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ABSTRACT

The contribution of various physical sources of uncertainty affecting radar rainfall estimates at the ground
is quantified toward deriving and understanding the error covariance matrix of these estimates. The focus
here is on stratiform precipitation at a resolution of 15 km, which is most relevant for data assimilation onto
mesoscale numerical models. In the characterization of the error structure, the following contributions are
considered: (i) the individual effect of the range-dependent error (associated with beam broadening and
increasing height of radar measurements with range), (ii) the error associated with the transformation from
reflectivity to rain rate due to the variability of drop size distributions, and (iii) the interaction of the first
two, that is, the term resulting from the cross correlation between the effects of the range-dependent error
and the uncertainty related to the variability of drop size distributions (DSDs).

For this purpose a large database of S-band radar observations at short range (where reflectivity near the
ground is measured and the beam is narrow) is used to characterize the range-dependent error within a
simulation framework, and disdrometric measurements collocated with the radar data are used to assess the
impact of the variability of DSDs. It is noted that these two sources of error are well correlated in the
vicinity of the melting layer as result of the physical processes that determine the density of snow (e.g.,
riming), which affect both the DSD variability and the vertical profile of reflectivity.

1. Introduction

In recent years, an effort has been made to assimilate
radar observations (of both reflectivity and radial ve-
locity) into numerical weather prediction (NWP) mod-
els (see the reviews of Errico et al. 2000; MacPherson et
al. 2003; Sun and Wilson 2003; Sun 2005a). Moreover,
as the resolution of NWP models increases, denser ob-
servations are required for assimilation, and the reso-
lution and coverage of data from radar networks make
them very attractive for this purpose.

From the perspective of the assimilation of radar
rainfall observations in NWP models, two main lines of
work can be identified:

• schemes assimilating surface rainfall measurements,
mainly to constrain the profiles of temperature and
specific humidity at meso-� to synoptic scales

(Županski and Mesinger 1995; Fillion and Errico
1997; Guo et al. 2000; Marecal and Mahfouf 2000;
MacPherson 2001; Deblonde et al. 2007), and

• schemes assimilating volumetric reflectivity observa-
tions to constrain the rainwater mixing ratio (Sun and
Crook 1997; Montmerle et al. 2001; Crook and Sun
2002; Caya et al. 2005; Sun 2005b; Chung et al. 2007;
Hu and Xue 2007; Xiao et al. 2007). These models
(which can include a complete description of the mi-
crophysics or simplified parameterizations) are typi-
cally run at convective scale, though some attempts
have been made at larger scales as well (Sun and
Wilson 2003).

The works mentioned above show the beneficial
effects of assimilating radar rainfall measurements
into NWP models using variational methods in any
of their configurations [one-dimensional variational
data assimilation (1DVAR), 3DVAR, or 4DVAR] or
the ensemble Kalman filter (EnKF).

Variational methods are based on a least squares–
like approach, which consists of minimizing a cost func-
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tion of the following type (see, e.g., Daley 1991; Kalnay

2003):

J�x� �
1

2
�x � xb�

T
B

�1
�x � xb�

�
1

2
�H�x� � yo�

T
R

�1
�H�x� � yo�, �1�

where x, xb, and yo are the analysis, the background,

and the observation vectors, respectively, and H() is

the observation operator, which relates model variables

with observations. The accuracies of the background

term and observations are represented by B and R, that

is, the background and observation error covariance

matrices, respectively. The quality of the approxima-

tions of B and R used in the assimilation schemes have

a significant impact on their performance.

It has been pointed out (Errico et al. 2000; MacPher-

son et al. 2003; Sun 2005a; Xu et al. 2007) that one

important limitation of the schemes assimilating pre-

cipitation observations lies in the simplifications as-

sumed to describe observational errors (either using

variational methods or, similarly, the EnKF). Within

this framework, the present work focuses on the char-

acterization of the observation error covariance matrix

of radar rainfall estimates at the ground for assimilation

in mesoscale models. Given the large variability of pre-

cipitation processes, we emphasize the detailed under-

standing of the sources of these errors so that the error

covariance matrix can be made adaptive to precipita-

tion types.

Specifically, the main goal of this study is to charac-

terize the variability and correlation of the errors af-

fecting radar estimates of surface rainfall in stratiform

conditions by analyzing in detail the physical factors

affecting the error structure, and to test the validity of

assuming these errors homogeneous or uncorrelated,

which are the usual hypotheses in most of the current

assimilation schemes.

