗)| = |ẋ(θ∗i ) ·

...
x (θ∗i )|.
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Since

F (θi) =

∫ θi

0

ẋ(u)
...
x (u)du

=ẋ(0)ẍ(0)−
∫ θi

0

ẍ(u)2du,

and |κ(u)| = |ẍ(u)|, then

ẋ(θi) ·
...
x (θi) =

dF (θi)

dθi
= −κ2(θi),

which implies |J (3)
i (θ∗)| = κ2(θ∗i ).

In the end, we show that
∂J

(2)
i

∂θj
(θ∗) = 0 for j 6= i. Since J

(2)
i (θ) depends on θsi and

θi, we only need to show
∂J

(2)
i

∂θsi
(θ∗) = 0. By direct computations, we have

∂J
(2)
i

∂θsi
(θ∗) = −

2gθsi (θ
∗
i , θ

s∗
i )g(θ∗i , θ

s∗
i )

‖x(θ∗i )− x(θs∗i )‖ .

And since

gθsi (θ
∗
i , θ

s∗
i ) = 0,

then ∂J(2)

∂θsi
(θ∗) = 0, which finishes the proof.

Now, we are ready to present our method. We want to solve the tangency condition

∇J(θ) = 0 directly through the Newton method. By Theorem 44, it can be found

that ∇J(θ) = 0 is a degenerate system, i.e. its Jacobian matrix becomes 0 at θ∗.

Hence we can solve the system

J (2)(θ) = (J
(2)
1 (θ), · · · , J (2)

n (θ)) = 0,

instead. We use an approximate Jacobian matrix of J (2)(θ) given by

H(θ) = diag(J
(3)
i (θ)).

And it leads to the following iterations,

θk+1 = θk −H−1(θk)J (2)(θk). (94)
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We must point out that in this iterative scheme, we consider obstacles with non-

zero curvature boundary. Hence, H is an invertible diagonal matrix so that Newton

method is valid. In fact, when boundaries are straight lines or curves with curvature

close to 0, we can simply adjust the construction of H(θ) to continue the Newton

step. For example, let H(θ) = diag(J
(3)
i (θ) + λiI), where λi is a selected scalar.

Remark 14 The reason for being an “approximate” Newton method is that, only at

the minimizer θ∗, the Jacobian matrix of J (2)(θ) is exactly as H(θ). Otherwise, H(θ)

is an approximation to the Jacobian.

Remark 15 In our implementation, we choose the parametrization direction, either

clockwise or counter-clockwise, according to the initial condition θ0. For instance, if

sign(d+(θ0i , θ
0c
i )− d−(θ0i , θ

0c
i )) = 1, we parametrize Pki clockwisely.

Moreover, we prove the super-linear convergence rate of Newton-like algorithm by

the following theorem. Here we denote DJ (2)(θ) as the Jacobian matrix of J (2)(θ).

Theorem 45 Let J (2)(θ) : R
n → R

n be smooth, and there is no zero-curvature point

for all obstacles in R
2, then there exists ǫ < 0, such that if the iteration (94) starts

at ‖θ0 − θ∗‖ < ǫ, θk converges to θ∗ superlinearly.

Proof 38 We prove the theorem by two steps. Firstly, we use the fixed point theorem

to show that there exists a sufficient small ǫ, such that θk converges to θ∗. In other

words, consider a map l : Rn → R
n,

l(θ) = θ −H−1(θ)J (2)(θ).

We need to find a small neighbor of θ∗, such that supθB(θ∗,ǫ) ‖Dl(θ)‖ < 1. To show

this, we directly calculate

Dl(θ) = I −H−1(θ)DJ (2)(θ) +H−2(θ)H ′(θ)J (2)(θ).
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Substitute H(θ∗) = DJ (2)(θ∗) and J (2)(θ∗) = 0 into above equation, we have Dl(θ∗) =

0. By the continuity of Dl(θ), we can show supθB(θ∗,ǫ) ‖Dl(θ)‖ < 1. Hence we prove

the convergence result.

Secondly, we show that the convergence rate is superlinear. To show this, let

ek = θ∗ − θk, we need to show limk→∞ ‖ek+1‖/‖ek‖ = 0. Since θk converges to θ∗, we

only consider the bounded region B(θ∗, ǫ). On one hand, by the Taylor expansion of

J2(θ)

0 = J (2)(θ∗) = J (2)(θk + ek) = J (2)(θk) +DJ (2)(θk)ek +O(‖ek‖2).

Hence

DJ (2)(θk)−1J (2)(θk) = −ek +O(‖ek‖2).

On the other hand, substitute ek+1, ek into equation (94)

ek+1 =θ
∗ − θk+1 = θ∗ − (θk −H−1(θk)J (2)(θk))

=ek +DJ (2)(θk)J (2)(θk) + [H−1(θk)−DJ (2)(θk)]J (2)(θk)

=[H−1(θk)−DJ (2)(θk)]J (2)(θk) +O(‖ek‖2).

(95)

We need to consider ‖H−1(θk)−DJ (2)(θk)]J (2)(θk)‖ in term of ek. Since DJ
(2)(θ∗) is

invertible and J (2)(θ) is smooth, then DJ (2)(θ)−1 exists and is a smooth function when

θ ∈ B(θ∗, ǫ). Moreover we apply Taylor expansion of function ‖DJ (2)(θ)−1−H−1(θ)‖:

‖DJ (2)(θk)−1 −H−1(θk)‖ ≤‖DJ (2)(θ∗)−1 −H−1(θ∗)‖+ C‖θk − θ∗‖

=C‖θk − θ∗‖ = C‖ek‖,

where

C = sup
θ∈B(θ∗,ǫ)

‖DJ (2)(θ)−1 −H−1(θ)‖.

Combine all results into (95)

‖ek+1‖ ≤‖DJ (2)(θk)−1 −H−1(θk)‖‖J (2)(θk)‖+O(‖ek‖2)

=C‖ek‖‖J (2)(θk)‖+O(‖ek‖2).
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Hence

‖ek+1‖
‖ek‖

≤ C‖J (2)(θk)‖+O(‖ek‖).

Since θk converges θ∗, limk→∞ J (2)(θk) = 0 and limk→∞ ‖ek‖ = 0. Substitute them,

we obtain limk→∞ ‖ek+1‖/‖ek‖ = 0, which finishes the proof.

With all the components discussed above, we are ready to state our algorithm.

MEJ with Newton-like acceleration

Input: Number of intermittent diffusion intervals m.

Output: The optimal set γ∗ for the junctions.

1. Initialization. Find the initial path γ(0) = (θ1, · · · , θn);

2. Select the duration of diffusion ∆Tl, l ≤ m;

3. Select diffusion coefficients σl, l ≤ m;

4. for l = 1 : m

5. γ(l) = γ(0);

6. for j = 1 : ∆Tl

7. Find ∇J(γ(l)).

8. Update γ(l) according to (90) with σ(t) = σl;

9. Remove junctions from or add junctions to γ(l) when necessary;

10. end

11. while ‖∇J(γ(l))‖ > ǫ

12. Update γ(l) according to (94) with σ(t) = 0;

13. end

14. end

15. Compare J(γ(l)), l ≤ m and set γopt = argminl≤m J(γ
(l));
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6.3.2 Numerical experiments

In this subsection, we use two numerical examples to show the effectiveness of new

algorithm.

Example 1: In this case, the obstacles are 5 disks with centers (1, 1), (1.5, 1.5),

(0.5, 0.5), (1.5, 0.5), (0.5, 1.5) and radius 0.2, 0.2, 0.3, 0.25, 0.15 respectively. The

starting and ending points are X = (1.8, 0.2), Y = (0.1, 1.7). We take ID step

m = 20 defined in formula (89). Figure 32 shows the four shortest paths found by

the algorithm. They are local minimizers and the global minimizer is shown in (C).

(a) L = 3.0167 (b) L = 2.5762

(c) L = 2.3575 (d) L = 2.5045

Figure 32: Shortest path problem: Multiple obstacles

It is worth to point out that by using a 2013 Macbook Air with CPU core i5,

1.8G HZ, RAM 4GB, our method needs only 1.75 seconds, while the method in

[29] spends 485.777 seconds. Here two methods compute 10 local minimizers, where

our method uses 0.175 seconds in average for each local minimizer and the gradient

descent needs 48.58 seconds. This indicates that the computation time is reduced

more than 200 times, which is due to the super-linear convergence result in Theorem

45. The reason for such an improvement is that it takes within 10 steps for the Newton
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Figure 33: Shortest path problem: General obstacles

method to find a local minimizer while the gradient flow often takes much more steps.

Moreover, it still has the advantage of stochastic method approaching the global

minimizer. In other words, the largerm, the larger probability is to obtaining a global

minimizer. To show that numerically, by computing 10 independent simulations when

each individual simulation is with m = 20, among the 10 simulations, we find the

global minimizer 5 times, which is Figure (C). While letting m = 50, we observe that

Figure (C) happens 7 times among 10 simulations.

Example 2: Consider general obstacles same as in [29]. There are four obstacles

with starting point X = (0.5, 0.002) and ending point Y = (0.5, 0.98), see Figure 33.

Instead of having analytical parametrization as in Example 1, we obtain curvature,

principle norm though level set method [78]. To compare with [29] for one local

minimizer, we only take ID step m = 1 defined in formula (89), our method needs

3.719 seconds, while the method in [29] takes 215.840 seconds.

6.4 Differential games

In this section, we apply MEJ to a broader settings, differential games [19]. Here the

“differential” refers that all players’ behaviors are subject to differential equations.

