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Abstract

In this paper, the computation of a one-dimensional
FFT on a c-dimensional torus multicomputer is ana-
lyzed. Different approaches are proposed which differ
in the way they use the interconnection network. The
first approach is based on the multidimensional index
mapping technique for the FFT computation. The sec-
ond approach starts from a hypercube algorithm and
then embeds the hypercube onto the torus. The third
approach reduces the communication cost of the hyper-
cube algorithm by pipelining the communication
operations. A novel methodology to pipeline the com-
munication operations on a torus is proposed. Analyti-
cal models are presented to compare the different
approaches. This comparison study shows that the best
approach depends on the number of dimensions of the
torus and the communication start-up and transfer
times. The analytical models allow us to select the most
efficient approach for the available machine.

1. Introduction

Distributed memory multiprocessors with an inter-
connection network based on point to point links (mui-
ticomputer for short) is a very suitable architectural
mode] for massively parallel computers. Among differ-
ent interconnection topologies, multidimensional
meshes and tori are particularly attractive since they are
scalable. Figure 1 illustrates such interconnection topol-
ogies. Some of the major supercomputer manufacturers
have recently launched multicomputers with a mesh or
a torus interconnection network (i.e., the CrayT3D sys-
tem or the Convex SPP).

Programming a multicomputer is not easy. Not only
computations but also data must be distributed among
processors. There are several programming models that
can be used on this type of computer architecture. One
of them is the sequential programming model. In this
case the programs are written in a sequential form and
the paralielizing compilers perform the distnbution
among the processors. Some times the parallelizing
compilers are helped by user directives, like in High
Performance Fortran (HPF)[10], that facilitate the com-
pilation task. On the other hand, a parallel program-
ming model can be used. Two parallel programming
models have been proposed: the virtual shared memory
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model and the message passing mode] [8]. On the vir-
tual shated memory model the programmer regards the
distributed memory as shared and he is not responsible
for the data distribution and management but the sys-
tem hardware/software. In this case, techniques for
reducing and tolerating memory latency are crucial in
order to obtain a good efficiency of the system [5). In.
the message passing model, the communication
between processors must be made explicit in the pro-
gram. The programmer may use message passing inter-
faces like Paraliel Virtual Machine (PVM) [12]) or
Message Passing Interface (MPI) to do this work [14].
Since in this mode! the data distribution and manage-
ment is a responsibility of the programmer, it is widely
accepted that message passing programs are more diffi-
cult to write than virtual shared memory programs.
However, good message passing programs usually
obtain better performance than good virtual shared
MEMmOTy PIOgraims.

This paper focuses on the message passing model.
Figure 2 shows the basic ideas behind this program-
ming model. The computaticns and data are mapped
onto processes. Processes have direct access only to pri-
vate data. Non private data are accessed through mes-
sage passing. Since accessing data stored in remote
memory modules can be very costly in time, data distri-
bution and management are key issues in the design of
message passing algorithms with a low communication
overhead on a multicomputer.

This paper focuses on the problem of computing the
Fast Fourier Transform (FFT) on a multidimensional
torus multiprocessor. The FFT is the computational ker-
nel of many scientific applications, and therefore, an
efficient approach to compute it is crucial for such
applications.
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Figure 1: Scalable interconnection topologies:
(a) 2-d mesh and (b) 2-d torus.
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Figure 2: Message Passing Model.

Different algorithms for computing a one-dimen-
sional FFT on a multidimensional torus are evaluated in
this paper. These algorithms are based on a mixture of
well-known techniques and new schemes proposed by
the authors. The algorithms are equivalent in terms of
computing cost and load balancing but differ in the way
they use the communication bandwidth offered by the
interconnection topology.

Three different approaches to compute the FFT are
considered. The first one is based on the multidimen-
sional index mapping technique to compute the FFT
[1]. The resulting parallel algorithm can be easily
mapped onto a multidimensional torus. The second
approach starts from a parallel implementation of the
radix-2 Cooley-Tukey algorithm for computing the FFT
[2]. This parallel algorithm uses a hypercube communi-
cation topology and it is mapped onto a multidimen-
sional torus by using the xor embedding of hypercubes
onto tori, which has been proposed in [3,4]. The third
scheme makes use of the same techniques as the second
one but in addition it pipelines the communication
operations in order to reduce the communication cost.