The different sources of uncertainty affecting radar

rainfall estimates have been discussed by several au-

thors (e.g., Wilson and Brandes 1979; Zawadzki 1984;

Austin 1987; Joss and Waldvogel 1990), and works

quantifying their impact can be found in the radar lit-

erature. However, the variability of these errors and

their spatial and temporal correlation (necessary to

fully characterize the error covariance matrix of radar

rainfall observations) had only recently been consid-

ered. In this sense, Germann et al. (2006) point out two

different approaches in the characterization of the error

covariance matrix of radar estimates of rain intensity at

the ground:

• those based on comparing radar rainfall estimates

with reference measurements (typically, rain gauge

observations), considered to be free of error and as-

suming that the variability and structure of their re-

siduals are entirely attributable to radar errors (Ciach

et al. 2007; Germann et al. 2008, manuscript submit-

ted to Quart. J. Roy. Meteor. Soc., hereafter GBSTZ);

and

• those based on studying the individual impact of the

most relevant sources of error, by simulating the er-

rors with conceptual physical models and/or experi-

mental data [see the simplified approach of Jordan et

al. (2003), and the detailed analysis of individual er-

rors of Bellon et al. (2005) and Lee and Zawadzki

(2005)], and the interaction of these errors.

Even though the first option is a very convenient

shortcut and allows us to treat the overall effect of the

different errors affecting radar rainfall estimates, it is

subject to the errors in the reference measurement

[e.g., to the difference in sampling volumes in the case

of the radar–gauge comparisons; Zawadzki (1975);

Kitchen and Blackall (1992); Ciach and Krajewski

(1999)] and it requires interpolation of the results to

areas not covered by the reference (GBSTZ). More-

over, it is not clear how the results obtained in a par-

ticular region can be transposed to other regions and to

other types of precipitation in situations where a good

gauge network is not available.

Here, our aim is to characterize the error covariance

matrix using the second approach and, in particular, we

focus on the two main sources of error in radar quan-

titative precipitation estimation at the nonattenuating S

band and in stratiform conditions (Zawadzki 1984;

Austin 1987; Joss and Waldvogel 1990):

• the range-dependent error—under this name, we in-

clude the uncertainty in rainfall estimates introduced

by the following factors (see Zawadzki 1984): (i) the

increase of sampling volume (coupled with the non-

uniformity of the reflectivity field) and (ii) the in-

crease of measuring height with range; and

• the uncertainty in the transformation of radar obser-

vations of reflectivity Z into rainfall rate R, which can

be attributed to the variability of the drop size distri-

bution (DSD) at different scales (both from storm to

storm and within each storm).

Traditionally, the effects introduced by these two

sources of error have been characterized mainly from

the point of view of the resulting biases and, sometimes,

the error variability. For example, Collier (1986), Fabry

et al. (1992), Kitchen and Jackson (1993), Andrieu et al.

(1995); Vignal et al. (1999), Germann and Joss (2002),
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Koistinen et al. (2003), and Mittermaier et al. (2004);

Bellon et al. (2005) studied the range-dependent error

and, among others, Richards and Crozier (1983), Bal-

akrishnan et al. (1989), Smith and Krajewski (1993),

and Lee and Zawadzki (2005) characterized the uncer-

tainty associated with the Z–R transformation from

datasets of different lengths and in different geographi-

cal locations.

In section 2, the problem is stated mathematically

and, in particular, the expression for the covariance of

the error resulting from these two sources of uncer-

tainty is expressed as a combination of (i) the structure

of the range-dependent error, (ii) the structure of the

uncertainty in the Z–R transformation, and (iii) the in-

teraction between these two sources of error.

Section 3 describes the database used in this work

and in sections 4–6 we quantify the structure of the

range-dependent error [based on simulating radar ob-

servations at different ranges from real, high-resolution

reflectivity measurements as in Bellon et al. (2005)], the

structure of the uncertainty in the Z–R transformation

from disdrometric measurements in a manner similar to

that in Lee and Zawadzki (2005) and Lee et al. (2007),

and the interaction of these errors from the comparison

of radar measurements with collocated DSD observa-

tions. The error covariance matrix resulting from the

considered errors is analyzed in section 7, and, finally,

our results and some considerations about the error

covariance matrix are discussed in section 8.