And the “game” means that each player faces his own optimal control problem, in
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which the strategies are control variables and the payoffs (costs) are functionals1.

In details, the differential game with N players is described as follows: Player

v has his own cost functional to minimize. All players’ strategies satisfies certain

constraints. In mathematics, the game is represented as

min
xv(t)

Jv(x
v(t), x−v(t)) s.t. (xv(t), x−v(t)) ∈ S. (96)

Here x−v(t) = (x1(t), · · · , xv−1(t), xv+1(t), · · · , xN(t)) means all players’ choices other

than player v and S is the common strategy set.

In this sequel, we consider mainly a multiple robots’ path-planning problem to

illustrate.

Example 32 Consider a two players’ game. They design paths for two robots trav-

eling from starting points A, B to destination positions A1, B1. Each player tries

to minimize his own robots’ gas consumption and does’t want to see his own drone

getting too close to the others. Let’s denote x1(t), x2(t) ∈ R
2 as two robots’ paths.

Then the game means

min
x1(t)

∫ T

0

ẋ1(t)2dt s.t x1(0) = A, x1(T ) = A1, dist(x1(t), x2(t)) ≥ ǫ,

and

min
x2(t)

∫ T

0

ẋ2(t)2dt s.t x2(0) = B, x2(T ) = B1, dist(x1(t), x2(t)) ≥ ǫ,

where T is a fixed terminal time, ǫ is the smallest allowed distance during two drones’

travel and the quadric Lagrangian represents the fuel consumption of the robot.

One can give the definition of Nash equilibrium in differential games. Similarly to

classical games, it describes a special status in which each player is assumed to know

the equilibrium strategies of the other players, and no player has anything to gain by

changing his own strategy.

1In contrast, the classical game is “static” game, which doesn’t contain the time variable in its
description. In static game, each player faces his own optimization problem, in which the strategies
are variables and payoffs (costs) are functions. See [44].
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Definition 46 x∗(t) = (x∗1(t), · · · , x∗N(t)) is a NE if

Jv(x
∗v(t), x∗−v(t)) ≤ Jv(x

v(t), x∗−v(t)), for any (xv(t), x∗−v(t)) ∈ S.

People usually find NEs by each player’s optimality conditions, which requires

to solve multiple Pontryagin’s maximal principles or a system of Hamilton-Jacobi-

Bellman equations. In practice, these methods are numerically painful because of

constraints. Instead of following traditional ways, we apply MEJ to find NEs. Simi-

larly, we transfer the game from Banach space into games in finite dimensional spaces.

To simply the illustration, we apply MEJ in potential games. Potential game

is a special type of game, which bridges the optimal control and differential game.

It means that there exists a objective functional, named potential, such that the

NE is the minimizer of potential. Example 32 is a potential game with potential
∫ T

0

∑2
v=1(ẋ

v(t))2dt. In other words, the game means

min
x1,x2

∫ T

0

ẋ1(t)2 + ẋ2(t)2dt (97)

subject to

x1(0) = A, x1(T ) = A1, x2(0) = B, x2(T ) = B1, dist(x1(t), x2(t)) ≥ ǫ.

We solve (97) by MEJ. To keep the presentation simple, we denote x1(t), x2(t)

as x(t), y(t), where robots are called X, Y . Whenever two drones are with distance

ǫ, the junctions are defined. For convenience, we denote junctions by x̃i = (ti, xi, yi),

where xi = x(ti), yi = y(ti).

Step one: We solve the optimal path with inactive constraints:

min
x,y

∫ ti+1

ti

u(t)2 + v(t)2dt (98)

subject to

ẋ = u, ẏ = v, t ∈ [ti, ti+1],

x(ti) = xi, y(ti) = yi, x(ti+1) = xi+1, y(ti+1) = yi+1.
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It is easy to show that the optimal path for robot X is a constant velocity line

connecting xi, xi+1, while the optimal path for robot Y is a constant velocity line

connecting yi, yi+1. Hence we obtain the optimal cost functional

J(x̃i, x̃i+1) =
(xi+1 − xi)

2 + (yi+1 − yi)
2

ti+1 − ti

as a function of x̃i, x̃i+1.

Step two: We solve the optimal path with active constraints:

min
x,y,u,v

∫ ti+1

ti

u(t)2 + v(t)2dt (99)

subject to

ẋ = u, ẏ = v, t ∈ [ti, ti+1],

x(ti) = xi, y(ti) = yi, x(ti+1) = xi+1, y(ti+1) = yi+1,

dist(x(t), y(t)) = ǫ, t ∈ [ti, ti+1].

If we parameterize (x(t), y(t)) in a particular way, we will obtain an equivalent optimal

control problem without constraints. Let’s re-parameterize the trajectories (x(t), y(t))

by (y(t), u(t)), where u(t) satisfies

x(t) = y(t) + ǫ







cosu(t)

sin u(t)






,

which is the angle position of Robot X with respect to Robot Y . Since two robots

travel in R
2, we denote y(t) = (y1(t), y2(t)), u(t) = (u1(t), u2(t)). Hence the optimal

control (99) forms

min
y1,y2,u,v1,v2,w

∫ ti+1

ti

2(v21 + v22)− 2ǫw(sin u · v1 − cosu · v2) + ǫ2w2dt

subject to

ẏ1 = v1, ẏ2 = v2, u̇ = w, t ∈ [ti, ti+1],

y(ti) = yi, y(ti+1) = yi+1,

u(ti) = ui, u(ti+1) = ui+1.
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We solve the above optimal control by optimality conditions. Denote the running

cost

f(y1, y2, u, v1, v2, w) = 2(v21 + v22)− 2ǫw(sin u · v1 − cosu · v2) + ǫ2w2,

and Hamiltonian

H(y1, y2, u, v1, v2, w, λ1, λ2, λ) = f(y1, y2, u, v1, v2, w) + λ1v1 + λ2v2 + λw.

By Pontryagin’s maximal principle, we obtain














































































Hv1 = 0

Hv2 = 0

Hw = 0

λ̇1 = −Hy1

λ̇2 = −Hy2

λ̇ = −Hu

→















































































4v1 − 2ǫw sin u+ λ1 = 0

4v2 + 2ǫw cosu+ λ2 = 0

−2ǫv1 + 2ǫ cosu · v2 + 2ǫ2w + λ = 0

λ̇1 = 0

λ̇2 = 0

λ̇ = 2ǫw(cosu · v1 + sin u · v2).

Interestingly, the above ODE system has an explicit solution. By solving the above

system, we find

ẇ = ü = 0.

It means the angle accretion of robot X relative to Y is 0. I.e. the optimal path

forms

u(t) = ui +
ui+1 − ui
ti+1 − ti

(t− ti),

and






y1(t)

y2(t)






= yi +







−ǫ(cosu(t)− cosui) + c1(t− ti)

−ǫ(sin u(t)− sin ui) + c2(t− ti)






,

where






c1

c2






=
yi+1 − yi
ti+1 − ti

+
ǫ

2







cosui+1−cosui

ti+1−ti

sinui+1−sinui

ti+1−ti






.
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Hence the optimal cost functional becomes

J(x̃i, x̃i+1) = [
ǫ2

2
(
ui+1 − ui
ti+1 − ti

)2 + 2(c21 + c22)](ti+1 − ti)

a function of x̃i and x̃i+1.

Step three: We derive the visibility functions by junctions:

V (x̃i, x̃i+1) = min
ti≤t≤ti+1

dist(x∗(t), y∗(t))− ǫ,

where i is even and x∗(t), y∗(t) represent the optimal paths connecting junctions xi,

yi and xi+1, yi+1, which are lines with constant velocities .

Combine all steps, we obtain a finite dimensional optimization:

min
x1,...,xn,y1,...,yn

n
∑

i=0

J(xi, xi+1, yi, yi+1), s.t. V (xi, xi+1, yi, yi+1) = 0, i even.

We demonstrate MEJ by numerical two examples. Firstly, we design a two player

game. The game is in 2-dimensional environment, where the robot X travels from

A = (0, 0) to A1 = (1, 1) and robot Y travels from B = (0, 1) to B1 = (1, 0). Let the

terminal time be T = 1 and the safe distance be ǫ = 0.2. We obtain a NE by MEJ,

see Figure 34.

Figure 34: This is the snap short of two robots’ game. Optimal paths for two robots
represented by blue, green respectively form the Nash equilibrium.

Secondly, we consider a three robots’ game. We design an environment with three

robots traveling from starting points A = (0,
√
3), B = (−1, 0), C = (1, 0) to ending
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points A1, B1, C1, which are centers of BC, AC, AB. Let the terminal time be T = 1

and the safe distance be ǫ = 0.2. We solve a NE by MEJ, see Figure 35.

Figure 35: This is the snap short of three robots’ game. Optimal paths for three

robots represented by blue, red, green respectively form the Nash equilibrium.

6.5 Conclusions

In summary, we present MEJ for the separable optimal control problems with both

state and control constraints. The method has following advantages compared to the

existing methods:

1. Significant dimension reduction. Optimal control problems are in general con-

sidered as infinite dimensional problems in Banach spaces. By leveraging the

separability structure of the optimal solution, MEJ reformulates the objectives

and constraints in terms of junctions living on the boundaries of the constraints.

In this way, MEJ restricts its search space to a finite dimensional subset of all

feasible solutions without loss of any possible optimal solutions. This fundamen-

tally changes the computation complexity and achieves significant dimensional

reduction.

2. Fast and accurate. Since MEJ only needs to solve initial value SDEs, it can

be more efficient than solving PDEs, boundary value ODEs and constrained
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NLPs. So it has the potential to be very fast. Our experiments confirm this

claim. Moreover, MEJ does not create additional accuracy restrictions from the

discretization of the computed path.

