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Abstract
A novel model potential for modelling the environment of atoms and molecules inside
fullerenes is proposed. The model takes into consideration that the electrons of the guest atom
or molecule are affected by an attractive short-range Gaussian shell to simulate the Cn cage.
As a test case, the present model is employed to study the electronic structure of an
endohedrally confined hydrogen atom by C36 and C60 fullerenes. This study is performed
using a new implementation of the p-version of the finite-element method by a self-consistent
finite-element methodology. The results are then compared with previous ones obtained by
using other short-range model potentials.

1. Introduction

The study of particles, atoms and molecules confined in various
environments and their properties has received growing
attention in recent years due to the importance of these
quantum systems in different physical and chemical fields.
For example, these systems are important in mesoscopic-scale
semiconductors structures [1, 2], where artificial quantum dots
with a controlled number of electrons are built [1, 3]; in
catalysis when adsorption phenomena are investigated [4];
in the embedding of atoms and molecules inside cavities
such as zeolite molecular sieves [5], fullerenes [6, 7], or
solvent environments [8]; in bubbles formed around foreign
objects in the liquid helium or neutral plasma [9, 10]; in the
investigation of atoms under pressure [11–14], for instance.
The simplest problem involving atoms and molecules arises
from the confinement of the hydrogen atom in a spherical shell
[11, 15–23].

In particular, the endohedral fullerenes, systems where
atoms and small molecules are confined in a cage of carbon
with Cn (n � 20) [24], have attracted much interest because
of their applications in nanoscience and nanotechnology [25].
Various types of these complexes are obtained placing different

compounds inside the carbon cage as, for example, noble
gases [26–28] and metals [29, 30]. It is interesting to
point out that the doping procedure modifies the molecular
and solid state properties of the fullerenes. These systems
possess great interest due to the recent progress of their
synthesis and the multiple technological applications, which
go from medicine (see [29] and references therein) to quantum
computation [31, 32]. The endohedral fullerenes have been
studied experimentally and theoretically by several research
groups in more recent years in areas such as physics, chemistry
and biology. From the theoretical point of view, to understand
the formation process of these complexes and their structures
it is necessary to study the electronic structure, the dynamics
of guest atoms and molecules and their solid state properties
[30].

Usually, the electronic structure studies of endohedral
fullerenes are performed considering all electrons by using
ab initio density functional theory and semi-empirical methods
(see [33, 34] and references therein). However, it can be
interesting to substitute ‘all electrons’ descriptions by models
where only electrons of the guest atom or molecule are
considered, being affected by an attractive spherical potential
that simulates the Cn cage. This strategy has been utilized with
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success to describe the essential features of the experimental
results [35, 36]. The most employed models are the short-
range potential shell of inner radius rc and thickness � [35,
37–43],

Vsr(r) =
{−U0 for rc �r �rc + �,

0 otherwise,
(1)

and the δ-potential [7, 44–47]

Vδ(r) =
{−U0δ(r) for r = rc,

0 otherwise.
(2)

Potentials (1) and (2) can introduce numerical instability due
to their sharp forms, and proposals have been made to avoid it
[48, 49].

In this paper, a novel model potential is proposed that
has a smooth form to describe the confinement of an atom
inside a fullerene cage. This potential consists in an attractive
short-range spherical Gaussian shell that is added in the ‘free’
atomic Hamiltonian. The advantage with such a potential
is that it continuously shows a more realistic description of
the confinement. As a test case, the Gaussian shell model is
utilized to study the endohedrally confined hydrogen (H) atom
by a Cn cage with n = 36 and 60.

The p-version of the finite-element method (p-FEM)
[50, 51] is used to obtain the solutions (eigenenergies
and eigenfunctions) of the associated Schrödinger equation.
Recently, the p-FEM with an equidistant mesh was employed
to study the hydrogen atom confined by an infinite spherical
potential barrier [11]. In particular, we employ the p-FEM
with an optimized mesh from a small modification of the
quantum mechanical procedure previously proposed [52] that
here is denoted by the self-consistent finite-element method
(SC-FEM).

