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Abstract. The theory of multiresolution decomposition and wavelets is used to study
the effective properties of a thin elastic plate with surface mass density or stiffness het-
erogeneity, subjected to time-harmonic forcing. The heterogeneity possesses micro- and
macro-scale variations, and has a macroscale outer dimension. It is shown that the
microscale mass variation has practically no effect on the macroscale plate response,
whereas microscale stiffness variation can have a significant effect. We derive an effective
constitutive relation pertaining to a microscale stiffness variation. It is shown that it
is possible to synthesize classes of different stiffness microstructures that have the same
footprint on the macroscale component of the plate response. An effective, smooth, stiff-
ness heterogeneity associated with the classes is developed. The results are first derived
analytically and then supported by numerical simulations.

1. Introduction. A significant and fundamental problem at the intersection of me-
chanics and materials science is the accommodation of a heterogeneity that exists over a
broad range of length scales.

Two aspects of the problem are significant. The first is the task of describing the
heterogeneity itself. Improvements in instrumentation and automatic data collection
methods allow for a point-by-point description of a material substructure across a section
of a specimen, at resolutions that were unthinkable a short time ago. Faced with vast
amounts of data, the researcher requires signal processing algorithms for extracting that
information, which enables improved predictive capability of the behavior of material
specimens, and the design of materials microstructures. The decomposition of the total
variation in the point-by-point description, according to the length-scales on which the
variation can be observed is an effective strategy for the extraction of information.
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The second aspect of the problem of multiple length-scales is the task of separating
processes according to the scales on which they operate. A complexity in estimating the
response of material systems resides in the presence of multiple processes, all operating
simultaneously and on different length-scales. Due to an inherent nonlinearity in the
dependence of the response of material systems on measures of material heterogeneity,
as well as any nonlinearity in the individual operative processes, there is a highly compli-
cated across-length-scale coupling. Tools for addressing this across-length-scale coupling
are an important missing link for the systematic application of mechanics to materials
science.

The theory of a multiresolution decomposition using discrete orthogonal wavelets [3]-
[4] provides a new framework for describing variability which can be observed on a broad
range of length scales. Developed primarily by mathematicians and electrical engineers
interested in signal processing, signal compression, and signal communication [5], it is
this application of wavelets that translates most obviously for use in materials science.
The framework of a multiresolution decomposition can also be applied for separating
processes according to length-scales. While a less obvious application, it is this one that
is potentially the more far-reaching in the context of mechanics and materials science. It
is this application that motivates the reported study.

The specific experiment addressed applies to the dynamical response of a thin, lin-
early elastic plate containing a local region of material property variation. Multiple scales
defined by the material variation consist of a macroscale, defined by the extent of the
region containing the heterogeneity, and a microscale, defined as a small fraction of the
macroscale (say to ^j). The continuous material property variation is accepted as
observable on both the macroscale and the microscale. A discussion of an experiment's
length scales is incomplete without consideration of those of the problem forcing. It is
convenient to discuss the problem forcing in terms of the plate response that would be ob-
tained in the absence of the local region of heterogeneity; i.e., in terms of a homogeneous
background plate. We accept a plate forcing such that the homogenous background plate
response, in the vicinity of the local region of heterogeneity, is observable only on the
macroscale.

Intuitively, the local region of heterogeneity introduces two changes in the homoge-
neous background plate response. One change refers to modifications of the macroscale
response variation of the homogeneous background plate, which can also be observed
on the macroscale, and the second is the addition of a response variation that can be
observed on the microscale. Because the interaction of the plate response and the mate-
rial heterogeneity is inherently nonlinear, even for a theory of plates that is classified as
linear, there exists an across-scale-coupling by which the modifications to the macroscale
response of the plate depend on both the macroscale and the microscale heterogeneity.
W'hat might be termed the "composite materials" problem refers to relating changes to
be observed in the macroscale response of the plate, occasioned by the presence of the
local region of multiscale heterogeneity. This is the motivating problem of the reported
study.

The literature of the micromechanics of composite materials, to which the present
paper is a contribution, is extensive. To set a context, in a more commonly addressed
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problem the region of heterogeneity extends over the entire domain of the plate and the
continuous material property variation is accepted as observable only on a microscale.
The "specimen" macroscale, of the above articulation, is accepted as unboundedly large.
A finite "experiment" macroscale is provided by the problem forcing. As suggested
above, the problem forcing is conveniently described by what would be the plate response
in the absence of the variation in the material property field. Further, for the more
commonly addressed micromechanics of composite materials problem, this background
plate response is described as a propagating plane wave. On the condition that the
wavelength of this background plane wave is large compared to the material microscale,
one can show that the macroscale component of the plate response in the presence of
the material microscale, is also described by a propagating plane wave. The prediction
problem is to relate the parameters of this modified plane wave to a description of the
material microscale. The modified macroscale component of the plate response can be
associated with the response of an "effective" homogeneous plate.

In contrasting the more commonly addressed "composite materials" problem with the
generalization of the present study, the most significant feature would be the coupling
effects of material heterogeneity observable on the macroscale and on the microscale. The
elimination of macroscale material variation in the more commonly addressed problem
precludes any discussion of this coupling. It is this feature, then, that is the main
contribution of the reported study.

Allowing both a macroscale and a microscale specimen heterogeneity requires a math-
ematical framework that allows their separation. The "models" of material variation that
are the bases for previous studies—that of a statistically homogeneous stochastic process
and that of a periodic cell—cannot be this framework. The theory of a multiresolution
decomposition in terms of orthogonal wavelets can. A new formulation of the prob-
lem associated with a multiple-scale heterogeneity, which is a priori tuned to govern the
macroscale response component, is developed. This formulation holds for an arbitrary
continuum of scales. At this level, two fundamental questions can be posed as regards the
footprint of the heterogeneity in the macroscale response. The first question is: What
types of heterogeneity have a footprint? For those heterogeneities for which a
footprint exists, one might expect that only limited information of the heterogeneity is
required to estimate its footprint in the macroscale response. The second question is:
What is this information? General asymptotic study of the new formulation, carried
out for the case of a heterogeneity possessing a large gap of scales between the macro
and the micro, shows how the articulated fundamental questions can be addressed. This
demonstration of the potential of the new approach, and the details of the demonstra-
tion, are the main conclusions of the study. As regards the first question, we show that
the degree to which a microscale heterogeneity affects the macroscale response depends
on the singularity of the kernel associated with the integral equation formulation of the
problem. This result is then used to address the second question.