3. MEJ has the ability to find the globally optimal trajectory as well as a series of

locally optimal trajectories by the adoption of ID.

On the other hand, MEJ creates some theoretical questions that are very inter-

esting on their own. For example, the SDEs solved by MEJ may change dimensions

dynamically during its course, and the time and location of the change cannot be

prescribed a priori. This is a question that has not been studied in mathematics at

all. Compared to the existing methods for optimal control problems, MEJ requires

customized reformulation to convert the original problem into a constrained optimiza-

tion in terms of junctions. For certain problems, this may not be trivial tasks, since

we require to solve the sub-optimal control problem by analytical solutions or fast nu-

merical methods. Nevertheless, we demonstrated through examples that MEJ can be

applied to several challenging problems including linear quadric problems with con-

straints, the optimal path planning with moving obstacles and a special differential

game.
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CHAPTER VII

PART 3: STOCHASTIC OSCILLATOR

7.1 Introduction

In this chapter, we consider the third part of this thesis, which is mainly about the

analysis of stochastic oscillator in modeling.

It is well understood that many engineering and physical systems, like oscilla-

tors, can be modeled by deterministic dynamical systems having stable limit cycles

(periodic orbits) as attractors.

A prototypical example is the van der Pol oscillator, that is governed by the second

order differential equation:

ẍ− α(1− x2)ẋ+ x = 0 . (100)

It is well known that, for positive α, every solution of (100), except the origin, is

attracted to the unique orbitally stable limit cycle, and that the strength of the

damping, α, is intimately related to the rate at which trajectories approach this limit

cycle.

However, in practice, noise is inevitable, and this motivates including random

perturbation effects in the differential equations models. Among the many ways in

which this has been done, we will focus on the case when the randomness takes the

form of a forcing term. For example, when we add random noise to (100), we will

obtain the following equation:

ẍǫ − α(1− x2ǫ)ẋǫ + xǫ + ǫξ = 0 , (101)

where ξ represents the random perturbation, and ǫ is a small (positive) value. In

(101), and hereafter, xǫ will denote the “solution” when (100) has been subject to
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random perturbations as in (101). (For later reference, note that noise has been added

to the original second order problem, prior to converting it into a first order system;

see below).

A commonly used model of random perturbation ξ is white noise; i.e., ξ = dWt,

whereWt is the standard 1-dimensional Brownian motion. In this case, (101) becomes

the classical stochastic van der Pol oscillator (weakly perturbed, for ǫ small). Other

models of noise have been studied in [10, 11].

The presence of noise in a differential equation brings in several new challenges

that require different approaches from those of deterministic dynamics. Of course, the

key fact is that the dynamics will depend on the noise, not on the initial conditions.

One of the most dramatic impacts of this fact is that (for any model of noise of

which we are aware) the stable limit cycle gets destroyed. Finally, it is also worth

realizing that noise causes changes in both phase and amplitude of the solutions. The

impact on the phase is usually termed phase noise, or time jitter in the engineering

literature [50], and considerable progress has been made, both in mathematics and

engineering, toward understanding phase noise. For example, it is well appreciated

that phase noise can become arbitrarily large even for perturbations that remain small

[33]. Moreover, for white noise, a fundamentally important and striking result (see

[8, 46]) states that –with probability arbitrarily close to 1– trajectories asymptotically

escape from any neighborhood of the deterministic limit cycle!

However, in real life, things do not appear to be nearly as bad. We give three ex-

amples to support this statement. First, consider the circuits (oscillators) commonly

used in cellular phones: these have a base frequency of around 1GHz, oscillating in

excess of 109 times per second. While being subject to unavoidable random ambi-

ent disturbances, a cell phone oscillator typically works continuously for days, even
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months or years, without experiencing any break down. Second, in laboratory stud-

ies1 on a cantilevered piezoelectric energy harvester, which is a electroelastic system

converting ambient vibrations generated by stochastic perturbations into electricity

through the direct piezoelectric effect, no breakdown caused by random perturbation

was actually ever observed. Finally, the reports in [26] indicate that trajectories of

a weakly perturbed van der Pol oscillator remain bounded and linger near the deter-

ministic limit cycle. In fact, the results of this cited numerical study are consistent

with our own numerical simulations of equation (101), with white noise perturbations,

over long times; see Figure 36. Clearly, trajectories appear to remain in a tubular

neighborhood of the deterministic limit cycle, and do not become arbitrarily large.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−4
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4

Figure 36: Long time behavior of (101) in numerical experiments.

This discrepancy between existing theoretical predictions and practical observa-

tions is likely due to two factors: (i) the asymptotic nature of the theoretical results,

1We thank Prof. Erturk, of the ECE department at Georgia Tech, for sharing with us the results
of the experiments carried out in his laboratory
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which typically require an extremely long time to be observable (if at all), and/or (ii)

the inadequate modeling of the noise, meaning that practical random perturbations

must have bounded strength (there is no noise perturbation with infinite energy),

which is different from the white noise assumption commonly used in theoretical

studies. [To explain the numerical results summarized in Figure 36, we note that

–although we do not force any restriction on the random number generator used to

mimic white noise– the pseudo random number generator used in our computation

does not (and cannot) produce infinitely large perturbations.]

The above state of affairs provided us with the main motivation to carry out the

present study. In particular, the above point (ii) is our key concern in this work.

We will focus on second order dissipative systems (oscillators) that posses an

orbitally stable limit cycle surrounding a unique unstable equilibrium (at the origin),

and we will study the impact of noise on these systems. Our main goals are: (1)

to provide a new mathematical model for realistic random perturbations so that the

trajectories of the stochastic oscillators resemble the phenomena observed in practice;

and, (2) to study the behavior of solutions of these stochastic oscillators.

7.1.1 A new model of noise

Accounting for the possibility that standard white noise can generate infinitely large

perturbations (albeit with arbitrarily small probability), while a realistic model of

noise should never inject infinitely large energy into the system, here we propose

a new model of noise that we believe serve as an appropriate model for random

perturbations arising in practice.

Namely, we will require that the random perturbations ξ belong to the event set

B defined as:

B = { ω | sup
|t−s|≤T

|Wt(ω)−Ws(ω)| ≤M} . (102)

In (102), T and M are two given positive constants, t and s are any two instants of
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time at most T -apart, and ω is the event of a Brownian path.

Note that B, a subset of all Brownian paths, is the collection of those Brownian

motions that have bounded finite time increments. However, note that a path in B

can still diverge to infinity as t → ∞. Now, if one is interested in the finite time

behavior of the system, then the probability of a Brownian path not in B can be

made arbitrarily small by takingM large enough, because of Hölder continuity of the

Brownian motion path. However, if infinite time is considered, we observe that B has

measure zero in the set of all Brownian paths defined for t ∈ [0,∞). Nevertheless,

this does not imply there are not sufficiently many paths in B for t ∈ [0,∞): in fact,

B contains un-countably many paths for t ∈ [0,∞), maintaining key characteristics

of Brownian motion, including the general order of continuity of 1
2
.

7.1.2 Our results

We shall show that selecting random perturbations ξ from B for perturbing a de-

terministic oscillator with attracting limit cycle, and whose right-hand-side satisfies

a local Lipschitz condition2, will give well defined solution trajectories that remain

bounded for all times. With reference to (100) and (101), it is worth emphasizing

that this does not mean that, for all t, (xǫ(t), yǫ(t))
T will stay close to its determin-

istic counterpart (x(t), y(t))T . In fact, the phase differences between stochastic and

deterministic trajectories can become large in time. On the other hand, we will show

that (xǫ(t), yǫ(t))
T remains close to the deterministic limit cycle for all t, and we will

further show several desirable properties of the stochastic trajectories relative to our

new model of noise.

To witness, if we take a short segment transversal to the limit cycle (a “section”),

we will show that the stochastic trajectories will return to this section, under ap-

propriate conditions. As a consequence, we will set forth a proposal for defining the

2The local Lipschitz condition becomes a global Lipschitz condition if the solutions remain
bounded.
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Poincaré return map relative to the stochastic oscillators. This is very different from

the scenario obtained when one uses standard white noise, in which case there is no

guarantee that a trajectory will return to a given section.

In comparison to the Poincaré map for deterministic systems, our proposal of

Poincaré map for the stochastic systems has some new features that have not been

studied before. Namely, unlike the deterministic case, there is no longer just a first

return point for a trajectory “going around the origin once.” In fact, a solution path

can (and does) intersect the given section repeatedly, and it could do so infinitely many

times, while the trajectory goes around the origin just one time. As a consequence

of this observation, our proposal will be to relate to each given section a return

interval and an associated distribution for the return points ; both return interval and

distribution will depend on the section. An important outcome of the above proposal

is that we will have at least three different Poincaré maps: (i) that associated to the

first return points distribution, (ii) that associated to the average of the return points

distribution, and (iii) that associated to the last return points distribution.

Finally, we will also investigate the evolution of the probability density function

of the stochastic oscillator with noise in B. In the present case, the processes are

no longer Markovian, because the random perturbations depend on their past in an

interval of length T , and not only on their current values. This inhibits the possibility

to write a standard Fokker-Planck equation (see below). What we shall show is that,

under appropriate conditions, the probability density function can be given by rational

functions depending on solutions of a pair of diffusive partial differential equations

(PDEs) with vanishing boundary conditions on finite intervals.

The chapter is arranged as follows. In section 7.2, we consider a dissipative oscilla-

tor subject to random perturbations from B, and we show local (in time) boundedness

of trajectories. In section 7.3, we introduce our proposal of stochastic Poincaré map,

and show the main result of this paper, the global boundedness of solutions. Lastly,
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in section 7.4, we study the evolution of the probability density function in terms of

the solutions of some associated PDEs.