The evaluation of the different approaches is carried
out by means of analytical models of the algorithms and
the architecture. Only the communication component of
the parallel algorithms is evaluated and compared, since
the algorithms have the same amount of computation
and equally load balanced.

The rest of this paper is organized as follows. Section
2 reviews the FFT algorithm. Three different
approaches to compute the FFT on a torus are presented
in section 3. Section 4 develops analytical model for the
three approaches and presents some performance fig-
ures for several particular cases. The main conclusions
of this study are drawn in section 3.

2. The Fast Fourier Transform (FFT)

The term FFT is used to refer to a class of algorithms
to compute the Discrete Fourier Transform (DFT).
Given a sequence {x,} of N complex numbers, its one-
dimensional DFT is a sequence {X,} of the same size
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Figure 3: Multidimensional index mapping (decimation
in frequency).
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This expression can be regarded as a matrix by vector
multiplication. For instance, in the case of N=4 it can
be stated as:

Xy w° w0 w0 w0 Xg
Xy _ (w0 w w?w|x
X (w0 w0 W %y
X |w° Wl Wl %

From this statement of the problem it is easy to see
that the direct computation of the DFT requires O(N%)
complex additions and multiplications. A FFT algo-
rithm reduces this amount of computation through the
use of the multidimensional index mapping technique
[1]. There are two strategies for applying this tech-
nique: either decimation in frequency or decimation in
time. Since both require the same amount-of computa-
tion cost and have almost the same dependency graph,
this paper considers only decimation in frequency.

Figure 3 shows graphically the multidimensional
index mapping for the particular case of a two-dimen-
sional mapping. The original input vector (length N) is
arranged as a N1-by-N2 matrix (N=N1xN2). The output
sequence can be obtained through the following steps:

a) Compute the DFT of the N2 columns of the matrix
(each DFT has length NJ).

b) Multiply element (i,j) of the matrix by W,¥ (prod-
ucts by twiddle factors).
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Figure 4: A radix-2 Cooley-Tukey FFT of length 16
(decimation in frequency).

¢) Compute the DFT of the NI rows of the matrix
(each DFT has length N2),

In this way, the amount of computation is reduced to
OW(NI+N2+1)).

The amount of computation can be further reduced if
the same technique is applied to compute the DFT of
each individual row or column. If N is a power of 2 and
the technique is recursively applied until the problem is
teduced to compute DFTs of size 2 (butterflies), the
resulting algorithm is known as the radix-2 Cooley-
Tukey algorithm, which is illustrated in figure 4. This
algorithm requires O(V log N) operations. More details
about the radix-2 Cooley-Tukey algorithm can be found
in [2].

3. Computing the FFT on a Torus

In this section three different approaches to compute
the one-dimensional FFT of length N=2" on a c-dimen-
sional torus are presented. The particular case of a ring
(one-dimensional torus) is considered first since it will
e the main building block for the general case.

3.1 Parallel algorithms for a ring

Two different approaches for the parallel computa-
tion of the FFT are proposed below. A ring with p=2¢
nodes is assumed for the rest of this section.

a) DFT of columns by radix-
two Cooley-Tukey FFT.

b) Product by twiddle factors.

¢) Matrix transposition {Com-
munication is needed).

d) DFT of rows by radix-two
Cooley-Tukey FFT.
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Figure 5: Approach A on a ring of 4 processors.

Approach A

The original input sequence is arranged as a 2™-by-
2"2 matrix (assume n even), following the two-dimen-
sional index mapping technique. This matrix is distrib-
uted by columns among the nodes of the ring. The
parallel algorithm is shown in figure 5 for the particular
case of P=4. Steps (a) and (b) (DFT of columns and
products by twiddle factors) can be done in parallel
without any communication among nodes. Before step
(d) (DFT of rows) the matrix is transposed. This is the
only communication required by the algorithm, since
after the transposition, the DFT of the rows can be done
again in parallel without any communication. A simple
approach (among others) for distributing the columns
the 272.by-2"2 matrix is to perform & cyclic data distri-
bution of the original input vector on the ring (element /
of the input vector is placed in node (i mod 2°) of the
ting). Notice that other data distribution schemes are
also possible. For instance, consecutive colummns of the
matrix can be assigned to every node of the ring. The
cyclic data distribution scheme has been chosen since it
will be the required scheme when considering the gen-
eralization of approach A for c-dimensional tori.

