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Abstract 

In this paper, the compuration of a one-dimensional 
FFT on a e-dimensional torus multicomputer is ana- 
lyzed. Different approaches are proposed which &ffer 
in the way they use the inierconnection network. The 
first approach is based on the multidimensional index 
mopping technique for  the FFT computation. The sec- 
ond approach starts from a hypercube algorithm and 
then embeds the hypercube onto the torus. The third 
approach reduces the communication cost of the hyper- 
cube algorithm by pipelining the communicarion 
operations. A novel methodology to pipeline the com- 
munication operations on a torus is proposed. Analyti- 
cal models are presented to compare the different 
approaches. This comparison study shows that the bed 
approach depends on the number of dimensions of the 
torus and the communication start-up and transfer 
times. The analytical models allow us to select the most 
efficient approach for the available machine. 

1. Introduction 

Distributed memory multiprocessors with an inter- 
connection network based on point to point links (mul- 
ticomputer for short) is a very suitable architectural 
model for massively parallel computers. Among differ- 
ent interconnection topologies, multidimensional 
meshes and ton are particularly attractive since they are 
scalable. Figure 1 illustrates such interconnection topol- 
ogies. Some of the major supercomputer manufacturers 
have recently launched multicomputers with a mesh or 
a torus interconnection network (i.e., the CrayT3D sys- 
tem or the Convex SPP). 

Programming a multicomputer is not easy. Not only 
computations but also data must be distributed among 
processors. There are several programming models that 
can be used on this type of computer archtecture. One 
of them is the sequential programming model. In this 
case the programs are written in a sequential form and 
the parallelizing compilers perform the distribution 
among the processors. Some times the parallelizing 
compilers are helped by user directives, like in High 
Performance Fortran (HPF)[lO], that facilitate the com- 
pilation task. On the other hand, a parallel program- 
ming model can be used. Tivo parallel programming 
models have been proposed: the virtual shared memory 

model and the message passing model [81. On the vir- 
tual shared memory model the programmer regards the 
distributed memory as shared and he is not responsible 
for the data distribution and management but the sys- 
tem hardwadsoftware. In this case, techniques for 
reducing and tolerating memory latency are crucial in 
order to obtain a good efficiency of the system [5]. In 
the message passing model, the communication 
between processors must be made explicit in the pro- 
gram. The programmer may use message passing inter- 
faces like Parallel Virtual Machine (PVM) [12] or 
Message Passing Interface (MPI) to do this work [14]. 
Since in this model the data distribution and manage- 
ment is a responsibility of the programmer, it is widely 
accepted that message passing programs are more diffi- 
cult to write than virtual shared memory programs. 
However, good message passing programs usualiy 
obtain better performance than good virtual shared 
memory programs. 
This paper focuses on the message passing model. 

Figure 2 shows the basic ideas behind this program- 
ming model. The computations and data are mapped 
onto processes. Processes have direct access only topri- 
vate data Non private data are accessed through mes- 
sage passing. Since accessing data stored in remote 
memory modules can be very costly in time, data distri- 
bution and management are key issues in the design of 
message passing algorithms with a low communication 
overhead on a multicomputer. 

l h s  paper focuses on the problem of computing the 
Fast Fourier Transform (Fa) on a multidimensional 
tom multiprocessor. The FlT is the computational ker- 
nel of many scientific applications, and therefore, an 
efficient approach to compute it is crucial for such 
applicatim. 

4 b) 
Figure 1: Scalable interconnection topologies: 
(a) 2-d mesh and (b) 2-d torus. 
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Figure 2 Message Passing Model. 

Different algorithms for computing a onedimen- 
sional FFT on a multi&mensional torus are evaluated in 
this paper. These algorithms are based on a mixture of 
well-known techniques and new schemes proposed by 
the authors. The algorithms are equivalent in terms of 
computing cost and load balancing but differ in the way 
they use the communication bandwidth offered by the 
interconnection topology. 