Notation: Throughout this work, the vector norm is always the 2-norm, which

will be indicated simply as ‖ · ‖.

7.1.3 Relation to previous results

A lot of effort has been devoted to study the changes that solutions undergo under the

effect of white noise perturbations. But, unfortunately, the existing results require

modeling assumptions which make them inapplicable to our problem. We justify this

claim below.

For a planar system of differential equations, the basic model considered is the

stochastic differential equations (SDE)

dX = g(X)dt+ A(X)dWt , (103)

where X(t) = (x(t), y(t))T , the term Wt comprises two independent 1-dimensional

Brownian motions, and the diffusion coefficient is such that the matrix AAT is full

rank. The latter property is often referred to as “uniform ellipticity.” We refer to

the excellent expositions in [7, 8, 46, 92], for details and further references. But, it is

worth pointing out that the system(s) of interest to us, such as (101), do not fit into

the model (103). This can be readily seen if we convert the second order equation

(101) into a first order system, say















dxǫ = yǫdt,

dyǫ = [α(1− x2ǫ)yǫ − xǫ]dt+ ǫdWt .

(104)

It is very important to observe that random noise is only added to the second equation

in (104). Mathematically, this is easily explained as having added the perturbation to

the original second order equation (100), prior to converting it into first order system.

But, a more intrinsic and deep reason is that x and y are related to the current and
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voltage, respectively, which have a fixed relationship for a given circuit. So, it is not

physically justified to add independent noise to both equations in (104).

7.2 Local boundedness of solutions

In this section, we introduce our model of stochastically perturbed system with noise

set B, and show local (in time) boundedness of trajectories.

We consider a second order system

ẍ = f(x, ẋ) , (105)

where f is a smooth function of its arguments. We rewrite (105) as the first order

system

d

dt







x

y






=







y

f(x, y)






, or simply as Ẋ = b(X) , X =







x

y






, (106)

and we will always work under the following assumptions on (106):

(i) the origin is the only equilibrium of (106), b(0) = 0, and it is an unstable focus;

(ii) the system possesses a globally orbitally stable limit cycle Γ, corresponding to

a periodic solution of period 0 < T0;

(iii) for X: ‖X‖ ≤ C, where C is any (arbitrary, but finite) positive constant, the

function b is smooth and locally Lipschitz, with Lipschitz constant L (usually,

L will depend on C).

Finally, the solution of (106) with initial condition X(0) = u, will be written as φt(u).

Of course, as a consequence of the above assumptions, all orbits of (106) (except

the origin) will approach Γ. In Section 7.3, we will quantify better the rate of approach

to Γ. Finally, note that, in general, the function f may depend on a parameter α, as

in (100), or even on several parameters, and it must be tacitly understood that the

above assumptions must hold for all allowed values of the parameter(s); in particular,
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the period T0 (which usually will depend on the problem’s parameters) must remain

finite as the parameter(s) varies (vary).

Our specific interest in this work is in the following perturbation of (106):














dxǫ = yǫdt

dyǫ = f(xǫ, yǫ)dt+ ǫdWt ,

(107)

where ǫ is a (small) positive parameter, and Wt is a 1-dimensional Wiener process

so that ξ = dWt is in the event set B given in (102). An initial condition of (107)

is written as Xǫ(0), and its solution as Xǫ(t, ω), or simply Xǫ(t), if no confusion can

arise.

As already remarked, there are good modeling reasons for considering the noise

model given by the set B. The key reason, for us, has been to adopt a model of noise

more in tune with what is typically observed in practice, whereby realistic ambient

noise is bounded within a finite time interval (unlike, say, white noise). Indeed, on

intervals of length T , noise realizations from B are locally bounded, which is mean-

ingful since, in real world scenarios, energy is always bounded, and no perturbation

can become unbounded in finite time. (Still, note that noise realizations from the set

B can still become eventually unbounded, since the total increment is not constrained

to remain bounded.)

As added benefit, restricting to the event set B, we will be able to show important

mathematical properties of the model (107). Most notably, we will be able to propose

a definition of Poincaré map, see Section 7.3. But, first, below we show that stochastic

trajectories remain bounded in a finite time interval.

Theorem 47 Let B be the set defined in (102), and let ω be any event from B. Then,

for ǫ > 0 sufficiently small, solutions of (107) are locally bounded:

sup
0≤t≤T

‖Xǫ(t, ω)‖ <∞ ,

where T is the interval width appearing in (102).
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Proof 39 We will argue by contradiction. So, suppose that sup0≤t≤T ‖Xǫ(t, ω)‖ = ∞.

Let C1 be the maximum of ‖φt(u)‖, for 0 ≤ t ≤ T , along the deterministic limit

cycle:

C1 = max
0≤t≤T

‖φt(u)‖ , u ∈ Γ .

Then, there must exist a constant C > 2C1, for which the stopping time

τ(ω) = inf{t : ‖Xǫ(t, ω)‖ = C} ,

must satisfy

τ(ω0) ≤ T ,

for some ω0 ∈ B. In other words, for such ω0, we have

sup
0≤s≤τ(ω0)

‖Xǫ(s, ω0)‖ = C . (108)

Consider this event ω0. From [85], we know that there exists a strong solution Xǫ(t, ω0)

up to time τ(ω0) (see [59] for the definition of strong solution). Let L be the local

Lipschitz constant of b when ‖X‖ ≤ C. Hence, for t ≤ τ(ω0), we have

‖Xǫ(t, ω0)−X(t)‖ = ‖
∫ t

0

b(Xǫ(s, ω0))− b(X(s))ds+ ǫ







0

Wt(ω0)






‖,

≤ L

∫ t

0

‖Xǫ(s, ω0)−X(s)‖ds+ ǫ|Wt(ω0)| .

From Gronwall’s Lemma, and since ω0 ∈ B, we obtain

sup
0≤s≤τ(ω0)

‖Xǫ(s)−X(s)‖ ≤ ǫeLτ(ω0) sup
0≤s≤τ(ω0)

|Ws(ω0)|

≤ ǫeLτ(ω0)M .

(109)

Also, since τ(ω0) ≤ T , using the triangular inequality in (109) we get

sup
0≤s≤τ(ω0)

‖Xǫ(s)‖ ≤ sup
0≤s≤τ(ω0)

‖X(s)‖+ ǫeτ(ω0)LM

≤ C1 + ǫeLTM .
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Therefore, if ǫ < C1

2eLTM
, then

sup
0≤s≤τ(ω0)

‖Xǫ(s)‖ ≤ 3

2
C1 < C ,

contradicting equation (108).

Theorem 47 establishes closeness, for short time, between stochastic and deter-

ministic solutions (see (109)), and it gives a lead on how to define the return map

(Poincaré map) in stochastic systems. We do this next.

7.3 Stochastic Poincaré map and global boundedness

In this section, we introduce our proposal of stochastic Poincaré map, for (107). Then,

using the notation resulting from the definition of Poincaré map, we will show our

main theorem: global boundedness of solutions of (107).

7.3.1 Poincaré map

First, recall the definition of Poincaré map in the deterministic setting. We do this in

the plane, since we are interested in the model (106), though of course the definition

can be easily given in R
d, d > 2.

Consider the general differential equation for X ∈ R
2

dX

dt
= b(X) , X(0) = u , (110)

where b is a locally Lipschitz smooth vector field. Let φt(u) be the flow associated

to (110) and suppose that (110) has a periodic solution of period T0, and let Γ be

the orbit corresponding to this periodic solution. Therefore, φt+T0(p) = φt(p), t ∈ R,

p ∈ Γ.

The Poincaré map provides a useful tool for studying periodic orbits, whereby a

periodic orbit becomes a fixed point of the Poincaré map.
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Definition 48 Let p be a point on Γ and S be a local cross section at p: a smooth

1-dimensional arc, intersecting Γ (only) at p, transversally. Given an open and con-

nected neighborhood U of p, U ⊂ S, for every point u ∈ U , define the first return

time τ(u) as

τ(u) = inf{t > 0 | φt(u) ∈ S} .

Then, the Poincaré map P : U → S is defined by

P (u) = φτ(u)(u) , u ∈ U .

S
P(u)

u

Figure 37: Poincaré map

Clearly P (p) = p and τ(p) = T0.

With the help of the above definition, we can finally clarify assumption (ii), that

we made in Section 7.2 relative to system (106). We say that Γ is attractive, with

rate α0, 0 < α0 < 1, if:

‖P (u)− p‖ ≤ α0‖u− p‖ , for all u ∈ U . (111)
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As before, in case (106) depends on parameters, it has to be understood that the

inequality α0 < 1 must hold uniformly with respect to parameters variation.

7.3.2 Stochastic Poincaré map

Consider now the general SDE associated to (110):

dXǫ(t) = b(Xǫ(t))dt+ ǫ







0

dWt(ω0)






, Xǫ(0) = u, (112)

where Xǫ(·), u ∈ R
2 and Wt is a standard Wiener process in R

1. In this case, it is

known (see [59]) that a unique strong solution exists locally, that is for times before

the stochastic solution blows up to infinity.

If we try to define a (stochastic) Poincaré map for (112), we face some intrinsic

challenges.

1. With nonzero probability, the stochastic trajectory will not return “after one

loop” to a given section, even though the unperturbed trajectory is periodic.

2. Even if the stochastic trajectory returns to a given section, the first return point

doesn’t represent all return points to that section. In fact, the trajectory can

intersect a given section several times, even infinitely many times. [There is no

monotonicity of motion with respect to a given section].