This paper is organized as follows. In section 2 we
establish the general problem of confined quantum systems and
present the spherical Gaussian shell model potential to describe
the endohedral atom. In section 3 we give a brief description
of the p-FEM and propose the self-consistent procedure to
optimize the mesh of elements. Next, we present the main
results of this paper in section 4, comparing them with other
previously published results in the literature. Finally, the
concluding remarks are given.

2. The confinement potential

The general expression of the N-electron Hamiltonian for an
atomic or molecular confined quantum system, in atomic units,
is given by

Ĥ =
N∑
k

ĥ(k) +
N∑

k<l

1

rkl

, (3)

where ĥ(k) is the one-electron Hamiltonian which takes into
account the kinetic energy, electron–nucleus interaction and
the potential of confinement ŵ(�rk) as follows:

ĥ(k) = −1

2
∇2

k −
∑
A

ZA

rkA

+ ŵ(�rk) , (4)

and the second part of equation (3) represents the electron–
electron repulsion interactions. In the literature, different

Figure 1. One-dimensional representation of the confinement
potential; distance in Å and potential in eV.

types of potentials have been used to describe the confinement
such as harmonic oscillator, spherical and cubic boxes with
infinite walls, spherical shells, etc (see, for instance, [3, 36]
and references therein). In all of these cases, the main goal is
to describe the behaviour and structure of atoms or electrons
submitted to the different types of confinement.

In the present approach to simulate the environment of a
fullerene cage, the confinement is modelled by an attractive
short-range spherical Gaussian-type potential given by

ŵ(r) = −w0 exp[−(r − rc)
2/σ 2] , (5)

where r = |�r|, w0 is the maximal amplitude of the well depth,
rc is the radius of the centre of the confinement shell, taken
from the origin to the maximum of ŵ, and σ is defined as
the half-width at the w0e

−1 amplitude. The model potential
is proposed in order to give a more realistic description of the
physical behaviour of the confinement environment than the
previous ones (equations (1) and (2)). The Gaussian function
and its derivatives are continua, and it is easy to integrate
over the whole region of interest. Moreover, fullerenes with a
different number of carbons can be modelled by the adjustment
of the confinement shell radius, rc, the thickness, given by σ ,
and the well depth, w0. A one-dimensional representation of
the potential is given in figure 1, for rc = 3.54 Å, w0 = 8.80
eV and σ = 0.57 Å.

For the specific case of the endohedrally confined
hydrogen atom at the centre of the Cn cage, the one-electron
problem can be described by the following non-relativistic
time-independent Schrödinger equation:

Ĥ�(�r) ≡
[
−1

2
∇2 − 1

r
+ ŵ(r)

]
�(�r) = E�(�r) , (6)

where E and �(�r) are respectively the eigenenergy and
eigenfunction of the problem. This equation is solved by
using a p-FEM, which is described in the following section.
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3. The finite-element method

3.1. p-version of FEM

The FEM is a general nomenclature for a set of different
procedures [53, 54] which are based on the technique of space
discretization into elements and in the use of local polynomial
basis functions defined on these elements. In this paper a
variational procedure is considered where the p-version of the
FEM is employed as the finite basis set in the expansion of the
wavefunction (see, for instance, [11, 50–52, 55]).