To minimize the communication time of this
approach, the matrix transposition is performed in an
optimal way. As it is shown in figure 6, each processor
of the ring has to send a part of each of its columns to
every node of the ring. As an example, node 3 in figure
6 has to send blocks 0 to 2 to the left in the ring and
blocks 4 to 7 to the right. Block 3 remains in the node.
The data to be sent to the 297 processors to the left is
grouped into 2 single message and the same is done
with the data that is to be sent to the 2%/-1 processors to
the right. Then, each node sends two messages in paral-
lel, in opposite directions of the ring. When a processor
receives a message it extracts the data that was directed
to it and forwards the remaining data, again in a single
message, to the next processors. As an example, node 2
in figure 6 extracts block 2 from the message received
through the right link and forwards the rest of the mes-
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Figure 6: Efficient matrix transposition for approach A,

sage to the left. After 2%7 communication steps, all the
nodes have received all their data and the transposition
is completed.

Approach B

The second approach consists in computing the
radix-2 Cooley-Tukey FFT by using an algorithm with
a hypercube topology and then embedding the hyper-
cube onto the ring. Figure 4 shows how the radix-2
Cooley-Tukey FFT of length 16 can be mapped onto a
hypercube of P= 29 = 4 nodes. The input sequence is
distributed using a cyclic scheme (x; is allocated to
node i mod P). The code executed by every node is:

do i=0, n-d~1

compute 27 ! bhutterflies
perform 2" % ! products by twiddle factors
end do

do i=0, d-2

exchange half of the local data with
neighbor indimension i
compute 2" 9 ! putterflies
perform 2" %! products by twiddle factors
end do -

exchange half of the results with neighbor

in dimension d-1

compute 27 9! butterflies

The above algorithm is known as bi-section in [7] or

i-cycles in [13]. We can see that the paralle]l algorithm
consists of d stages. The first stage performs n-d itera-
tions of the FFT algorithm and it does not require any
communication. In each of the last d-1 stages each node
communicates with one of its & neighbors in the hyper-
cube. Figure 4 shows which operations are executed by
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Figure 7: XOR embedding of a 8-node hypercube on
aring.

each node and when communication between neighbor
nodes is required. Note that not all the nodes must per-
form 29 products by twiddle factors in every stage,
since some twiddle factors are equal to 7. Only nodes 1
and 3 in the example execute exactly the code given
above.

The hypercube algorithm can be executed on the ring
by embedding the hypercube graph onto the ring graph.
The embedding function determines in which node of
the ring each node of the hypercube is mapped. When
neighbor nodes of the hypercube are not mapped onto
neighbor nodes on the ring, messages between them are
routed through intermediate nodes. A good embedding
must keep close in the ring those nodes which are
neighbors in the hypercube.

Different approaches have been identified for embed-
ding hypercube algorithms onto meshes and tori [9],
[11]. In {3,4] the xor embedding is proposed, which is
proved to be optimal for rings. Therefore, we use this
embedding to execute the above hypercube algorithm
onte the ring. In the following, the xor embedding is
defined.

Let H be the graph which represents a hypercube of
2% nodes and T be the graph representing the ring with
the same number of nodes. Assume that the vertices of
T are labelled from 0 to 2%—1 clockwise. Let (na.7, ng.3,
...n1,Mg) be the label (in binary code) of vertex n in H.
This vertex is mapped onto vertex m = f, (n) in T,
whose label in binary code (my_;,...mp) is:

m;=n; le [0,d—.1],1¢d‘2

mg3 = XOR (ng, ngz)
where XOR (a,b) is the exclusive-or of bits a and b. Fig-
ure 7 shows an example for d=3.

Note the simplicity of function f,,(n). This function,
which is used very frequently for routing messages dur-
ing the execution of the FFT algorithm, consists of sim-
ple bit operations and its computational cost is
negligible.




3.2 Parallel algorithms for a c-dimensional
torus.

In this section, approaches A and B are genetalized
for a c~dimensional torus. For clarity, the two-dimen-
sional case is briefly considered first and then the gen-
eral form is presented.

Approach A

If we have a 2%2-by-2%7 two-dimensional torus, the
input vector is arranged as & 2™2-by-2™? matrix. This
matrix is distributed among the nodes of the torus so
that every row is placed in a ring along one dimension
of the torus and every column is placed in a ring along
the other dimension of the torus. This can be achieved
by using a bidimensional cyclic data distribution
scheme (element (&D of the matrix is stored in node
(i mod 242 j mod 2%'?) of the torus). Assuming that n/2
is even it is possible to compute the DFT of each col-
umn of the matrix using the approach A described in
the previous section to compute a DFT on a ring. After
the product by the twiddle factors, the DFT of each row
can be computed using again approach A for rings.