We note that multiresolution analysis and wavelets have been used recently in [6] for
numerical homogenization, i.e. for generating an equation with slowly-varying coefficients
whose solution has the same large-scale behaviour as that of the original equation. Re-
lations of this type have been pointed out and detailed also in [1, 2]. The work in [6] is
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devoted mainly to a sophisticated "decimation" process in which an efficient numerical
algorithm for estimating the large-scale response component is developed. It does not
address directly any of the questions articulated above.

The outline of the paper is as follows: In the next section we provide a brief descrip-
tion of the theory of multiresolution decomposition and the phase-space substructuring
methodology. This section should make the paper self-contained for readers with some
familiarity with the theory of multiresolution decomposition and orthogonal wavelets.
In Sec. 3 we develop the formulation that governs the large-scale, or smoothed, plate
response. We refer to this formulation as the "formulation smooth", preferring to use
"smooth formulation" to imply the formulation that determines the complete plate re-
sponse, made smooth by removing the small-scale variation. In Sec. 4 we discuss more
precisely the concept of length scales in characterizing complex dynamical systems, mak-
ing more precise the intuitive language used in describing the class of experiments of
interest. Section 5 contains an implementation of the new formulation to the composite-
materials mechanics problem of a thin, linearly elastic plate possessing mass or stiffness
heterogeneity. Demonstrated is that a microscale variation of mass has no footprint in the
large-scale response, whereas a microscale variation of stiffness can significantly affect the
large-scale response. These results are first derived analytically and then demonstrated
by numerical simulations. In Sec. 6 we derive an expression that determines the class of
small-scale stiffness variations with identical footprints in the large-scale plate response.
The results are demonstrated numerically by generating small-scale stiffness variations
that are easily seen to be different, and showing that these lead to the same large-scale
plate response. Concluding remarks are presented in Sec. 7.

2. Multiresolution decomposition and smoothing. The concept of multiresolu-
tion decomposition, or approximation, and its connection to the wavelet expansion have
been introduced by Mallat [3]. We shall briefly summarize the essentials of this theory.
Our purpose is not to provide a mathematically rigorous description of the subject, but
rather to present the concept of multiresolution decomposition and wavelet expansion
using intuitive notions tailored to the physics of the class of problems discussed in the
present work. A detailed and rigorous mathematical treatment can be found elsewhere
[3, 4], A physical interpretation of the concept of a multiresolution decomposition is
presented first, in Sec. 2.1. A more technical representation of multiresolution decompo-
sition suitable as a basis of the ensuing theory of effective properties is next presented in
Sec. 2.2. Readers familiar with the physical interpretation of multiresolution theory can
skip Sec. 2.1 since it does not present results needed for subsequent derivations. Readers
familiar with the "working mathematics" of multiresolution decomposition can also skip
Sec. 2.2. The rest of the paper, however, makes use of the concepts and results presented
in that section.

2.1. Heuristic description. The relevance of theoretical/analytic or computational pre-
diction models to laboratory experiments requires that the predicted physical quantities—
acoustic pressure, velocity field, energy flux, etc.—can be measured. It must be rec-
ognized, however, that such measurements cannot be interpreted as representing the
corresponding quantities "at a point". The physical dimensions of sensing apparati are
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Fig. 1(a). The Haar system. The scaling function 4>(x)

inherently finite, and any measurement must be interpreted as a spatial average of the
measured field over the neighborhood occupied by the apparatus for achieving it. The
smaller the neighborhood, the closure the measurement to the ideal one taken "at a
point". This can be described mathematically as multiplying the field / by the "sensi-
tivity function" (f> of the measuring device, normalized by J <pdx = 1, and integrating
over the spatial domain. The simplest form of a realistic sensitivity function is shown
in Fig. 1(a). The term "resolution" is introduced to quantify the difference between the
ideal pointwise representation of the field and that provided by the measuring device
schematized by 4> in Fig. 1(a). Anticipating the use of wavelets, we define the resolution
as the negative of a base-two logarithm of the spatial extent of <f>. An arbitrarily chosen
standard measuring apparatus is chosen to have a resolution 0. A measuring apparatus
twice as narrow (</> = 2 for 0 < x < 1/2 and 0 elsewhere) has a resolution 1, and so on.

When a field has been measured by an array of sensors with the resolution j, variations
that are confined in space to neighborhoods smaller than 2~are lost. Roughly speaking,
the fields that can be reconstructed from measurements taken by such arrays are constant
along the intervals n2~^, (n+ 1)2—. For brevity, let us refer to the collection of all such
possible reconstructions as V3. It is clear that a reconstruction in Vj+1 requires more
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information, more measurements, and more storage space than a reconstruction in Vj.
Consider, for example, an array with the resolution 1. The field reconstructions at the two
adjacent detector locations n,n+ 1 in that array, say fn and /„+1, can be presented as a
single average 5(/„ + /„+1), obtained using a detector with resolution 0, and a correction
term given by the distribution ip of Fig. 2(a) multiplied by the factor |(/n — fn+1). This
factor is nothing but the local difference in information needed to improve from the data
at resolution 0 to the data at resolution 1. Furthermore, just as a measurement of / at
resolution 0 can be presented by f fcfidx, the articulated difference in information can be
presented by f ftp dx, that is, a measurement taken by an apparatus with the sensitivity
function ip. Such a detector, in fact, measures a rough estimate of the spatial derivative
of /. As implied by the factor \{fn — fn+i)i measurements would be significant
only in regions where the measured field varies rapidly on the length-scale associated
with the resolution 0. It is easily verified that V and <f> are orthogonal, i.e., / (fiipdx = 0.
Thus the information measured by the corresponding detectors is disjoint. Let us refer
to the collection of all such possible differences in information—between Vo and V\—as
Oq. The difference in information between Vj and VJ+\ is obtained in a similar way,
with a properly scaled ip, and the collection of all possible reconstructions of differences
in information is denoted Oj. A reconstruction from Vj+1 can thus be presented as
a reconstruction from Vj plus an orthogonal term from Oj. This process can now be
repeated to any degree of accuracy (or resolution). A reconstruction at resolution k can
be obtained either by directly applying measurements at that resolution, or alternatively,
by using a reconstruction at a reference resolution j plus a series of mutually orthogonal
differences in information, sequentially improving from coarse (j) to fine (k).

The theory of multiresolution decomposition is the mathematical framework within
which this physical description can be made precise. It also provides more favorable
alternatives to 0 (termed "scaling function") and ip (termed "wavelet") by generalizing
the spaces Vj and Oj.

