
A Study of the Energy Consumption
Characteristics of Cryptographic
Algorithms and Security Protocols

Nachiketh R. Potlapally, Student Member, IEEE, Srivaths Ravi, Member, IEEE,

Anand Raghunathan, Senior Member, IEEE, and Niraj K. Jha, Fellow, IEEE

Abstract—Security is becoming an everyday concern for a wide range of electronic systems that manipulate, communicate, and store

sensitive data. An important and emerging category of such electronic systems are battery-powered mobile appliances, such as

personal digital assistants (PDAs) and cell phones, which are severely constrained in the resources they possess, namely, processor,

battery, and memory. This work focuses on one important constraint of such devices—battery life—and examines how it is impacted

by the use of various security mechanisms. In this paper, we first present a comprehensive analysis of the energy requirements of a

wide range of cryptographic algorithms that form the building blocks of security mechanisms such as security protocols. We then study

the energy consumption requirements of the most popular transport-layer security protocol: Secure Sockets Layer (SSL). We

investigate the impact of various parameters at the protocol level (such as cipher suites, authentication mechanisms, and transaction

sizes, etc.) and the cryptographic algorithm level (cipher modes, strength) on the overall energy consumption for secure data

transactions. To our knowledge, this is the first comprehensive analysis of the energy requirements of SSL. For our studies, we have

developed a measurement-based experimental testbed that consists of an iPAQ PDA connected to a wireless local area network

(LAN) and running Linux, a PC-based data acquisition system for real-time current measurement, the OpenSSL implementation of the

SSL protocol, and parameterizable SSL client and server test programs. Based on our results, we also discuss various opportunities

for realizing energy-efficient implementations of security protocols. We believe such investigations to be an important first step toward

addressing the challenges of energy-efficient security for battery-constrained systems.

Index Terms—3DES, AES, cryptographic algorithms, DES, Diffie-Hellman, DSA, ECC, embedded system, energy analysis,

handheld, low-power, RSA, security, security protocols, SSL.

�

1 INTRODUCTION

TODAY, an increasing number of battery-powered em-
bedded systems—PDAs, cell phones, networked sen-

sors, and smart cards, to name a few—are used to store,
access, manipulate, or communicate sensitive data, making
security an important issue. Security concerns in such
systems range from user identification to secure information
storage, secure software execution, and secure communica-
tions. Most battery-powered systems contain wireless
communication capabilities for untethered operation, intro-
ducing new security concerns due to the public nature of the
physical communication medium or channel.

With the evolution of the Internet, network and commu-
nications security has gained significant attention [1], [2],
[3], [4]. Secure communication across wired and wireless
networks is typically achieved by employing security
protocols at various layers of the network protocol stack,
e.g., WEP [5] at the link layer, IPSec [6] at the network layer,
TLS/SSL [7] and WTLS [8] at the transport layer, SET at the
application layer, etc.). The building blocks of a security

protocol are cryptographic algorithms, which are selected
based on the security objectives that are to be achieved by
the protocol. They include asymmetric and symmetric
encryption algorithms, which are used to provide authenti-
cation and privacy, as well as hash or message digest
algorithms that are used to provide message integrity.

While security protocols and the cryptographic algo-
rithms they contain address security considerations from a
functional perspective, many embedded systems are con-
strained by the environments they operate in and the
resources they possess. For such systems, there are several
challenges that need to be addressed in order to enable
secure computing and communications. For battery-pow-
ered embedded systems, perhaps one of the foremost
challenges is the mismatch between the energy and
performance requirements of security processing,1 and the
available battery and processor capabilities. Rapid increases
in communication data rates and security levels required,
together with slow increases in battery capacities, threaten to
widen this “battery gap” to a point where it will impede the
adoption of applications and services that require security.

In this work, we demonstrate that security processing can
have a significant impact on battery life.Addressing the battery
gap in secure communications requires that we first analyze and
understand the energy consumption characteristics of security

128 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 5, NO. 2, FEBRUARY 2006

. N.R. Potlapally and N.K. Jha are with the Department of Electrical
Engineering, Princeton University, Princeton, NJ 08544.
E-mail: {npotlapa, jha}@ee.princeton.edu.

. S. Ravi and A. Raghunathan are with NEC Laboratories America,
Princeton, NJ 08540. E-mail: {sravi, anand}@nec-labs.com.

Manuscript received 20 Sept. 2003; revised 28 Apr. 2004; accepted 9 Sept.
2004; published online 15 Dec. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number TMC-0153-0903.

1. We use the term security processing to refer to any computations
performed for the sake of security, including the execution of security
protocols and cryptographic algorithms.

1536-1233/06/$20.00 � 2006 IEEE Published by the IEEE CS, CASS, ComSoc, IES, & SPS

protocols and cryptographic algorithms. This paper presents a
comprehensive energy measurement and analysis of the
most popular transport-layer security protocol used in the
Internet, the Secure Sockets Layer (SSL), or Transport Layer
Security (TLS) protocol. To our knowledge, this is the first
comprehensive energy analysis of the energy requirements
of SSL/TLS. The energy analysis in this study is performed
by executing secure data transactions on a battery-powered
system (a Compaq iPAQ PDA [9]), measuring the current
drawn from the power supply and calculating the energy
consumed during the time intervals in which the security
protocol or its constituent cryptographic algorithms are
executed. Our results can be used to explore the impact of
various parameters, at the protocol and cryptographic
algorithm levels, on overall energy consumption for secure
data transactions. Based on our analysis, we discuss various
opportunities for energy-efficient implementations of secur-
ity protocols.

The rest of this paper is organized as follows: Section 2
motivates the need for addressing energy consumption
issues in security protocols. Section 3 introduces the reader
to pertinent security terms and concepts. Section 4 describes
the experimental testbed used in our work to execute and
analyze secure wireless transactions and provides details of
the energy measurement setup. Section 5 presents the
results of our energy measurements, applies this informa-
tion to analyze the SSL protocol, and suggests ways of
optimizing the energy requirements of SSL. Section 6
summarizes the insights gathered in this work and
enumerates future avenues of research.

2 MOTIVATION

In this section, we provide an example to motivate the need
for studying the energy consumption of security protocols.
Then, we discuss the possible ways in which the energy
consumption of security protocols can be optimized.
Finally, we conclude by surveying related work on
performance/energy analysis and optimization of security
protocols.

2.1 The Impact of Security on Battery Life:
An Illustration

In order to illustrate the burden imposed by security
processing, we consider an example involving the operation
of a sensor node with and without the need for security. We

show that computations resulting from the use of security
algorithms significantly reduce the amount of energy
available for normal operations of the node.

Sensor nodes are normally used for aggregating specific
information about their surroundings and transmitting it to a
centralized location. Our example sensor node performs a
similar functionality. It uses a Motorola “DragonBall”
MC68328 processor, operates at a data rate of 10Kbps, and
has a battery capacity of 26KJ (typical). Studies [10] have
shown that the node consumes 13:9�J and 21:0�J for
receiving and transmitting a bit, respectively. When encryp-
tion is used, the node consumes 41:0�J per bit during
asymmetric algorithm operation and expends 7:9�J per bit
for symmetric algorithm operation. In the absence of
encryption, the node transmits the collected data as is.
However, when encryption is used, the data transfer is
broken up into sessions. Each session comprises two stages:
authentication and key-establishment by using an asym-
metric algorithm, followed by transmission of data after
encrypting them using a symmetric algorithm with the key
established (in the first stage of the session). The amount of
data transmitted in a session is referred to as session length.
The maximum amount of data which can be transferred in
each session, i.e., upper bound on the session length, is
specified by the security policy and is determined by the
sensitivity of the data: The greater the sensitivity of the data,
the shorter the session length, and vice versa. Thus, in the
case of sensitive data, session lengths are short and the
frequency of setting up new sessions is high. This is
illustrated in Fig. 1, where the X-axis gives the session length
and the Y-axis gives the frequency of session set-up (until the
battery runs out). For example, when the session length of
1KB is used, the node has to negotiate nearly five new
sessionsper second. For highly sensitive data, session lengths
aremade less than or equal to 4KB and, consequently, greater
than or equal to two sessions have to be set up every second.

Fig. 2 shows the effect of encryption on battery life as the
session length is varied. “Battery life (encrypted)” refers to
the number of sessions which can be transacted before the
battery runs out. Similarly, “Battery life (unencrypted)” is
the multiple of session lengths of data that can be sent
without encryption until the battery drains out. We assume
the session length to be the same in both the cases. The
Y-axis in Fig. 2 is the ratio of “Battery life (encrypted)” to
“Battery life (unencrypted)” and is an indicator of how fast
the battery gets drained in the presence of encryption. The

POTLAPALLY ET AL.: A STUDY OF THE ENERGY CONSUMPTION CHARACTERISTICS OF CRYPTOGRAPHIC ALGORITHMS AND SECURITY... 129

Fig. 1. Frequency of session set-up as a function of session length.
Fig. 2. Effect of encryption on battery life.

figure shows that security processing causes an appreciable
reduction in battery life. For example, when security
requirements are high (and sessions are made less than or
equal to 4KB), we see that the battery runs out more than
twice as fast as when there is no encryption. Thus, there is a
strong motivation to investigate techniques which lead to
energy-efficient execution of security protocols.