2. The error covariance matrix of radar rainfall

estimates

The range-dependent error is caused by the vertical

variation of reflectivity (radar sampling height in-

creases with range due to Earth’s curvature and eleva-

tion angle), and due to the sampling of the atmosphere

with a beam that becomes wider with range and

smoothes the gradients of the observed reflectivity

field. As mentioned in Fabry et al. (1992), the range-

dependent error is especially relevant in stratiform

situations, due to the fact that the reflectivity field

changes rapidly with height: in snow, the vertical pro-

file of reflectivity (VPR) presents a strong negative gra-

dient, and around the melting layer, an enhancement of

the VPR appears (the bright band) due to the aggrega-

tion of snowflakes and the higher dielectric factor of

melting particles that depends on the snow density

above (Zawadzki et al. 2005). Below the brightband

peak, when flakes collapse into raindrops, their fall ve-

locity increases, resulting in less and smaller particles

per volume unit and, therefore, lower reflectivity.

The range-dependent error expressed in dB(Z) at a

certain location and time, x � [x, y, t], and when the

radar measurement is extrapolated from a height h to

the ground (where h � h0) can be expressed as (see,

e.g., Koistinen et al. 2003)

�r�x, h� � 10 log� Ẑ�x, h�

Z�x, h0�
�, �2�

where Ẑ(x, h) represents the reflectivity measured at x

and at a height h (i.e., affected by beam broadening)

and Z(x, h0) is the reference reflectivity (not affected

by beam broadening) at the same x, but at the ground

(h � h0).

On the other hand, Smith and Krajewski (1993), Jor-

dan et al. (2003), and Lee et al. (2007) modeled the

fluctuations in rainfall estimates due to the uncertain-

ties in the Z–R relationship as multiplicative perturba-

tions. Therefore, in dB(R), the residuals due to the Z–R

transformation can be expressed as

�ZR�x, h� � 10 log�RZR�x, h�

R�x, h�
�, �3�

where R(x, h) is the actual rain rate at (x, h) and RZR(x,

h) is the rain rate estimated from Z(x, h) with a power-

law Z–R relationship (Z � aRb):

RZR�x, h� � �Z�x, h�

a
�

1�b

. �4�

Thus, the total error in rain rate at the ground result-

ing from the combination of the range-dependent error

and the uncertainty associated with the Z–R conversion

can be expressed as

��x, h� � 10 log� R̂�x, h�

R�x, h0�
�, �5�

where R̂(x, h) is estimated from Ẑ(x, h) using (4).

Therefore,

��x, h� �
10

b
log�Ẑ�x, h�

a
�� 10 log�R�x, h0��. �6�

Considering Eqs. (2)–(4), (6) can be rewritten as

��x, h� �
1

b
�r�x, h� � �ZR�x, h0�, �7�

which expresses the resulting error as the summation of

the range-dependent error, 	r, and the error due to the

Z–R transformation, 	ZR.

From this last equation, the expressions for the bias

affecting radar rainfall estimates, the error variance,

and the error covariance become
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���x, h� � 
��x, h�� �
1

b

�r�x, h�� � 
�ZR�x, h0��, �8�

��
2
�x, h� � 
���x, h� � ���x, h��

2� �
1

b2
�r

2
�x, h� �

2

b
cov��r�x, h�, �ZR�x, h0� � �ZR

2
�x, h0�, and

�9�

cov���x, h�, ��x � �x, h� � 
���x, h� � ���x, h�� � ���x � �x, h� � ���x � �x, h���

�
1

b2
cov��r�x, h�, �r�x � �x, h� � cov��ZR�x, h0�, �ZR�x � �x, h0�

�
1

b
�cov��r�x � �x, h�, �ZR�x, h0� � cov��r�x, h�, �ZR�x � �x, h0��, �10�

where 
 � stands for the expected value, cov{	a(x1),

	b(x2)} represents the covariance between the errors

	a(x1) and 	b(x2) at locations x1 and x2, and �x � [�x,

�y, �t] is the lag in space and time.