2.2. Multiresolution decomposition. Let 4>{x) and ip(x) be the scaling function and
wavelet associated with an orthogonal multiresolution decomposition (MRD) of Z/2(i?)
[3, 4]. An approximation of a function /(x) at a resolution k can be written as the sum of
two mutually orthogonal functions, namely a smooth (fs) component and a detail (fd)
component. We have

f(x)=r(x)+fd(x), (2.1)

where

f'(x) = P jf(x) = J2Fn<Pjn(x), F° = (f,4>jn), (2.1a)
n

k-1

fd{x) = D*/(*) = Y, £^mn(z), FL = (f^mn), (2.1b)
m=j n

in which 4>jn{x) = 2^2(j){2^x — n) and ipmn{x) = 2m/2ip(2mx — n). Here, (f,g) denotes
the inner product of L,2{R), and j < k is some reference resolution—a judicious choice
of which depends on the physics of the problem. The scaling functions and wavelets
satisfy the orthonormality relations (<j>jn, <l>jn') = 8nn<,{ipmn,ipm'n') = ^mm'6nn', and
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Fig. 1(b). The Haar system. The wavelet ip(x)

(4>jn',ipmn) = 0 Vj < to. Thus, Pj and Dj in (2.1a)-(2.1b) are projection operators
satisfying

DjPf = Pj D^ = 0, Vj > j'. (2.2)
The scaling functions and the wavelets are spatially confined functions (i.e., <j> and ijj

are either of compact support, or fast decreasing), centered more or less about the origin.
They can be interpreted, respectively, as defining a local low-pass filter and a local band-
pass filter. Examples are shown in Figs. 1 and 2. Let us define the effective supports of
ip and <j> as the intervals outside of which their respective values are practically zero, and
denote them by A^ and A<^. From the dilation translation relations articulated above, it
follows that the terms ijjmn in (2.1b) are situated, respectively, around the points

xmn = n2~m, (2.3)

each having an effective support 2~mA^. A similar description applies to the terms <f>jn.
The set of points in (2.3) is called the wavelet grid. The functions fs(x) and fd{x) in
(2.1) can be interpreted as a locally smoothed, or averaged, description of f(x) on the
length-scale 2—J, and a signal describing the finer details covering length-scales ranging
from to 2~fc, respectively. Here and henceforth we refer to the number 2~m
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and the index m as a length-scale and the resolution associated with it, respectively. A
wavelet has M vanishing moments,

J xmip(x) dx = 0, m = 0,1,..., M — 1. (2.4)

For the Haar wavelet M = 1; for the cubic-spline Battle-Lemarie wavelet M = 4 [3, 4].
This parameter can be related to the regularity of the multiresolution system and to the
support of the associated wavelets and scaling functions (see [5] for details and examples).

When the function f(x) in the neighborhood of x = xmn varies slowly compared to
the length-scale 2~m and possesses M first derivatives (see (2.4) for M), it is possible
to derive approximate expressions for the inner products (f,4>mn) and (/, ipmn)- More
specifically, it can be shown that for the cubic spline Battle-Lemarie system shown in
Fig. 2 (see [1]),

(/, <pmn) = 2~m'2f{xmn) - (2.5a)

(/, Tpmn) = P2-m(M+1/2)/M(Zmn + 2""1^1) + p2~^M+5^0(fM+2), (2.5b)

Fig. 2(a). The cubic spline Battle-Lemarie multiresolution system.
The scaling function 4>(x)
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Fig. 2(b). The cubic spline Battle-Lemarie multiresolution system.
The wavelet ip(x)

where /m(^) is defined as

j \ ma
/m(x)=(z— ) f(x), (2.5c)

a and (3 are constants given by

~7~~~~rrr and (3 = 2 M2(2 M)\
(22A/ — 1)Bm 11/2

(2M)!

Bm is the Mth Bernoulli number, and xmn is a point in the wavelet grid defined by Eq.
(2.3). Note that for the cubic spline Battle-Lemarie system one has M = 4, Bm = 1/30,
and so a, (3 1. Thus, the remaining terms in the right-hand side of (2.5a)-(2.5b) are
small. Furthermore, if /m = 0(1), we get

|(/,Vw)| < 1, form»l, (2.6)

which actually states that the inner product with the wavelet is vanishingly small if the
function / is smooth. Similar results can derived for other multiresolution systems.
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3. The formulation smooth. The procedures that will be described here can be ap-
plied to a general linear operator equation. However, to allow for direct implementations
we shall refer throughout to the Fredholm integral equation of the second kind

u(x) = U()(x) + Lu, a < x < b (3-1)

where L is an integral operator defined as

Lu = f G(x — x')h(x')u(x') dx' (3.1a)
J a

and where uo(x) is a forcing term, u(x) is the response to be determined, and G{x)
is obtained from the Green functions of the appropriately defined background problem,
usually that modeled by linear differential equations with constant coefficients. Further,
h(x) represents a material heterogeneity with variations occurring on both the microscale
and macroscale. In the absence of the heterogeneity h(x), Eq. (3.1) takes the form
u(x) = Uo(x); thus the integral equation forcing term uq(x) is the background system
response. The operation Lu can be represented as the background operator Lf, associated
with G(x), operating in the function hu,

Lu = L b{hu), (3.2a)

where

Lf,/ = J G(x — x')f(x') dx' (3.2b)

and it is assumed that the integration limits in (3.1a) are effected by h. Finally, it is
usually assumed that the variations of Uq(x) are restricted to the macroscale only.