According to the variational principle, the problem to
solve equation (6) is equivalent to finding stationary solutions
of a functional of energy,

J [�] =
∫

�∗(�r) {
Ĥ − E

}
�(�r) d�r, (7)

Ĥ being the Hamiltonian expressed in equation (6). Since the
potential is radial, the wavefunction can be expanded by using
the spherical harmonics,

�(�r) =
∑

l

al ψ
l(r)

r
Ylm(θ, φ) . (8)

Using the orthonormalization relations of Ylm(θ, φ), functional
(7) can be written in terms of ψl(r) as follows:

J [�] =
∑

l

|al|2 Jl[ψl] , (9)

where l is the total angular momentum, the functional J [ψl]
is expressed as

Jl[ψl] =
∫ rmax

0
dr

{
1

2

dψ∗
l

dr

dψl

dr
+ ψ∗

l

[
V ef

l (r) − E
]
ψl

}
(10)

and V ef
l (r) = −1/r + ŵ(r) + l(l + 1)/2r2. Dirichlet’s

boundary conditions were utilized to obtain equation (10).
The eigenstate and eigenvalue solutions of Jl[ψl] are found
by expanding the wavefunction in a finite basis set

{
f l

j

}
, and

imposing the stationarity condition on functional (10) under
consideration. Thus, the variational solutions are obtained
by solving the resultant generalized eigenvalue–eigenvector
problem.

Computational effort to solve the generalized eigenvalue–
eigenvector problem depends directly on the number of basis
functions used to expand ψl(r). Therefore, the efficiency of
numerical calculation depends on the choice of the finite basis
set. In particular, the one-dimensional p-FEM is employed
for this purpose. The procedure consists of dividing the
integration interval [0, rmax] into Ne elements, where the ith
element has a range of ri−1 to ri with r0 = 0 and rNe

= rmax,
defining the local basis functions

{
f i

j

}
, which are non-null

only on the ith element, and expanding the wavefunction as
follows:

ψl(r) =
Ne∑
i=1

ki∑
j=0

c
l,i
j f i

j (r). (11)

The p-FEM utilizes, as local basis functions, two
interpolants

(
f i

0 (r) and f i
ki
(r)

)
and ki − 1 shape functions(

f i
j (r), j = 1, . . . , ki − 1

)
that have the following properties:

f i
0 (ri−1) = 1 = f i

ki
(ri)

f i
0 (ri) = 0 = f i

ki
(ri−1)

(12)

f i
j (ri−1) = 0 = f i

j (ri), j = 1, . . . , ki − 1 (13)
and ∫ rmax

0
dr f i∗

j (r)f i ′
j ′ (r) = 0 , ∀ i �= i ′ . (14)

Moreover, the imposition of the continuity of the wavefunction
on the border of elements leads to the condition ci

ki
= ci+1

0

and f i
ki
(r) + f i+1

0 (r) being only one function actuating in two
elements. Thus, a new independent coefficient set {ak} is
defined from

{
c
l,i
j

}
as follows:

al
k = c

l,i
j ⇐⇒ k = (i − 1)ki + j, (15)

totalizing N = ∑Ne

i=1 ki basis functions; c
l,1
0 = al

0 = 0 due to
the continuity of the wavefunction (equation (8)) at the origin.
Using these relations, the matrix representation B of any local
operator B has a useful block structure, is very sparse and, if
B is Hermitian, is real and symmetric.

3.2. Self-consistent FEM

One important aspect of the FEM is the choice of
{ri}, i = 0, . . . , Ne, points that define the elements of the
unidimensional mesh. The simplest mesh is the one obtained
from an equidistant discretization as follows:

ri = i
rmax

Ne

. (16)

However, in many situations using an optimized mesh in
order to obtain accurate results with a lesser number of basis
functions can be interesting. Previously, Prudente and Soares
Neto introduced a quantum mechanical procedure (QMP)
to build the optimized mesh for an arbitrary potential [52].
The QMP was motivated by the potential-optimized discrete
variable representation (PO-DVR) method [56–59]. In such a
method, the Gaussian quadrature points are the eigenvalues of
the position operator in a specific orthonormal basis function.

Here a modification on the QMP is proposed transforming
it in a self-consistent procedure to solve one-dimensional
quantum problems employing the p-version of the FEM. The
basic steps of the self-consistent FEM are given as follows.
(i) Solve the one-dimensional problem using the p-FEM with

a (small) equidistant mesh and determine an approximate
set of eigenvalues {Ei} and eigenfunctions {φi(r)}.