To generalize approach A for a c-dimensional torus,
the input vector must be arranged as a c-dimensional
matrix and distributed using a c-dimensional cyclic
scheme. Assuming n/c even, the DFT in each dimen-
sion is computed following the approach A for rings.
Approach B

The hypercube algorithm to compute the FFT has the
input sequence distributed in cyclic scheme (element i
is allocated to node i mod P). Then, the hypercube algo-
rithm is mapped onto the ¢-dimensional torus using the
general form of the xor embedding, which maps a d-
dimensional hypercube onto a (2,28, .. ,2%) ¢c-dimen-
sional torus such that k;+ky+...+k, = d. It is described
below.

Given a positive integer x, let x{i) denote the i-th bit
of the binary representation of x. The least significant
bit is considered to be the Otk bit. We also define K;in
the following way. K;=0, and for every I <j<c+I we
have that:

j-1
KJ = Eki

im]

Let H be the graph which represents the d-cube and 7
be the graph which represents the torus.Then, vertex n
of H is mapped onto vertex (m;m,,..m)=f,,{n) in T
as follows:

myfi} = n{i+K;) i€ [0,k-1],i%* k-2
my(k; - 2) = XOR (n(Kjs; - 1), n(Kjs - 2)

Figure 8 shows an example of embedding a 64-node

hypercube onto a (8,8) two-dimensional torus,
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Figure 8: XOR embedding of a 64-node hypercube
onto a two dimensional torus.

3.3 A Preliminary Comparison Between
Approaches A and B

In general, approach A is expected to outperform
approach B since the former uses more efficiently the
interconnection network of the torus (both approaches
are equally good in terms of load balance). In approach
A, communication is required only to transpose a
matrix in a ring. Such matrix transposition is performed
using at the same time two out of the 2¢ links of the
tours.

On the other hand, in each communication step of the
hypercube algorithm (approach B), every node sends a
message to one of its neighbors. Therefore, every node
sends a single message along one of its 2¢ links in the
torus, making a poorer use of the interconnection net-
work than approach A. In the next section a modifica-
tion of the hypercube algorithm is proposed which
allows for a better utilization of the interconnection net-
work.

3.4 Pipelining Hypercube Communication
(Approach C)

Pipelining the communication operations ¢an reduce
the communication cost of hypercube algorithms. The
basic idea is to change the ordering of computations in
such a way that every node can send, in each iteration,
several messages in parallel, along different dimensions
of the hypercube. The communication pipelining tech-
nique was used in [7] to improve the efficiency of the
FFT computation on the CM-2. In this paper we will




use a slightly different schere for communication pipe-
lining, which takes into account that the hypercube
algorithm will be finally executed on a torus.

The commumication pipelining technique can be
applied to hypercube algorithms in which the code exe-
cuted by every process p has the following structure.

do i=0, K-1

compute xP,(1..N)
exchange xP, with neighbor in
dimension d;

anddo
where d; is one of the dimensions of the hypercube
(d; € [0,8-1]).

The code consists in X steps (K is equivalent to the
dimension of the hypercube algorithm for the particular
case of the FFT), each one composed of a computation
phase and a communication phase. In the computation
phase, N data items are computed. These data are repre-
sented by vector #”{I..N). After the computation step
there is a communication step in which the computed
data »”; are exchanged with one of the neighbors in the
hypercube.

To apply communication pipelining, it is also
required that the computation of x; can be written as fol-
lows:

do j=1, N

=Py (1)
enddo
where p and g are neighbor processes. This means that
the computation of ¥ () is 8 function of x4; ;(j) (which
was computed in step i-1 by neighbor in dimension

d;.;), and possibly some local data.

The idea of communication pipelining is based on the
fact that, in order to compute X (1) it is not necessary to
receive the whole vector x9;; from the neighbor in
dimension d;.; but simply element x%; ;(I). Therefore,
every vector x; can be decomposed into B packets. In a
first iteration every node computes the first packet of x;
and sends the result to neighbor in dimension d;. In a
second iteration, every node computes the second
packet of x; and the first packet of x; (it has all the
information required to perform these computations).
At the end of this second iteration, each node sends in
parallel two messages, one of them to neighbor in
dimension d; containing the second packet of x;, and
the other one to neighbor in dimension d,, containing
the first packet of x,. Proceeding in this way, at the end
of the third iteration every node can send three mes-
sages in parallel. In the steady state, at the end of every
iteration, in case of B>d each node sends 4 messages of
length N/B through the d different links and in case of
B<d each node sends B messages of length N/B through
B different links. In any way, the communication
bandwidth of the hypercube is used better than in
approach B.