2.2 Energy-Efficient Security Protocols

The objective of energy-efficient security protocol execution
can be achieved in multiple ways, which can be divided
into two broad classes listed below:

. By making the execution of constituent crypto-
graphic algorithms (also referred to as cryptographic
primitives) efficient through a combination of hard-
ware and software techniques [11], [12], [13], [14],
[15], we can improve the performance and energy
requirements of security protocols. Usually, in these
techniques, there is an overhead in the form of an
increase in silicon area or more complex software.

. We can make the security protocols energy-cogni-
zant by allowing them to alter their operation
depending on the operating environment. This
adaptation of behavior is guided by rules, which
determine the best possible alternative with respect
to energy efficiency under any given input condi-
tions. These changes may involve a conscious and
conservative tradeoff between the level of security
and energy.

In either scenario, the challenges of energy-efficient
secure communications can be better addressed if energy
requirements and bottlenecks of the underlying security
protocols are better understood. Commonly used security
protocols, like SSL/TLS, IPSec, etc., have the freedom of
realizing the desired security objectives by choosing specific
cryptographic algorithms from a predefined set. In addi-
tion, the communicating parties can also decide upon
parameters which influence the mode of operation of the
chosen cryptographic algorithm. These provisions are made
in security protocols primarily to lend flexibility to
interactions between parties having diverse capabilities in
terms of number of cryptographic algorithms supported by
each of them (usually, resulting from the usage of different
versions of security protocol software).

In this work, we perform a detailed analysis of the
energy requirements of various cryptographic primitives
with the intention of using this data as a foundation for
devising energy-efficient security protocols. We performed
several experiments where we varied several protocol and
cryptographic algorithm-level parameters and observed the
impact on energy. We use the results of our experiments to
suggest ways for making the execution of the SSL protocol
energy-efficient.

2.3 Related Work

Security protocols and cryptographic algorithms are known
to have significant computational requirements, and studies
have indicated that they stretch the processor capabilities
available inmanyembedded systems [16], [17], [18], [19], [20],
[21]. While researchers have quantified and addressed the
performance overhead of security, the energy implications
are relatively lessunderstood.Nevertheless, researchershave

recently proposed interesting approaches to the design of
lightweight security protocols. Low-power keymanagement
protocols have been devised for sensor nodes by analyzing
the impact of security algorithms on the energy consumption
of sensor nodes [10]. The work in [22] evaluated the energy
consumption of selected key-exchange protocols on a WINS
sensor node and proposed energy-efficient ways for ex-
changing cryptographic keys, while custom protocols for
low-powermutual authenticationwereproposed in [23], [24].
Energy tradeoffs in the network protocol and key manage-
ment design space of sensor nodes were explored in [25].
Techniques to minimize the energy consumed by secure
wireless sessions have also been proposed in [26].We believe
that comprehensive energy analyses of security protocols,
such as the one performed in our work, will facilitate
identification of energy bottlenecks and development of
energy-efficient security mechanisms.

3 PRELIMINARIES

In this section, we provide a brief overview of commonly
employed security concepts and terminology [3], [4]. We
begin by defining the widely used terms in the fields of
cryptography and network security, and follow it by
describing different kinds of protection measures, referred
to as security objectives, desired in practical applications with
a need for security. The concern for security in practice is
addressed by choosing a security protocol, which achieves
all the required security objectives. Security protocols
realize the security objectives through the use of appro-
priate cryptographic algorithms. In the latter part of the
section, we define the three classes into which all the
cryptographic algorithms can be categorized based on their
characteristics, and conclude the section by illustrating the
working of a widely used security protocol, SSL.

3.1 Basic Security Terminology

Amessage present in a clear form, which can be understood
by any casual observer, is known as the plaintext. The
encryption process converts the plaintext to a form that hides
the meaning of the message from everyone except the valid
communicating parties, and the result is known as the
ciphertext. Decryption is the inverse of encryption, i.e., the
ciphertext is mapped back to its corresponding plaintext.
The processes of encryption and decryption are parameter-
ized on a quantity known as the key, which is ideally known
only to the legitimate communicating parties. Since the
strength of a security scheme depends on the secrecy of the
key(s) used, it is highly imperative that the communicating
parties take utmost precaution to safeguard the keys
belonging to them. A security protocol formally specifies a
set of steps to be followed by two or more communicating
parties, so that the mutually desired security objectives are
satisfied. It is assumed that the parties involved have the
means to execute the various steps of the security protocol.

The term security objectives is often used to denote the
security services or functionality required in a system or
network to protect sensitive data and/or identity. The
four main security objectives include:

. Confidentiality. This is the most popular require-
ment of security protocols, and it means that the
secrecy of the data being exchanged by the commu-
nicating parties is maintained, i.e., no one other than

130 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 5, NO. 2, FEBRUARY 2006

the legitimate parties should know the content of the
data being exchanged.

. Authentication. It should be possible for the receiver
of a message to ascertain its origin, i.e., to ensure that
the sender of the message is who he claims to be, and
the message was sent by him. This prevents a
malicious entity frommasquerading as someone else.

. Integrity. It provides a means for the receiver of a
message to verify that the message was not altered in
transit. This is necessary to prevent a malicious entity
from substituting a false message in the place of a
legitimate one or to tamperwith the originalmessage.

. Nonrepudiation. The sender of a message should
not be able to falsely deny later that he sent the
message, and this fact should be verifiable indepen-
dently by an independent third-party without
knowing too much about the content of the disputed
message(s). This feature has important applications
in the E-commerce domain, where it is common for
users to send online messages authorizing the
intended recipients of the messages to perform
important actions on their behalf.

Security objectives thus provide trust, analogous to that
present in face-to-face meetings, to the “faceless” interac-
tions on the Web (or any data network). They are realized
through the use of cryptographic algorithms (also referred
to as cryptographic primitives), which are divided into
three categories depending on their characteristics. These
categories are:

. Symmetric algorithms. These algorithms use the
same key for encryption and decryption. They rely on
the concepts of “confusion and diffusion” [27] to
realize their cryptographic properties and are used
mainly for confidentiality purposes.

. Asymmetric algorithms. These algorithms use dif-
ferent keys, known as the public key and the private
key, for encryption and decryption, respectively.
They are constructed from the mathematical abstrac-
tions known as “trapdoor one-way functions,”
which are based on computationally intractable
number-theoretic problems like integer factorization,
discrete logarithm, etc. [28]. They are primarily used
for authentication and nonrepudiation.

. Hash algorithms. These algorithms take a message
of arbitrary length and output a fixed-length number
(hash) representative of the message. Even a minor
change in the original message can result in the
computation of a different hash value. The algo-
rithms can be made parameterizable on a key, in
which case, they are referred to as “keyed hash
algorithms.” They are used for verifying the integ-
rity of the messages exchanged.

Depending on the security objectives needed by a transac-
tion among various parties and the constraints imposed by
them, a security protocol is devised by composing a formal
sequence of steps and deciding which algorithms should be
used for carrying out each step.

3.2 An Example Security Protocol: Secure Sockets
Layer (SSL) Protocol

SSL is one of the most widely used security protocols on the
Internet. It is implemented at the transport layer of the

protocol stack. SSL offers the basic security services of
encryption, source authentication, and integrity protection
for data exchanged over underlying unprotected networks.
The SSL protocol is typically layered on top of TCP/IP
layers of the protocol stack and is either embedded in the
protocol suite or is integrated with applications such as
browsers. The SSL protocol consists of two main layers, as
shown in Fig. 3. The SSL record protocol provides the basic
services of privacy and integrity to the higher-layer
protocols: SSL handshake, SSL change cipher, and SSL
alert. Let us now examine how the SSL record protocol is
used to encrypt application data. The first step involves
breaking the application data into smaller fragments. Each
fragment is then compressed, if compression options are
enabled. The next step involves computing a message
authentication code (MAC), which facilitates message
integrity. The compressed message plus MAC is then
encrypted using a symmetric cipher. If the symmetric
cipher is a block cipher, then a few padding bytes may be
added. Finally, an SSL header is attached to complete the
assembly of the SSL record. The header contains various
fields, including the higher-layer protocol used to process
the attached fragment.

Of the three higher-layer protocols, SSL handshake is the
most complex and consists of a sequence of steps that
allows a server and client to authenticate each other and
negotiate the various cipher parameters needed to initiate a
session. For example, the SSL handshake is responsible for
negotiating a common suite of cryptographic algorithms
(cipher-suite), which can then be used for session key
exchange, authentication, bulk encryption, and hashing.
The cipher-suite RSA-3DES-SHA1, for example, indicates
that RSA can be used for key agreement (and authentica-
tion), while 3DES and SHA1 can be used for bulk
encryption and integrity computations, respectively. More
than 30 such cipher suite choices exist in the OpenSSL
implementation [29] of the SSL protocol, resulting from
combinations of various cipher alternatives for implement-
ing the individual security services.

Finally, the SSL change cipher protocol allows for
dynamic updates of cipher suites used in a connection,
while the SSL alert protocol can be used to send alert
messages to a peer. Further details of the SSL protocol can
be found in [3].

POTLAPALLY ET AL.: A STUDY OF THE ENERGY CONSUMPTION CHARACTERISTICS OF CRYPTOGRAPHIC ALGORITHMS AND SECURITY... 131

Fig. 3. The SSL protocol, with an expanded view of the SSL record

protocol.

