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Based on numerical experiments on white noise using the empirical mode decompo-
sition (EMD) method, we find empirically that the EMD is effectively a dyadic filter,
the intrinsic mode function (IMF) components are all normally distributed, and the
Fourier spectra of the IMF components are all identical and cover the same area on
a semi-logarithmic period scale. Expanding from these empirical findings, we further
deduce that the product of the energy density of IMF and its corresponding averaged
period is a constant, and that the energy-density function is chi-squared distributed.
Furthermore, we derive the energy-density spread function of the IMF components.
Through these results, we establish a method of assigning statistical significance of
information content for IMF components from any noisy data. Southern Oscillation
Index data are used to illustrate the methodology developed here.
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1. Introduction

Noise is an inevitable part of our existence. In scientific study, noise can come in many
ways: it could be part of the natural processes generated by local and intermittent
instabilities and sub-grid phenomena; it could be part of the concurrent phenomena
in the environment where the investigations were conducted; and it could also be part
of the sensors and recording systems. As a result, when we face data, we inevitably
face an amalgamation of signal and noise,

x(t) = s(t) + n(t), (1.1)

in which the x(t) our our data, and s(t) and n(t) are our true signal and noise,
respectively. Once the noise contaminates the data, it is not a trivial task to remove
it. For the obvious cases, when the processes are linear and the noises have distinct
time or frequency scales different from those of the true signal, Fourier filters can be
employed to separate the noise from the real signal. But, filter methods will fail when
the processes are either nonlinear or non-stationary. Then, even if the real signal and
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the noises have distinct fundamental frequencies, the harmonics of the fundamental
can still mix with the noises. This mixing of harmonics with noises will render the
Fourier filter as an ineffective noise-separation method. Under such conditions, the
empirical mode decomposition (EMD) method (Huang et al . 1998, 1999) can offer
some help. EMD is an adaptive method to decompose any data into a set of intrinsic
mode function (IMF) components, which become the basis representing the data. As
the basis is adaptive, the basis usually offers a physically meaningful representation
of the underlying processes. Also because of the adaptive nature of the basis, there is
no need for harmonics; therefore, EMD is ideally suited for analysing data from non-
stationary and nonlinear processes. Even with these nice properties, EMD still cannot
resolve the most complicated cases, when the processes are nonlinear and the noises
also have the same time-scale as the signal; their separation becomes impossible.
Nevertheless, EMD offers a totally different approach to data decomposition, and we
decided to apply it to study the characteristics of the white noise. We will show that,
with this approach, we can offer some measure of the information content of signals
buried under unknown noise.

The problem of separating noise and signal is complicated and difficult when we
do not even know the level of noise in the data. The question then becomes more
fundamental: are we looking simply at noise, or are we getting any information
in the series of numbers known as data? In this case, knowing the characteristics
of the noise is an essential first step before we can attach any significance to the
signal eventually extracted from the data. In this paper, we present the results of
a numerical experimental study on uniformly distributed white noise using EMD.
It should be noted here that the same numerical experiments with the normally
distributed white noise lead to the same results described in the following. Therefore,
the characteristics of uniformly distributed white noise revealed in this study can also
be extended to the normally distributed white noise.

Through this study, we find the following empirical facts: the EMD is effectively
a dyadic filter capable of separating the white noise into IMF components having
mean periods exactly twice the value of the previous component; the IMF com-
ponents are all normally distributed; the Fourier spectra of the IMF components
are identical in shape, and cover the same area on a semi-logarithmic period scale.
Based on these empirical facts, we deduce the following results: first, the product
of the energy density of IMF and its corresponding mean period must be a con-
stant. Second, the energy-density function must be chi-squared distributed, since the
IMFs are distributed normally. Furthermore, we also derive the statistical bounds for
the energy-density spread function of the IMF components. The pertinent results we
obtained from this study include an analytical expression of the relationship between
the energy density and the mean period of the IMF components derived from the
white noise through EMD, an analytic expression of the energy-density distribution
and its spreading function. All the analytic expressions are tested against the results
produced by Monte Carlo method on a numerically generated random noise. Through
these results, we also establish a method to assign statistical significance of the infor-
mation content for IMF components from any noisy data. Southern Oscillation Index
(SOI) data are used to illustrate the methodology developed here.