Selecting random perturbations from B in (102), and relative to the model (107),

allows us to solve the above difficulties. In fact, the following two facts hold as a

consequence of Theorem 47 and of (the proof of) Theorem 50 below.

(1) First, for all events in B, the stochastic trajectory of(107) will return to a given

section.

(2) Second, although the stochastic trajectory may repeatedly enter and exit (or

even stay for a while in) a certain section, it will have to leave such section

within a finite time. See Figure 38 for an illustration of this fact.

184



Note that a stochastic path can (and does) intersect a given section repeatedly,

and it could do so even infinitely many times, before leaving the section.

By virtue of points (1) and (2), and this last observation above, our proposal is to

Associate to a given section both a return interval and a distribution for the return

points; both return interval and distribution will depend on the section.

Figure 38: Return points of stochastic trajectory: the first return interval (solid

segment)

Let us set forth our proposal more precisely.

Consider a section S and a neighborhood U of p ∈ Γ as in Definition 48. For

ω ∈ B, and u ∈ U , let Xǫ be the the stochastic trajectory of (107), such that

Xǫ(0) = u.

To begin with, we introduce the first return time

τǫ(u, ω) = inf{t | Xǫ(t) ∈ S, t ∈ [
1

2
T0,

3

2
T0]} , (113)

and the last return time

σǫ(u, ω) = sup{t | Xǫ(t) ∈ S, t ∈ [
1

2
T0,

3

2
T0]} . (114)

(Both of these values are well defined, for sufficiently small ǫ, because of Theorems

47 and 50.)
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Then, we define the return “interval” E(u, ω) or simply E:

E = {Xǫ(t) | Xǫ(t) ∈ S, t ∈ [τǫ, σǫ]} . (115)

(Again, Theorems 47 and 50 ensure that E is well defined.)

Our proposal is to associate to E in (115) a “ return distribution” function Pu,ω,

by which we can solve for the sample average of the set E. Since the distribution

conveys all information on the return points, the Poincaré map (call it Pǫ) should be

constructed as a point-to-distribution map, for each stochastic path:

Pǫ : u ∈ U → Pu,ω .

At the same time, from the foregoing, it is natural to define three different point-

to-point maps, all of which can be computed in a numerical simulation: first return

map, last return map and average return map.

Definition 49 Let the cross section S, neighborhood U , and Poincaré map P , be

defined as in Definition 48, for the unperturbed system (106).

Let ω ∈ B, and Xǫ be the solution of (107). Then, we define stochastic Poincaré

maps Pǫ, Pǫ : U → S, as follows.

• For ǫ = 0, P0 = P .

• For ǫ 6= 0, and any u ∈ U , then we define:

– the first return map

Pǫ(u, ω) = Xǫ(τǫ(u, ω)) , (116)

where τǫ is defined in (113);

– the last return map

Pǫ(u, ω) = Xǫ(σǫ(u, ω)) , (117)

where σǫ is defined in (114);
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– and the average return map

Pǫ(u, ω) =

∫

E

ydPu,ω(y) , (118)

where E is defined in (115) and Pu,ω is the return distribution function

associated to E.

Remark 16 In the recent work [53], the authors proposed a Poincaré map definition

for the van der Pol oscillator, subject to standard white noise perturbation on ǫdWt.

Assuming that trajectories return to a given section (although there is a positive prob-

ability that they will not return), the authors further looked at the first return map

and for sufficient small ǫ, argued that this map can be viewed as a Gaussian pertur-

bation of the deterministic map. By comparison, restricting to noise from within B,

we actually prove that trajectories always return (for ǫ sufficiently small) to a given

section. Furthermore, our proposal of Poincare map takes into account all return

points, and it gives a more detailed description relative to a given section, description

which is not availably by a simple Gaussian process.

7.3.3 Global boundedness

By exploiting the Poincaré map, we will show our main theorem, which we state next.

Theorem 50 Consider the system (107), where ω is in B defined by (102). Assume

that (111) holds, and that the assumptions of Lemmata 51 and 52 below hold (in

particular, (123)). Then, for ǫ > 0 sufficiently small, the stochastic trajectories of

(107) are globally bounded:

sup
t≥0

‖Xǫ(t, ω)‖ <∞ .

To prove this result, we will proceed according to the following steps.

1. We define the Poincaré section S as a line section, and show closeness between

unperturbed and stochastic solutions during the first return time; see Lemma

51.
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2. We construct the first return map Pǫ (see Definition 49), and sharpen the result

of Lemma 51 about closeness of the stochastic trajectory and the unperturbed

Poincaré map for the first return to the given section; see Lemma 52.

3. Combining the above closeness results, and asymptotic stability of the deter-

ministic limit cycle, we show that there exists a neighborhood (an interval) Uǫ

of p ∈ Γ, Uǫ ⊂ S, invariant under the stochastic Poincaré map: Pǫ(Uǫ) ⊂ Uǫ.

This will complete the proof.

First of all, we define the Poincaré section. Through the polar representation of

points in the plane, we take the section to be a line segment placed at a given angular

value θ0:

S = {(x, y) ∈ R
2 | x = r(θ0) cos(θ0) , y = r(θ0) sin(θ0)} , (119)

where a(θ0) ≤ r(θ0) ≤ b(θ0), and a and b are chosen sufficiently close so that the line

segment S intersects Γ transversally at just one point. With this, we can identify

points of the stochastic trajectory that returns to this section:

θǫ(t) = θǫ(0) = θ0 .

Naturally, the neighborhood U ⊂ S as in Definition 49, now becomes an open subin-

terval of S containing the intersection with Γ. This way of proceeding will be validated

in Lemma 51.

To illustrate, in Figure 39, we show a typical stochastic trajectory of (101) starting

from the section S, and traveling around the origin once before returning to S.

With this, we can be more specific about the meaning of first return time with

respect to the section (cfr. with (116)):

τ 1ǫ = inf{t | θǫ(t) = θǫ(0)− 2π} . (120)

Without loss of generality, here below we will also make a simplification in the

definition of B:
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Detail at section

Figure 39: One realization for the stochastic van der Pol oscillator: on the section
are all return points

“we require T = 2T0 in (102), where T0 > 0 is the period of the periodic solution of

(106).”

This choice is legitimate, since we can always modify M to ensure that Theorem 47

holds for T = 2T0. So, to reiterate, the event set B is henceforth given by

B = { ω | sup
|t−s|≤T

|Wt(ω)−Ws(ω)| ≤M , and T = 2T0} . (121)

Finally, let L be the local Lipschitz constant of b(X) in (106) for ‖X‖ ≤ R, for R

sufficiently large to enclose Γ.

We further consider the annular neighborhood of radius ǫeLTM around the peri-

odic trajectory Γ; see Figure 40. Finally, we let times t1 and t2 be defined as follows

(again, see Figure 40):

t1 = inf{t > 1

2
T0 | ‖X(t)−X(T0)‖ = ǫeLTM} ,

t2 = sup{t < 3

2
T0 | ‖X(t)−X(T0)‖ = ǫeLTM} .

(122)

Note that t1, t2 depend on ǫ, and that by continuity of the strong solution Xǫ(t),

τ 1ǫ ∈ (t1, t2). Also, note that for ǫ > 0 sufficiently small, with t1, t2 as in (122), then

for i = 1, 2, we have:
∫ 1

0

b (X(ti + s(T0 − ti))) ds 6= 0 . (123)

We are now ready to show closeness after the first return time.
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Lemma 51 Let B be as in (121), ω ∈ B, and let L, T0, and τ
1
ǫ be as above. Then,

for ǫ > 0 sufficiently small, we have:

τ 1ǫ < 2T0 ,

and

sup
0≤t≤τ1ǫ

‖Xǫ(t, ω)−X(t)‖ < C0ǫ ,

where C0 = eLTM .

Proof 40 Proceeding as in the derivation of (109), we have

sup
0≤s≤T

‖Xǫ(s)−X(s)‖ ≤ ǫeLTM . (124)

Consider the deterministic system (106). For either i = 1 or i = 2, we have

X(T0)−X(ti) =

∫ T0

ti

b(X(s))ds =

∫ 1

0

b (X(ti + s(T0 − ti))) ds (T0 − ti) .

Since (123) holds, we can solve for |T0 − ti| from this last equation:

|T0 − ti| =
‖X(T0)−X(ti)‖

‖
∫ 1

0
b (X(ti + s(T0 − ti))) ds‖

. (125)

Now, recall that τ 1ǫ ∈ (t1, t2). Thus, by choosing ǫ:

ǫ < min
i=1,2

[

T0‖
∫ 1

0
b (X(ti + s(T0 − ti))) ds‖

4eLTM

]

,

and using this bound in (125), we get τ 1ǫ < T = 2T0.

Hence, for ω ∈ B, and for ǫ sufficiently small, inequality (124) holds up to time

τ 1ǫ .
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S
t2t1

Figure 40: The middle circle represents Γ. The stochastic trajectoriesXǫ(ω, t), ω ∈ B,

are inside the annulus.

Next, let Pǫ denote the first return map as in (116), corresponding to the section

S defined as in (119). We show the closeness on the section S.

Lemma 52 With same notation and assumptions as in Lemma 51, let Xǫ(ω, t), be

the solution of (107) for 0 ≤ t ≤ τ 1ǫ , with initial value Xǫ(0) in U , a sufficiently small

open interval of S.

Then, for ǫ > 0 sufficiently small,

‖Xǫ(τ
1
ǫ )− P0(Xǫ(0))‖ ≤ 5C0ǫ.