With the MRD theory, the integral equation formulation (3.1) can be decomposed into
a pair of coupled formulations governing a length-scale resolved response. We express
the response field u(x) as a sum of two components, namely the response smooth us(x)
(macroresponse) and the response detail ud(x) (microresponse). If 2-fc is a lower bound
on the length-scales pertaining to the problem, then u(x) ~ Pfcu(x), and one can invoke

(2-1),

u(x) = us(x) + ud(x) (3-3)

where
«2(j)

us(x) = P ju(x) = ^2 sn<f>jn(x), (3.3a)
n=ni(j)

k— 1 n2(m)

Ud{x) = D jU(x) X! dmn^mn{x). (3.3b)
m=j n—ni (m)

The former and the latter represent, respectively, the response field smoothed on a refer-
ence length-scale 2~j, and the remaining fine details. sn and dmn are yet to be determined
coefficients, representing the smooth and detail parts of the response. By Eq. (2.2) us
and ud are mutually orthogonal, and by Eq. (2.4) the spatial average of ud vanishes.
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Substituting (3.3) into (3.1) and further operating on the resulting equation with Pj and3
DJ> we obtain

us(x) = Uq(x) + PjhPjU + PjLD fa, (3.4a)
ud(x) = ud0(x) + B^LP jU + D^LDjU (3.4b)

where Wq(x) and Uq(x) are the mutually orthogonal smooth and detail components of
the integral equation forcing term, derived from uq(x) via a relation similar to (3.3a) and
(3.3b),

12 (j)

U0{x) Pj^O(^1 ^ ^ (^): ^-^0(3.5a)
n=ni(j)

k-1 n2(m)

UQ(x) = Dj'Uo(x) ^ ^ ^ ^mn = (3.5b)
m—'j n=n\(m)

Since the expansion elements are orthogonal, Eqs. (3.4a) and (3.4b) can be cast into
a matrix form, written for the sets of unknown coefficients {sn} and {dmn}. Toward this
end, we define the column vector s as the N(j) = (n2(j) — ni(j) + l)-tuple,

5 ■ ■ ■ ■ ̂ n.• ^n+1, • • • , (*^*^)

and the detail response column vector d as the stack of the scale subvectors drn,

d — {dj, dji,..., dk_i} (3.7a)

where dm is arranged in a manner similar to (3.6),

dm ~ dTnni (m) , - • . , <^mri2(m) - (3.7b)

Equations (3.4a) and (3.4b) can now be expressed as

(3.8)

where I is an identity matrix, e and E are the excitation smooth and detail column
vectors, whose elements are the respective coefficients en and Emn in Eqs. (3.5a) and
(3.5b), ordered similarly with s and d in (3.6) and (3.7a)-(3.7b). $,^,0, and C are
matrix operators whose elements are given, respectively, by

^n',n = j&jnifyjn') ~ > (^-9)

= jliT)jl/jmn, ~ Ipm.'n'),

Cn' ;mn (PyED^ , 4^jnf) (E?/>mn, 4*jn') >

Cm'n',n (BjIjPj(f)j>n)lftm,n'>) VVn'n')-

The elements are ordered in their respective matrices in a manner consistent with Eqs.
(3.6)-(3.7b)—primed indices counting the rows, and location indices (n) running faster—
as schematized in Fig. 3.

Equation (3.8) provides the starting point for a self-consistent multiresolution study
of scattering problems (see [1, 2] and [7]) and for a self-consistent development of the
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m = j rn = j + 1 m = k — 1

m =j

m' = j + 1

m'n'

m! — k — 1

"it?)

nj,..., n2 ni(m),... ,n2(m)

Fig. 3. Schematic of the matrix operators

formulation smooth. From the lower half of (3.8), the response detail d can be expressed
in terms of the response smooth s and the excitation detail E. When this is substituted
into the upper half of Eq. (3.8) we get a formulation governing s-—the formulation smooth,

[I - - C(I - ^)-1C]s = e + C(I - l-)"1^. (3.10)

It has been pointed out in [1] that <!> can be interpreted as a "smoothed version" of
the operator L, a representation of the latter by a straightforward discretization on a
reference grid separation 2~J'. Thus C(I — ̂ )_1C has been interpreted as an effective
material operator, an operator describing the across-scales coupling due to the presence
of a microstructure. This operator, as well as the smoothed operator <t>, was studied in
[1, 2] for the problem of fluid-loaded thin elastic plates with nonstationary mass density
or stiffness microstructure. Prom the definitions in (3.9), it is evident that the matrix
entries and the effective material operator properties depend on the operator L, or more
specifically, on the background problem kernel G(x) and on the system heterogeneity
h{x) (see (3.1)-(3.2b)). The next section summarizes previous results and establishes a
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relation between the macro- and micro-responses that will be used in subsequent deriva-
tions.

4. Properties of the formulation smooth. The manner in which the microstruc-
ture affects the effective material operator C(I— in (3.10) has been investigated
in [1, 2] for the case of a heterogeneity with widely separated micro- and macro-scales,
pertaining to a thin, elastic, fluid-loaded plate. Since these results play a pivotal role in
the present theory, we shall briefly summarize them in the following subsection.

4.1. System characterization and scales hierarchy. Two types of length-scales are de-
fined by the physical system. The first applies to the variation of G(x), induced by
the dynamics of the system. We refer to this as tiie wavelength (A) scale and to the
associated resolution as m\. The possible irregularity of G(x) at the origin may intro-
duce additional variability over a relatively wide range of length-scales. This irregularity
has an essential role in the theory and it will be discussed further. The second type
of length-scale is due to the system heterogeneity and applies to the variations of g(x).
These variations can range from the macroscale (> A) to the microscale (<C A). The
former and the latter are associated with the resolutions ma and m„ respectively, such
that 2~m" > A and 2~mi <C A. Finally, the reference, or smoothing, scale should be
carefully selected. Details of scale A must be adequately described, whereas microscale
details can be averaged. The following hierarchy of resolutions and scales applies:

ma <mx < j <mi<s=> 2~m° > 2~mA « A > 2~j > 2"mi. (4.1)

Essential to the present study is the concept of a "scatterer", as a localized region of mi-
croscale heterogeneity that is confined to a domain in space measured on the macroscale.
Also essential is the existence of a "gap" in the scales for observing heterogeneity. Specif-
ically, the system heterogeneity is not to possess any component in the range of scales
(2~T™a~1,2~m'+1). We term this case a two-scale (macro/micro) variation. When re-
ferred to the j scale, i.e., the chosen smoothing scale, the macroscale variation is the
smooth component and the microscale variation is the detail component. We write

h(x) = hs{x) + hd(x), (4.2)

where

h (x) ^ ^ d'i> fPinn n (•£') (4.2a)
n

is expressible as a synthesis of scaling functions and

hd(x) = 'Yjbnipmi-in(x) (4.2b)
n

as a synthesis of wavelets. The index n, in both of these equations, spans a region
with physical dimensions described on the macroscale. Note that hs(x) and hd(x) are
mutually orthogonal, and the associated scales are widely separated. The synthesis
in (4.2a)-(4.2b) identifies the spatial averages of h(x) over neighborhoods in the order
of the macroscale 2~m° with hs, and further implies that spatial averages of the detail
component hd = h — hs vanish if performed over neighborhoods larger than the microscale
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2 m*. Denoting by || • H2 the Z/2-norm, we shall assume throughout the rest of this work
that

\hd(x)\\2 = 0(\\hs(x)\\2) = 0(l), (4.3a)

X>"i2 = 0 Eia"i2 =0(1)- (4-3b)

which is equivalent to

In other words, the energy associated with the microstructure is of the order of that
associated with the macrostructure, and both are beyond the perturbative regime.