Three different approaches to compute the FFT are 
considered. The first one is based on the multihen- 
sional index mapping techque to compute the FET 
[l]. The resulting parallel algorithm can be easily 
mapped onto a multidimensional torus. The second 
approach starts from a parallel implementation of the 
radix-2 Cooley-Tukey algorithm for computing the FlT 
121. This parallel algorithm uses a hypercube comuni- 
cation topology and it is mapped onto a multidimen- 
sional torus by using the xor embedding of hypercubes 
onto tori, which has been proposed in [3,4]. The third 
scheme makes use of the same techniques as the second 
one but in addtion it pipelines the communication 
operations in order to reduce the communication cost. 

The evaluation of the different approaches is carried 
out by means of analytical models of the algorithms and 
the archtecture. Only the communication component of 
the parallel algorithms is evaluated and compared, since 
the algorithms have the same amount of computation 
and equally load balanced. 

The rest of this paper is organized as follows. Section 
2 reviews the FFT algorithm. Three different 
approaches to compute the FET on a torus are presented 
in section 3. Section 4 develops analytical model for the 
three approaches and presents some performance fig- 
ures for several particular cases. The main conclusions 
of this study are drawn in section 5 .  

2. The Fast Fourier 'Ikansform (FFT) 

The term FFT is used to refer to a class of algorithms 
to compute the Discrete Fourier Transform (DFT). 
Given a sequence {x,] of N complex numbers, its one- 
dimensional DFT is a sequence [X,) of the same size 

FFT 

N2 

U N  
DFT of every column. 

Multiply by twiddle factors. 

DFT of every row. 

Figure 3 Multidimensional index mapping (decimation 
in frequency). 

defined as: 
n 

-J2 - ti- 1 

X, = ;wN a e ;k = O...N+ 
n - 0  

This expression can be regarded as a matrix by vector 
multiplication. For instance, in the case of N=4 it can 
be stated as: 

From this statement of the problem it is easy to see 
that the direct computation of the DFT requires O(Nz) 
complex additions and multiplications. A FFT alge 
rithm reduces this amount of computation through the 
use of the multidimensional index mapping t d q u e  
[l]. There are two strategies for applying t h i s  tech- 
nique: either decimation in fresuency or decimation in 
time. Since both require the same amount of computa- 
tion cost and have almost the same dependency graph, 
this paper considers only decimation in frequency. 

Figure 3 shows graphically the multidimensional 
index mapping for the particular case of a twedimen- 
sional mapping. The original input vector (length N) is 
arranged as aNI-by-N2 matrix (N=NIxN2). The output 
sequence can be obtained through the following steps: 

a) Compute the D R  of the N2 columns of the matrix 
(each DlT has length NI). 

b) Multiply element ( i j ]  of the matrix by WNv (prod- 
ucts by twiddle factors). 
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Figure 4 A rad~x-2 Cooley-Tukey FFT of length 16 
(decimation in frequency). 

c) Compute the DFT of the NI rows of the matrix 
(each DFT has lengthN2). 

In this way, the amount of computation is reduced to 
O(N(N1 +N2+1)). 

'Ihe amount of computation can be further reduced if 
the same technique is applied to compute the DFT of 
each indwidual row or column. I f N  is a power of 2 and 
the techque is recursively applied until the problem is 
reduced to compute DFTs of size 2 (butterflies), the 
resulting algorithm is known as the radix-2 Cooley- 
Tukey algorithm, wluch is illustrated in figure 4. This 
algorithm requires O(N log N) operations. More details 
about the radix-2 Cooley-Tukey algorithm can be found 
in [2]. 

3. Computing the FFT on a Torus 

In this section three &fferent approaches to compute 
the one-dimensional FFT of length N=2" on a cdmen- 
sional torus are presented. The particular case of a ring 
(one-dimensional torus) is considered first since it will 
be the main buildmg block for the general case. 

3.1 Parallel algorithms for a ring 

Two different approaches for the parallel computa- 
tion of the FFT are proposed below. A ring with P=2d 
nodes is assumed for the rest of this section. 

2" 1 7 

a) DFT of wlumns by radix- 
two holey-Tukey FFT. 

b) Product by twiddle factors. 
c) Matrix transposition (Com- 

munication is needed). 
d) DFT of rows by radix-Wo 

Cooley-Tukey FFT. 