Proof 41 From Lemma 51, taking t = τ 1ǫ , (124) becomes

‖Xǫ(τ
1
ǫ )− φτ1ǫ (Xǫ(0))‖ ≤ C0ǫ .

Also, we have both

φτ1ǫ (Xǫ(0)), P0(Xǫ(0)) ∈ ∪t∈[t1,t2]B(X(t), C0ǫ),

where t1 and t2 are defined in (122), and B(X(t), C0ǫ) are circles with center X(t)

and radius C0ǫ. Therefore, we have

‖X(τ 1ǫ )− P0(Xǫ(0))‖ ≤ 4C0ǫ ,
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and so

‖Xǫ(τ
1
ǫ )− P0(Xǫ(0))‖ ≤ ‖Xǫ(τ

1
ǫ )−X(τ 1ǫ )‖+ ‖X(τ 1ǫ )− P0(Xǫ(0))‖ ≤ 5C0ǫ .

Finally, we show global boundedness and complete the proof of Theorem 50, by

using the stability of the deterministic limit cycle, as expressed by (111), and local

boundedness of Xǫ.

In the proof below, we will need to compare the stochastic and deterministic

solutions. For this reason, we will use the following notations. For all k = 1, 2, . . . ,

we write

φ∆k
ǫ
(

Xǫ(τ
k
ǫ )
)

, where ∆k
ǫ := τ k+1

ǫ − τ kǫ ,

for the solution of the deterministic equation (106) at time τ k+1
ǫ , which started at

time τ kǫ with initial condition Xǫ(τ
k
ǫ ). Above, we have recursively defined the values

τ kǫ as the k-th “first return” times:

τ kǫ = inf{t > τ k−1
ǫ | θǫ(t) = θǫ(0)− 2π} , k = 1, 2, . . . , τ 0ǫ = 0 . (126)

These values τ kǫ will be shown to be well defined in the proof below.

Proof 42 (Proof of Theorem 50) First, let us show that

sup
k

‖Xǫ(τ
k
ǫ )‖ <∞ .

The proof uses the fact that there exists an interval Uǫ on the section S, such that

Uǫ = {X ∈ S | ‖X − p‖ ≤ R0} , such that Pǫ(Uǫ) ⊂ Uǫ .

We show this last fact by induction, in the process showing that the times τ kǫ ’s are

well defined.

If k = 1, from Lemma 51, τ 1ǫ exists, in particular, from (122), we have τ 1ǫ ∈

(1
2
T0,

3
2
T0). From Lemma 52, we have

‖Xǫ(τ
1
ǫ )− P0(Xǫ(0))‖ ≤ R1ǫ ,
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where R1 = 5C0, and C0 = eLTM with L the Lipschitz constant of b for X: ‖X‖ ≤ R,

with a sufficient large constant R to enclose the limit cycle Γ.

Also, since Xǫ(0) ∈ Uǫ, denoting with p ∈ S the fixed point of P0 and using (111),

we have

‖Xǫ(τ
1
ǫ )− p‖ ≤ ‖Xǫ(τ

1
ǫ )− P0(Xǫ(0))‖+ ‖P0(Xǫ(0))− p‖

≤ R1ǫ+ α0R0 .

So, if ǫ < (1−α0)R0

R1
and a fortiori if ǫ < (1−α0)2R0

R1
, then Xǫ(τ

1
ǫ ) ∈ Uǫ.

By induction, suppose that for j = 1, . . . , N , the times τ jǫ are well defined, that

satisfy

τ j−1
ǫ +

1

2
T0 ≤ τ jǫ ≤ τ j−1

ǫ +
3

2
T0 ,

and

‖Xǫ(τ
N
ǫ )− p‖ ≤

N−1
∑

k=0

αk
0R1ǫ+ α0R0 .

Note that, since 0 < α0 < 1, then
∑N−1

k=0 α
k
0 ≤ ∑∞

k=0 α
k
0 = 1

1−α0
. Therefore, since

ǫ < (1−α0)2R0

R1
, we will obtain Xǫ(τ

N
ǫ ) ∈ Uǫ.

Now, when k = N+1, we want to show that τN+1
ǫ exists and Xǫ(τ

N+1
ǫ ) ∈ Uǫ. Let’s

consider the equation (106) with initial condition Xǫ(τ
N
ǫ ). By Gronwall inequality,

we have

sup
τNǫ ≤s≤τNǫ +T

‖Xǫ(s)− φ∆N
ǫ

(

Xǫ(τ
N
ǫ )

)

‖ ≤ C0ǫ ,

hence τNǫ + 1
2
T0 < τN+1

ǫ < τNǫ + 3
2
T0. Also, since

‖Xǫ(τ
N+1
ǫ )− φ∆N

ǫ

(

Xǫ(τ
N
ǫ )

)

‖ ≤ C0ǫ ,

similarly to the proof of Lemma 52, then

‖Xǫ(τ
N+1
ǫ )− P0(Xǫ(τ

N
ǫ ))‖ ≤ R1ǫ . (127)

Using contractility of the Poincaré map as expressed by (111), and Xǫ(τ
N
ǫ ) ∈ Uǫ, we

have

‖P0(Xǫ(τ
N
ǫ ))− p‖ ≤ α0‖Xǫ(τ

N
ǫ )− p‖ . (128)
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Combining inequalities (127) and (128), we obtain

‖Xǫ(τ
N+1
ǫ )− p‖ ≤‖Xǫ(τ

N+1
ǫ )− P0(Xǫ(τ

N
ǫ ))‖+ ‖P0(Xǫ(τ

N
ǫ ))− p‖

≤R1ǫ+ α0‖Xǫ(τ
N
ǫ )− p‖ ≤

N
∑

k=0

αk
0R1ǫ+ α0R0 .

In particular, since ǫ < (1−α0)2R0

R1
, then X(τN+1

ǫ ) ∈ Uǫ, and this completes the induc-

tion process.

Finally, since for all k, τ k−1
ǫ + 1

2
T0 < τ kǫ < τ k−1

ǫ + 3
2
T0, then τ

k
ǫ must be in between

two consecutive multiples of the period T0. As a consequence of this, for any time t

we can write t = τ kǫ + s, for some k, and with 0 ≤ s ≤ T0. Using again Theorem 47,

we then obtain

sup
t≥0

‖Xǫ(t)‖ <∞ ,

which completes the proof.

Remark 17 The main implication of Theorem 50 is that, although random pertur-

bation in B will not be bounded for all times, the stochastic trajectories will remain

within a tubular neighborhood of the deterministic limit cycle.

Remark 18 To illustrate the situation, consider a system (106) which is unambigu-

ously representable in polar coordinates (for example, the van der Pol oscillator), use

polar coordinates (r, θ) for the deterministic problem, and (rǫ(t), θǫ(t)) to model am-

plitude and phase in the stochastically perturbed version. Theorem 50 implies that -as

long as the perturbation is selected from within the set B– the amplitude ρǫ remains

bounded:

sup
t≥0, ω∈B

|rǫ(t)− r(t)| <∞ .

In turns, this helps explaining why we observe no catastrophic breakdown in cell-phone

service, in agreement with practical experience.
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At the same time, we must emphasize that the phase perturbation does become

unbounded:

sup
t≥0, ω∈B

|θǫ(t)− θ(t)| = ∞ .

In turns, this helps explaining why we may (and do) lose cell phone connection during

lengthy conversations; see details in [33].

To sum up, although perturbations occur in both amplitude and phase, there is

a clear distinction among the two: in particular, the strong stability property of the

deterministic limit cycle ensures that the amplitude perturbations remain bounded.

7.4 Connection with Fokker-Planck equations

In this section, we attempt deriving PDEs for the transition density function associ-

ated to the trajectories of (107), with ω ∈ B. First, we review some known results

and give needed notations.

7.4.1 Diffusion process and partial differential equations

For completeness, here we review the standard derivation of PDEs for diffusion pro-

cesses; for details, see [59].

Consider a d-dimensional Markov family {Xt,Ft}, which is a diffusion process

with drift vector b = (b1, . . . , bd) and diffusion matrix a = {aik}1≤i,k≤d.

This means that for any f ∈ C2, one has

lim
t→0

1

t
[E f(Xt|X0 = x)− f(x)] = (Lf)(x), ∀x ∈ R

d ,

where the infinitesimal operator L is given by

(Lf)(x) =
1

2

d
∑

i=1

d
∑

k=1

aik(x)
∂2f(x)

∂xi∂xk
+

d
∑

i=1

bi(x)
∂f(x)

∂xi
.

Suppose that the Markov family of Xt has a transition density function

P (Xt ∈ dy|X0 = x) = ρ(t, x, y)dy; ∀x ∈ R
d , t > 0 .
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Then, ρ(t, x, y) satisfies the forward Kolmogorov (Fokker-Planck) equation, for fixed

x ∈ R
d:

ρt(t, x, y) = L∗ρ(t, x, y); (t, y) ∈ (0,∞)× R
d ,

and the backward Kolmogorov equation, for fixed y ∈ R
d:

ρt(t, x, y) = Lρ(t, x, y); (t, x) ∈ (0,∞)× R
d ,

where the adjoint operator L∗ is given by

(L∗f)(x) =
1

2

d
∑

i=1

d
∑

k=1

∂2(aik(x)f(x))

∂xi∂xk
−

d
∑

i=1

∂(bi(x)f(x))

∂xi
, ∀x ∈ R

d .

7.4.2 Killed diffusions

Let us also introduce the killed diffusion PDE, by considering the one dimensional

diffusion process

dXt = b(Xt)dt+ σ(Xt)dWt , X0 = x , (129)

where b, σ are Lipschitz functions, and Wt is a standard Wiener process. Consider

events set C:

C = {ω : sup
0≤s≤t

|Xs| ≤M0} .