(ii) Using the Ne − 1 first eigenfunctions, build the X matrix
whose elements are given by

{X}ij =
∫ rmax

0
drφ∗

i (r)rφj (r), (17)

where X is the matrix representation of the position
operator.

(iii) Diagonalize X. The Ne − 1 eigenvalues are the
r1, r2, . . . , rNe−1 points that define the borders of elements
(r0 = 0 and rNe

= rmax are previously chosen).
(iv) Solve the one-dimensional problem using the p-FEM

with the mesh determined in step (iii) to obtain the
new eigenvalues and eigenfunctions. If the absolute
difference between the old and new eigenvalues is greater
than a desirable tolerance, go to step (ii) and repeat the
procedure. When the convergence is reached, the iterative
process is concluded and the final optimized mesh is
obtained.

3
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Table 1. Eigenvalues with energy levels of 1s to 4s states for
different values of w0 and σ using the SC-FEM.

Energy levels (hartree)

w0 (Ryd) σ ( Å) 1s 2s 3s 4s

1.000 0.26 −0.5002 −0.2224 −0.0565 −0.0316
1.000 0.57 −0.5013 −0.3418 −0.0639 −0.0362
1.000 1.59 −0.5584 −0.4892 −0.2480 −0.0708
0.647 0.26 −0.5001 −0.1804 −0.0562 −0.0314
0.647 0.57 −0.5006 −0.2504 −0.0599 −0.0336
0.647 1.59 −0.5280 −0.3603 −0.1594 −0.0491
0.324 0.26 −0.5000 −0.1495 −0.0559 −0.0313
0.324 0.57 −0.5002 −0.1799 −0.0575 −0.0322
0.324 1.59 −0.5128 −0.2382 −0.0918 −0.0406

free −0.5000 −0.1250 −0.0556 −0.0312

4. Results

In this section the SC-FEM is employed to perform the
electronic structure calculations of a hydrogen atom inside C60

and C36 fullerenes modelled by the Gaussian shell potential
(5). All SC-FEM calculations have been performed using
Ne = 20, ki = 8 ∀i, totalizing 139 local basis functions, and
rmax = 200.0 a0; this asserts an accuracy of, at least, four
figures in the energy levels. On the other hand, the model
potential has three adjustable parameters (w0, maximum well
depth; rc, centre of confinement shell; σ , half-width) that
must be chosen appropriately to simulate the cages. An
obvious choice of rc is taken equal to the characteristic (or
experimental) radius of the fullerene cage; here rc = 3.54 Å
is utilized for C60 [35] and rc = 2.50 Å for C36 [60]. The
other two parameters should then be obtained from other
experimental and theoretical information about the fullerenes.

In order to show the adaptation of the present model
potential, the energy values for the first four states for l = 0 of
the confined hydrogen atom are calculated for different values
of w0 and σ , assuming rc in its C60 value. These results
are shown in table 1, jointly with the respective energies of
the free hydrogen atom calculated with the SC-FEM. We can
note that each energy level has a different behaviour when the
confinement parameters are changed. The electronic state that
suffers the highest influence is the 2s one, while the states 1s
and 4s are almost not modified within the range of parameters
shown in table 1. These results indicate the flexibility of the
Gaussian model potential.