In this paper, we will first present the numerical experiment and the empirical
relationship between the energy density and the mean period. We will then present
the empirical result of normally distributed IMF components and the deduced energy
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spread function in § 3. This is followed by the statistical test on the information
content of the SOI data. Finally, we will offer some discussions and our conclusions
that, based on the characteristics of the white noise, the information content of IMF
components from a noisy dataset derived from EMD can be objectively determined
relative to the white-noise statistics.

2. The numerical experiment and the relation

between energy and period

The results in this paper are on the statistical characteristics of the IMF components
from the uniformly distributed white noise. For lack of analytical expression for the
IMFs ab initio, we decided to study the problem empirically. In fact, most of the
important results reported subsequently are all based on the empirically determined
findings from the numerical experiment; therefore, we will describe the numerical
experiment first, followed by the relationship deduced between the energy density
and the mean period of the IMF components.

(a) Numerical experiments

Our main experiment is to study the characteristics of white noise using EMD
(Huang et al . 1998, 1999). For this purpose, our data consist of numerically generated
one-million-term white-noise time-series. In this study, four different random data
generators have been tried, including the one installed in the Compaq-DEC Alpha
workstations, and three other popular generators described in the Numerical recipes
(Press et al . 1992). Through our experiments, we found that the results are not
sensitive to the random number generator. Therefore, we decided to report only
the results from the random number generator installed in the Compaq-DEC Alpha
workstations, which gives us a uniformly distributed white noise.

For the experiment, the white-noise data generated from the above-mentioned
random number generator are decomposed into IMFs by the EMD method (Huang
et al . 1998, 1999). In the decomposition, we found that, after iteration of the sifting
process five times, an IMF would generally satisfy the Cauchy condition proposed
in Huang et al . (1998); continuing iteration would not change the IMF significantly.
However, to guarantee the stability and convergence of the resulting IMFs, we decided
to double the sifting process for each IMF to 10 iterations.

In order to study the statistical characteristics, the resulting IMFs of 106 data
points are then divided into many segments of various lengths. By virtue of the
white-noise generator, each segment is considered to be independent of the others.
Before discussing the more sophisticated statistical properties, let us examine the
obvious result of the mean periods of the IMFs.

(b) Mean periods of IMFs

Before examining any results, we should list the properties of an IMF as follows:
an IMF is any function having symmetric envelopes defined by the local maxima and
minima separately, and also having the same number of zero-crossings and extrema.
Based on this definition, we can determine the mean period of the function by count-
ing the number of peaks (local maxima) of the function. The results are listed in
table 1. The second column of the table gives the total number of local maxima:
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Table 1. EMD as a dyadic filter

(The sampled white-noise series of 106 data points is decomposed into IMFs 1–9. The second
column is the number of peaks for each IMF; the third column is the mean period in terms of
number of data points; and the fourth column is the corresponding period in years if the data
are sampled monthly.)

IMFs number of peaks mean period period in year

1 347 042 2.881 0.240

2 168 176 5.946 0.496

3 83 456 11.98 0.998

4 41 632 24.02 2.000

5 20 877 47.90 3.992

6 10 471 95.50 7.958

7 5 290 189.0 15.75

8 2 658 376.2 31.35

9 1 348 741.8 61.75

the peaks of each IMF in the million data points. The third column shows the mean
period measured in terms of the number of data points. An interesting pattern now
emerges: the mean period of any IMF component almost exactly doubles that of the
previous one, suggesting that the EMD is a dyadic filter. This finding is consistent
with the recent result by Flandrin et al . (2003). Next, we will examine the more
detailed distribution of the energy with respect to the period in the form of spectral
function. For this special application, we will consider the Fourier-based spectrum,
as it is the one most familiar to most applications.

(c) The Fourier spectra of IMFs

Let us consider the general properties of the energy density as function of period
for the data. For a normalized white-noise time-series, fj , for j = 1, . . . , N , we can
express it either in terms of Fourier series components, or in terms of IMFs, i.e.

fj = Re

[

N
∑

k=1

Fk exp

(

i
2πjk

N

)

]

=
∑

n

Cn(j), (2.1)

where i =
√

−1, Cn(j) is the nth IMF and

Fk =
N

∑

j=1

fj exp

(

− i
2πjk

N

)

.