Summarizing, to fully characterize the error in radar

estimates of rainfall at the ground using Eqs. (8)–(10),

it is necessary to characterize the error structure for

	r(x, h) and 	ZR(x) and the cross terms, cov{	r(x1, h),

	ZR(x2, h0)}, that appear in the expressions for the error

variance and covariance [Eqs. (9) and (10)].

3. Database

The data used in this study are time series of collo-

cated radar reflectivity profiles and disdrometer DSD

observations obtained during 27 stratiform events that

occurred in Montreal, Quebec, Canada, between No-

vember 1997 and September 2004, corresponding to

around 170 h of rainfall at the ground (the geographical

layout and the locations of the instruments used in the

study are given in Fig. 1).

Reflectivity volume scans from the McGill University

S-band radar (see its main characteristics in Table 1)

were used to simulate radar observations at different

ranges as described in section 4a. These simulated re-

flectivity fields have been smoothed to a resolution of

15 � 15 km2 to match a typical resolution of the

schemes assimilating surface rainfall observations in

mesoscale models and the time series of these

smoothed VPRs have been used to analyze the struc-

ture of the range-dependent error (a typical stratiform

VPR is presented in Fig. 2 jointly with simulations of

the same VPR at different ranges).

On the other hand, the analysis of the uncertainty

associated with the Z–R transformation has been car-

ried out using 1-min DSD observations for the same

events (in Fig. 3 we present the time series of R, RZR,

and 	ZR, corresponding to the event of 18 October

2000, where RZR has been obtained with the Z–R rela-

tionship derived from long-term DSD observations in

stratiform conditions; see section 5a). These DSDs

were measured with the Precipitation Occurrence Sen-

sor System (POSS), which is a low-power, continuous-

wave, X-band, bistatic, Doppler radar developed by At-

mospheric Environment Canada [its technical details

FIG. 1. Locations of the instruments used in this study. The

McGill S-band radar is shown as a black triangle (dotted circum-

ferences are centered at the radar and separated by 20 km), and

the two disdrometers, POSS-1 and POSS-2, were located in down-

town Montreal and at Montreal-Trudeau airport, respectively.

TABLE 1. Technical characteristics of the McGill S-band radar.

Wavelength 10.4 cm

3-dB beamwidth 0.86°

Rotation speed 6 rotations per minute

Resolution 1 km � 1°

Elevation angles 24 (0.5°–34°)

Height 75 m (MSL)
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can be found in Sheppard (1990) and Sheppard and Joe

(1994)]. POSS retrieves the DSD from the average

Doppler spectrum, and its big sampling volume (three

orders of magnitude larger than a typical disdrometer

such as a Joss–Waldvogel model) minimizes undersam-

pling problems with a high temporal resolution (Lee

and Zawadzki 2005).

In this study, measurements of two different POSS

disdrometers have been used: one located in downtown

Montreal, 30 km from the McGill radar for the 10 cases

prior to 2001, and another one located at Montreal-

Pierre Elliott Trudeau International Airport, 15 km

from the radar, for the remaining 17 cases.

4. Structure of the range-dependent error

a. Framework of study

The characterization of the range-dependent error

has been carried out by simulations as described by

Bellon et al. (2005): observations of the 24 elevations of

the McGill radar within a sector of 15 � 15 km2 collo-

cated with the available POSS have been used as the

fine-resolution (reference) 3D field.

Radar observations at further ranges (from 40 to 200

km, every 40 km) have been simulated in a conformal

manner by convolving the fine-resolution observations

of the reference sector with a Gaussian beam of hori-

zontal and vertical widths of 0.86° at half-power [ap-

propriate for the McGill radar; see Bellon et al. (2005)

for further details]. From the simulated 3D volume

scans at different ranges, 30 polar constant-altitude

plan position indicator (CAPPI) maps between 1.3 and

7.1 km (every 0.2 km) have been generated, and the

1.3-km CAPPI for the original sector has been taken as

the reference reflectivity field at the ground.

Figure 4 shows one of the cases analyzed in our study:

the top panels show time series of radar reflectivity

profiles collocated with disdrometer POSS-1 [actually

measured VPRs in Fig. 4a, and VPRs simulated at 120

km in Fig. 4b], and the bottom panels show the time

series of the resulting range-dependent error when dif-

ferent CAPPIs are used to estimate rainfall at the

ground. The bright band appears in Fig. 4c as a signif-

icant overestimation of the rainfall at the ground

(around 2.2 km), while, above, the reflectivity of snow

is significantly lower than that observed at the refer-

ence height. In Fig. 4b and 4d, the effects of distance

can be observed: at 120 km no measurement is obtained

below 1.9 km (and, thus, reflectivity is extrapolated

from above), and a bigger sampling volume results in

vertical gradients of reflectivity that are much smoother

than at close range.