4 EXPERIMENTAL SETUP

Fig. 4 describes the experimental setup used to execute
secure client-server interactions, and the testbed developed
to quantify the energy consumption of the various
constituent security protocols.

The experimental setup for secure client-server commu-
nication consists of a client that connects to a LAN through
a wireless access point, while the server is a PC that is wired
to the LAN. The handheld used in the experiment is a
Compaq iPAQ H3670, which contains an Intel SA-1110
StrongARM processor clocked at 206MHz. It is provided
with 64MB of RAM and 16MB of FlashROM, and has an
expansion sleeve which allows for memory expansion using
compact flash cards. It connects to the wireless access point
using a Cisco Aironet 350 series WLAN card. The handheld
also supports additional communication capability through
a serial port, a USB port and IrDA at 115.2 Kbps. It is
powered by a Li-Polymer battery with a 950 mAh rating.
The handheld uses the Familiar distribution [30] of Linux as
its OS. The server is a PC equipped with a 700MHz Intel
Pentium III having 256MB of RAM and running the RedHat
Linux OS. The security of client and server interactions is
provided by the SSL software from the OpenSSL [29] open-
source project.

The energy consumption values for individual crypto-
graphic algorithms are obtained by running their imple-
mentations on the client and measuring the current drawn
from the power supply. Fig. 4 also shows the arrangement
used for measuring the energy consumption of the
cryptographic algorithms. The energy measurement is done
using LabVIEW [31], a GUI-based data acquisition, mea-
surement analysis, and presentation software. The data
acquisition software runs on a PC (called a power
measurement system), which is also directly connected to
the handheld through its serial port. This enables the
handheld to send synchronization signals to the data
acquisition unit to start and stop the energy measurements.
This signaling mechanism allows us to precisely measure
the energy dissipated by the chosen software kernels. The
current drawn by the client is measured by connecting a
sense resistor in a series between the handheld and the
energy source, i.e., the battery. The voltage drop across the

sense resistor is measured using an SCB-68 I/O connector
block [31]. This block interfaces to the data acquisition
software, LabVIEW, through a data acquisition (DA) card in
the PC running the LabVIEW software. LabVIEW is used to
calculate the energy supplied to the handheld by integrat-
ing power over the time interval between the start and stop
synchronizing signals.

5 EXPERIMENTAL RESULTS

In this section, we present a comprehensive empirical
analysis of the energy consumption characteristics of
cryptographic algorithms (Section 5.1) using the experi-
mental set-up described in Section 4. We also present a
comprehensive energy analysis for various stages of the
SSL protocol (Section 5.2).

5.1 Energy Analysis of Cryptographic Algorithms

We analyze variations in the energy consumption of various
asymmetric, hash, and symmetric algorithms used for the
purposes of authentication, integrity, and secrecy of data
transactions, respectively (Sections 5.1.1 - 5.1.3). In
Section 5.1.4, we investigate the influence of commonly
used software implementation techniques of cryptographic
algorithms on their energy consumption. We conclude this
section by illustrating energy consumption versus security-
level trade-offs realized by varying the operational para-
meters of cryptographic algorithms (Section 5.1.5). The
implementations of the cryptographic algorithms were
obtained from a standard cryptographic library used in
the widely deployed OpenSSL package [29] and run on an
SA-1110-based energy testbed described in the previous
section. Since all the implementations are derived from the
same standardized library, we presume that more or less
similar software engineering techniques were uniformly
employed throughout the software package. Thus, we can
consider that the relative computational differences be-
tween various algorithms belonging to the same class
(asymmetric, hash, and symmetric) are largely due to
disparities in the complexity of their constituent operation
steps and are not strongly tied to the data structures and
software programming techniques used. In addition, most
of the hardware platforms used in embedded devices are
either SA-1110-based or very similar to it. Therefore, the
conclusions drawn here are broadly applicable to other
protocols such as WTLS, IPSec, etc., since they use the same
cryptographic algorithms. However, there are some limita-
tions to this approach arising out of the usage of particular
number-theoretic algorithms. For each number-theoretic
operation, there exist many different algorithms to perform
it, and they have varying performance. Though the library
chooses the optimal mathematical algorithms for the
various operations, the state-of-the-art keeps changing.
Thus, the observations from our empirical analysis would
be relevant in the context of the algorithms employed for
different mathematical operations.

5.1.1 Asymmetric Algorithms

Computationally hard mathematical problems form the
basis of public-key cryptosystems. RSA is based on the
hardness of integer factorization, while the digital signature
algorithm (DSA) and Diffie-Hellman (DH) are based on that
of the discrete logarithm problem in integer fields. The

132 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 5, NO. 2, FEBRUARY 2006

Fig. 4. Secure client-server configuration and the energy measurement

testbed.

elliptic curve digital signature algorithm (ECDSA) and
elliptic curve Diffie-Hellman algorithm (ECDH) provide
security based on the discrete logarithm problem defined
on elliptic curves. The basic mathematical operation in RSA,
DSA, and DH is modular exponentiation and point multi-
plication on elliptic curves forms the core arithmetic
operation in ECDSA and ECDH [32]. If Securityintegerðk1Þ
and Securityellipticðk2Þ denote the security provided by
RSA/DSA/DH algorithms employing a key of k1 bits and
ECDSA/ECDH algorithms using a key of size k2 bits,
respectively, then research has shown that the following
equivalence exists between them [33]:

Securityintegerð163Þ � Securityellipticð1024Þ;

Securityintegerð283Þ � Securityellipticð3072Þ; and

Securityintegerð409Þ � Securityellipticð7680Þ:

For example, a 1,024-bit modulus RSA offers the same level
of protection from cryptanalytic attacks as a 163-bit ECDSA.

Table 1 compares the energy consumed by the three
federal information processing standard (FIPS)-approved
asymmetric algorithms for generating and verifying signa-
tures in security protocols: RSA, DSA, and ECDSA. We
show the energy consumed by ECDSA for different elliptic
key sizes in addition to 1,024-bit RSA and DSA. The energy
values are reported for the three main steps associated with
digital signature algorithms: key generation, signature
creation (Sign), and signature verification (Verify). We
assume a priori generation of the parameters used in the
key generation process, as is the case in resource-con-
strained devices. We can see that 163-bit ECDSA is energy-
efficient compared to 1,024-bit DSA. However, 163-bit
ECDSA and 1,024-bit RSA digital signature algorithms
have complementary energy costs. RSA performs signature
verification efficiently, while ECDSA imposes a smaller cost
for signature generation. We can see that the energy costs of
sign and verify are much more symmetric in ECDSA than in
RSA. ECDSA uses point multiplication where a scalar of the
order of the degree of the curve is multiplied with a fixed
point (called the base point) on the elliptic curve to get
another point on the curve. Point multiplication is em-
ployed by both the sign and verify operations. In ECDSA,
the verify operation requires some extra steps involving
modular multiplication for validating the signature and,
therefore, consumes more energy than the sign operation.
The huge discrepancy in the energy costs of sign and verify
operations in RSA results from the significant difference in
the sizes of the keys employed (which are used as
exponents in the modular exponentiation operation). In
the sign operation, the private key is used which has the

same size as the modulus, and the much smaller public key
(it is usually 3 or 17) is used in the verify operation.

Asymmetric algorithms are also widely used for per-
forming key exchange. Table 2 compares the standard
algorithms used for key exchange, Diffie-Hellman (DH) and
its elliptic curve analogue (ECDH). We observe that a 163-bit
ECDH consumes much lesser energy than a 1,024-bit DH
key exchange. The energy cost of the DH algorithm can be
drastically reduced by decreasing the size of keys from
1,024 bits to 512 bits. However, this benefit does come at the
cost of reduced security.

Modular exponentiation and point multiplication can be
done in different ways [32]. In the implementations used in
our experiments, modular exponentiation was performed
by combining Montgomery reduction with a sliding
window exponentiation. The window size was set at 6.
There were two alternatives available for realizing point
multiplication: the Montgomery without precomutation
(MWP) method and the width-w nonadjacent (wNAF)
method. We studied the energy consumption of the
two algorithms and found out that the wNAF method is
efficient only when multiple point multiplications are
performed with respect to the same point.

5.1.2 Hash Algorithms

Table 3 summarizes the energy cost of commonly-used
hashing algorithms. In general, hash algorithms are the
least complex of the cryptographic algorithms and should
intuitively incur the least energy cost. From Table 3, MD2
and HMAC are observed to be more compute-intensive
than the rest of the hash algorithms. HMAC is a keyed hash,
and as the bit-width of the key is increased from 0 (no key)
to 128 bits, the energy cost varies by a very small amount.
SHA and SHA1 are newer hash algorithms and have a
larger number of steps than MD4 and MD5. Also, SHA and
SHA1 are supposed to have better collision resistance, i.e.,
probability of two inputs mapping to the same hash value,
than MD4 and MD5. These benefits of SHA (and SHA1)
come at the cost of a slightly higher energy cost than MD4
and MD5.