4.2. The response components us,ud, and the microstructure signature.
4.2.1. Smooth G(x). We assume that the integral equation kernel function G(x) is

regular at the origin (that is, it varies on the scale of A for all x). Then, an estimate of
the matrix elements in Eqs. (3.9) can be obtained by invoking Eqs. (2.5a)-(2.6) and the
scale hierarchy characterization (4.1). We get (see [1])

*n',n — 4* in' (^jn) (^5 (4.4a)

^m'n'.mn -'4){n'nf{xmn + 2 m 1)(h,1pmn), (4.4b)

Gn',mn — ~1~ 2 m ^ ) (Jl, 1p mn), (4.4c)

Grn'n'.n — ^rn'n' (^5 $jn) > (4.4d)

where the overbars on the right-hand sides denote complex conjugate, and <pf, xj}' are the
"fields" obtained by the adjoint of the background operator L;,,

<f>Uy) = L*b<f>jn ~ 2-i'2G(xjn - y), (4.5a)
^mn(y) = Lirl,mn ~ /32-m(tf+1/2)GM(i„ + - y). (4.5b)

With the articulated conditions on G and the results in Eqs. (2.5b)-(2.6) it follows that
\ipmn(y)\ ^ 1- Together with (4.3a)-(4.3b) it induces the norm relations:

||<P|| «1, (4.6a)

||C|| <C 1, (4.6b)
lie I < 0(1). (4.6c)

where || ■ || denotes the matrix norm induced by the Euclidean vector norm. These
estimates are derived in the appendix. It should be emphasized that they are valid
only for smooth G(x) and for the scatterers characterized by (4.1) and the discussion
thereafter. With (4.6a)-(4.6c) one obtains for the effective material operator ||C(I —
*)~1C|| 1. The conclusion that, under (4.3a) and the smoothness condition on G,
the macroscale response practically bares no footprint of the microscale heterogeneity,
follows directly from this last result (see [1]). Futhermore, this result establishes that a
new formulation, governing the macroscale response component us(x), is readily obtained
from (3.1)—(3.2b),

us(x) = Uq(x) + L{,hsus (4-7)
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where is the background operator defined in (3.2b), uq(x) is the excitation term,
assumed here to vary on the macroscale only, and hs(x) is the locally averaged (smooth
component) of the system heterogeneity (see (4.2)-(4.2b) and discussion thereafter).
Equation (4.7) identifies hs(x) as a local effective property of the system heterogeneity
h(x).

The inequalities in (4.6a)-(4.6c) can be used to derive an estimate on the relation
between us and ud. Prom the multiscale resolved formulation (3.8),

(!-<!>)d = Cs + E. (4.8)

Using (4.6a), and subsequently applying the triangle and operator norm inequalities, we
get

||rfj| <||C||||J1| + ||£|| (4.9)
where ||tt|| denotes the Euclidean vector norm if u is a vector, or the matrix norm induced
by the Euclidean vector norm if u is a matrix. In cases where the excitation term uq is
described on the macroscale only (i.e., ||i?|| = 0) we get (with (4.6b))

\\d\\ <C ||£|| (4.10a)
or, denoting by || • ||2 the i2-norm (taking over the support of the heterogeneity),

lrt«IM|2. (4.10b)
The last result has an important role in the construction of effective constitutive relations
pertaining to ID plate stiffness variations.

4.2.2. Singular G(x). In cases where the integral equation background kernel G(x)
is singular at the origin, the regularity assumptions, leading to (4.6a)-(4.6c), cannot be
used. Thus, the inequality ||C(I — SI>)_1C|| <C 1 does not hold in general. The immediate
consequence is that a microstructure can have a significant effect on the macroresponse.
This has been investigated and demonstrated in [2] for the specific case of a fluid-loaded
thin elastic plane with a ID stiffness variation.

5. Implementation to composite materials mechanics.
5.1. Statement of the problem. We shall be concerned with the flexural velocity re-

sponse of a thin elastic plate lying in the z = 0 plane, due to a time harmonic (elult)
^-independent excitation. A surface mass density heterogeneity and a stiffness hetero-
geneity are introduced, respectively, by the y-independent distributions

m(x) = jtoo[1 + p(x)], (5.1a)

Q(x) - Q0[l + q(x)], (5.1b)
where p(x) and q(x) are normalized, dimensionless distributions expressing the local
variations with respect to the background values mo and Qq. The flexural wavenumber
associated with mo and Q0 is given by kf0 = (toqo;2/Qo)1^4■ With the dimensionless
length coordinate x 1—> kf0x, the equation of motion governing the flexural velocity
response v(x) due to a y-independent forcing F(x) is

h I'1+5(1)1 -[1+(5-2)
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Fig. 4. The homogeneous plate Green function g(x)

The background plate Green function (i.e., the response of the homogeneous plate q(x) =
p(x) = 0 to a line forcing F(x) = 8(x)) is given by

g(x) = -^(ei|x| +ie~W). (5.3)
4a>mo

This response is shown in Fig. 4. It is a smooth function, described essentially on the
scale of 2ir. It has a third derivative discontinuity at x = 0 and a variation scale of A = 27r
away from the origin. Consistent with (4.1) the macro, reference, and micro resolutions
are defined as ma < 1, j = 0, and m, = 2, respectively. These values correspond
to the wavelength A, a reference scale of about, A/6, and a microscale in the order of
A/24. Figures 5(a) and 5(b) show two different manifestations of microstructures, namely
h*((x) and h^ix), synthesized via (4.2b) with the articulated definitions of scales. For
each manifestation, the coefficients bn were synthesized by a random number generator.
Figure 5(c) shows an example of a macrostructure hs(x). Evidently, hf 2{x) vary on
a length-scale much smaller than the (normalized) wavelength A = 2n, and the hs(x)
variation length-scale is in the order of A.
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Fig. 5(a). Examples of heterogeneity. The microstructure h^(x)

In the next sections we shall examine the plate response associated with mass or
stiffness complex scatterers—examples of which are given by or by linear com-
binations of the latter with hs{x). Specifically, we shall show that

f. Microscale mass heterogeneity with macroscale outer dimension has no footprint
in the macroscale response.