Due to the nature of the range-dependent error, and

following many authors (Collier 1986; Fabry et al. 1992;

Kitchen and Jackson 1993; Koistinen et al. 2003; Bellon

et al. 2005), the different statistics from section 2 in

FIG. 3. Time series of (a) R and RZR, and (b) 	ZR obtained from

POSS disdrometer observations measured from 0630 to 1710

UTC 18 Oct 2000. The relationship Z � 237R1.55 (derived in

section 5a) has been used to obtain RZR.

FIG. 2. VPR measured at the POSS-1 site at 1159 UTC 18 Oct

2000 (continuous line) and the VPRs simulated from these obser-

vations at 80 km (dotted line) and at 160 km (dashed line).
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which this error is involved have been estimated as a

function of range, r, according to

�̂r�r, h� �
1

n �
i

�r�r, h, ti�, �11�

�̂r
2
�r, h� �

1

n �
i

��r�r, h, ti� � �̂r�r, h��
2, and �12�

Ĉr�r, h, �t� �
1

n �
i

��r�r, h, ti� � �̂r�r, h�� � ��r�r, h, ti

� �t� � �̂r�r, h��, �13�

where ^ indicates that (11)–(13) are estimators of the

bias, variance, and covariance, respectively.

Additionally, as in Bellon et al. (2005), the results are

also shown as a function of the height of the CAPPI

used to estimate rain at the ground, h, and stratified

according to the height of the brightband peak (see

Table 2).

b. Bias and standard deviation of the

range-dependent error

Figure 5 shows the bias and the standard deviation of

	r(r, h) obtained from the simulations for those scans

where the brightband peak was detected in the ranges

2.2–2.6 and 3.0–3.4 km. Below the melting layer, the

bias remains below 1 dB and the standard deviation

does not exceed 2 dB. In Fig. 5, the bright band is quite

evident as an overestimation of the reflectivity at the

ground (for the presented cases, the mean biases are

over 4 dB). Around the bright band, the standard de-

viation of the error increases up to 3 dB. This increase

in the variability around the brightband peak can be

attributed, among other factors, to event-to-event dif-

ferences in the role of the main microphysical processes

affecting the density of melting snow, which results in

significantly different bright bands (Fabry et al. 1992;

Fabry and Zawadzki 1995; Huggel et al. 1996;

Zawadzki et al. 2005). Above the melting layer, the

mean VPR decreases (due to less power backscattered

from snow), which results in severe underestimation of

the reflectivity measured at the ground. The profiles

also show more variability (the standard deviation of 	r

at close range reaches 4 dB), which can be explained by

the following effects: (i) the high variability of the gra-

dients of the VPR (which in some cases results in beam

overshooting) and the impact of trails in the snow re-

gion, and (ii) the variability in the lower part of the

VPR with respect to the climatological VPR.

The effects of the range of the observations are

threefold: (i) no observations can be obtained below

TABLE 2. Distribution of the 171.8 h of data with an identified

brightband peak among the six height intervals selected.

Height (km) 1.4–1.8 1.8–2.2 2.2–2.6 2.6–3.0 3.0–3.4 �3.4

Duration (h) 9.4 29.5 31.1 33.5 19.3 49.0

FIG. 4. (a) Time series of the McGill S-band radar VPRs collocated with POSS-1 observed from 0630 to 1710 UTC 18 Oct 2000. (b)

Time series of VPRs simulated at a range of 120 km for the same period. (c), (d) The corresponding time series of the range-dependent

error, 	r(r, h, t).
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the lowest elevation angle and, thus, they have to be

extrapolated from elevated heights; (ii) bias profiles at

farther ranges are smoother due to the effect of a wider

beam (e.g., brightband contamination is lower but ex-

tends to higher elevations); and, similarly, (iii) the error

variability is slightly lower than the variability at the

same height but at closer ranges.