Figure 5: Approach A on a ring of 4 processors 

Approach A 
The original input sequence is arranged as a 2"/2-by- 

2d2 matrix (assume n even), following the two-dimen- 
sional index mapping technique. This matrix is distrib- 
uted by columns among the nodes of the ring. The 
parallel algorithm is shown in figure 5 for the particular 
case of P=4. Steps (a) and @) (DFT of columns and 
products by twiddle factors) can be done in parallel 
without any communication among nodes. Before step 
(d) (DFT of rows) the matrix is transposed. Tbis is the 
only communication required by the algorithm, since 
after the transposition, the DJT of the rows can be done 
again in parallel without any communication. A simple 
approach (among others) for disaibuting the columns 
the 2"'2-by-2d2 matrix is to perform a cyclic data distri- 
bution of the original input vector on the ring (e$zxnent i 
of the input vector is placed in node (i mod 2 ) of the 
ring). Notice that other data distribution schemes are 
also possible. For instance, consecutive columns of the 
matrix can be assigned to every node of the ring. The 
cyclic data distribution scheme has been chosen since it 
will be the required scheme when considering the gen- 
eralization of approach A for c-dimensional tori. 

To minimize the communication time of this 
approach, the matrix transposition is perfomed in an 
optimal way. As it is shown in figure 6, each processor 
of the ring has to send a part of each of its columns to 
every node of the ring. As an example, node 3 in figure 
6 has to send blocks 0 to 2 to the left in the ring and 
blocks 4 to 7 to the right. Block 3 remains in the node. 
 he data to be sent to the zd-' processors to the left is 
grouped into a single message and the same is done 
with the data that is to be sent to the zd-'-l processors to 
the right. "I, each node sends two messages in paral- 
lel, in opposite directions of the ring. When a processor 
receives a message it extracts the data that was directed 
to it and forwards the remaining data, agein in a single 
message, to the next processors. As an example, node 2 
in figure 6 extracts block 2 from the message received 
through the right link and forwards the rest of the mes- 
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Figure 6: Efficient matrix transposition for approach A. 

sage to the left. After communication steps, all the 
nodes have received all their data and the transposition 
is completed. 
Approach B 

The second approach consists in computing the 
radix-2 Cooley-Tukey FET by using an algorithm with 
a hypercube topology and then embedding the hyper- 
cube onto the ring. Figure 4 shows how the radix-2 
Cooley-Tukey FFT of length I6 can be mapped onto a 
hypercube of P= 2d = 4 nodes. The input sequence is 
distributed using a cyclic scheme (xi is allocated to 
node i mod P). The code executed by every node is: 

doi=O, n-d-1 
compute 2"-d-1 b u t t e r f l i e s  
perform 2n-d-1products by twiddle fac tors  

and do 
do i = O ,  d-2 

exchangehalf  o f t h e l o c a l d a t a w i t h  
n e i g h b o r i n d i m e n s i o n i  

compute 2n-d-1 b u t t e r f l i e s  
perform 2n-d-1 products by twiddle fac tors  

and do  
exchange h a l f  of t h e  r e s u l t s  with neighbor 
indimensiond-1 
compute 2"-*-l b u t t e r f l i e s  

The above algorithm is known as bi-section in [7] or 
i-cycles in 1131. We can see that the parallel algorithm 
consists of d stages. The first stage perfom n-d itera- 
tions of the lTT algorithm and it does not require any 
communication. In each of the last d-1 stages each node 
communicates with one of its d neighbors in the hyper- 
cube. Figure 4 shows whch operations are executed by 

I+ I! 
m - (m6.1, m e a  ..., ml, mol 

Figure 7: XOR embedding of a 8-node hypercube on 
a ring. 

each node and when communication between neighbor 
nodes is required. Note that not all the nodes must per- 
form 2n-d-i products by twiddle factors in every stage, 
since some twiddle factors are equal to I .  Only nodes I 
and 3 in the example execute exactly the code given 
above. 

The hypercube algorithm can be executed on the ring 
by embedding the hypercube graph onto the ring graph. 
The embedding function determines in which node of 
the ring each node of the hypercube is mapped. When 
neighbor nodes of the hypercube are not mapped onto 
neighbor nodes on the ring, messages between them are 
routed through intermediate nodes. A good embedding 
must keep close in the ring those nodes which are 
neighbors in the hypercube. 