5.1.3 Symmetric Ciphers

Symmetric ciphers can be chosen from two classes, block
and stream, for use in a security protocol. Block ciphers
operate on similar-sized blocks of plaintext and ciphertext.
Examples of block ciphers include DES, 3DES, AES, etc.
Stream ciphers, such as RC4, convert a plaintext to
ciphertext one bit (or byte) at a time. Before a block or
stream cipher starts the encryption/decryption operation,
the input key (usually 64 bits) is expanded in order to
derive a distinct and cryptographically strong key for each
round (key setup). Encryption or decryption in symmetric
algorithms then proceeds through a repeated sequence

POTLAPALLY ET AL.: A STUDY OF THE ENERGY CONSUMPTION CHARACTERISTICS OF CRYPTOGRAPHIC ALGORITHMS AND SECURITY... 133

TABLE 1
Energy Cost of Digital Signature Algorithms

TABLE 2
Energy Cost of Key Exchange Algorithms

(rounds) of mathematical computations. We begin by
comparing the energy consumption of various symmetric
algorithms and go on to examine the energy costs of
features that are particular to symmetric algorithms and
their consequences.

Fig. 5 shows variations in energy consumption due to the
use of different symmetric ciphers. Energy numbers for the
key setup phase and energy-per-byte numbers for encryp-
tion/decryption phases are shown for each cipher. The
results are reported for one specific mode of each block
cipher—ECB or electronic code book, where a given plain-
text block always encrypts to the same cipher-text block for
the same key (the impact of different modes on energy is
explored later in Section 5.1.4). The only exception is RC4,
which is a stream cipher. From the results displayed in
Fig. 5, we make the following observations:

. RC4 is supposed to be a fast and efficient stream
cipher, which is suitable for encrypting data in high-
speed networking applications. However, we see
that it has a significant encryption cost compared to
other symmetric ciphers. Further analysis of the
operation of the algorithm shows that the majority of
the energy is consumed in memory accesses result-
ing from cache misses. In the 3.93 �J used in
encrypting a byte of data, 3.44 �J (87.53 percent) is
spent in memory-related operations and the remain-
ing 0.49 �J (12.47 percent) on computations.

. Blowfish exhibits the greatest contrast between the
energy costs of key setup and encryption/decryp-
tion: The energy cost of key setup is the highest,
while that of encryption/decryption ranks as one of
the lowest. Blowfish is a 64-bit cipher which
performs encryption using simple operations and
is designed to be efficient on 32-bit processors with a
reasonably-sized data cache. On the other hand, key
setup is a complex operation involving 521 iterations
in which subkey arrays totaling 4,168 bytes are
generated. This algorithm is suitable for applications
where the key is not changed frequently (thereby
allowing the significant overhead of key setup to be
amortized by the low encryption cost).

. In terms of energy of key setup and encryption,
IDEA is on par with AES. IDEA is a 64-bit cipher
where the constituent operations in encryption are
performed on 16-bit blocks. IDEA is supposed to
have very good cryptanalytic properties, thereby
combining efficiency with acceptable security.

. AES has competitive energy costs, and its cryptana-
lytic properties have been well-studied. The round
operations inAES operate on 8-bit data blocks and are
amenable to implementation efficiency on 8-bit
processors. However, optimizations exist to make
AES run extremely fast on 32-bit processors at the cost
of some space overhead (upto 4KB) [34]. In this case,

the round operations are transformed into table
lookups. The AES implementation under study has
this optimization (discussed in detail in Section 5.1.4).
Moreover, the table lookups can be done in parallel
and this feature can be exploited by multithreaded
processors to get further gains in performance.

The encryption energy overhead of symmetric algorithms is
also considerably influenced by their operational character-
istics, like key size, cipher mode, etc. These effects are
investigated in a later section.

5.1.4 Energy Costs of Implementation Choices

Most symmetric ciphers (block) perform encryption/
decryption by passing the input data through multiple
iterations of a fixed sequence of operations. This fixed
sequence of operations is collectively referred to as a round.
In software implementations of symmetric ciphers, some
characteristics of the operations which make up the round
are exploited to enhance the performance of the implemen-
tation. Two popular techniques employed for improving
performance are table look-ups and loop unrolling. In this
section, we evaluate the effect of these popular optimizing
techniques on the energy consumption by studying them in
the context of AES.

Some of the mathematical transformations used in a
round can be implemented as predetermined tables. Table
look-ups allow faster execution of the corresponding round
operations at the expense of increase in code size. In loop
unrolling, code implementing the round operations is
expanded across the loop iterations, i.e., the body of the
loop is replicated once for every reduction in the number of
loop iterations. Loop unrolling increases the number of
instructions relative to the branch and overhead instruc-
tions present in a loop implementation. This results in a
better scheduling of instructions in the processor pipeline
and, thus, improved performance. However, too much
unrolling can result in a drastic increase in code size. In
constrained environments, like embedded systems, which
usually have a small-footprint on-chip memory, bloating of
code size raises the number of capacity misses in the cache,
thereby increasing the number of memory accesses which
are expensive with respect to energy and performance.

A round in AES consists of four operations, namely,
ByteSub, ShiftRows, MixColumns, and AddRoundKey.
Among the four operations, ByteSub is most suitable for
being implemented as a table look-up. When performance
is an issue, the four operations in a round can be realized as

134 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 5, NO. 2, FEBRUARY 2006

TABLE 3
Energy Consumption Characteristics of Hash Functions

Fig. 5. Energy consumption data for various symmetric ciphers.

four table look-ups on 32-bit processors [34]. Similarly, the
degree of loop unrolling can be varied. In our experiments,
we observed the energy consumed in encrypting and
decrypting a 60KB data file using a 128-bit key as the
number of tables per round are varied (none, one, and four),
in addition to altering the degree of loop unrolling (none,
partial, and full). In the case of one table per round, only the
ByteSub operation is implemented as a table and, in partial
unrolling, the loop is unrolled for half the number of times
it is done in full unrolling. The results of the experiments
are shown in Fig. 6, on which we base the following
observations:

. Full unrolling consumes the maximum energy
among the three degrees of unrolling. The increase
in code size due to full unrolling has a negative
impact on the cache behavior, thereby resulting in an
increase in expensive memory accesses. The pre-
sence of table look-ups further increases the memory
traffic and, therefore, we see energy consumption
increasing with the number of tables.

. Partial unrolling gives the most energy-efficient
behavior among the three types of unrolling. We
can see that partial unrolling extracts the benefits of
loop unrolling without appreciably affecting the
cache behavior. The inclusion of a single table
further improves the energy efficiency, however,
when the number of tables is increased to four, it
worsens (due to an increase in memory traffic).

. Even in the absence of loop unrolling, the presence
of four tables leads to an increase in memory
accesses (and, thus, energy). The presence of a single
table improves energy efficiency.

From the observations above, we can see that partial
unrolling gives better energy efficiency than no and full
loop unrolling. Similarly, a single table look-up was
observed to be the most energy-efficient option with respect
to the number of table look-ups. The reason for this is
substantiated in Fig. 7, which shows the energy dissipated
in the processor and memory in the presence of partial loop
unrolling, as the number of tables per round is varied. We
see that, as the number of tables is increased, the energy
consumed in the memory increases, while the processor
energy consumption decreases. This is explained by the fact
that tables trade computation in the arithmetic and logic
units of the processor for look-ups in memory. However,
the rate of energy consumption increase in the memory is
much higher than that of reduction in the processor. The

crossover point of these two divergent curves with respect
to energy consumption occurs in the vicinity of one table
per round. Thus, we conclude that optimum energy
efficiency is achieved in the presence of a single table per
loop and partial loop unrolling (in embedded processor
environments).

5.1.5 Energy Consumption versus Security Trade-Offs

If different security levels can be provided by a crypto-
graphic algorithm, each with its associated energy con-
sumption characteristic, a security protocol has the option
to adapt the level of security commensurate with the
current state of the battery of the system with a view of
extending its life. This is best exemplified in symmetric
algorithms where the security level can be altered by
adjusting functional parameters, like cipher modes, key
size, and number of rounds. We show that each of these
parameters has a considerable effect on the energy cost of
the algorithms, thereby resulting in energy-security trade-
offs of practical interest.

The different cipher modes of operation of a block cipher
result in algorithmic variantswithdifferent energy consump-
tion characteristics and also security levels. We illustrate this
fact in the context ofAES. The simplestmode is theECB, but it
is susceptible to cryptanalytic attacks. The remaining modes
(cipher block chaining (CBC), cipher-feedback mode (CFB),
and output-feedback mode (OFB)) employ a feedback
mechanism so that the encryption of a plaintext block is
made dependent on the results of encryption of previous
plaintext blocks. These modes differ in the manner in which
the feedback loop is realized.Due to the feedbackmechanism,
even for the same key, a given plaintext will not always map
to the same ciphertext. Thus,CBC,OFB, andCFBoffer greater
resistance to cryptanalytic attacks than ECB [3]. Also, the size
of thekeyhasaneffect on the securityofferedbyanalgorithm:
The larger the key size, the greater the security offered [3].
Table 4 presents the energy consumption of the AES
algorithm for various operating modes and key sizes. From
the table, we can observe that:

. The energy consumption for the key set-up phase
and encryption increases with the key size.

. ECB mode is the most energy-efficient mode for
encryption, and the energy cost of encryption
increase across CBC, OFB, and peaks for CFB mode.