Define the first exit time τC = inf{t : |Xt| =M0}. The killed diffusion is defined as

XC
t =















Xt, if t < τC ;

XτC , if t ≥ τC .

(130)
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(a) XτC = M0 (b) XτC = −M0

Figure 41: Killed diffusion

Consider the transition density function ρ(t, x, y) of XC
t :

ρ(t, x, y)dy = P (XC
t ∈ dy|X0 = x) .

In Lemma 53, we give the Fokker-Planck equation for the killed diffusion XC
t ,

which is a PDE with vanishing boundary conditions on a finite interval. For the

proof of Lemma 53, we refer to [52] and [90].

Lemma 53 For fixed x, ρ(t, x, y) is a weak solution of






























∂ρ

∂t
= −(bρ)y +

1
2
(σ2ρ)yy , |y| < M0 ,

ρ(t, x, y) = 0 , |y| =M0 ,

ρ(0, x, y) = δ0(x− y) .

7.4.3 Derivation of PDEs

However, there are difficulties in following the above standard steps to derive the

evolution conditioned on B, because:

• Xǫ(t) is not a Markov process, since it depends both on values in the past and

in the future; in fact, Xǫ(t) depends on the full set of values in the time interval

(t− T, t+ T ).
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Because of the above difficulty, we restrict to a subset of B which allows us to

restart the process at certain times, and which is more amenable to analysis. As in

(121), take T = 2T0, where T0 is the period of the deterministic limit cycle. Then,

we consider the events set

B0 = {ω | sup
0≤t≤T0

|Wt+kT0 −WkT0 | ≤
1

2
M} . (131)

Clearly, B0 in (131) is a subset of B in (121). With respect to B, B0 has the advantage

that, on each time interval of width T0, the Wiener process increments are independent

of that previous time interval of width T0. Moreover, for first time interval, by

introducing the absolute running maximum

Mt = sup
0≤s≤t

|Wt| , t ≤ T0 ,

(Xǫ(t),Wt,Mt) forms a Markov process, since condition B0 is nothing but the restric-

tion to those events for which Mt is bounded.

Motivated by the above, we will restrict to B0. Then, on the first time interval,

(Xǫ(t),Wt,Mt) will be analyzed on separated subintervals (0, t) and (t, T0), where the

first subinterval can be analyzed as a killed diffusion process and the second one can

be analyzed by a standard PDE approach.

To be more precise, we will solve for the transition density function conditioned

on events B0:

ρ(t,X,Xǫ(0) | B0)dX = P (Xǫ(t) ∈ dX | B0, Xǫ(0)) , (132)

where P represents probability function.

We divide our approach in three steps.

(i) From 0 to t ≤ T0, we introduce the new process zt = Wt, and solve for the

density function of (Xǫ(t), zt) at (X, z):

P (Xǫ(t) ∈ dX, zt ∈ dz,Mt ≤
1

2
M | Xǫ(0)) . (133)
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As in killed diffusions, the corresponding equation is a PDE with vanishing

boundary conditions.

(ii) For the remaining time from t to T0, we will solve for the probability function

P ( sup
t≤s≤T0

|Ws| ≤
1

2
M | Wt = z) .

By the Markov property of (Xǫ(t),Wt,Mt), we will then form the transition

density function on (0, T0).

(iii) Finally, for any time t, by the Markov property, we will derive the transition

density function by connecting to the value obtained at the right-end point of

the previous time interval.

We are now ready to give details of our approach. For our basic model (107), with

dWt from B0 in (131), introduce the new process zt = z0+Wt, so that equation (107)

becomes






























dxǫ = yǫdt ,

dyǫ = f(xǫ, yǫ)dt+ ǫdWt ,

dzt = dWt .

(134)

For a test function g(x, y, z) ∈ C2(R3), the infinitesimal operator corresponding to

the process (Xǫ(t), zt) is

(Lg)(x, y, z) = ygx + f(x, y)gy +
1

2
(ǫ2gyy + 2ǫgyz + gzz) . (135)

Now we begin the derivation on each time interval. Let

τz = inf{t : |zt| =
1

2
M} , Mt = sup

0<s<t

|zs| ,

and consider events up to N time intervals

BN
0 = {ω : sup

0≤t≤T0

|Wt+kT0 −WkT0 | ≤
1

2
M , k ≤ N} .
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We first derive transition density for Xǫ(t) conditioned on BN
0 :

uN(t,X,Xǫ(0))dX = P (Xǫ(t) ∈ dX | Xǫ(0), B
N
0 ) , for N = 1, 2, . . . (136)

As discussed above, this derivation goes through three steps.

Step one. We begin with transition density function on (0, t), which plays a core

role in this derivation. Since (Xǫ(t), zt) is also a diffusion process, condition transition

density for (Xǫ(t), zt) with event {Mt ≤ 1
2
M} is the same as a killed diffusion process,

where we only cut off on the zt part. To be more precisely, we define following killed

diffusion by

(XM
ǫ (t), zMt ) =















(Xǫ(t), zt), if t < τz ;

(Xǫ(τz), zτz), if t ≥ τz .

(137)

The transition density of (XM
ǫ (t), zMt ) is the same as (133).

In details, consider B1
0 . For τz > t and fixedXǫ(0), we derive the transition density

function u of process (Xǫ(t), zt) with events {Mt ≤ 1
2
M}:

u(t,X, z,Xǫ(0))dXdz =P (Xǫ(t) ∈ dX, zt ∈ dz,Mt ≤
1

2
M | Xǫ(0), z0 = 0)

=P (XM
ǫ (t) ∈ dX, zMt ∈ dz | Xǫ(0), z0 = 0) .

For fixed (Xǫ(0), z0), we also denote u(t,X, z,Xǫ) = u(t,X, z). The corresponding

Fokker-Planck equation becomes































∂u
∂t

= L∗u, (X, z) ∈ D ,

u(t,X, z) = 0, |z| = 1
2
M ,

u(0, X, z) = δ(0,0,0)(X − (xǫ(0), yǫ(0)), z − z0) ,

(138)

where

D = R× R× (−1

2
M,

1

2
M) .

We delay justification of equation (138) until the end.
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Step two. Here we discuss the event on (t, T0). At time t, restricting to the

events in B1
0 is equivalent to requiring that the process zt remains bounded up to

time T0.

Consider the probability of zt remaining bounded until time t while starting at

point z:

v(t, z) = P (τz > t | z0 = z) .

Here v represents probability of the events {sup0≤s≤t |Ws + z| ≤ 1
2
M}. Then (see

[59]), v(t, z) satisfies the following PDE:































vt =
1
2
vzz, −1

2
M < z < 1

2
M , t > 0 ,

v(t, 1
2
M) = v(t,−1

2
M) = 0 , t > 0 ,

v(0, z) = 1, −1
2
M < z < 1

2
M .

(139)

Here, (139) can be solved. The remaining probability becomes

v(T0 − t, z) = P ( sup
t≤s≤T0

|Ws| ≤
1

2
M | Wt = z) ,

and probability of B1
0 is

v(T0, 0) = P (B1
0) .

Combining step one and two: Since (Xǫ(t), zt,Mt) forms a Markov process, we

obtain the joint transition density function for (Xǫ(t), zt) with B
1
0 :

ρ(t,X, z,Xǫ(0), B
1
0)dXdz = P (Xǫ(t) ∈ dX, zt ∈ dz,B1

0 | Xǫ(0), z0 = 0) ,

which satisfies

ρ(t,X, z,Xǫ(0), B
1
0) = u(t,X, z)P ( sup

t≤s≤T0

|Ws| ≤
1

2
M | Wt = z) .

And the marginal density becomes

ρ(t,X,Xǫ(0), B
1
0) =

∫ 1
2
M

− 1
2
M

ρ(t,X, z,Xǫ(0), B
1
0)dz .
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The derivation becomes as following: for the first time interval (0, T0), recall u1

defined in (136) represents transition density function for Xǫ(t) conditioned on B1
0 ,

which statisfies

u1(t,X,Xǫ(0)) =
ρ(t,X,Xǫ(0), B

1
0)

P (B1
0)

=

∫

1
2
M

−1
2
M
u(t,X, z)v(T0 − t, z)dz

v(T0, 0)
,

where u satisfies equation (138) with Xǫ(0), z0 = 0 and v is the solution of equation

(139).

Step three. “Refreshing”. Xt under B0 can be seen as a refreshed process at each

time kT0. And by applying the Markov property, we can derive general transition

density function for Xǫ(t).

Consider the events set BN+1
0 . We denote w as the transition density function for

(Xǫ(t), zt) with events Bt:

w(t,X, z,Xǫ(0), z0)dXdz = P (Xǫ(t) ∈ dX, z(t) ∈ dz, Bt | Xǫ(0), z0) ,

where

Bt = {ω : sup
0<s<T0
s+kT0≤t

|Ws+kT0 −WkT0 | ≤M} .

Again, for fixed X̄0, we denote w = w(t,X, z), and by Chapman−Kolmogorov equa-

tion

w(t,X, z) =

∫

R2

. . .