Different approaches have been i d e n ~ e d  for embed- 
dmg hypercube algorithms onto meshes and tori [9], 
[U]. In [3,41 the xor embedding is proposed, which is 
proved to be optimal for rings. Therefore, we use this 
embedding to execute the above hypercube algorithm 
onto the ring. In the following, the xor embeddmg is 
defined. 

Let H be the graph which represents a hypercube of 
zd nodes and T be the graph representing the ring with 
the same number of nodes. Assume that the vertices of 
Tare labelled from 0 to 2'-1 clockwise. Let (nd-I, nd.2, 
..., n l , q )  be the label (in binary code) of vertex n in H. 
This vertex is mapped onto vertex m = fxo,(n) in T, 
whose label in binary code (m d.i,...p+,) is: 

mi = n.  , i E [0, d-I], i f d-2 
md.2 = XOR (nd.1. nd.2) 

where XOR (u,b) is the exclusive-or of bits U and b. Fig- 
ure 7 shows an example for d=3. 

Note the simplicity of functionf,,.(n). This function, 
which is used very frequently for routing messages dur- 
ing the execution of the FET algorithm, consists of sim- 
ple bit operations and its computational cast is 
negligible. 
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3.2 Parallel algorithms for a c-dimensional 
torus. 

In this section, approaches A and B are generalized 
for a c-dimensional torus. For clarity, the two-dimen- 
sional case is briefly considered fint and then the gen- 
eral form is presented. 
Approach A 

If we have a 2d12-by-2dn two-dimensional torus, the 
input vector is arranged as a 2"'?--by-2"'?- matrix. This 
matrix is distributed among the nodes of the torus so 
that every row is placed in a ring along one dimension 
of the torus and every column is placed in a ring along 
the other &mension of the tom.  This can be achieved 
by using a bidmensional cyclic data distribution 
scheme (element ( i  3 of the matrix is stored in node 

is even it is possible to compute the DFT of each col- 
umn of the matrix using the approach A described in 
the previous section to compute a DFT on a ring. After 
the product by the twiddle factors, the DFT of each row 
can be computed using again approach A for rings. 

To generalize approach A for a c-dimensional torus, 
the input vector must be arranged as a c-dimensional 
matrix and distributed using a c-dimensional cyclic 
scheme. Assuming d c  even, the DFT in each dimen- 
sion is computed following the approach A for rings. 
Approach B 

The hypercube algorithm to compute the FFT has the 
input sequence distributed in cyclic scheme (element i 
is allocated to node i mod P) .  Then, the hypercube algo- 
rithm is mapped onto the c-dimensional t o m  using the 
general form of the xor embeddiug, which maps a d- 
dimensional hypercube onto a (2k1,2H,...,2s c-dimen- 
sional torus such that kl+k2+ ...+ kc = d. It is described 
below. 

Given a positive integer x, let x(i) denote the i-th bit 
of the binary representation of x. The least sigrtlficant 
bit is considered to be the 0th bit. We also define Kj in 
the following way. K,=O, and for every I <jS&l we 
have that: 

( i  mod Za2J mod 2 A2 ) of the torus). Assuming that n12 

j -  I 

Kj = ti 
i -  1 

m' 

Let H be the graph which represents the dcube and T 
be the graph which represents the torus.Then, vertex n 
of H is mapped onto vertex (mlm2, ... ,mC)=fxor(n) in T 
as follows: 

m,{i) = n(i+Kj) 
m,ikj - 2 )  = XOR (n(Kj+l- 1). n(K,+l- 2)) 

Figure 8 shows an example of embedding a @-node 

i E [O, k, - I ] .  i * kj - 2 

hypercube onto a (8,8) two-dimensional tom.  

m" m' 

Figure 8: XOR embedding of a @-node hypercube 
onto a two dimensional torus. 

