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ABSTRACT

Intrinsic Spectral Analysis (ISA) has been formulated within

a manifold learning setting allowing natural extensions to out-

of-sample data together with feature reduction in a learning

framework. In this paper, we propose two approaches to im-

prove the performance of supervised ISA, and then we ex-

amine the effect of applying Linear Discriminant technique

in the intrinsic subspace compared with the extrinsic one. In

the interest of reducing complexity, we propose a preprocess-

ing operation to find a small subset of data points being well

representative of the manifold structure; this is accomplished

by maximizing the quadratic Renyi entropy. Furthermore, we

use class based graphs which not only simplify our problem

but also can be helpful in a classification task. Experimental

results for phone classification task on TIMIT dataset showed

that ISA features improve the performance compared with

traditional features, and supervised discriminant techniques

outperform in the ISA subspace compared to conventional

feature spaces.

Index Terms— Phone Classification, Manifold Learning,

Intrinsic Spectral Analysis

1. INTRODUCTION

The first step in an Automatic Speech Recognition system

typically consists in the computation of low dimensional fea-

ture vectors from short overlapping segments of speech. After

including temporal dynamics, this may e.g. result in the pop-

ular 39-dimensional MFCC based feature vector. Even in this

39-dimensional space consecutive frames exhibit great corre-

lation, hence segmental methods using stacks of those frames

- and hence using an implicit feature vector in more than 100-

dimensional space is not uncommon. Such high dimension

inevitably invokes the curse of dimensionality, especially as

we may reasonably assume that speech lives in (or close to) a

much lower dimensional embedded manifold [1].

High dimensionality is a curse for any pattern recogni-

tion problem, both from a performance and a computational

point of view. Thus, dimensionality reduction techniques
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have played a key role in speech recognition research. Linear

techniques such as LDA (Linear Discriminant Analysis) and

PCA (Principle Component Analysis) have been two of the

most popular dimensionality reduction methods in the speech

recognition community for several decades. However, for

a wide range of physical signals, including speech, there is

a nonlinear mapping from a low-dimensional configuration

space to a high-dimensional observation space.

Manifold learning methods have been widely used to

learn nonlinear projection maps that recover the under-

lying configuration space. ISOMAP [2], Locally Linear

Embedding (LLE)[3], Laplacian Eigenmaps (LE)[4], Dif-

fusion Maps (DM)[5] and manifold regularization [6] are

some examples of nonlinear embedding techniques that may

drastically reduce the representational dimensionality while

preserving the local structure of data points. This class of

algorithms has been widely used in machine learning. How-

ever, the validity of the manifold structure assumption is

necessary for the success of such techniques.

Manifold learning methods have slowly found their way

into the speech recognition community in the past decade.

Although the articulatory parameterization of the speech

production system, presented many years ago [7] [8], indi-

cates the existence of a low-dimensional manifold for certain

classes of speech sounds , it was formalized by A. Jansen us-

ing the source-filter model of speech production system in [9],

where he also proposed to extend the Laplacian Eigenmaps

in the framework of unsupervised manifold regularization

which is called Intrinsic Spectral Analysis [10]. ISA not only

naturally deals with out-of-sample data, which is a common

problem for the typical manifold learning methods, but also

provides us with data representation. ISA has been used in an

unsupervised [11], semi-supervised [12], and fully supervised

[10] manner.

In this paper we focus on supervised Intrinsic Spectral

Analysis. In previous work [10], no improvement has been re-

ported using supervised ISA features versus other traditional

features, except when combining them with traditional fea-

tures. Here, we set out to prove that ISA can improve recog-

nition performance by itself by taking a number of considera-

tions into account: 1) Using class based graphs to reduce the

complexity and improve the performance. 2) Selecting rep-



resentative data for each individual class instead of a random

selection to ensure the preservation of a data structure. 3) In-

vestigating the effect of linear discriminant method in the in-

trinsic subspace compared with the extrinsic one. There is one

more aspect in which this paper differs from [10]; the latter

dealt with binary weighted graphs, while in this paper, results

for gaussian similarity weighted ones are also reported.

The remainder of this paper is structured as follows: In

section 2 we briefly review the theoretical background of In-

trinsic Spectral Analysis. Section 3 introduces the proposed

methods. In Section 4 we present experimental results on a

phone classification task. Finally we have a discussion and

concluding remarks.