£ (qud(j), local_data)
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Figure 9: An example of communication pipetining
when B>d (d=3). (a)Hypercube algorithm without
communication pipelining. (b) Hypercube algorithm
with communication pipelining.

Figure 9 shows the basic idea of communication
pipelining on hypercubes when B8>d. Figure 9.a repre-
sents the execution of the hypercube algorithm without
communication pipelining for d=3. After the computa-
tion phase of iteration i, there is a exchange of informa-
tion along dimension i of the hypercube. The size of the
message sent in every iteration is N=2"%1 complex
numbers. Figure 9.b shows how the same algorithm is
executed with communication pipelining. The compu-
tation in every iteration is decomposed into B blocks.
After the computation of the first block of the first com-
putation phase, a first data exchange can be carried out
along dimension 0. The length of the message is N/B. In
the second iteration of the pipelined algorithm, the sec-
ond block of the first computation phase and the first
block of the second computation phase can be done. At
the end of the iteration, two messages of length N/B can
be sent in parallel along dimensions 0 and I of the
hypercube. In general, the pipelined algorithm has d-1
iterations to load the pipeline (load phase). In iteration i
of the load phase, data is sent in parallel along i dimen-
sions of the hypercube. The next B-d+1 iterations con-
stitute the steady phase. At the end of each iteration of
the steady phase, d messages are sent in parallel along d
dimensions of the hypercube. Finally, there are d-I iter-
ations to unload the pipeline. In the unload phase, the
number of messages sent in parallel decreases in every
iteration.

Figure 10 shows the idea of communication pipelin-
ing on hypercubes when B<d. Figure 10.a represents
the execution of the hypercube algorithm without com-
munication pipelining but this time for 4=6 and B=3.
Figure 10.b shows how the same algorithm is executed
with communication pipelining. Now there are B-/ iter-
ations to load the pipeline. In iteration / of the load
phase, data is sent in parallel along i dimensions of the
hypercube. The next d-B+I iterations constitute the
steady phase. At the end of each iteration of the steady
phase, B messages are sent in parallel along B different
dimensions of the hypercube. Finally, there are B-1 iter-
ations to unload the pipeline.
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Figure 10: An example of communication pipelining
when B<d (d=6). (a)Hypercube algorithm without
communication pipelining. (b) Hypercube algorithm
with communication pipelining.

A pipelined hypercube algorithm can be executed on
a c-dimensional torus using the xor embedding. How-
ever, every node of the torus will be able to send at
most 2¢c messages in parallel. Therefore, it does not
make any sense that B > 2c. On the other hand, for
communication pipelining to be effective, every node
must have any group of B consecutive neighbors in B
different directions of the tours, so that it is possible to
send B messages in parallel. This cannot be achieved in
the case of a ring since, when using xor embedding,
there is always a node which has all its neighbors
except one in the same direction of the ring. However,
communication pipelining can be used across rings and,
therefore, it is useful when ¢>1. In particular, the xor
embedding can easily map every graup of ¢ consecutive
neighbors along the c different dimensions of the torus.
As an example, in figure 8 the xor embedding has
mapped the neighbors in dimensions 0, Z and 2 along
the horizontal dimension of the torus and the neighbors
in dimensions 3, 4 and 5 along the vertical dimension.
Through a simple node renaming, neighbors in dimen-
sions 0, 2 and 4 can be mapped along the horizontal
dimension and neighbors in dimensions I, 3 and 5
along the vertical dimension. In this way every group of
2 consecutive neighbors are mapped along different
dimensions of the torus.

Therefore, we will take B=c. The resulting algorithm
(xor embedding with communication pipelining) will
be called in the following sections approach C. In gen-
eral, approach C is expected to have a lower communi-
cation cost than approach A when c is greater than 2,

4. Evaluation

In this section, the three approaches described in pre-
vious sections are evaluated. Only the communication
component of the algorithms is evaluated and compared
since the computation cost is the same for all three
approaches. To carry out the evaluation, an anaiytical
model is developed first for each algorithm. Using these
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analytical models, some performance figures are given
for some particular cases.