With this expression, we can define the energy density of the nth IMF as

En =
1

N

N
∑

j=1

[Cn(j)]2. (2.2)

Since the IMFs are nearly orthogonal to each other, with the only leakage begin
from nonlinear distortion of the data, we have the total energy for the data, to a
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high degree of approximation, as

N
∑

n=1

f2

j =
N

∑

k=1

|Fk|2 = N
∑

n

En. (2.3)

As the Fourier spectrum of a white-noise time-series is well known, it may be
treated as a constant. Because a synthetically generated white-noise time-series is
short in length, however, its Fourier spectrum may be a constant upon which many
spikes have been superimposed. When the series is long enough, these spikes will
be smoothed out, and the Fourier spectrum approaches a constant. Theoretically,
the Fourier spectrum of a white-noise series should be a perfect constant, indicating
that the contribution to the total spectrum energy comes from each Fourier com-
ponent uniformly and equally. The Fourier spectra for the IMFs, however, will not
yield a constant white spectrum, for the decomposition through EMD effectively
subjects the data through a dyadic filter bank. Therefore, the IMFs are band passed
as discussed by Flandrin et al . (2003).

Now, let us examine the shape of the Fourier spectra for each IMF. To this end,
the Fourier spectra for 200 independent segments of 4000 data points each of all the
IMFs are calculated; the individually averaged Fourier spectra for all the IMFs are
plotted on a semi-logarithmic scale in figure 1. We can see that all the Fourier spectra
except the first one have almost identical shapes in terms of the lnT -axis, where T
is the period of a Fourier component. From the figure, it is obvious that the ratios of
the neighbouring spectra are almost identically equal to 2, which is consistent with
the doubling of mean periods of neighbouring IMFs.

Based on the fact that the spectral shape and area coverage for each spectrum
are identical, we can have an integral expression to represent, to the first order of
approximation, the functional form of Fourier spectrum for any IMF (except the first
one) as

∫

Sln T,n d lnT = const., (2.4)

where Sln T,n is the Fourier spectrum of the nth IMF as a function of lnT and
the subscript n representing the nth IMF. Notice that this expression is not scaled
properly with respect to energy; it only expresses the fact that the spectra are similar,
and that the spectra cover a similar area on the semi-logarithmic period–energy
space. To scale the spectra properly with respect to energy, we have to resort to the
expression for the total energy. Then, the energy of the nth IMF can be written as

NEn =

∫

Sω,n dω,

where Sω,n is the Fourier spectrum of the nth IMF in terms of frequency, ω. Through
a series of variable changes, from frequency to period and from period to the loga-
rithmic scale, we have

NEn =

∫

Sω,n dω =

∫

ST,n
dT

T 2
=

∫

Sln T,n
d lnT

T
=

∫

Sln T,n d lnT

T̄n
, (2.5)

where ST,n is the Fourier spectrum function of period T for the nth IMF, in which

T̄n =

∫

Sln T,n d lnT

(
∫

Sln T,n
d lnT

T

)

−1

. (2.6)
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Figure 1. The Fourier spectra of IMFs as a function of the logarithm of the period. In (a), the
black line is the Fourier spectrum of the first IMF, and the Fourier spectra of IMFs 2–9 are
located away from that of the first IMF. In (b), the Fourier spectra of IMFs 2–9 are redrawn
and the Fourier spectrum of the nth IMF is shifted to the left by (n − 2) ln 2 for IMFs 3–9.

In this form, T̄n is the definition of the averaged period calculated from any given
spectrum. This value is almost identical to the one derived from counting the zero-
crossings. By substituting equation (2.4) into equation (2.5) we obtain a simple
equation that relates the energy density, En, and the averaged period T̄n, i.e.

EnT̄n = const., (2.7 a)

lnEn + ln T̄n = const. (2.7 b)

This simple relation has already been stated in Wu et al . (2001).
If a white-noise series is normalized, one can determine the constant on the right-

hand side of equations (2.7). For a normalized white-noise series, there is no loss in
generality by assuming that the constant in equation (2.7a) is unity. Therefore, the
constant is expected to be zero, i.e.

ln Ēn + ln T̄n = 0, (2.8)

where Ēn is the mean of En when N approaches infinity.
The Monte Carlo verification of equation (2.8) is given in figure 2, where the 106

points of the numerically generated random dataset are divided into 1000 indepen-
dent samples with an identical length of 1000 data points each, and each sample is
decomposed into IMFs. The energy of each sample is plotted against its averaged
period. Groups of points of the same colour are the scattered distributions of the
paired values of the nth IMFs of these 1000 samples. The straight black line is the
expectation line derived from equation (2.8). Clearly, equation (2.8) offers an excel-
lent fit to these scattered points. Thus, we showed in this example that the energy
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Figure 2. The Monte Carlo verification of the relation between the energy density and the
averaged period. The groups of the dots from upper left to the lower right are the energy
density as a function of the averaged period for IMFs 1–9 for all 1000 samples with an identical
length of 1000 data points. The superimposed black dots are the energy density as a function
of the averaged period for IMFs 2–9 for a single sample with 106 data points.