3.3 A Preliminary Comparison Between 
Approaches A and B 

In general, approach A is expected to outperform 
approach B since the former uses more efficiently the 
interconnection network of the tom (both approaches 
are equally good in terms of load balance). In approach 
A, communication is mquired only to transpose a 
matrix in a ring. Such matrix transposition is performed 
using at the same time two out of the 2c links of the 
tows. 

On the other hand, in each communication step of the 
hypercube algorithm (approach B), every node sends a 
message to one of its neighbors. Therefore, every node 
sends a single message along one of its 2c llnks in the 
torus, makng a poorer use of the interconnection net- 
work than approach A. In the next section a modifica- 
tion of the hypercube algorithm is proposed which 
allows for a better utilization of the interconnection net- 
work. 

3.4 Pipelining Hypercube Communication 
(Approach C) 

Pipelining the communication operations can reduce 
the communication cost of hypercube algorithms. The 
basic idea is to change the ordering of computations in 
such a way that every node can send, in each iteration, 
several messages in parallel, along different dimensions 
of the hypercube. The communication pipelining tech- 
nique was used in [71 to improve the efficiency of the 
FFT computation on the CM-2. In this paper we will 
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use a slightly Merent scheme for communicath pipe- 
lining, which takes into account that the hypercube 
algorithm will be finally executed on a tom.  

The communication pipelining technique can be 
applied to hypercube algorithms in which the code exe- 
cuted by every process p has the following structure. 

do i = O ,  K-1 
compute xpl (1. . N )  
exchange xpl with neighbor i n  
dimension d, 

anddo 
where di is one of the dimensions of the hypercube 

The code consists in K steps (K is equivalent to the 
& m a i o n  of the hypercube algorithm for the particular 
case of the FIT), each one composed of a computation 
phase and a communication phase. In the computation 
phase, N data items are computed. These data are repre- 
sented by vector d ’ ~ I . . N ) ,  After the computation step 
there is a communication step in which the computed 
data xPi are exchanged with one of the neighbors in the 
hypercube. 

To apply communication pipelining, it is also 
required that the computation of xi can be written as fol- 
lows: 

(di E [06-11). 

do j=1, N 

anddo 
xpi (j) = f (xq,_, ( j) , local -data)  

where p and q are neighbor processes. This means that 
the computation of d’,fj) is a function of fli.,O) (which 
was computed in step i-I by neighbor in dimension 
di.,), and possibly some local data 

The idea of communication pipelining is based on the 
fact that, in order to compute xPi(l) it is not necessary to 
receive the whole vector Pi., from the neighbor in 
dimension di., but simply element fl i . , (I) .  Therefore, 
every vector xi can be decomposed into B packets. In a 
first iteration every node computes the first packet of x1 
and sends the result to neighbor in dimension d,. In a 
second iteration, every node comptes the second 
packet of xl and the first packet of xz (it has all the 
informaticm required to perform these computations). 
At the end of this second iteration, each node sends in 
parallel two messages, one of them to neighbor in 
dimension dl containing the second packet of x,, and 
the other one to neighbor-in dimension d2, containing 
the first packet of x2. Prcceeding in this way, at the end 
of the h r d  iteration every node can send three mes- 
sages in parallel. In the steady state, at the end of every 
iteration, in case of B>d each node sends d messages of 
length NIB through the d different links and in case of 
B<d each node sends B messages of length NIB through 
B different links. In any way, the communication 
bandwidth of the hypercube is used better than in 
approach B. 

(a) 
0 0,l 0,1,2 0,1,2 a 1 2  1,2 2 c-Jf.lcETJqf~..pjq#&c. 

’) - Communication 
0 Computation 

Ffgure 9 An example of communication pipelining 
when B>d (d=3). (a)Hypembe algorithm without 
communication pipelining. (b) Hypercube algorithm 
with communication pipelining. 