2. Microscale stiffness heterogeneity with macroscale outer dimension can signifi-
cantly affect the macroscale response.

3. It is possible to synthesize classes of different stiffness complex scatterers such
that the macroscale response associated with each of the members of the class is
the same.

These results are first obtained by using theoretical considerations and then demon-
strated numerically. As seen in the next two subsections, points 1 and 2 above follow
directly from the analysis of Sec. 4.2. Point 3 needs more detailed analysis and is treated
in a separate section.
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Fig. 5(b). Examples of heterogeneity. The microstructure h'l(x)

5.2. Mass variation. Here we examine the case of mass density variation and constant
stiffness. Thus, q(x) = 0 and the equation of motion (5.2) can be rewritten as

d^ —i
-~v(x) — v(x) = [F{x) + iujmop{x)v{x)]. (5.4)
ax4 LorriQ

By expressing the solution v(x) as a convolution of g{x) with the forcing term F{x) +
iu)mop{x)v(x), the Fredholm integral equation formulation (3.1)-(3.2b) is obtained with

u(x) = v(x), (5.5a)

h(x) = p(x), (5.5b)
G(x) = iu)mog(x), (5.5c)

u0(x) = v0(x) = J g(x — x/)F(x')dx', (5.5d)

where g(x) is defined in (5.3). It is seen from (5.5c) that the kernel G(x) associated
with the integral operator is smooth. The results of Sec. 4.2.1 can be cited directly:
(i) microscale mass variation has no footprint in the macroscale response, the latter
is governed now by the formulation (4.7), and (ii) if Vq in (5.5d) is described on the
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-0.4

-0.6

Fig. 5(c). Examples of heterogeneity. The macrostructure hs(x)

macroscale only, then a relation similar to (4.10b) applies for v(x). Note that this last
condition holds for every "reasonable" F(x)—a line forcing, for example.

A numerical simulation demonstrates these results. We have computed the plate
responses, associated with the following mass heterogeneities:

pi(x) = hf[x), (5.6a)
p2{x) = hs(x), (5.6b)

p3(x) = hs{x) + hf(x), (5.6c)

where /if(x) and hs(x) are shown in Fig. 5. Thus, pi(x) possesses microscale variations
only, and pz(x) possesses both a microstructure (hf(x)) and a macrostructure (hs{x)).
The forcing term is given by F(x) = <p(x — 15), which corresponds to a somewhat
smoothed line forcing situated at x' — 15, and is shown in Fig. 6, drawn to scale together
with the corresponding background solution (5.5d). Figure 7 shows the complete re-
sponse that corresponds to the heterogeneity p\(x). A comparison with the background
solution (Fig. 6) shows that pi{x), which consists of microscale variations only, has no
footprint on the response. Figure 8 compares the macroscale responses associated with
p2(x) = hs(x) and P3(x) — hs(x) + hf(x). These mass density distributions differ only
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Fig. 6. The forcing term F(x) and the background system response
for the mass heterogeneity problem

by their microscale components (0 and /if(x), respectively). The macroscale responses
are indistinguishable within the graphic resolution. Finally, Fig. 9 depicts the microscale
component of the plate response—the inequality of (4.10b) is evident.

5.3. Stiffness variations. If we set p(x) = 0, q(x) 7^ 0, the equation of motion (5.2)
can be rewritten as

~v(x)-v{x) = ——
dxq Lom 0

F(x) - lq(x)-^v{x) (5.7)

By expressing the solution v(x) as a convolution of g(x) with the right-hand side of Eq.
(5.7), and taking the second derivative of the resulting formulation with respect to x, we
get the integro-differential equation

u(x) = u0(x) - iujrriQ J g"(x - y)[q{y)u(y)}" dy (5.8)

where a prime denotes a derivative with respect to the argument and

u(x) = v"(x), (5.8a)

u0(x) = J g"(x -y)F{y)dy. (5.8b)
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Fig. 7. The response associated with pi(x) = h'f(x) (a microstruc-
ture only)

Note that u(x) can be interpreted as the reciprocal of the plate local radii of curvature.
Integrating (5.8) by parts twice, and assuming that q(x) and all its derivatives vanish
at infinity, we get the Fredholm integral equation formulation (3.1)-(3.2b) with u, Ug
defined in (5.8a)-(5.8b) and with

h(x) = q(x), (5.9a)

G(x) = —iLumog(x) — S(x), (5.9b)

where (5(x) is the Dirac delta function and g(x) is defined in (5.3). Evidently, the kernel
function G(x) of the integral operator is now highly singular at the origin. Referring
to Sec. 4.2.2, the immediate consequence is that a stiffness microstructure can have a
significant effect on the macroscale response.
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j „ mAcro-scale responses
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Fig. 8. Magnitude of the macroscale component of the plate re-
sponses, us(x), associated with P2(x) (solid line), and p3(x) (dot
line). To the resolution of this graph the two solutions cannot be
distinguished.

A numerical example demonstrates these results. We have computed the response of
a plate with the following stiffness heterogeneities:

qi(x) = hf(x), (5.10a)
q2(x) = h2{x), (5.10b)
q:i(x) = hs(x), (5.10c)

qi{x) = hs(x) + hf(x), (5.10d)

where hf2(x) and hs(x) are shown in Fig. 5. Note that q\ and q2 possess microscale
variations only, q% possesses macroscale variations, whereas q4 possesses both, with the
macroscale component identical to that of q-s(x). The forcing term is again given by
F(x) = 4>{x — 15), and is shown in Fig. 10 drawn to scale together with the correspond-
ing background solution (5.8b). Figure 11 compares the macroscale response component
us associated with q\ to that associated with q2. The difference is evident and it is also
evident that both deviate significantly from the background response. Recall that 171,2
possess microscale variations only—these results confirm our assertion that microscale
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Response detail component
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Fig. 9. The microscale component of the plate response, ud, associ-
ated with pi{x) = hf(x)

stiffness variation significantly affects macroscale response. This holds also in the pres-
ence of a macroscale variation. Figure 12 shows a comparison of us associated with q3
to that associated with q4. Again, the difference is evident.