density of the IMF and its averaged period follows a hyperbolic function, a result
displayed in Wu et al . (2001). From figure 2 we can see that the energy density and
the averaged period for each IMF of an individual sample could deviate from the
expectation line given by equation (2.8), but this deviation is rather small.

3. The energy distribution and spread functions

Having established the relationship between energy density and the averaged period,
we will next establish the energy distribution function for each IMF and the spread
function of the energy distribution for various percentiles.

(a) Energy distribution function

The next level of quantification is naturally the spread function. To achieve this
quantification, we first examine the probability distribution of an individual IMF.
Figure 3 plots the probability density of each IMF for a sample of 50 000 data points.
The probability density function for each IMF is approximately normally distributed,
which is evident from the superimposed fitted normal distribution function (the red
line). This fit is to be expected from the central limit theorem. Indeed, the deviation
from the normal distribution function grows as the mode number increases. This is
because, in the higher modes, the IMFs contain a smaller number of oscillations;
therefore, the number of events decreases and the distribution becomes less smooth.
Presumably, when a sample of longer length is used, the IMFs of the higher modes
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Figure 3. Histograms of IMFs (modes) 2–9 for a white-noise sample with 50 000 data points.
The superimposed grey lines are the Gaussian fits for each IMF.

will have more oscillations and the distribution will converge to a normal distribution
according to the central limit theorem.

According to the probability density function theory (see, for example, Papoulis
1986), for a time-series that has a normal distribution, its energy, defined by equa-
tion (2.2), should have a χ2 distribution, with the degrees of freedom of the χ2

distribution equal to the mean of the energy.
To determine the exact number of degrees of freedom for the χ2 distribution of

IMFs decomposed from a white-noise series of length N , we can argue as follows: we
use the Fourier spectrum of a white-noise series of the same lengths, N . For such a
white-noise series, its number of degrees of freedom is N . When such a white-noise
series is decomposed in terms of Fourier components according to equation (2.1), we
have N Fourier components which form a complete set. Since each component has
a unit degree of freedom, the number of degrees of freedom of an IMF is essentially
the sum of the Fourier components it contains. As the energy in a white-noise series
is evenly distributed to each Fourier component, we propose that the fraction of
energy contained in an IMF is the same as the fraction of the number of degrees of
freedom. For a normalized white-noise time-series with unit total energy, the number
of degrees of freedom of the nth IMF should be the energy of that particular IMF;
thus, rn = NĒn. Therefore, the probability distribution of NEn is the χ2 distribution
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Figure 4. Histograms of the energy density for IMFs (modes) 2–9 for a white-noise sample
with 50 000 data points. The superimposed grey lines are the χ2 fits for each IMF.

with NĒn degrees of freedom, i.e.

ρ(NEn) = (NEn)NĒn/2−1e−NEn/2. (3.1)

Therefore, the probability distribution of En is given by

ρ(En) = N(NEn)NĒn/2−1e−NEn/2. (3.2)

The Monte Carlo test confirms our conjecture. Figure 4 shows the histogram of the
distribution of energy for each IMF for 1000 samples of white-noise series, each of
the length of 1000 data points. The red lines are the corresponding χ2 distributions
based on equation (3.2). Clearly, the theoretical lines and histograms are in excellent
agreement with each other.

Having determined the distribution function of the energy, we will discuss the
spreading of this distribution in the next section.