POTLAPALLY ET AL.: A STUDY OF THE ENERGY CONSUMPTION CHARACTERISTICS OF CRYPTOGRAPHIC ALGORITHMS AND SECURITY... 135

Fig. 6. Energy consumption of AES as a function of table look-ups.

Fig. 7. Energy consumed by AES in processor and memory.

Studies have shown that the above conclusions are generic
and hold for other block ciphers too.

The number of rounds of execution has a proportional
effect on the security of the algorithm. Table 5 identifies
different security levels for the RC5 cipher, obtained by
changing the number of rounds used in the cipher for a
given key and block size (128 bits). Each entry indicates the
data (number of attempts) needed for a successful attack
against RC5 using differential and linear cryptanalysis
techniques. The symbol > denotes the case when the
attacks are deemed impossible even theoretically. We
measured the energy consumption of RC5 for various
security levels, and the detailed energy versus security
trade-off curve is shown in Fig. 8. This shows a scheme for
lowering the energy consumption by adjusting the security
level from high to mid to low, achieved by changing the
number of RC5 rounds from 20 to 16 to 8, respectively.

We also analyzed the combined effect of key size and
number of rounds on the energy cost of key setup for RC5.
From Table 6, we can see the cost of key setup steadily
increasing with key size and number of rounds.

5.2 Energy Analysis of the SSL Protocol

Fig. 9 shows the typical (client-side) sequence of operations
for a secure session that uses the SSL protocol. The first stage
involves loading the client certificate from local storage,
optionally decrypting it using a symmetric cipher and
performing an integrity check. Note that the above crypto-
graphic operations are optional and are not part of the SSL
protocol. This is only a means of ensuring that user’s
certificates stored on his local machine were not tampered
with by some unauthorized agents. Once the SSL handshake
initiates a session, the client and server begin a sequence of
exchanges which result in the client-side operations shown
in the figure. The operations include 1) server authentication,
where the client verifies the digital signature of the trusted
certificate authority (CA) on the server certificate through
decryption using the public key of the CA followed by an
integrity check, 2) client authentication, where the client
generates a digital signature by hashing some data using the
MD5 and SHA-1 algorithms, concatenating the digests, and
encrypting the result with its private key, and 3) key

exchange, where the client generates a 48-byte premaster
secret (used to generate the secret key for the record stage)
and encrypts it with the public key of the server. Once the
connection is established, secure transmission of data
proceeds through the SSL record stage.

In the next two sections, we discuss the energy
consumption of the SSL protocol with respect to that
consumed by computation and by communication, respec-
tively. In the concluding section, we discuss the techniques
for optimizing the energy consumption of different stages
of the SSL protocol, i.e., handshake and record stages.

5.2.1 Energy Cost of Computation in SSL Protocol

Processing

The computation in SSL protocol processing is divided
among the operations in the handshake and record stages.
Fig. 10 examines the energy consumption contributions from
the handshake and record stages of the SSL protocol for
various transaction sizes. We can see that, for small
transaction sizes (up to 256KB), the SSL handshake protocol
dominates the overall energy consumption, e.g., 98.9 percent
for 1KB transactions, while, for large transactions, the energy
consumption of the SSL record protocol is significant, e.g.,
80.4 percent for 1MB transactions. Therefore, we have to
optimize the energy dissipated by the handshake protocol to
improve the energy efficiency of small transactions and
similarly target the record protocol for significantly improv-
ing the energy consumption behavior of large transactions.
Usually, the operating environment of a device determines
whether the small transactions dominate or the large ones do.

136 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 5, NO. 2, FEBRUARY 2006

TABLE 4
Energy Costs of AES Variants

TABLE 5
Multiple Levels of Cryptanalytic Difficulty in RC5

*DC-C: Differential cryptanalysis (chosen plain-text). DC-K: Differential
cryptanalysis (known plain-text). LC: Linear cryptanalysis (known
plain-text).

Fig. 8. Energy consumption versus security trade-off for RC5 encryption.

TABLE 6
Energy Consumption of RC5 Key Setup

The SSL handshake and record stages include crypto-
graphic and noncryptographic operations. It is of interest to
find out how the total energy consumed in SSL data
transactions is divided between cryptographic and non-
cryptographic processing. This information will enable us
to calculate the upper bound on the energy savings we can
achieve by improving the energy efficiency of crypto-
graphic algorithms. Fig. 11 summarizes our findings on the
energy consumption of the cryptographic and noncrypto-
graphic components of the SSL computation for three
different transaction sizes (1KB, 100KB, 1MB). Crypto-
graphic processing includes processor cycles spent in
execution of symmetric, asymmetric, and hash algorithms
as part of SSL protocol execution. Noncryptographic
processing encompasses all the system functions that are
necessary for sending and receiving data over a network.
Examples of this would be networking functions operating
at different layers of the protocol stack (socket, TCP, IP, and
network interface), memory management for buffering
packets after reception and before transmission, etc. Based
on the data in Fig. 11, we make the following observations:

. Energy used by cryptographic processing contri-
butes a significant percentage to the total energy
dissipated. For example, in a 1KB SSL-enabled data
transaction, 58 percent of the total energy dissipated
is due to cryptographic algorithms. We also note
that the energy contribution from cryptographic
processing steadily decreases with the size of the
data transactions.

. For small-sized data transactions, the energy dis-
sipated by cryptographic processing is made up
almost entirely of contributions from asymmetric
algorithms. However, as the size of the transaction
increases, symmetric algorithms replace asymmetric
algorithms as a dominant contributor to the total
energy dissipated by cryptographic processing. The
energy contribution of hash algorithms also in-
creases with data size, but remains a minor fraction
of the total energy consumption. For example, in a
1KB data transaction, the energy dissipated by
asymmetric algorithms forms more than 90 percent
of the energy consumption of cryptographic proces-
sing (and roughly 56 percent of the overall energy
consumption). When the data transaction size is
increased to 1 MB, the contribution of asymmetric
algorithms to the energy consumed by crypto-
graphic processing reduces to 23 percent (12 percent
of overall consumption) and that of symmetric
algorithms increases to 67 percent (37 percent of
overall consumption).

Thus, smaller transactions benefit greatly from optimiza-
tion of asymmetric algorithms for energy, while an
improvement in energy efficiency of symmetric algorithms
significantly improves the energy cost of large transactions.

5.2.2 Communication Energy Cost in SSL Protocol

Processing

We now analyze the communication energy overhead
resulting from the transmission and reception of extra
bytes resulting from SSL-related security processing. The

POTLAPALLY ET AL.: A STUDY OF THE ENERGY CONSUMPTION CHARACTERISTICS OF CRYPTOGRAPHIC ALGORITHMS AND SECURITY... 137

Fig. 9. Sequence of client-side operations for an SSL session.

Fig. 10. Variation of energy consumption contributions from the SSL
handshake and record stages with increasing transaction sizes.

Fig. 11. Break-up of SSL energy consumption into cryptographic and
noncryptographic components.

extra bytes that are transmitted or received by the client are
part of the packets which belong to one of the following
four protocol layers of SSL, namely: handshake, record, alert,
and change cipher spec. The packets belonging to the SSL
handshake, SSL change cipher spec, and SSL alert layers are
exchanged for the purpose of initiating, maintaining, and
closing the SSL connection, whereas the SSL record layer is
responsible for securely transmitting the data. Therefore,
the extra bytes result from two sources: first, from the
protocol management packets exchanged by the nonrecord
SSL layers, and, second, from the extra information (like,
the hash value, SSL header, etc.) appended to the data in the
packets by the SSL record layer. In Table 7, we show the
actual number of bytes, categorized according to the SSL
protocol layer to which they belong, that are transacted
between a client and server for four different files (having
sizes 1KB, 10KB, 100KB, and 1MB) in an SSL connection.
These numbers were obtained by using ssldump [36], a
software package which can be used to read SSL traffic on
networks.

In Table 7, the first column gives the size of the
transaction. The second column shows the direction of the
flow of bytes exchanged, i.e., “C ! S” stands for “client to
server” and, similarly, “S ! C” means “server to client.”
Therefore, in the “C ! S” flow, the bytes are transmitted by
the client, whereas, in the “S ! C” flow, it receives them.
The next four columns show the amount of data generated
by the four layers of the SSL protocol. The last column gives
the total number of bytes transmitted and received by the
client. The iPAQ, acting as the client, consumes different
amounts of energy for transmission and reception, which
are 3:36uJ=Byte and 2:64uJ=Byte, respectively. Table 8
shows the energy overhead incurred by the client due to the
transaction of the extra bytes resulting from SSL processing.
The first column gives the size of the file, and the second
column gives the energy expended in receiving this file
from the server without using SSL. The fourth column
shows the actual number of bytes handled by the client, in
order to receive the file, of size as given by the entry in the
first column, from the server using SSL. The fifth column
gives the energy consumed by the client in a file transaction
using SSL. Finally, the last column shows the communica-
tion energy overhead of SSL security processing which is
the difference between the energy values given in the fifth
and second columns.