- 
Figure 9 shows the basic idea of communication 

pipelining on hypercubes when B>d. Figure 9.a repre- 
sents the execution of the hypercube algorithm without 
communication pipelining for d=3. M e r  the computa- 
tion phase of iteration i ,  there is a exchange of infonna- 
tion along dimension i of the hypercube. The size of the 
message sent in every iteration is N=2”-d-’ complex 
numbers. Figure 9.b shows how the same algorithm is 
executed with communication pipelining. The compu- 
tation in every iteration is decomposed into B blocks. 
Mer the computation of the first block of the first com- 
putation phase, a first data exchange can be carried out 
along dimension 0. The length of the message is NIB. In 
the second iteration of the pipelined algorithm, the sec- 
ond block of the first computation phase and the first 
block of the second computation phase can be done. At 
the end of the iteration, two messages of length NIB can 
be sent in parallel along dimensions 0 and I of the 
hypercube. In general, the pipelined algorithm has d-1 
iterations to load the pipeline (load phase). In iteration i 
of the load phase, data is sent in parallel along i dimen- 
sions of the hypercube. The next B-d+I iterations con- 
stitute the steady phase. At the end of each iteration of 
the steady phase, d messages are sent in parallel along d 
dimensions of the hypercube. Finally, there are d-I iter- 
ations to unload the pipeline. In the unload phase, the 
number of messages sent in parallel decreases in every 
iteration. 

Figure 10 shows the idea of communication pipelin-’ 
ing on hypercubes when B<d. Figure 10.a represents 
the execution of the hypercube algorithm without com- 
munication pipelining but this time for d=6 and B=3. 
Figure 10.b shows how the same algorithm is executed 
with communication pipelining. Now there are B-I iter- 
ations to load the pipeline. In iteration i of the load 
phase, data is sent in parallel along i dimensions of the 
hypercube. The next d-B+I iterations constitute the 
steady phase. At the end of each iteration of the steady 
phase, B messages are sent in parallel along B different 
dimensions of the hypercube. Finally, there are B-1 iter- 
ations to unload the pipeline. 
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0 Computation 
Figure 10: An example of communication pipelining 
when E<d (d=6). (a)Hypercube algorithm without 
communication pipelining. (b) Hypercube algorithm 
with communication pipelining. 

A pipelined hypercube algorithm can be executed on 
a c-dimensional torus using the xor embedding. How- 
ever, every node of the torus will be able to send at 
most 2c messages in parallel. Therefore, it does not 
make any sense that E > 2c. On the &er hand, for 
communication pipelining to be effective, every node 
must have any group of E consecutive neighbors in B 
different directions of the tours, so that it is possible to 
send E messages in parallel. This cannot be achieved in 
the case of a ring since, when using xor embed-, 
there is always a node which has all its neighbors 
except one in the same direction of the ring. However, 
communication pipelining can be used across rings and, 
therefore, it is useful when 01. In particular, the xor 
embedding can easily map every group of E consecutive 
neighbors along the c different dimensions of the torus. 
As an example, in figure 8 the xor embedding has 
mapped the neighbors in dimensions 0 , l  and 2 along 
the horizontal dimension of the torus and the neighbors 
in dimensions 3 , 4  and 5 along the vertical dimension. 
Through a simple node renaming, neighbors in dimen- 
sions 0, 2 and 4 can be mapped along the horizontal 
dmension and neighbors in dmensions I ,  3 and 5 
along the vertical dimension. In this way every group of 
2 consecutive neighbors are mapped along different 
dimensions of the torus. 

?herefore, we will take E=c. The resulting algorithm 
(xor embedding with communication pipelhung) will 
be called in the following sections approach C. In gen- 
eral, approach Cis expected to have a lower communi- 
cation cost than approach A when c is greater than 2. 

4. Evaluation 

In t h ~ s  section, the three approaches described in pre- 
vious sections are evaluated. Only the communication 
component of the algorithms is eveluated and compared 
since the computation cost is the same for all three 
approaches. To carry out the evaluation, an analytical 
model is developed first for each algorithm. Using these 

analytical models, some performance figures are given 
for some particular cases. 

To build an analytical model for the cost of the com- 
munication component of the algorithms we assume 
that the time required to send a message consisting in m 
real data items to a neighbor node in the torus is: 

Tsup + m x Te 
where Tsup is the start-up time and ?'e is the transmis- 
sion time per real data item. For sending a message to a 
non neighbor node. a store-and-forward scheme is 
aSSUlDed. 

Again, the case of a ring is considered before analys- 
ing the general case. 