6. The effective constitutive relations. By substituting (5.9b) into the integral
equation formulation (3.1)-(3.1a), performing the integration over the 6(x — x')q(x')u(x')
term, and moving the result to the left-hand side, we get the integral equation

tt(x)[l + q(x)] = u0(x) - iujm0 J g(x - y)q(y)u(y) dy. (6.1)

In this equation, Q{x) = 1 + q(x) is the local bending stiffness of the plate; the plate
bending moment, T(x), is related to u{x) via the local constitutive relation

T(x) = u(x)Q(x) = u(x)[ 1 + g(x)]. (6.2)

The last results suggest a new integral equation, written for the bending moment T(x),

T(x)=T0{x) + TbrT (6.3)
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-0.5

Fig. 10. The forcing term F(x) and the background system response
for the stiffness heterogeneity problem

with Tq(x) as the background bending moment (corresponds to q{x) = 0),

T0 (a:) = u0{x). (6.3a)

Th is an integral operator associated with the smooth kernel g(x),

Tbf = -iujm0 J g(x - y)f{y) dy (6.3b)

and r = r(x) is a heterogeneity measure related to the stiffness variability,

r(x) = q{x)/[l+q(x)\. (6.3c)

Thus, the bending moment T(x) is governed by a second-kind Fredholm integral equa-
tion, a formulation completely analogous to (3.1)-(3.2b) with a smooth background kernel
function. The forcing term F(x) is assumed to possess variations on the macroscale only.
The spectrum of g{x), namely g(£), behaves like £-4 for f > 2n/X (see [1])—rendering
negligible the detail component of the excitation term To = uq. Hence, the results of
Sec. 4.2.1 directly apply:

Ts(x) = T0(x)+TbrsTs, (6.4a)
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Fig. 11. Magnitude of the macroscale component of the plate re-
sponse, us, associated with q\(x) (solid line) and with Q2{x) (dot
line)

which follows from (4.7), and
||Td||2«:||Ts||2, (6.4b)

which follows from (4.10b). An effective constitutive relation—a relation written for
us—can now be obtained by reversing (6.2) and using (6.4b),

rf
u{x) ~Ts{x)/Q{x) = Ts{x)

Q(x) J \Q{x)
l

+ (6.5)

where (o^y)s,a! denote the smooth (s) and detail (d) components of By taking the
smooth part of both sides, we obtain now (a smooth component multiplied by a detail
component gives a function with essentially zero local average, i.e., a "detail function"),

"'w ~ T'{x)\W)) ' (6'6)
This is a local (i.e., algebraic) effective constitutive relation connecting us and Ts.

For the task of calculating the plate macroscale response us (x), the effective constitu-
tive relation should be combined with the integral equation formulation governing Ts(x),
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Fig. 12. Magnitude of the macroscale component of the plate re-
sponse, us, associated with <j3(x) (solid line) and with 174(2) (dot
line)

given in (6.4a). A noteworthy feature of the latter is that only a smooth measure of the
system heterogeneity, namely rs(x), is required.

6.1. An important implication. Microscale stiffness variation can have a significant
effect on the macroscale response. This general conjecture—not evidently plausible at
first glance—is shown to be correct in Sec. 5.3. Three fundamental questions immediately
arise:

1. Does there exist a class of different stiffness microstructures such that the macro-
scale response associated with each of the members of the class is the same?

2. If the answer is "yes'\ what is the precise definition of such a class?
3. Again—if the answer is "yes"—can one synthesize an effective stiffness, a smooth

stiffness heterogeneity for which the associated complete response is the same as
the macroscale response associated with each of the members of the class?

The effective constitutive relation, (6.6), combined with the integral equation, (6.4a),
provide the answers; "yes" for I, then, an algorithmic characterization of the "classes of
invariance", and an effective stiffness of the class. The latter is an inherently nonlinear
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process. To derive these results, note that

1
= 1 — r(x) (6.7)<20)

where r(x) is defined in (6.3c). Then, (6.6) takes on the form

us{x) = Ts(x)[l - r(x)]s = Ts{x)[ 1 - r5(:r)]. (6.8)

Notably, the stiffness heterogeneity measure that affects Ts(x) is rs(x) (see (6.4a)). It
therefore follows from (6.8) that this is the only stiffness heterogeneity measure affecting
us(x). Thus, two different microscale variations of q(x), that give the same smoothed
r(:r), have the same footprint on the macroscale response. A simple synthesis procedure
for generating stiffness variations of the same class, as articulated above, follows. Let
r\(x) and 7*2(x) be two functions differing only by their detail components,

ri(x) = rs(x) + rf(x), i = 1,2, (6.9)

Fig. 13(a). Two different complex structures of stiffness, designed
via the procedure of Sec. 6.1 to have the same macroscale response.
(a) «*(x)
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that is,

ri(x)^r2(x), (6.9a)
(ri(a;))s = (r2{x))s = rs(x). (6.9b)

These variations can be obtained by choosing at random a function for r\(x), and adding
to it an arbitrary microstructure for r2(x), or, choosing qi(x) for the stiffness variation,
computing the corresponding r\(x) via (6.3c), and performing the articulated step. The
associated stiffness variations are obtained by inverting (6.3c),

Qi(x) = ri{x)/\l - r»(a:)], i = 1,2. (6.10)

Clearly, we have qi{x) ^ q2{x). However, from (6.9b) it follows that the associated
macroscale responses would be the same. This procedure can be used also to obtain an
effective stiffness heterogeneity. For the class defined by (6.9) with i = 1,2,3,... (infin-
itely many different microstructures), the effective stiffness would be that associated with
rs(x), i.e., qcff(x) = rs(x)/[ 1 — rs(x)]. Or, alternatively, the effective stiffness associated

Fig. 13(b). Two different complex structures of stiffness, designed
via the procedure of Sec. 6.1 to have the same macroscale response.
(b) q%(x)
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Fig. 14. The macroscale response us associated with gj, gj, and <33 =
hs. The three solutions cannot be distinguished to the resolution of
this graph.

with the stiffness variation qi(x) (that possesses both smooth and detail components) is
obtained by first computing the corresponding r\(x) via (6.3c), then smoothing it via,
say, the projection operator of (2.1a); rf(x) = PjT-i(x), and finally obtaining qeff(x) via
the inverse of (6.3), q^{x) = rf(x)/[l — rf(x)].