From Table 8, we can see that the ratio of the
communication energy overhead to the theoretically needed
energy is very high for small-sized data transactions. Thus,
communication energy cost of security imposes a significant

burden for small data transactions. This is primarily due to
the large number of bytes exchanged in the nonrecord
layers of the SSL protocol. However, as the size of the data
transaction increases, the communication overhead of
security forms a smaller and smaller fraction of the
theoretically required energy, i.e., the impact of the
communication energy overhead is reduced. This trend is
illustrated in Fig. 12. In this figure, the two tuples indicate
the transaction size and the percentage communication
energy overhead. We can see that, for a transaction of size
1KB, the percentage communication energy overhead is a
very significant 197.69 percent, and it falls to 1.75 percent
for a 1M-sized transaction. Also, the SSL client needs to
update its SSL certificate database from time to time by
including new ones and energy is expended in down-
loading them over the wireless interface. A typical SSL
certificate provided by a certificate authority is around
1,200 bytes, and the energy cost of updating a certificate
comes to 3:168mJ .

5.2.3 Scope for Optimizing SSL Protocol Processing

Having examined the energy consumption characteristics of
the SSL protocol, both with respect to computation and
communication, we now analyze how the energy consump-
tion of the handshake and record stages is affected by
various protocol-level services as well as cryptographic
algorithm parameters. Specifically, we describe how the use
of client authentication impacts the energy consumption
due to SSL handshake and how the choice of cipher-suite
affects the energy consumption of SSL handshake and
record stages, respectively. We conclude this section by
enumerating the various ways in which the energy
consumption of SSL protocol processing can be optimized.

Impact of Client Authentication and Asymmetric
Cipher Choice on SSL Handshake. We investigated the
energy cost of the SSL handshake protocol using the
RSA algorithm and the ECC algorithms (ECDSA/ECDH)
to implement various public-key operations. The results of
our analysis are presented in Fig. 13. The SSL handshake
can be performed between a server and a client with or
without client authentication. In the case of handshake
without client authentication, the following operations are
performed by the client and the server:

. RSA-based handshake. The client performs two RSA
public key operations (verify and encrypt), and
the server performs an RSA private key operation
(decrypt).

138 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 5, NO. 2, FEBRUARY 2006

TABLE 7
Profile of the Data Exchanged between the Client and Server in an SSL Connection

. ECC-based handshake. The client performs verifi-
cation using ECDSA, and an ECDH operation is
performed to compute the shared secret. The server
performs an ECDH operation to calculate the shared
secret.

If client authentication is required, some extra operations
need to be performed by the client and the server. These are:

. RSA-based handshake. The client performs an RSA
private key operation (sign). The server performs
two extra RSA public key operations (verify).

. ECC-based handshake. The client performs an
additional signing operation using ECDSA, and the
server performs two extra verification operations
using ECDSA.

Fig. 13 shows the energy consumed by the SSL
handshake process using RSA or ECC algorithms for the
handheld functioning as a client or a server. Though the
handheld typically behaves as the client in a majority of
transactions, it may sometimes be required to play the part
of the server. In order to investigate this scenario, we
allowed the handheld to perform the server operations for
collecting the corresponding energy data. Energy data were
also collected for studying the impact of client authentica-
tion in all the cases. With respect to the client energy cost,
we can see from the figure that RSA-based handshake is

much more efficient than the ECC-based handshake when
there is no client authentication in the SSL handshake stage.
However, in the presence of client authentication in SSL
handshake, the ECC-based handshake consumes less
energy than the RSA-based handshake. In general, we
believe that various protocol-level parameters have inter-
dependent effects on energy, leading to many interesting
trade-offs.

Impact of Cipher-Suite Choice on SSL Record Energy
Consumption. The energy cost of the SSL record stage is
mainly determined by the amount of bulk data that is
transmitted. Analysis of the cipher suites shows that careful
choices of cryptographic algorithms need to be made in
order to optimize energy during the record stage. Consider
the following two cipher suites, ECC-BLOWFISH-SHA1
and ECC-AES-SHA. A cursory examination would con-
clude that the second cipher suite is more energy-efficient,
given the very high cost of key setup in BLOWFISH.
However, Fig. 14 shows that, if the amount of data
transacted is greater than 7.9KB, then, in fact, the first
cipher suite is more efficient. This is because the cost of key
setup in BLOWFISH is gradually amortized, and the
advantages of BLOWFISH come into play.

Fig. 14 illustrates the energy consumption of two cipher
suites, RSA-RC5-SHA1 and ECC-3DES-SHA. The public-
key algorithm (RSA or ECC) is used in the SSL handshake
stage and the symmetric-key algorithm (RC5 or 3DES) is
used for bulk encryption in the SSL record stage. The figure
shows that, for data sizes smaller than 21KB, ECC-3DES-
SHA is more energy-efficient because ECC is simpler than
RSA (and asymmetric energy consumption dominates that
of small data transactions). However, for transactions where
there are significant bulk data (greater than 21KB) to
encrypt, RSA-RC5-SHA1 consumes less energy, because,
for large data transfers, energy consumption of symmetric
ciphers dominates the total energy spent and RC5 is much
simpler than 3DES. This shows that a judicious choice of
cryptographic algorithms can greatly reduce the amount of
energy consumed.

Scope for Optimizing SSL. The energy analyses of the
SSL protocol and the constituent cryptographic algorithms
provide us with insights into the opportunities available for
saving energy during protocol execution. These opportu-
nities emerge from 1) the presence of security levels
(ranging from high to low) for each cryptographic algo-
rithm and security protocol with each level correlated with
distinct energy consumption characteristics, 2) the avail-
ability of parameters in a cryptographic algorithm such as

POTLAPALLY ET AL.: A STUDY OF THE ENERGY CONSUMPTION CHARACTERISTICS OF CRYPTOGRAPHIC ALGORITHMS AND SECURITY... 139

TABLE 8
Communication Energy Overhead in the Client Due to SSL Security Processing

Fig. 12. Percentage communication energy overhead of SSL usage for

varying transaction sizes.

key sizes, number of rounds, etc., that can be tuned for
energy efficiency and security level, and 3) the availability
of parameters in a security protocol such as services
provided, cipher/cipher-suite used for a given security
service, etc. It should be remembered that, for the above
optimizations to be practical, the capabilities of both the
interacting parties (server and client) should be enhanced.

We now examine the security versus energy tradeoffs that

result from variation of key size, cryptographic algorithm,

cipher parameter implementation choices, and protocol

steps.

. Key size. The size of the keys used in cryptographic
primitives is flexible. The key size determines the
strength of the cryptographic primitive, and also the
amount of computation done. This is especially true
for asymmetric algorithms. For example, in modular
exponentiation (ME)-based asymmetric algorithms,
like RSA, etc., if k is the number of bits in the key, the
number of modular multiplications necessary to
compute one ME operation is 1:5k (when the
LR binary algorithm is used). Since small-sized keys
can be easily broken by an adversary, the keys
cannot be made arbitrarily smaller. Cryptographic
studies [37] have shown that, to maintain an
acceptable level of security, key sizes should be

greater than or equal to 64 bits, 512 bits, and 163 bits
for symmetric algorithms, RSA and discrete logarithm
(DL)-based, and elliptic curve (EC)-based asymmetric
algorithms, respectively. Table 9 shows the key sizes
advisable for the two levels of security for various
types of algorithms. Key size has a significant effect
on the energy consumed by asymmetric algorithms
as observed in the case of DH key exchange, where
the energy consumption for key exchange increases
from 159:6mJ to 1046:5mJ , in going from a 512-bit
key to a 1,024-bit key (Table 2).

. Choice of algorithm. Different cryptographic primi-
tives exist to realize the same security functionality. It
is known that the different choices give the same level
of protection with equivalent sized keys [37]. For
example, in asymmetric algorithms, a 1,024-bit
RSA key is calculated to give the same level of
protection as a 163-bit ECC key. However, in spite of
this observation, the choice of algorithm to be used in
a session is still open. This is due to a variety of
reasons, such as the algorithms supported by the end
parties, the perceived confidence in the algorithms by
the users,2 and the nature of the applications. The
following observations can be made regarding algo-
rithm selection for achieving energy efficiency:

1. AES offers a good mixture of security and
energy efficiency. Its security properties have
been well-studied, and it was found to offer
high resistance to linear and differential crypta-
nalysis. In addition, it also has a low energy cost
for both key setup and encryption. However,
recent studies have pointed out that it might be
susceptible to algebraic attacks [38]. In terms of
high resistance to cryptanalytic attacks, other
algorithms which fare well are 3DES and IDEA
[4]. When lower energy consumption is a higher
priority, RC5 and Blowfish serve as possible
candidates (Fig. 5). Blowfish is the ideal choice

140 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 5, NO. 2, FEBRUARY 2006

Fig. 13. Energy consumption for client and server operations in SSL handshake under the presence or absence of client authentication.

Fig. 14. The impact of cipher suite selection on energy consumption

during the SSL handshake and record stages.

2. The cryptographic algorithms are as secure as the limitations of the
present cryptanalytic techniques. A new discovery, either in mathematics or
cryptanalysis, can undermine the security of a cryptographic algorithm
which was hitherto considered to be unbreakable. Usually, the longer an
algorithm stays unbroken, the greater is the trust placed in it. For example,
though ECC is eminently suited for small form factor devices and is gaining
wide acceptance, some parties prefer to use RSA just because it has been
around longer, and no successful attacks have been carried out against it.

when large amounts of data are to be trans-
mitted with a low frequency of key refreshes.