4.1 Analytical models for the ring 

Let N=2" be the size of the input sequence and P=2d 
the number of nodes of the ring. Analytical models for 
approaches A (two-dimensional index mapping) and B 
(xor embedding) are developed below. As shown 
before, approach C (xor embedding with communica- 
tion pipelining) can only be applied for higher dimen- 
sionality tori. 
Approach A 

The communication component of the algorithm is 
due to the matrix transposition. This matrix transposi- 
tion is carried out (as described in section 3.1) in 2 d - I  
steps. In step i every node receives two messages con- 
taining 2"'-i+I and 2"'-i blocks of data, each block 
containing 2"'2d-by-2"2d complex numbers, takes one 
block from each message and sends the rest of both 
messages to its neighbors, again in parallel. 

Talang into account that, when sending two messages 
in parallel, only the cost of the longest one must be con- 
sidered. ?he communication cost for this algorithms 
can be modelled as follows: 

- 

zd - I 

TcomA= [Tsup+ ( 2 d - l - i + l )  (2"-Zd*' )Te]  I 
i -  1 

1 Te = Zd- Tsup + (2" - + 2" - d -  

Approach E 
In iteration i of the hypercube algorithm, each node 

sends a message containing 2n-d-' complex numbers to 
its neighbor along dimension i of the hypercube. When 
using the xor embedding, neighbor along dimension i is 
at a distance 2' if i EI0.d-21 or at a distance 2d-2 if 
i=d-I. Therefore, the communication cost can be mod- 
elled as follows: 

1 3 7  



As expected, from the above models it is evident that 
approach A o u ~ o n n s  approach B, The start-up Cost 
in approach A is 2/3 of the start-up cost in approach B. 
Moreover, the transmission cost in approach A is over 
1/3 of the transmission cost in approach B. 

4.2 Analytical models for the general case 

The analytical models for the three approaches in the 
general case are given now. Assume we have to com- 
pute a FFT of length N=2" on a square c-dimensional 
torus of p=zd nodes (zdlC nodes in every dimension). 
Approach A 

As described is section 3.2., data is &stributed by fol- 
lowing a c-dimensional index mapping and a c-dimen- 
sional cyclic data distribution scheme. In each of the c 
steps of the algorithm, FFTS of length 2"" have to tx 
computed on rings of size 2d'c. ~n particular, every ring 
computes 2("-d~c-1yc FFTs of length 2"'. Each of these 
FFTs is computed following approach A for rings. 
However, these FETs are computed in an interleaved 
way, that is, after performing steps (a) and (b) of 
approach A for each FFT (see section 3.1) all the matri- 
ces are transposed simultaneously (step (c)). Then, step 
(d) is done for each m. In that way the communica- 
tion cmt of matrix transpositions is minimized since the 
nodes of the rings exchange long messages containing 
data of all the FFTs they are computing in every step, 
amortising the communication start-up cost. Talang 
into account the analytical model for the computation 
of a FFT of length 2" on a ring with 2d nodes, following 
approach A, the following general form can be derived: 

TcomA = c [ ~ ~ / ~ - ~ T s u ~ +  

T e ]  = + ( 2 " / ~ - 2 + 2 ( n - d ) / c - l ) 2 ( c - l )  ( n - d ) / c  

1 Te - c 2 d / c -  1 Tsup + 

(2n+  d / c  - d -  2 + 2 n  - d -  1 - 
Approach B 

When using the general form of the xor embeddmg, 
each n+e of the hypercube has c neighbors at a dis- 
tance 2' in the torus (iE LO, dc-21) and c more neigh- 
bors at a distance 2lC-'.  Since in each of the d 
communication steps every node sends a message of 
length Pdd, the analytical model for the general form is: 

Approach C 
The approach described in section 3.4 is considered 

now. In the general case, the hypercube algorithm is 
pipelined into c stages. The first c-I iterations of the 

algorithm constitute the pipeline load phase, the next 
d-c+I iterations are the steady phase and the last c-1 
iterations are the pipeline unload phase. 