2. INTRINSIC SPECTRAL ANALYSIS

Considering a manifold M embedded in RH and a collection

of n samples X = [x1, x2, ..., xn] ⊂ M that forms a mesh

of data points that lie on the manifold, as is typical in man-

ifold learning algorithms, an undirected adjacency weighted

(or binary) graph G = (X,W) is constructed with one ver-

tex per data point and the similarity matrix W ∈ Rn×n. wij

(the ijth element of W) represents the similarity between xi

and xj if xi is one of the κ nearest neighbors of xj (or vice

versa) and 0 otherwise. Then, the so-called graph Laplacian

is defined, L = D − W, where D is the diagonal vertex de-

gree matrix with elements Dii =
∑n

j=1 wij . One can also

consider a normalized variant, Lnorm = D
−1/2

LD
−1/2 =

I − D
−1/2

WD
−1/2, where I is the identity matrix. This

normalization reduces the effect of large variation in vertex

degree arising from sampling sparsity [13].

Conventional Laplacian Eigenmaps regard the graph as a

mesh on the manifold and find the basis determined by the

graph Laplacian as an approximation to an intrinsic basis for

the manifold that the sample was drawn from [4]. However,

this method is limited to the eigen functions of the graph and

not the entire manifold. Thus, we seek for a projection f to

an intrinsic basis on the manifold. In Intrinsic Spectral Anal-

ysis out-of-sample data is approximated by learning such a

function in the framework of unsupervised manifold regular-

ization:

f∗ = argmin
f∈HK

‖f‖2
K + ξfT

Lf (1)

Where HK is the Reproducing Kernel Hilbert Space (RKHS)

for some positive semi-definite n × n kernel function K, f =
[f(x1), f(x2), ..., f(xn)]T is the vector of values of f for the

training data, and L is the graph Laplacian. ξ is the param-

eter which makes the balance between extrinsic and intrinsic

smoothness of the functions. The lth component of the solu-

tion to this optimization problem, based on the RKHS repre-

senter theorem, can be expressed as

f∗
l (v) =

n
∑

i=1

al
iK(xi, v) (2)

al ∈ Rn is the lth eigenvector (sorted by eigenvalue) to the

following generalized eigenvalue problem

(I + ξLK)a = λKa (3)

In this paper we always use a Radial Basis Function

(RBF) kernel: K(y, x) = exp(−‖y − x‖2/2σ2).

3. METHODS AND ALGORITHMS

In [11] supervised phone recognition on the TIMIT dataset

using ISA features has been investigated and compared

against traditional features such as MFCCs and MLPs; no

improvement has been reported. However, the intrinsic co-

ordinates were learnt globally with no labeling information

and using binary graphs. Moreover, data points were selected

randomly among the whole corpus which is not, indeed,

promising to exploit the underlying manifold for each indi-

vidual class of data. In this section, we propose approaches

to deal with these issues.

3.1. Class based ISA

Suppose ci ∈ {1, 2, .., C} is the label corresponding to xi,

where C is the total number of classes. In this study, the sim-

ilarity term, wij , is computed only if xi and xj have the same

label i.e. ci = cj . This class based graph has been used for

a linear interpretation of Laplacian Eigenmaps (locality pre-

serving projections) to reduce the storage and computational

requirements [14]. It is also reasonable to argue that restrict-

ing the similarity measure for the points within the same class

may improve the classification result since we don’t insist on

keeping samples of different classes close to each other even

though they are nearest neighbors within the ambient space.

Thus, the similarity matrix takes the block diagonal form:

W =











W1 0 . . . 0
0 W2 . . . 0
...

...
. . .

...

0 0 . . . WC











(4)

Where each Wc is the nc × nc dimension matrix whose el-

ements show the similarity between samples labeled as be-

longing to class c, and nc is the number of data points in class

c such that n =
∑C

c=1 nc. In this study, we use the gaussian

similarity function, wij = exp(−‖xi − xj‖
2/2τ2), to exploit

more structural information at a cost of setting one more pa-

rameter: τ .

3.2. Data Selection

For large scale datasets, including speech datasets, the eigen-

value problem in (3) becomes computationally expensive.

Depending on the sparsity and topology of the nearest neigh-

bor graph, the complexity is at least quadratic in the number



of graph vertices. Thus, selecting a subset, D, from the full

dataset, Dfull, with much smaller number of data points and

well representative of the structure of data is of great interest.