2. When there is a choice in the symmetric
algorithm to be used (as in the latter case
mentioned above), the size of the data to be
encrypted should be an important factor in
making a decision. Within the available set of
algorithms, the one which can transmit the data
with the least energy consumption should be
selected. The energy cost of symmetric encryp-
tion, Si, can be estimated by a simple equation,
given by:

Energy costSi ¼ Key setupðSiÞ
þ Energy per byteðSiÞ
�Data size;

where Key setupðSiÞ is the energy cost of

expanding the symmetric key for algorithm Si,

energy expended per byte for encryption/

decryption using algorithm Si is given by

Energy per byteðSiÞ, and Data size is the total

size of the data to be encrypted by algorithm Si.

Fig. 5 gives the Key setup and Energy per byte

values for different symmetric algorithms.
3. For digital signatures, RSA consumes much less

energy for verification compared to signature
generation, while ECDSA displays a comple-
mentary behavior. In a battery-constrained
handheld, if the frequency of signature genera-
tion is much smaller than verification, then it is
advisable to use RSA, while ECDSA is sug-
gested if the frequency of signature generation is
much higher. However, if both the operations
are performed with similar frequencies on the
handheld, then it might be a good idea to use
ECDSA because the total energy dissipated for
both signature generation and verification is less
than in the case of RSA and DSA (Table 1).

. Cipher Parameters of an Algorithm. The cipher
parameters of an algorithm influence the manner in
which the ciphertext is produced. The cipher
parameters have a significant influence on sym-
metric algorithm execution (and, thereby, the energy
dissipation), and include the number of rounds and
the mode of operation (ECB, CBC, CFB, and OFB).
The recommendations, in terms of selecting the
cipher parameters for obtaining energy efficiency by
an appropriate selection of cipher parameters, are
listed next:

1. For a high security level, the number of rounds
in a symmetric algorithm execution should be

more than for a low security level. In RC5,
where the number of rounds is variable, for low
security, the number of rounds is set to eight,
and, for high security, the number of rounds can
be set at 12 or higher (Fig. 8).

2. The choice of mode is dictated by the nature of
the application and its desired security level.
The ECB mode consumes the least energy, but is
susceptible to statistical attacks using the plain-
text. Therefore, it is suited for encrypting short
random data with a low security level. For a
high security level and for sending normal data,
it is advisable to use one of the CBC, CFB, or
OFB modes. They provide more security com-
pared to the ECB mode at the expense of a
higher energy consumption. In the CBC mode,
the present plaintext block is XORed with the
previously generated ciphertext block to pro-
vide better protection against statistical attacks.
In CFB and OFB modes, the amount of
ciphertext given as feedback to be XORed with
the present plaintext block can be varied in sizes
having increments of 8 bits. These two modes
are suited for networking applications where
there is streaming data and, therefore, one does
not need to wait for the entire block to arrive to
do encryption (as is necessary in CBC). Table 4
gives the energy consumption values for these
modes in the case of the AES algorithm.

. Implementation Choices. In Section 5.1.4, we
showed that memory accesses have a considerably
higher energy cost than computations in the data-
path of the processor. However, techniques like table
lookups and loop unrolling are frequently employed
for performance reasons. Usually, aggressive use of
these measures results in an increase in the number
of memory accesses, thereby decreasing energy
efficiency. Thus, for the sake of energy, we should
be judicious in the extent to which we employ these
techniques that increase memory traffic. Depending
on the energy and performance constraints, the right
balance between the fraction of computation, which
can be done on the processor, and that which is
implemented though table lookups should be
achieved (Fig. 7).

. Protocol Steps. The operations in security protocols
can be divided into two mutually exclusive subsets:
compulsory and optional. The optional steps are
usually included for extra security. Depending on
the security requirements of a task, the optional
steps are either included in the protocol execution or
not. In SSL handshake, the client authentication step is
optional. The decisions with regard to execution of
protocol steps, necessary to achieve energy effi-
ciency, can be stated as follows:

1. The following energy saving measures are valid
when the handheld is acting as a client (Fig. 13):

- If a high level of security is desired, client
authentication should be included in the
handshake. Using ECC is much more
energy-efficient than RSA.

POTLAPALLY ET AL.: A STUDY OF THE ENERGY CONSUMPTION CHARACTERISTICS OF CRYPTOGRAPHIC ALGORITHMS AND SECURITY... 141

TABLE 9
Key Sizes for the Two Security Levels

- When the security requirements are low, it
is advisable to skip client authentication in
SSL handshake. In this case, using RSA
results in significantly higher energy effi-
ciency than ECC.

2. When the handheld is acting as a server, using
ECC results in better energy efficiency both in the
presence and absence of client authentication.

Implementing the suggestions proposed for optimizing
the energy efficiency of the SSL protocol do not entail
making major changes to the existing structure and
implementation of the protocol. They determine the para-
meters for energy-efficient protocol execution based on
some characteristics of the secure session, like the size of the
data transaction, amount of security desired, whether client
authentication is required, amount of charge left in the
battery, etc. The information governing energy-efficient
parameter selection can be easily stored as a set of
parameter values, and a set of rules which specify the
conditions under which the parameters are applicable. This
decision-making system can be naturally incorporated into
the SSL Handshake protocol which determines the para-
meter values applicable to the session to be established and
fixes them for the whole length of the session. This
approach has an obvious limitation that both the client
and server wishing to establish a secure connection should
be able to support the protocol parameters aimed at
achieving energy efficiency. Except for this issue, we cannot
foresee any practical matters related to existing protocol
implementations which will limit the usage of the proposed
recommendations.

6 CONCLUSIONS

In this work, we presented a framework for analyzing the
energy consumption of cryptographic algorithms and
security protocols. We examined several cryptographic
algorithms from the three main classes—asymmetric,
symmetric, and hash, and observed that:

1. asymmetric and hash algorithms have the highest
and least energy costs, respectively,

2. the energy cost of asymmetric algorithms is depen-
dent on the key size, while that of symmetric
algorithms is not significantly affected by the key
size,

3. the energy consumption of a symmetric algorithm
depends not only on the bulk data encryption/
decryption cost but also on the key set-up cost,

4. wide variations in energy consumption exist within
the same family of cryptographic algorithms, and

5. the level of security provided by a cryptographic
algorithm can be traded off for energy savings by
tuning parameters such as key size, number of
rounds, etc.

We also studied the energy consumption profile of the
SSL protocol and saw that the energy costs of the
handshake and record stages of the SSL protocol vary
depending on parameters like the functionality desired in
the handshake, size of bulk data transacted, etc. Further-
more, we used our analysis to detail the opportunities
available for making SSL (and other security protocols)
energy-efficient.

REFERENCES

[1] US Department of Commerce, The Emerging Digital Economy II,
http://www.esa.doc.gov/508/esa/TheEmergingDigitalEconomy
II.htm, 1999.

[2] W.W.W. Consortium, The World Wide Web Security FAQ, http://
www.w3.org/Security/faq/www-security-faq.html, 1998.

[3] W. Stallings, Cryptography and Network Security: Principles and
Practice. Prentice Hall, 1998.

[4] B. Schneier, Applied Cryptography: Protocols, Algorithms and Source
Code in C. John Wiley and Sons, 1996.

[5] LAN MAN Standards Committee of the IEEE CS, Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifica-
tion: IEEE standard 802.11, 1990.

[6] IPSec Working Group, http://www.ietf.org/html.charters/ipsec-
charter.html, 2000.

[7] SSL 3.0 Specification, http://wp.netscape.com/eng/ssl3/, 1996.
[8] Wireless Application Protocol 2.0—Technical White Paper,

http://www.wapforum.org/, Jan. 2002.
[9] Compaq iPAQ Pocket PC, http://h20022.www2.hp.com, 2002.
[10] D.W. Carman, P.S. Kruus, and B.J. Matt, Constraints and Approaches

for Distributed Sensor Security, Technical Report 00-010, Network
Assoc. Labs, 2000.

[11] J. Goodman, A. Chandrakasan, and A. Dancy, “Design and
Implementation of a Scalable Encryption Processor with Em-
bedded Variable DC/DC Converter,” Proc. Design Automation
Conf., pp. 855-860, June 1999.

[12] Z. Shi and R. Lee, “Bit Permutation Instructions for Accelerating
Software Cryptography,” Proc. IEEE Int’l Conf. Application-Specific
Systems, Architectures, and Processors, pp. 138-148, July 2000.

[13] J. Burke, J. McDonald, and T. Austin, “Architectural Support for
Fast Symmetric-Key Cryptography,” Proc. Int’l Conf. Architectural
Support for Programming Languages and Operating Systems, pp. 178-
189, Nov. 2000.

[14] N. Potlapally, S. Ravi, A. Raghunathan, and G. Lakshminarayana,
“Optimizing Public-Key Encryption for Wireless Clients,” Proc.
IEEE Int’l Conf. Comm., pp. 1050-1056, May 2002.

[15] S. Ravi, A. Raghunathan, N. Potlapally, and M. Shankaradass,
“System Design Methodologies for Wireless Security Processing
Platform,” Proc. Design Automation Conf., pp. 777-782, June 2002.

[16] D. Boneh and N. Daswani, “Experimenting with Electronic
Commerce on the PalmPilot,” Proc. Financial Cryptography, pp. 1-
16, Feb. 1999.