In iteration i of the pipeline load phase, every node 
sends in pardel i messages of size 2 ( " - d k  AH these 
messages go to neighbor nodes in the torus. Therefore, 
the communication cost of the pipeline load phase is: 

y - d  
(c-1) (Tsup+-Te)  

In every iteration of the steady phase, every node 
sends c messages in parallel, along the c dimensions of 
the.tom. The size of every message is 2("4/c. III uus 
case, some of the messages must travel a longer dis- 
tance than others. Therefore, we take into account the 
cost of the message to be sent to the longest distance. 
The communication cmt for the steady phase is: 

p - d  

C 
(Tsup + -Te) = 

d / c - 2  

i -  1 

Finally, in the i line unload phase, all messages go 
to a distance 2d'-'The communication cost for this 
phase is: 

p - d  
( c  - 1) 2 d / c - 2  (Tsup + -Te) 

F'utthg all together, the communication cost for 
approach Cis: 

f - d  
Tcomc= [ ( 4 ~ - 1 ) 2 ~ ' ~ - ~ - c - l ]  (Tsup+-Te)  = 

= [ (4c - 1) 2d/c-z  - c ]  Tsup + 
(4c  - l)  2n + d / c  - d -  2 - 2n - d )  Te + (- 

From the above expressions we can see that approach 
A is always better than B as expected. For c-dimen- 
sional ton with c =2 or c=3, approach C may outper- 
form approach A, in particular when d is low (a small 
number of nodes). When c > 3, approach C may mtper- 
form approach A for any value of d. However, the pre- 
vious conclusions are affected by the value of Tsup and 
Te. When the cmt of the start time is increased in rela- 
tion to the transfer time, approach C is most degraded, 
especially for small problems (small value of n), 

4.3 Performance figures 

Based upon the previous modeis, some performance 
figures are presented in this section. To that purpose, 
two different scenarios are considered. The first one 
assumes Tsy, = 4 Pec and Te =5 Pet. These values 
are close to those of the Transputer T800 processor, 
which is a very suitable processor for the implementa- 
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tion of ton [6]. Note that, since communication in the 
T800 is highly optimized, the value of Tsup is quite low. 
On the other hand, the value of Te is relatively high 
since the point-to-point links are serial. The second sce- 
nario assumes a higher T s u p r e  ratio: Tsup = 40 Pec 
and Te =5 psec (Notice that the relative performance 
of the different approaches depends only on the ratio 
Tsupme and it does not depend on the concrete values 
that each one of the factors takes). 

’Ihe performance of the three previously presented 
approaches is compared in figure 11. This figure shows 
the communication cost of approaches B and C in rela- 
tion to the cost of approach A. The main conclusions 
that can be drawn from this figures are presented in the 
next section. 

5. Conclusions 

This paper presents two novel approaches to execute 
the FET on a t o m  multicomputers: a) approach B: a 
XOR embedding of a hypercube onto a t o m  and b) 
approach C: applying communication pipelining to the 
previous approach. Analytical models of their perfor- 
mance are developed and used to compare them with 
the standard approach based on a multidimensional 

. index mapping (approach A). The results, which are 
depicted in figure 11, can be summarized as follows. 

Although the three approaches require the movement 
of the same amount of data among processors, their per- 
formance is significantly different. 

Despite of the good properties of the XOR embed- 
ding [3,4], approach A is more effective than approach 
B because the former exploits more parallelism in the 
communication operations and in addition, it reduces 
the number of messages. 

When combining the XOR embedding with commu- 
nication pipelining (approach C), the start-up cost (term 
on Tsup) increases by a factor of about 2 in relation to 
approach A while the transmission cost (term on 7“) 
experiences a variation by a factor between Ilc - 112c2 
(when d is equal to c) and 4/c - 112 (when d is much 
greater than c). The net effect is that for a two-dimen- 
sional t om,  the best approach is in general approach A 
although approach C may be better for a very small 
number of nodes (d  close to c). For a three-&mensional 
t om,  the conclusions are similar, but now, approach C 
outperforms approach A for a wider range of values of 
d. However, from c greater than 3, approach C is the 
most efficient provided that Tsup is not extremely 
higher than Te. 
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Figure. U: Performance figures. S depicts the communication cost of approaches B (curves labelled with Sb) and C 
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