∫

R2

u(t, X̄, X̄N)
N−1
∏

i=0

u(T0, X̄i+1, X̄i)dX̄1dX̄2 . . . dX̄N ,

where we used the notation X̄i = (Xi, zi), and X̄0 = (Xǫ(0), 0). Combining events

from time t to (N + 1)T0, we have

uN+1(t,X,Xǫ(0)) =

∫
1
2
M

− 1
2
M
w(t,X, z)v((N + 1)T0 − t, z)dz

P (BN+1
0 )

=

∫
1
2
M

− 1
2
M
w(t,X, z)v((N + 1)T0 − t, z)dz

v(T0, 0)N+1
.
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Arbitrary t. From the independent increments property of B0 for each time interval,

we can derive the transition density function for Xǫ(t) conditioned on B0. Indeed,

for any t, there exists N = 0, 1, . . . , such that t ∈ [NT0, (N + 1)T0]. Then, we simply

have

ρ(t,X,Xǫ(0) | B0) = uN+1(t,X,Xǫ(0)) .

Finally, we justfy equation (138).

Proof of (138). The basic approach we use is standard; e.g., see [52] and [89].

The boundary conditions can be given as u(0, x, y, z) = δ(0,0,0)(x − xǫ(0), y −

yǫ(0), z − z(0)) and u(t, x, y,±1
2
M) = 0. Next, we follow the same steps used to

derive the Fokker-Planck equation for the diffusion process.

To simplify notation, denote Y = (x, y, z) and Yt = (xǫ(t), yǫ(t), z(t)). Consider

any test function h(x, y, z) = h(Y ) ∈ C2 with compact support. Then,

∫

D

h(Y )
∂u(t, Y )

∂t
dY =

∫

D

h(Y ) lim
∆t→0

u(t+∆t, Y )− u(t, Y )

∆t
dY , (140)

where D = R×R× (−1
2
M, 1

2
M). Again, consider the process (Yt,Mt). Since (Yt,Mt)

is a Markov process, if we denote its density function with ρ̄, which is defined by

ρ̄(t, Y, Y (0))dY = P (Yt ∈ dY,Mt ≤
1

2
M |Y (0)) ,

Therefore the Chapman−Kolmogorov equation implies

u(t+∆t, Y ) =ρ̄(t+∆t, Y, Y (0))

=

∫

D

u(t, Z)ρ̄(∆t, Y, Z)dZ .
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Above, the last equality comes from the Markov property. Hence, equation (140)

becomes
∫

D

h(Y )
∂u(t, Y )

∂t
dY

=

∫

D

h(Y ) lim
∆t→0

∫

D
u(t, Z)ρ̄(∆t, Y, Z)dZ − u(t, Y )

∆t
dY

= lim
∆t→0

∫

D

∫

D
h(Y )u(t, Z)ρ̄(∆t, Y, Z)dZdY −

∫

D
h(Y )u(t, Y )dY

∆t

= lim
∆t→0

∫

D

∫

D
h(Y )u(t, Z)ρ̄(∆t, Y, Z)dY dZ −

∫

D
h(Z)u(t, Z)dZ

∆t

=

∫

D

lim
∆t→0

∫

D
h(Y )ρ̄(∆t, Y, Z)dY − h(Z)

∆t
u(t, Z)dZ .

(141)

where the second and last equalities are justified by the dominated convergence theo-

rem, and the third equality comes from Fubini’s theorem. Since E(1{τz≤∆t}) = o(∆t)

and h is a bounded function, then

lim
∆t→0

∫

D
h(Y )ρ̄(∆t, Y, Z)dY − h(Z)

∆t
= lim

∆t→0

Eh(Y∆t)1{τz>∆t} − h(Z)

∆t

= lim
∆t→0

[
Eh(Y∆t)− h(Z)

∆t
− Eh(Y∆t)1{τz≤∆t}

∆t
] = Lh(Z) ,

where L is the infinitesimal operator defined by (135). Hence (141) becomes

∫

D

h(Y )
∂u(t, Y )

∂t
dy =

∫

D

Lh(Z)u(t, Z)dZ .

Integrating by parts, using u(t, Z) = 0 on the boundary and letting Z = Y on the

right-hand-side, we then obtain

∫

D

h(Y )
∂u(t, Y )

∂t
dY =

∫

D

h(Y )L∗u(t, Y )dY ,

which gives the equation (138).

7.5 Conclusions

In this work, motivated by practical observations (real world phenomena, labora-

tory experiments, and numerical simulations) on typical engineering circuitries, we

reconsidered what model of noise is appropriate for the mathematical modeling of
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stochastic perturbation of second order systems of differential equations that admit

stable limit cycles. Whereas classical models consider stochastic DEs where perturba-

tions come from standard Brownian motion paths, we restricted the class of allowed

disturbances, to avoid pumping infinite energy into the system through the noise. In

essence, our new model consists in selecting those Brownian paths that have bounded

increments in finite time.

Of course, there are new challenges when one gives up familiar ground, such as

white noise perturbations, and indeed we have encountered technical difficulties es-

pecially insofar as obtaining viable expression for the transition density function.

However, by selecting the allowed perturbations from within our proposed event set,

we were able to adopt many classical tools from dynamical systems, and show some

interesting mathematical results, that further appear to be more in tune with practi-

cally observed circuitry behaviors.

Relative to our set of allowed stochastic perturbations, our main results have been

the following.

(i) We proved global boundedness of the stochastic trajectories, and we showed

that they remain (for small values of the parameter ǫ appearing in front of the

perturbation term) in the neighborhood of the deterministic limit cycle.

(ii) We proposed, and ensured the existence, of stochastic Poincaré map(s) as a

point-to-distribution map, and further introduced three point-to-point Poincaré

maps: first, last, and average return maps.

(iii) We associated the study of transition densities to a pair of PDEs.
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[4] Ambrosio, L., Gigli, N., and Savaré, G., Gradient flows: in metric spaces
and in the space of probability measures. Springer Science & Business Media,
2006.

[5] Ancona, F. and Bressan, A., “Patchy vector fields and asymptotic stabiliza-
tion,” ESAIM: Control, Optimization and Calculus of Variations, vol. 4, pp. 445–
471, 1999.

[6] Ancona, F. and Bressan, A., “Nearly time optimal stabilizing patchy feed-
backs,” in Annales de l’Institut Henri Poincare (C) Non Linear Analysis, vol. 24,
pp. 279–310, Elsevier, 2007.

[7] Arnold., L., Stochastic Differential Equations: Theory and Applications. John
Wiley & Sons, 1974.

[8] Arnold., L., Random Dynamical Systems, 2nd Edition. Springer-Verlag,
Berlin, 2003.

[9] Balakrishnan, A. V. and Neustadt, L. W., Computing methods in opti-
mization problems: proceedings. Academic Press, 1964.

[10] Baxendale, P. H., “Lyapunov exponents and stability for the stochastic
Duffing-van der Pol oscillator,” in IUTAM Symposium on Nonlinear Stochas-
tic Dynamics, pp. 125–135, Springer, 2003.

[11] Baxendale, P. H., “Stochastic averaging and asymptotic behavior of the
stochastic Duffing–van der Pol equation,” Stochastic Processes and Their Ap-
plications, vol. 113, no. 2, pp. 235–272, 2004.

[12] Bellman, R., “Dynamic programming and the smoothing problem,” Manage-
ment Science, vol. 3, no. 1, pp. 111–113, 1956.

[13] Benedetto, D., Caglioti, E., Carrillo, J. A., and Pulvirenti, M., “A
non-Maxwellian steady distribution for one-dimensional granular media,” Jour-
nal of statistical physics, vol. 91, no. 5-6, pp. 979–990, 1998.

206



[14] Blanchet, A. and Carlier, G., “Optimal transport and Cournot-Nash equi-
libria,” arXiv preprint arXiv:1206.6571, 2012.

[15] Blanchet, A. and Carlier, G., “From Nash to Cournot–Nash equilibria
via the Monge–Kantorovich problem,” Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences, vol. 372, no. 2028,
p. 20130398, 2014.

[16] Bobkov, S. G. and Tetali, P., “Modified logarithmic Sobolev inequalities in
discrete settings,” Journal of Theoretical Probability, vol. 19, no. 2, pp. 289–336,
2006.

[17] Bonnans, J. F. and Hermant, A., “Stability and sensitivity analysis for op-
timal control problems with a first-order state constraint and application to con-
tinuation methods,” ESAIM: Control, Optimisation and Calculus of Variations,
vol. 14, no. 04, pp. 825–863, 2008.

[18] Bonnard, B., Faubourg, L., Launay, G., and Trélat, E., “Optimal con-
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abilités de Saint-Flour XV–XVII, 1985–87, pp. 1–49, Springer, 1988.

[93] Villani, C., “A review of mathematical topics in collisional kinetic theory,”
Handbook of mathematical fluid dynamics, vol. 1, pp. 71–305, 2002.

[94] Villani, C., Topics in optimal transportation. No. 58, American Mathematical
Soc., 2003.

[95] Villani, C., Optimal transport: old and new, vol. 338. Springer Science &
Business Media, 2008.

[96] Von Neumann, J. and Morgenstern, O., Theory of games and economic be-
havior (60th Anniversary Commemorative Edition). Princeton university press,
2007.

[97] Yano, K., “Some remarks on tensor fields and curvature,” Annals of Mathe-
matics, pp. 328–347, 1952.

[98] Yano, K. and others, “Some integral formulas and their applications.,” The
Michigan Mathematical Journal, vol. 5, no. 1, pp. 63–73, 1958.

212



VITA

Wuchen Li was born in Tancheng, Linyi, Shandong, China on April 6 1988. At age

17, he went to Shandong university in Jinan, China, and graduated with a Bachelor of

Science in mathematics in June 2009. From September 2009 to May 2011, he studied

mathematics in Chinese academy of Science. In August of 2011, he came to Atlanta

and joined the Georgia Institute of Technology to work with Professors Luca Dieci

and Haomin Zhou in the School of Mathematics.

213