To build an analytical model for the cost of the com-
munication component of the algorithms we assume
that the time required to send a message consisting in m
real data items to a neighbor node in the torus is:

Tsup + mx Te
where Tsup is the start-up time and 7e is the transmis-
sicn time per real data item. For sending a message to a
non neighbor node, a store-and-forward scheme is
assumed.

Again, the case of a ring is considered before analys-
ing the general case.

4.1 Analytical models for the ring

Let N=2" be the size of the input sequence and P=2¢
the mumber of nodes of the ring. Analytical models for
approaches A (two-dimensional index mapping) and B
(xor embedding) are developed below. As shown
before, approach C (xor embedding with communica-
tion pipelining} can only be applied for higher dimen-
sionality tori.

Approach A .

The communication component of the algorithm is
due to the matrix transposition. This matrix transposi-
tion is carried out (as described in section 3.1} in 29/
steps. In step i every node receives two messages con-
taining 29-/-i+1 and 2%-; blocks of data, each block
containing 2"2-4-by-2%24 complex numbers, takes one
block from each message and sends the rest of both
messages to its neighbors, again in parallel.

Taking into account that, when sending two messages
in parallel, only the cost of the longest one must be con-
sidered. The communication cost for this algorithms
can be modelled as follows:

2d-l
Tcom, = ¥ [Tsup + @ -+ @ Y1) =
im]

=2 sup s (2" 24279 Yy,

Approach B

In iteration i of the hypercube algorithm, each node
sends a message containing 2" 9! complex numbers to
its neighbor along dimension i of the hypercube. When
using the xor embedding, neighbor along dimension i is
at a distance 2 if i €{0,d-2] or at a distance 297 if
i=d-1. Therefore, the communication cost can be mod-
elled as follows:

-2

rong= (5

2‘+2"“2) (Tsup+2""9Te) =
im O

= (327 ) Tsup+ (3-2""2-2""9 T




As expected, from the above models it is evident that
approach A outperforms approach B. The start-up cost
in approach A is 2/3 of the start-up cost in approach B.
Moreover, the transmission cost in approach A is over
1/3 of the transmission cost in approach B.

4.2 Analytical models for the general case

The analytical models for the three approaches in the
general case are given now. Assume we have to com-
pute a FFT of length N=2" on a square c-dimensicnal
torus of P=29 nodes (2% nodes in every dimension).
Approach A

As described is section 3.2,, data is distributed by fol-
lowing a c-dimensional index mapping and a c-dimen-
sional cyclic data distribution scheme. In each of the ¢
steps of the algorithm, FFTs of length 2/¢ have to be
computed on rings of size 2%, In particular, every ring
computes 2("4X<-1Ve FFTs of length 2"°. Each of these
FFTs is computed following approach A for rings.
However, these FFTs are computed in an interleaved
way, that is, after performing steps (a) and (b) of
approach A for each FFT (see section 3.1) all the matri-
ces are transposed simultaneously (step (c)). Then, step
(d) is done for each FFT. In that way the communica-
tion cost of matrix transpositions is minimized since the
nodes of the rings exchange long messages containing
data of all the FFIs they are computing in every step,
amortising the communication start-up cost. Taking
into account the analytical model for the computation
of a FFT of length 2" on a ring with 27 nodes, following
approach A, the following general form can be derived:

dse—1

Teomy=c[2 Tsup +

+ (2n/c—2+2(n-d)/c—1)2(c—l) (’l-d)/CTE] =

=C2d/c-lTSup+C(2n+d/c_d_2+2"_d-l) Te

Approach B

‘When using the general form of the xor embedding,
each node of the hypercube has ¢ neighbors at a dis-
tance 2' in the torus (i€ [0, d/e-2]) and ¢ more neigh-
bors at a distance 2%°Z2. Since in each of the d
communication steps every node sends a message of
length 274, the analytical mode] for the general form is:

/e~ 2 -
Tcomg = c(z" 2'+2d/°_2) (Tsup+2"'dTe)
i=0
(3¢-297"2 ¢y (Tsup +2" " %Te) =

= (3¢ 2% 2o o)Tsup4c(3-2"49/6-d-2_gn=dy 1,

Approach C
The approach described in section 3.4 is considered

now. In the general case, the hypercube algorithm is
pipelined into ¢ stages. The first ¢-/ iterations of the

algorithm constitute the pipeline load phase, the next
d-c+1 iterations are the steady phase and the last ¢-1
iterations are the pipeline unload phase.