In this paper, we select a subset of m samples for each

individual class of data, and then maximize the nonparamet-

ric estimation of the quadratic Renyi entropy for each subset

using RBF kernel as has been discussed in [15]. This scheme

finds the representative subset of m data points D ⊂ Dfull

such that the quadratic Renyi entropy

E(D, ρ) = − log

∫

p(x)2dx ≈ − log(
1

m2
1

T
mK1m) (5)

is maximized. Where 1m is a vector of m ones and K is the

m × m RBF kernel matrix with parameter ρ. This criterion

can be maximized iteratively in a greedy manner in order to

select points that preserve the underlying structure of the data

[16]. To accomplish this, we use the following algorithm:

1. Randomly select a subset D from the full data set Dfull

2. Compute the quadratic Renyi entropy of D using (5)

3. Select a data point x∗ from D and select a data point

x∗∗ from the remaining pool of data Dfull \ D.

4. Replace x∗ with x∗∗ and compute the the quadratic en-

tropy of the new subset.

5. If the entropy in step 3 increases with respect to the

entropy of D, then x∗ and x∗∗ are swapped; otherwise

they return to their first subsets.

6. Iterate from step 3 . . .

In theory, an appropriate kernel parameter, ρ, also called

Parzen window size, corresponds to an appropriate density

estimate. We found that the results were not very sensitive to

the choice of ρ since we only compare the entropies in each

iteration. Silverman’s rule [17] is one of the simplest possible

choices, given by

ρ = δ[
4

(2H + 1)nc
][1/(H+4)] (6)

Where H is the dimension of data, δ is the sum of diagonal

elements in the covariance matrix of data in Dfull, and nc is

the number of data points in Dfull. In our experiments, this

algorithm is used for each individual class of data; so, Dfull

represents a set of data points with same label.

It is worth noting that other clustering and prototype tech-

niques such as k-means or Linde-Buso-Gray [18] may be ap-

plicable to find a representative subset as well.

Following is a toy example to visualize how the method

works. The full data set is represented in 3-dimensional space

with a helix structure. 30 data points are randomly selected to

form the D subset. They are highlighted with rounded green

points associating with edges after constructing 3-nearest

neighbor graphs (Figure 1.(a)). Using this subset as the ini-

tial one and applying the above algorithm, the new subset of
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(a) Random subset
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(b) Representative subset

Fig. 1. Maximizing the Renyi entropy to select more repre-

sentative points for the toy dataset with a helix structure.

data points achieved after 2000 iteration is shown in Figure

1.(b) in blue. It is clear that the new subset is much more

representative of the helix structure than the first one.

3.3. Linear Discriminant methods

One of the interesting aspects of intrinsic spectral represen-

tation is the improvement in linear separability presented in

[10]. A fortunate consequence of this, which is worth inves-

tigating, is that the Linear discriminant analyses are expected

to be working better in intrinsic subspace than extrinsic one.

In this paper we also examine the effects of applying Linear

Discriminant Analysis (LDA) [19] to ISA features.

4. EXPERIMENTS

4.1. Experimental Setup

In our experiments on TIMIT, we used the standard NIST

training set (462 speakers, 3696 utterances) for training,

development set (50 speakers, 400 utterances) in line with

[20] to tune the parameters, and the standard core test set

(24 speakers, 192 utterances) for testing purpose. 51 TIMIT

phone labels are used for training and they are further mapped

into the commonly used 39 classes in evaluation phase to cal-

culate the classification accuracy. For feature extraction, a

short-time Fourier analysis is performed with a 30ms Ham-

ming window and a 5ms window shift followed by Vocal

tract length normalization and mean normalization. Each

frame was represented by a 24-dimensional Mel-Spectrum

applying triangular shaped filterbank using the full spectrum

(24 channels for 16 kHz).

To train the intrinsic coordinates, all features were nor-

malized to have zero mean and unit variance. Then, 300 sam-

ples were selected from each individual class of training data

as explained in section 3.2. Then, the weighted similarity

graph is constructed for each class and total similarity graph

is made as explained in section 3.1. to make the normalized

graph Laplacian. After finding the intrinsic coordinates by

ISA, we kept only the first 13 ones (skipping the first trivial



Table 1. Classification Accuracy on validation set and test set

using optimized parameters for the gaussian weighted Lapla-

cian graph

Validation set Test set

Accuracy 72.03(%) 70.6(%)

one) and adding the first and second derivatives (∆ and ∆∆)

features.

4.2. Phone Segmentation and Classification

To describe each phonetic segment in a fixed size feature vec-

tor for phone classification experiments, we used the follow-

ing scenario:

• Step 1: Each phonetic segments is partitioned in 3 sub-

segments along the time axis at a 3:4:3 ratio.

• Step 2: Add two more sub-segment from the pre-

ceeding and succeeding phones each containing three

frames.

• Step 3: Take the average of the local features for each

feature and in each sub-segment, and then stack them

to a (5 × q)-dimensional supervector representing the

phone sample. Where q is the dimension of the speech

frame.