6.2. Example. We turn to demonstrate the last results numerically. The procedure
described by Eqs. (6.9)-(6.10) and the discussion thereafter is used to synthesize ex-
amples of stiffness complex scatterers with identical macroscale response, and with a
prescribed effective stiffness. Specifically, we used the macroscale structure hs{x) in
Fig. 5(c) as a smooth stiffness, computed the corresponding r{x), added the complex
structures 0.6hf(x) or 0.6/12(^)1 and re-inverted the results to get two different complex
structures of stiffness qj(x) and q%(x), respectively. These are shown in Figs. 13(a) and
13(b). Clearly these stiffness distributions are not the same; they differ in both their
macro- and micro-scale components. However, they should have the same macroscale
response, and further, it should be identical to that associated with qs{x) = hs(x) of Sec.
5.3, the latter being the corresponding effective stiffness. Figure 14 shows the macroscale
component of the corresponding response field us(x), subject to the same loading of
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Fig. 10, and compares the results to us associated with <73 (x) = hs(x). The results are
indistinguishable within the graphic resolution.

7. Conclusions. We have demonstrated that a small-scale mass density variation
has no footprint in the large-scale response of a linearly elastic plate, whereas a small-
scale bending stiffness variation does. We showed that the small-scale stiffness variation
has 110 footprint in the large-scale "bending moment" variation in the plate. This was
used to identify a condition for a class of small-scale stiffness variations that all lead to
the same large-scale plate response.

The simplicity of the two results suggests that there must be easily-grasped underlying
physical reasons. These are: first, although the experiment posed is dynamical, this
designation applies for large-scale distances. The travel times for distances identified with
the small-scale heterogeneities are small when compared to the inverse of the frequency
of the time-harmonic forcing. Thus, the interaction of the plate response with the small-
scale heterogeneity is essentially statical. This leads to the conclusions that a small-
scale mass density variation should have no effect and that the effects of a small-scale
stiffness variation should be the same as that calculated for a statical forcing. The second
underlying physical reason is that the line-load forcing results in a prediction problem that
is one-dimensional; i.e., the plate responds as a beam; and one-dimensional beam theory
is statically determinate. That is, the internal stress resultant—the internal bending
moment—can be determined from the laws of equilibrium alone. One conclusion of this
is that the small-scale material properties of the beam will have no effect in determining
the internal bending moment. Thus, the achieved conclusions are consistent with an
intuitive understanding of the underlying physics; this consistency is certainly satisfying.

This consistency also allows speculation as to the applicability of the results for a
broader class of problems. One speculation is the conclusion that the small-scale mass
density has no footprint in the large-scale response, has a broader applicability. The
argument that the reason lies in the observation that the interaction of the structure
response and the structure heterogeneity is statical, is very robust. The observation
that the absence of a footprint of the small-scale stiffness heterogeneity in a large-scale
measure of internal stress lies in the fact that the statical problem is determinate, using
the laws of equilibrium, and suggests this conclusion to be idiosyncratic to the specific
experiment. In two dimensions, for example, the state of the internal stress in a plate
is statically indeterminate. Thus, this internal distribution of stress will depend on the
material heterogeneity. This does not necessarily mean that there does not exist a class of
stiffness heterogeneity, all of which will lead to the same large-scale structure response. It
does suggest, however, that the conditions for describing this class will be more complex
than the simple formula achieved.

Both of these speculations are consistent with our understanding of the micromechan-
ics of composite materials. A more convincing demonstration awaits the application of
the mult.iresolution decomposition and the phase-space substructuring methodology to a
more complicated system.
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Appendix: Bound estimates for the matrix norms. The results given in (4.6a)-
(4.6c) are derived here. The discussion is limited to the scatterer defined by (4.2)-(4.3b),
with the scales hierarchy articulated by (4.1). Thus, (4.4a)-(4.5b) apply. Further, with
the smoothness of G,

\Gm(x)\<X~m. (A.l)

It is essential to recognize the scatterer outer dimension as measured on the scale of
A. Thus, denoting by Nq the total number of resolution zero grid points spanning the
scatterer extent, we have (see (4.1))

N0 = 2~maO{\). (A.2)

A.l. Bound estimate for ||'®,||. With (4.4b), (4.5b), and the scatterer characterization
(4.2)-(4.2b), one has

*m>n',mn ^ f3bn2~m'^M+1^GM(xm/nl - Xmn + 2~m'~l - 2~m~l )Sm,mi-1 (A.3)

where 6ij is the Kronecker delta function. Using (A.l)

\*m'n>,mn\ < PK\2~m^M+1^ X~M6^^ . (A.4)

With the Euclidean matrix norm inequality ||\&||2 < nf m,n \^m'n\mn\2, one has

H^f < 02\~2M M22~2m'(M+1/2) using (A.4) (A.5a)
m' ,n' ,n

= P2X~2M 2_2m'(M+1/2) using (4.3b). (A.5b)
m',n'

The summation over n' depends on to', since the number of grid points associated with
the resolution to' scales like Nq2™ , where Nq is the number of points at resolution 0.
Thus, with (A.2),

CO

ll^ll2 < p2\~2M2~ma ̂ 2 2~2Mm' (A.6a)
m'=j

= (32\~2M2~ma2~2Mj (1 - 2"2M)"1. (A.6b)

The last result can be rewritten as

ll^ll2 < /?2A(1 - 2_2M)_1(A2m°)_1(A2'7)_2M. (A.7)

However, by multiplying (4.1) with 2i one finds A2-? 3> 1 and by multiplying it with 2m°
one finds A2m° « 1. In addition, recall |/?| -C 1 and usually M >2. Thus, for finite A we
obtain the result in (4.6a).

A.2. Bound estimate for ||C||. With (4.4d), (4.5b), and the scatterer characterization
(4.2)-(4.2b),

Cm>n',n ^ pan2'm'^M+1^ G M(xm'n' + 2"m'"1 - xjn). (A.8)
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Thus, with the norm inequality ||Cj|2 < J2m' ri n \Cm'n' ,mn\2, one has

!|C||2 < 02\~2M K|22"2m'(M+1/2) using (A.8) and (A.l) (A.9a)
m' .n' ,n

= p2X~2M 2-2m'{M+1W using (4.3b). (A.9b)
m' ,n'

The inequality (4.6b) follows by repeating the steps of (A.6a)-(A.7).
A.3. Bound estimate for ||C||. With (4.4c), (4.5a), and the scatterer characterization,

Cn'.mn ^ 2~j'2bnG{^-Xmn ~ 2~m~1 )8„ _ ! . (A.10)

Thus, by (A.10) and (A.l),

||C||2< £ K'.mnl2 < 2"^ |6n|2. (A.11)
n'.m<n n,n'

The summation over n Is 0(1) by the scatterer characterization (4.3b). The n' index
counts the grid points at resolution j (see matrix construction in Fig. 3). The latter is
0(2J), and hence the result in (4.6c).
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