Moreover, it is interesting to point out the importance of
the optimization process of the element mesh at SC-FEM. In
this procedure, initially an equidistant mesh is proposed and,
after some self-consistent cycles, a new FEM mesh optimized
for the potential is obtained . For example, figure 2 displays the
equidistant and the optimized mesh, jointly with the effective
(Coulombic + Gaussian confinement + centrifugal) potential,
V ef

l (r), for w0 = 0.647 Ryd, σ = 0.57 Å, rc = 3.54 Å and
l = 0. As expected, in the figure it can be clearly seen that
the node points of the optimized mesh are more concentrated
in the regions where the potential reaches a minimum. The
improvement in the energy values is great: for the 1s energy
level, the equidistant mesh gives a value of −0.4987 hartree,

Figure 2. The effective (Coulombic + Gaussian confinement)
potential V ef

0 (r) (full line), the equidistant (triangle up) mesh and
the optimized one (square) obtained using the SC-FEM; distance in
bohr and potential energy in hartree.

while for the optimized one, the accurate value is found to be
−0.5006 hartree.

The next step is to compare the Gaussian shell model with
the previous one, equation (1), proposed by Connerade et al
[38]. For this purpose, the energy levels of ns, n = 1, . . . , 4,
electronic states for H@C60 are calculated as a function of the
confining well depth, w0. In order to compare both models,
the value of σ in the present model is adjusted to satisfy the
condition∫ ∞

0
ŵ(r) dr =

∫ ∞

0
Vsr(r) dr = −U0� (18)

where U0 is the well depth of the square well and � is the
thickness of equation (1), while it is assumed that w0 = U0.
Following Connerade et al [38], it is assumed that � = 1 Å,
leading σ = 0.57 Å to the C60 cage. This choice is rather
arbitrary, and there are other possibilities. One eventually
could more naturally utilize the volume element in spherical
coordinates, r2 dr . However, in such a case the value of
σ practically does not change, leading to the similar results
obtained by using equation (18).

The results of the spherical Gaussian shell are shown in
figure 3, where they are compared with those obtained by
Connerade et al [38]. We can see good agreement between
both results, and the observed differences are due to the
functional differences among the confinement potentials. For
example, the 2s state is strongly modified even for small values
of w0, while the other states remain practically unchanged.
Moreover, the avoided crossings between the ns and (n + 1)s
states remain in the novel model, but their localizations are
slightly different; the 1s–2s, 2s–3s and 3s–4s avoided crossings
occur approximately at 1.5 Ryd, 5.4 Ryd and 11.6 Ryd,
respectively, for the present potential, while for the Connerade
et al potential these crossings occur approximately at 1.4 Ryd,
5.0 Ryd and 13.5 Ryd, respectively.

To analyse the effect of the confinement cage in states with
l �= 0, figure 4 displays the 1s to 4d energy levels of H@C60

as a function of w0 calculated using the Gaussian shell. The

4
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Figure 3. Energies of 1s to 4s levels of H@C60 as a function of w0.
Solid lines, our results; dashed lines, Connerade et al [38] results.
The vertical dashed line indicates the value of w0 adjusted by the
electron affinity of C60.

Figure 4. The 1s to 4d energy levels of H@C60 as a function of w0

calculated using the SC-FEM.

splitting of the degeneracy observed in the free hydrogen atom
for the levels nl, with 0 � l � n − 1, due to the confinement
potential can be noted clearly. The nl states more affected by
the fullerene cage are the ones with l = n − 1. Thus, the
level ordering is seen to be 1s, 2p, 3d, 2s, 3p and 3s states at
w0 = 2.0 Ryd.

As commented previously, the potential depth w0 to
simulate a real C60 cage can be obtained from experimental or
theoretical data. A simple procedure is to fit the theoretical
valuation of the electron affinity to the experimental one
[36]. The theoretical electron affinity can be calculated
by solving the one-electron problem placed inside the
Gaussian attractive shell (equation (6)) without the −1/r

term. For an electron affinity of 2.65 eV for C60

[61], we have obtained w0 = 8.80 eV = 0.647 Ryd
for the present model, while for the Connerade et al model
potential, the well depth is found to be U0 = 8.22 eV

Figure 5. The radial ψns wavefunctions of H@C60 at w0 =
0.647 Ryd and the effective (Coulombic + Gaussian confinement)
potential. Solid lines, 1s state; dashed line, 2s state; dashed dotted
line, 3s state; dashed dotted dotted line, 4s state; dotted line,
effective (Coulombic + Gaussian confinement) potential.