In this scenario, the phones with lengths of smaller than

3 frames were ignored. The resulting (5 × q)-dimensional

feature vectors form the input for the LDA dimensionality re-

duction techniques and the classifier. For the phone classifi-

cation task, a weighted K-Nearest Neighbor classifier [21] is

used, where weights are the inverse of the Euclidean distance.

For the sake of comparison, we also present results using 13-

dimensional Mel-cesptra.

4.3. Experimental Results and Analyses

First of all, we need to find proper values for the parameters;

thus, starting from 24-dimensional Mel-spectrum all parame-

ters are jointly optimized on the development set. The result-

ing optimized parameters are used for the evaluation on the

core test set in the rest of this section. The suitable param-

eters are determined as follows: κ = 30, σ = 30, ξ = 1,

τ = 0.5, K = 20. Table 1. shows the classification accura-

cies these optimized parameters yield on both validation set

and core test set for 13-dimensional ISA features.

Next, velocity (∆) and acceleration (∆∆) features were

included to form 39-dimensional features. 13-dimensional

MelSpectrum in Table 2. is obtained by applying PCA to

24-dimensional Mel-spectrum introduced in 4.1. This table

shows that (∆) and (∆∆) features have more effect on extrin-

sic features than ISA. Due to the closeness in performance,

one might reasonably ask how much ISA is disadvantageous

Table 2. Classification Accuracy for MFCC, Mel-Spectrum

and ISA features together with their derivatives

Feature set Accuracy # of dimension

ISA 70.6(%) 13

MFCC 68.16(%) 13

Mel-Spec 67.13(%) 13

ISA+∆+∆∆ 72.25(%) 39

MFCC +∆+∆∆ 72.16(%) 39

Mel-Spec+∆+∆∆ 71.15(%) 39

Table 3. Classification Accuracy applying LDA to different

feature sets

Features ISA(BW) ISA(GW) MFCC Mel-Spec

Accuracy 75.09(%) 75.71(%) 74.2(%) 74.7(%)

in terms of computational complexity comparing to MFCCs.

To answer this question we should note that ISA provides us

with an intrinsic subspace where linear separability increases

while MFCC does not.

In the next part of our experiments, we have investigated

the linear separability of intrinsic subspace. As mentioned

before, the phonetic separability increases by using intrinsic

coordinates even in the unsupervised manner because of the

meaningful connection between them and distinctive features

of speech sounds [10]. Therefore, LDA approaches are ex-

pected to outperform in this subspace. Here, we applied LDA

after phonetic segmentation explained in 4.2. for different

feature sets. LDA transformation matrix was trained over 51

training labels and it mapped the samples to a 50-dimensional

space. It is also interesting to see how using the gaussian sim-

ilarity weights (GW) instead of the binary weights (BW) in

graph construction affects the classification results. To this

end, we have conducted the same experiments with binary

weighted graphs. Tuning the parameters using validation set

yields the same values as mentioned before, except that in the

latter there is no τ anymore.

It is important to note that the difference between the ac-

curacies reported in this paper for classification and those in

[11] for recognition, e.g. 74.2% versus 76.8% for MFCCs,

can be due to the fact that we used the simple KNN classifier

and phonetic segmentation in the former while a state-of-the-

art hidden markov model/multilayer perceptron back-end was

used in the latter to evaluate the recognition. Nonetheless,

what we explored in this article, was a comparison between

intrinsic and extrinsic subspace in a supervised framework.

5. DISCUSSION AND CONCLUSION

Conventional Intrinsic Spectral Analysis (ISA) is an unsuper-

vised technique. In the supervised approach, however, we

may plug in the labeling information to improve the perfor-

mance. In this paper, we presented our idea to use the labeling



information by constructing the class based graphs. We also

proposed to maximize the quadratic Renyi entropy to find a

proper subset of data points for each individual class without

losing much information regarding the structure of the data in

order to deal with the complexity issue by reducing the size of

Laplacian graph. Although we have used this data selection

method in the ISA framework, it is applicable as a preprocess-

ing box before any manifold learning method. We also plan to

investigate the comparison of various data selection methods.

Besides, it was shown that the higher linear separability in

the intrinsic subspace compared with the extrinsic one leads

to higher accuracy using Linear Discriminant Analysis.

This method, however, is highly parametric and finding

the proper values for them is not easy. Although, it needs to be

done only in the training phase, automatic parameter selection

is an important goal. Another problem which is associated

with all manifold learning techniques and still remains in this

work is the effect of noise which can obscure the manifold

structure.
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