In iteration i of the pipeline load phase, every node
sends in parallel i messages of size 2("%)c. All these
messages go to neighbor nodes in the torus. Therefore,
the communication cost of the pipeline load phase is:

n-d
(c=1) (Tsup+

Te)
c

In every iteration of the steady phase, every node
sends ¢ messages in parallel, along the ¢ dimensions of
the-torus. The size of every message is 2™%/c. In this
case, some of the messages must travel a longer dis-
tance than others. Therefore, we take into account the
cost of the message to be sent to the longest distance,
The communication cost for the steady phase is:

d/c=-2 ) 2n—d
1+ i L ad/c=2 =
( c 2 24¢c 2 (Tsup+ - Te)
i=1
dse-1 d/ n-d
= (1+c 2% ec 295722 2¢) (Tsup + Te)

<

Finally, in the /pigeline unload phase, all messages go
to a distance 2%¢%. The communication cost for this
phase is:

n-d
a/¢c-2

(c~1)2 (Tsup + 2 Te)

c
Putting all together, the communication cost for
approach C is:
n-d

d/c=2

Teome= [ (4c~1)2 -c—=1] (Tsup+

Te) =
c e)

d/c=2

= [(4c-1)2 =c)Tsup +

. ( (400' D n+dse-d-2 —2"dy7e
From the above expressions we can see that approach
A is always better than B as expected. For c-dimen-
sional tori with ¢ =2 or c=3, approach C may outper-
form approach A, in particular when d is low (a small
number of nodes). When ¢ > 3, approach C may outper-
form approach A for any value of d. However, the pre-
vious conclusions are affected by the value of Tsup and
Te. When the cost of the start time is increased in rela-
tion to the transfer time, approach C is most degraded,
especially for small problems (small value of n).

4.3 Performance figures

Based upon the previous models, some performance
figures are presented in this section. To that purpose,
two different scenarios are considered. The first one
assumes Tsup = 4 lsec and 7e =5 |lsec. These values
are close to those of the Transputer T800 processor,
which is a very suitable processor for the implementa-




tion of tori [6). Note that, since communication in the
T800 is highly optimized, the value of Tsup is quite low.
On the other hand, the value of Te is relatively high
since the point-to-point links are serial. The second sce-
nario assumes a higher Tsup/Te ratio: Tsup = 40 Jlsec
and Te =5 Llsec (Notice that the relative performance
of the different approaches depends only on the ratio
Tsup/Te and it does not depend on the concrete values
that each one of the factors takes).

The performance of the three previously presented
approaches is compared in figure 11. This figure shows
the communication cost of approaches B and C in rela-
tion to the cost of approach A. The main conclusions
that can be drawn from this figures are presented in the
next section.

5. Conclusions

This paper presents two novel approaches to execute
the FFT on a torus multicomputers: a) approach B: a
XOR embedding of a hypercube onto a torus and b)
approach C: applying communication pipelining to the
previous approach. Analytical models of their perfor-
mance are developed and used to compare them with
the standard approach based on a multidimensional
. index mapping (approach A). The results, which are
depicted in figure 11, can be summarized as follows.

Although the three approaches require the movement
of the same amount of data among processors, their per-
formance is significantly different.

Despite of the good properties of the XOR embed-
ding [3,4], approach A is more effective than approach
B because the former exploits more parallelism in the
communication operations and in addition, it reduces
the number of messages.

When combining the XOR embedding with commu-
nication pipelining (approach C), the start-up cost (term
on Tsup) increases by a factor of about 2 in relation to
approach A while the transmission cost (term on Te)
experiences a variation by a factor between /¢ - 112¢?
(when 4 is equal to ¢) and 4/c - 1/¢* (when d is much
greater than c). The net effect is that for a two-dimen-
sional torus, the best approach is in general approach A
although approach C may be better for a very small
number of nodes (d close to c). For a three-dimensional
torus, the conclusions are similar, but now, approach C
outperforms approach A for a wider range of values of
d. However, from c¢ greater than 3, approach C is the
most efficient provided that Tsup is not extremely
higher than Te.
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Figure 11: Performance figures. S depicts the communication cost of approaches B (curves labelled with Sb) and C
(curves labelled with Sc) divided by the communication cost of approach A.
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