(b) Spread of energy

Now we are ready to derive the spread of the energy of white-noise samples of a
certain length N . First, we introduce a new variable, y, as

y = lnE. (3.3)
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For simplicity, the subscript n is omitted. The distribution of y is therefore

ρ(y) = N(Ney)NĒ/2−1e−NE/2ey

= C exp(1

2
yNĒ − 1

2
NE)

= C exp

[

− NĒ

2

(

E

Ē − y

)]

, (3.4)

where C = NNĒ/2. Since E = ey,

E

Ē
= ey−ȳ = 1 + y − ȳ +

(y − ȳ)2

2!
+

(y − ȳ)3

3!
+ · · · . (3.5)

Substituting equation (3.5) into equation (3.4), we have

ρ(y) = C exp

{

− NĒ

2

[

1 − ȳ +
(y − ȳ)2

2!
+

(y − ȳ)3

3!
+ · · ·

]}

= C ′ exp

{−NĒ

2

[

(y − ȳ)2

2!
+

(y − ȳ)3

3!
+ · · ·

]}

, (3.6)

where C ′ = C exp[−1

2
NĒ(1 − ȳ)].

When |y − ȳ| ≪ 1,

ρ(y) = C exp

{

− NĒ

2

[

1 − ȳ +
(y − ȳ)2

2

]}

= C ′ exp

[−NĒ(y − ȳ)2

4

]

. (3.7)

From equations (3.6) and (3.7), one can determine the spread of different con-
fidence levels. The spread can be identified as a function of Ēn. For the case of
|y − ȳ| ≪ 1, the distribution of En is approximately a Gaussian with a standard
deviation

σ2 =
2

NĒn
=

2T̄n

N
. (3.8)

For such a case, the spread lines can be defined as

y = −x ± k

√

2

N
ex/2, (3.9)

where x = ln T̄n and k is a constant determined by percentiles of a standard normal
distribution. For example, we will have k equal to −2.326, −0.675, −0.0 and 0.675
for the first, 25th, 50th, 75th and 99th percentiles, respectively.

Figure 5 plots the spread lines for the first and 99th percentiles based on equations
(3.6) and (3.7). The thinly dashed lines are calculated from equation (3.9). Clearly,
the simplified calculations based on equation (3.9) agree well with the theoretical
lines (bold blue dashed) that are based on equations (3.6), which provides more
details of abnormal distribution that skews toward the lower-energy side.
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Figure 5. The spread function. The grouped dots and the black line are the same as in figure 2.
The bold blue dashed lines are the first and 99th percentiles calculated from equation (3.6). The
thin black dashed lines are the first and 99th percentiles calculated from equation (3.7).

4. A test for the statistical information content of noisy data

Having derived the statistical characteristics of white noise that include the expres-
sions for the relationship between the energy density and the average period, the
energy distribution and its spread function (which are confirmed by the Monte Carlo
test), we propose a method, based on these results, to test the information content of
a dataset with unknown noise level. Specifically, we want to determine which IMFs
from a noisy dataset contain information, and which IMFs are purely noise. This
test can be accomplished by using the above results on the statistical characteristics
of white noise, which, by definition, contains no information. The specific steps for
the test are as follows. First, decomposes the targeted noisy dataset (normalized)
into IMFs. Second, construct a long artificial white-noise record as a reference, and
divide these reference data into sections of identical length with the target dataset.
Apply the EMD method to decompose each section of the reference white-noise data
into IMFs, since the statistical characteristics of this artificial reference white-noise
sections should follow the results derived in §§ 2 and 3. Therefore, one may skip this
process by directly using the statistical characteristics of white noise derived in §§ 2
and 3, especially equation (3.6) to calculate the spread function of various percentiles.
Third, select the confidence-limit level (e.g. 99%) and determine the upper and lower
spread lines. Finally, compare the energy density for the IMFs from the data with the
spread functions; the IMFs that have their energy located above the upper bound
and below the lower bound should be considered to be containing information at
that selected confidence level.
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Figure 6. The raw SOI index (top panel), the corresponding intrinsic
mode functions (C1–9), and the monotonic trend (R).

We will test this method with a real dataset in the SOI from January 1935 to
December 1997 (Trenberth 1984). The SOI is a normalized monthly sea-level pres-
sure index that reflects primarily the large-scale dynamically coupled system of
atmosphere and ocean in the tropical Pacific. A large negative (positive) peak of
SOI, which often happens with a two- to seven-year period, corresponds to a strong
El Niño (La Niña) event. With its rich statistical properties and scientific impor-
tance, the SOI is one of the most prominent time-series in the geophysical research
community and has been well studied. Many time-series-analysis tools analyse this
time-series to display their capability of revealing useful scientific information (e.g.
Wu et al . 2001; Ghil et al . 2002). For the reason, we selected this time-series to
illustrate the usefulness of our proposed statistical method. The SOI and its IMFs
are displayed in figure 6.
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Here again, we use the same synthetically generated white-noise series of 106 points
as the reference data, and decompose them into IMFs. The IMFs are then divided
into more than a thousand samples, each sample containing 756 data points, the same
as the length of SOI index examined previously by Wu et al . (2001). The averaged
period (in terms of the number of data points within two consecutive peaks of an
IMF) of each IMF and its energy density (inner product) are then plotted as the
scatter points in green and yellow in figure 7, serving as independent samples of the
reference white-noise data in a Monte Carlo test.