The results presented here are almost identical to

those obtained by Bellon et al. (2005) (carried out in

Montreal using a very similar simulation method and

dataset). There are also some similarities to the results

presented by other authors; for example, Kitchen and

Blackall (1992) and Koistinen et al. (2003) found long-

term biases due to the brightband contamination in

low-radar measurements of 1 dB(R) between 50 and 75

km and 2 dB(Z) between 60 and 110 km, and under-

estimations at far ranges of �5.6 dB(R) and �8.0

dB(Z) in England and in Finland, respectively. How-

ever, the values of the biases due to the bright band can

be significantly smoothed due to the fact that no strati-

fication with the height of the brightband peak was

taken into account. Kitchen and Blackall (1992) found

similar behavior for the standard deviation of 	r with

range for observations of the lowest PPI during winter

events.

c. Autocorrelation and decorrelation of the

range-dependent error

Figure 6 shows the autocorrelation functions (ACF)

of 	r(r, h) for the height ranges of the brightband peaks

shown in the previous section. It can be seen (Figs. 6a

and 6b) that when the measurement is in the rain re-

gion, 	r(r, h) decorrelates rapidly (in less than 10 min),

indicating that these errors, besides being small (as was

shown in the previous section), have no coherent struc-

ture, except at far ranges because observations from

aloft are extrapolated to construct these low CAPPIs.

At higher elevations, where the variances are also

higher, stronger correlation is found. In the snow region

we note significant differences between the two consid-

FIG. 5. Errors in reflectivity at the ground when estimated from reflectivity observed at different ranges and heights for the cases

where the brightband peak is (top) between 2.2 and 2.6 km and (bottom) between 3.0 and 3.4 km: (a), (c) bias and (b), (d) standard

deviation of the error.
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ered classes of bright bands. It is interesting to note that

for the cases when the melting layer is between 2.2 and

2.6 km, 	r(r, h) decorrelates much faster than for the

cases with a higher bright band.

Similar results can be seen in Fig. 7, which shows the

decorrelation time lags of 	r(r, h) (obtained as the time

lag for which the correlation falls below 1/e � 0.37): 	r

decorrelates in less than 15 min in rain measurements,

and the maximum correlation appears right below the

melting layer (the decorrelation time goes up to 2.5–4

h) and decays to lower values in the snow.

5. Structure of the uncertainty associated with the

Z–R transformation

a. Long-term quantification of the Z–R uncertainty

DSD measurements obtained with two POSS located

in Montreal were used to characterize the uncertainty

FIG. 6. Autocorrelation functions of the range-dependent error when the brightband peak is (left) between 2.2

and 2.6 km at CAPPI heights of (a) 1.3, (c) 1.9, and (e) 3.5 km, and (right) between 3.0 and 3.4 km at CAPPI heights

of (b) 1.5, (d) 3.1, and (f) 4.1 km.
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in the Z–R transformation when a single Z–R relation-

ship is used to estimate rainfall from reflectivity obser-

vations.

Here, from 1-min DSD observations corresponding

to the events described in sections 3 and 4, R (mm h�1)

and Z (mm6 m�3) were computed using

R � 6� � 10�4�
Dmin

Dmax

D
3
��D�N�D� dD and �14�

Z � �
Dmin

Dmax

D
6
N�D� dD, �15�

where D is the diameter (mm), �(D) the velocity (m s�1),

and N(D) is the concentration of drops of diameter D

(mm�1 m�3).

DSD observations have been averaged over a 20-min

window to ensure that the DSD variability in disdro-

metric observations is equivalent to the variability in

the 15 � 15 km2 resolution of radar observations. We

chose 20 min because it is the time interval that leads to

the best correlation between POSS and radar reflectiv-

ity averaged over a 15 � 15 km2 sector (see an example

in Fig. 8).

The Z–R scatterplot obtained from disdrometer ob-

servations of the 27 analyzed events is presented in Fig.

9 (the dashed line represents the best fit; Z � 237R
1.55).

This Z–R relationship is very similar to the climatologi-

cal Z–R relationship derived by Lee and Zawadzki

(2005) for Montreal (Z � 210R
1.47) and to the widely

used Z � 200R
1.6 obtained by Marshall and Palmer

(1948).