Figure 6. The E1s to E4d energy levels of H@C36 as a function of
w0 calculated using the SC-FEM.

[36]. In particular, the wavefunction of the ns states,
n = 1, . . . , 4, and the effective (Gaussian confinement +
Coulombic) potential with l = 0 calculated at a value of
w0 = 0.647 Ryd (8.80 eV) are displayed in figure 5. Thus,
we can see that the states 1s, 3s and 4s remain bound in the
inner Coulomb shell, while the 2s state has great amplitude in
the confinement region. We can easily recognize that the 2s
state is strongly bounded by the confinement, while the others
remain bounded in the inner Coulomb well.

In order to show the versatility of the attractive Gaussian
shell model potential, we also apply it in the study of the
electronic structure of H@C36. So we show, in figure 6, the 1s
to 4d energy levels of H@C36 as a function of w0. The avoided
crossings between the ns and (n + 1)s states are still perceived
but less evident than in the H@C60 case. This indicates
that the coupling between Coulombic and confinement cage
potentials is more intense in the present system. The stronger
confinement over the states of H@C36 is clearly related to the

5



J. Phys. B: At. Mol. Opt. Phys. 44 (2011) 015003 E M Nascimento et al

Figure 7. The radial wavefunctions of 1s to 4d states for H@C36 at
w0 = 0.683 Ryd and the effective potential. Solid lines, s states;
dashed lines, p states; dashed dot lines, d states; dotted line,
effective (Coulombic + Gaussian confinement) potential.

smallest radius of the C36 molecule. Moreover, the splitting
of the degeneracy for the levels nl, with 0 � l � n − 1, due to
the confinement potential is also observed.

By evaluating the potential depth w0 to simulate a real
C36 cage, we have found w0 = 9.29 eV = 0.683 Ryd by
considering the value of 2.8 eV for the experimental electron
affinity of C36 [62]. We can see that, at a typical value of
w0 = 0.683 Ryd for C36, all states feel the influence of
the confinement well. To show this more clearly, figure 7
displays the 1s to 4d wavefunctions calculated at this w0, and
the effective (Coulombic + Gaussian confinement) potential
V ef

0 (r). The states 2s, 2p, 3d have most of their amplitudes
in the confinement region and remain bound in the outer well.
The 3s, 4s, 3p, 4p and 4d states appear partially bound in the
outer confining well. On the other hand, the declines of the
curves in figure 6 show that for greater values of w0, the 2s, 3s
and 4s levels do not become completely confined in the inner
Coulomb well as we saw for C60. The 1s state has most of its
amplitude in the inner Coulomb well but a significant amount
of it in the outer well also, so that the energy is decreased by
an amount nearly equal to the confining well depth.

5. Conclusion

In this paper, a new model potential is proposed in order to
describe the confinement of atoms inside fullerene cages. This
procedure was applied to the confinement of the hydrogen
atom inside C60 and C36 molecules, and the results have been
compared to the others found in the literature. Particularly,
we choose the results obtained by Connerade et al [38]
in a very similar situation with ours to perform a detailed
comparison. Our calculations have shown that, to the typical
well depth for C60, most of the ns states stay bound in
the inner Coulomb shell, while for C36 all the states feel
the influence of the confinement well; this is related to the
smallest radius of the C36 cage. We believe that this attractive
short-range spherical Gaussian potential type resembles better
the physical confinement than a more simple short-range

spherical potential. Moreover, the use of Gaussian functions
is convenient in calculations involving the integration of the
potential. So this model potential can be easily applied to
other nearly spherical systems and multielectronic atoms.
In particular, studies of the photoionization process of the
endohedrally confined atom by the fullerene cage are being
carried through and the results will be published in the near
future.
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