The black solid line is the theoretical expectation of the pair of averaged period
and energy. The dashed blue lines are the theoretical spread lines of the first and
99th percentiles. Therefore, after a targeted time-series (e.g. SOI) is decomposed
into IMFs, the averaged period and corresponding energy can be compared with
the reference white-noise samples to determine whether a specific IMF contains any
statistically significant information.

The red ‘⊛’ points are the averaged period and corresponding energy for the first
nine IMFs of SOI. It is clear that there are four ‘⊛’ points that stay above the 99%
confidence level. The averaged periods for these IMFs are 2.0, 3.1, 5.9 and 11.9 years,
respectively.

The a priori test result is consistent with the statistical test using a regular spec-
tral analysis method, which also shows that SOI has inter-annual peaks that are
statistically significant. However, the EMD results give us the following additional
information. First, EMD identifies the significant IMFs. As IMFs serve as adaptive
bases, they can represent the underlying processes more effectively. Furthermore,
the IMFs isolate physical processes of various time-scales, and also give the tem-
poral variation with the processes in their entirety without resorting to the linear
assumption as in the Fourier-based decomposition. Not being encumbered by the
harmonics, the IMFs can show the nonlinear distortion of the waveform locally as
discussed by Huang et al . (1998) and Wu et al . (2001). Finally, the IMFs can be
used to construct the time–frequency distribution in the form of a Hilbert spectrum,
which offers minute details of the time variation of the underlying processes.

The above method can be further refined through a re-scaling step. With this
approach, we can determine the noise level of a time-series by assuming that the
targeted time-series contains two parts: the signal and the noise. This can be accom-
plished as follows. If we can ascertain that any specific IMF contains little useful
information, then we can assume that the energy of that IMF comes solely from
noise, and assign it on the 99% line. We will then use the energy level of that IMF
to re-scale the rest of IMFs. If the energy level of any IMF lies above the theoretical
reference white-noise line, we can safely assume that it contains statistically signif-
icant information. If the rescaled energy level lies below the theoretical white-noise
line, then we can safely assume that it contains little useful information. For the SOI
data, the first IMF consists of a broadband spectrum with its peak corresponding to
no perceivable physical process; therefore, it can be safely assumed to be pure noise.
We can use it to re-scale energy density of other IMFs. The results are plotted as
the blue ‘♦’ points in figure 7. It turns out, under such a criterion, that all the IMFs
seem to contain some useful information, i.e. they are bordering on the statistically
significant at 99% confidence level. The latter a posteriori test is verified by exam-
ining the global SST variability associated with each mode which will be reported
elsewhere.
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Figure 7. A priori, a posteriori and Monte Carlo tests of SOI. The SOI
is sampled monthly. The corresponding real-time axis is added at the bottom.

5. Summary and discussions

The properties of the white noise under the EMD are studied. We carried out numer-
ical experiments of decomposing uniformly distributed white noise into IMFs. The
empirical findings are almost identical to those reported by Flandrin et al . (2003).
Based on the empirical findings, we have deduced additional analytical expressions
for the various statistical properties of white noise. From the properties of the Fourier
spectra of IMFs, we derived an equation that states that the product of the energy
density of IMFs and the corresponding averaged period of IMFs is a constant. The
numerical experiments also show that all the IMFs of white noise have normal dis-
tribution and, therefore, the energy-density distribution of an IMF sample satisfies
the χ2 distribution. Furthermore, from the properties of Fourier spectra of white
noise, we derived the spread function of the IMF components. These results allow us
to establish a methodology for assigning statistical significance of IMF components
for any noisy data. The statistical test method shows excellent consistency with the
Monte Carlo test.

The a priori test method based directly on the above results was applied to the
SOI. The results are consistent with traditional spectral analysis: the components
of inter-annual time-scale are statistically significant. An a posteriori test method is
also proposed by taking advantage of that fact that the IMFs are more effective in
isolating physical processes of various time-scales than a usual Fourier component.
These results demonstrated that our test methods are valid and effective.
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