[17] W. Freeman and E. Miller, “An Experimental Analysis of
Cryptographic Overhead in Performance-Critical Systems,” Proc.
Int’l Symp. Modeling, Analysis, and Simulation of Computer and
Telecomm. Systems, pp. 348-357, Oct. 1999.

[18] S.K. Miller, “Facing the Challenges of Wireless Security,”
Computer, pp. 46-48, July 2001.

[19] G. Apostolopoulos, V. Peris, P. Pradhan, and D. Saha, “Securing
Electronic Commerce: Reducing the SSL Overhead,” IEEE Net-
work, pp. 8-16, July 2000.

[20] D.S. Wong, H.H. Fuentes, and A.H. Chan, “The Performance
Measurement of Cryptographic Primitives on Palm Devices,” Proc.
Ann. Computer Security Applications Conf., pp. 92-101, Dec. 2001.

[21] S. Ravi, A. Raghunathan, and N. Potlapally, “Securing Wireless
Data: System Architecture Challenges,” Proc. Int’l Symp. System
Synthesis, pp. 195-200, Oct. 2002.

[22] A. Hodjat and I. Verbauwhede, “The Energy Cost of Secrets in Ad-
Hoc Networks,” Proc. IEEE CAS Workshop Wireless Comm. and
Networking, Sept. 2002.

[23] M. Jakobsson and D. Pointcheval, “Mutual Authentication for
Low-Power Mobile Devices,” Proc. Financial Cryptography, pp. 178-
195, Feb. 2001.

[24] D.S. Wong and A.H. Chan, “Mutual Authentication and Key
Exchange for Low Power Wireless Communications,” Proc. IEEE
Military Comm. Conf., pp. 39-43, Oct. 2001.

[25] Y.W. Law, S. Dulman, S. Etalle, and P.J.M. Havinga, Assessing
Security-Critical Energy-Efficient Sensor Networks, Technical Report
TR-CTIT-02-18, Univ. of Twente, The Netherlands, July 2002.

[26] R. Karri and P. Mishra, “Minimizing Energy Consumption of
Secure Wireless Session with QoS Constraints,” Proc. Int’l Conf.
Comm., pp. 2053-2057, May 2002.

[27] H. Feistel, “Cryptography and Computer Privacy,” Scientific Am.,
pp. 15-23, May 1973.

[28] K.H. Rosen, Elementary Number Theory and its Applications.
Addison-Wesley Publishing Co., 1985.

[29] OpenSSL Project, http://www.openssl.org, 2001.

142 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 5, NO. 2, FEBRUARY 2006

[30] Familiar Project, http://familiar.handhelds.org, 2002.
[31] National Instruments Corp., http://www.ni.com, 2001.
[32] A. Menezes, P.V. Oorschot, and S. Vanstone, Handbook of Applied

Cryptography. CRC Press, 1997.
[33] V. Gupta, S. Gupta, S. Chang, and D. Stebila, “Performance

Analysis of Elliptic Curve Cryptography for SSL,” Proc. ACM
Workshop Wireless Security, pp. 87-94, Sept. 2002.

[34] J. Daemen and V. Rijmen, “Rijndael, the Advanced Encryption
Standard,” Dr. Dobb’s J., pp. 137-139, Mar. 2001.

[35] Y.L. Yin, “The RC5 Encryption Algorithm: Two Years On,” RSA
Laboratories’ Cryptobytes, vol. 2, pp. 14-15, 1997.

[36] SSLdump Project, http://www.rtfm.com/ssldump/, 2002.
[37] A.K. Lenstra and E.R. Verheul, “Selecting Cryptographic Key

Sizes,” J. Cryptology: J. Int’l Assoc. for Cryptologic Research, vol. 14,
no. 4, pp. 255-293, 2001.

[38] Counterpane Internet Security: Crypto-Gram Newsletter, http://
www.counterpane.com/crypto-gram.html, 2002.

Nachiketh R. Potlapally is currently pursuing
the PhD degree in electrical engineering at
Princeton University, Princeton, New Jersey.
He is working toward proposing novel architec-
tures to enable efficient security processing in
resource-constrained embedded devices. He is
a student member of the IEEE.

Srivaths Ravi received the BTech degree in
electrical and electronics engineering from the
Indian Institute of Technology, Madras, India, in
1996, and the MA and PhD degrees in electrical
engineering from Princeton University, Prince-
ton, New Jersey, in 1998 and 2001, respectively.
He is, at present, a research staff member with
NEC Labs America, Inc., Princeton. His re-
search interests include various aspects of
embedded system security. He is responsible

for designing the MOSES security architecture for NEC’s application
chips in 3G cell phones. He has several publications in leading ACM/
IEEE conferences and journals on VLSI, including invited contributions
and talks at the International Symposium on System Synthesis (2002),
the International Conference on VLSI Design (2003, 2004), and the
Design Automation and Test in Europe Conference (2003). His papers
have received awards at the International Conference on VLSI design in
1998, 2000, and 2003. He received the Siemens Medal from the Indian
Institute of Technology, Madras, India in 1996. He is a member of the
program committees of the VLSI Test Symposium (VTS) and the Design
Automation and Test in Europe (DATE), and has served as the
Compendium Chair in the 20th Anniversary Committee of the VTS. He is
a member of the IEEE.

Anand Raghunathan (S’93, M’97, SM’00)
received the BTech degree in electrical and
electronics engineering from the Indian Institute
of Technology, Madras, India, in 1992, and the
MA and PhD degrees in electrical engineering
from Princeton University, Princeton, New Jer-
sey, in 1994 and 1997, respectively. He is
currently a senior research staff member at
NEC Laboratories America in Princeton, New
Jersey, where he leads several research pro-

jects related to System-on-Chip architectures, design methodologies,
and design tools, with emphasis on high-performance, low power, and
testable designs. He has coauthored a book (High-Level Power Analysis
and Optimization) and six book chapters, and has presented several full-
day and embedded conference tutorials in the above areas. He holds or
has filed for 18 US patents in the areas of advanced system-on-chip
architectures, design methodologies, and VLSI CAD. He has received
best paper awards at the IEEE International Conference on VLSI Design
(one in 1998 and two in 2003) and at the ACM/IEEE Design Automation
Conference (1999 and 2000), and three best paper award nominations
at the ACM/IEEE Design Automation Conference (1996, 1997, and
2003). He received the patent of the year award (an award recognizing
the invention that has achieved the highest impact) from NEC in 2001.
He has served as a member of the technical program and organizing
committees of several leading conferences and workshops. He was
program chair of the IEEE VLSI Test Symposium in 2003. He has
served as associate editor of the IEEE Transactions on CAD, the IEEE
Transactions on VLSI Systems, and IEEE Design & Test of Computers.
He is currently a senior member of the IEEE and vice chair of the
Tutorials & Education Group at the IEEE Computer Society’s Test
Technology Technical Council. He was a receipient of the IEEE
Meritorious Service Award and was elected a Golden Core Member of
the IEEE Computer Society in 2001, in recognition of his contributions.

Niraj K. Jha (S’85-M’85-SM’93-F’98) received
the BTech degree in electronics and electrical
communication engineering from Indian Institute
of Technology, Kharagpur, India in 1981, the MS
degree in electrical engineering from the State
University of New York at Stony Brook, New
York, in 1982, and the PhD degree in electrical
engineering from the University of Illinois,
Urbana, Illinois in 1985. He is a professor of
electrical engineering at Princeton University.

He has served as an associate editor of the IEEE Transactions on
Circuits and Systems II: Analog and Digital Signal Processing. He is
currently serving as an editor of the IEEE Transactions on Computer-
Aided Design, the IEEE Transactions on VLSI Systems, the Journal of
Electronic Testing: Theory and Applications (JETTA), and the Journal of
Embedded Computing. He has served as the guest editor for the JETTA
special issue on high-level test synthesis. He has also served as the
program chairman of the 1992 Workshop on Fault-Tolerant Parallel and
Distributed Systems and the 2004 International Conference on
Embedded and Ubiquitous Computing. He is the director of the Center
for Embedded System-on-a-Chip Design funded by the New Jersey
Commission on Science and Technology. He is the recipient of the
AT&T Foundation Award and NEC Preceptorship Award for research
excellence, the NCR Award for teaching excellence, and a Princeton
University Graduate Mentoring Award. He has coauthored three books
titled Testing and Reliable Design of CMOS Circuits (Kluwer, 1990),
High-Level Power Analysis and Optimization (Kluwer, 1998), and
Testing of Digital Systems (Cambridge University Press, 2003). He
has also authored four book chapters. He has authored or coauthored
more than 270 technical papers. He has coauthored six papers which
have won the Best Paper Award at ICCD’93, FTCS’97, ICVLSID’98,
DAC’99, PDCS’02, and ICVLSID’03. Another paper of his was selected
for “The Best of ICCAD: A collection of the best IEEE International
Conference on Computer-Aided Design papers of the past 20 years.” He
has received 11 US patents. His research interests include low power
hardware and software design, computer-aided design of integrated
circuits and systems, digital system testing, and distributed computing.
He is a fellow of the ACM and the IEEE.

POTLAPALLY ET AL.: A STUDY OF THE ENERGY CONSUMPTION CHARACTERISTICS OF CRYPTOGRAPHIC ALGORITHMS AND SECURITY... 143