By construction, no long-term bias is expected in

rainfall estimated from reflectivity observations. How-

ever, the variability in the DSD [both from storm to

storm and within a single storm, as discussed by Lee

and Zawadzki (2005)] results in significant scatter in the

R–RZR plot (as shown in Fig. 9). In a climatological

sense, all scatter must be considered as random error of

individual 20-min observations, although an important

bias and a reduced random error are present on a

storm-by-storm basis. For the analyzed dataset, the “cli-

matological” standard deviation of 	ZR, obtained with

an equation analogous to (12), resulted in �̂ZR � 1.37

dB(R).

Lee and Zawadzki (2005) also quantified the vari-

ability of the Z–R relationships at different scales using

long-term observations collected with the same instru-

ments, but for a different set of events, including some

convective storms. For an averaging window of 20 min

and using the climatological Z–R relationship, they

found similar values for the standard deviation of the

error in linear units (1.4 mm h�1) and for the random

FIG. 8. Time series of the reflectivity computed from POSS

DSD observations (dotted line) and observed with the McGill

S-band radar 1300 m over the POSS (continuous line) from 0630

to 1710 UTC 18 Oct 2000.

FIG. 7. Decorrelation time (h) of the range-dependent error when the reflectivity at the ground is estimated from elevated

reflectivity measurements at different ranges when the brightband peak is between (left) 2.2 and 2.6, and (right) 3.0 and 3.4 km.
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component (44%; with our dataset, 1.7 mm h�1 and

35%, respectively).

b. Autocorrelation and decorrelation of 	ZR

Lee et al. (2007) proposed a two-component model

to characterize the structure of 	ZR: a broken-line

model to characterize the large-scale variability and a

power law model for the Fourier spectrum at storm

scale, since they found scaling properties in small-scale

fluctuations of 	ZR.

Assuming their model, Fig. 10 shows the sample ACF

and the second-order structure function of the residuals

	ZR for the analyzed dataset using (13). The decorrela-

tion time of around 130 min is significantly longer as

compared to the 60 min for the cases analyzed by Lee

et al. (2007). This is evidence of the effects of the

coarser resolution of the observations analyzed here on

the shape of the error covariance matrix (further dis-

cussion is presented in section 8).

6. Cross correlation between �
r

and �
ZR

As discussed above, besides the individual contri-

butions of the two analyzed sources of error, the ex-

pression for the error covariance of the error also in-

cludes the cross term involving 	r and 	ZR [cov{	r(x1, h),

	ZR(x2, h0)} in (10)].

In this section we analyze the cross correlation be-

tween the time series of 	r(r, h, t), as estimated from the

radar reflectivity profiles used in section 4, and the col-

located 	ZR(t) obtained from POSS observations. For

this, it is necessary to have a well-calibrated radar. In

our case, the calibration of the McGill S-band radar is

regularly monitored using POSS measurements (Lee

and Zawadzki 2006) and, thus, the agreement in the

reflectivity measurements of the two instruments is rea-

sonable, as can be appreciated in the example of Fig. 8.

The sample cross correlation between the time series

of the range-dependent error, 	r(r, h, t), and the error

due to the Z–R variability, 	ZR(t), has been calcu-

lated as

	̂r�ZR�r, h, �t� �
1

�̂r�̂ZR
�1

n �
i

���r�r, h, ti�

� �̂r�r, h�� � �ZR�ti � �t��.

�16�

The estimated �̂r�ZR(r, h, �t) corresponding to the

example of Figs. 3 and 4 is presented in Fig. 11. It can

be appreciated that correlations stay low in the rain

region and at higher elevations (over 3 km), and there

is a significant maximum of correlation around the

mean height of the brightband peak. Thus, there is cor-

relation between 	ZR at the ground and the extrapola-

tion error around the brightband peak, 	r(r, hpeak).

Assuming a uniform VPR below the bright band,

	r(r, hpeak) would be a proxy for the brightband inten-

sity, �Zpeak-to-rain [defined as the difference in dB be-

tween the reflectivity of the brightband peak and the

reflectivity of the rain right below the bright band, as in

Klaassen (1988) or Fabry and Zawadzki (1995)]. Thus,

FIG. 9. A Z–R scatterplot obtained from the DSD POSS mea-

surements corresponding to the entire dataset analyzed in this

study. Each dot corresponds to a 1-min observation averaged over

a window of 20 min. The dashed gray line represents the best fit

to the observations (Z � 237R1.55).

FIG. 10. Structure function (black line) and ACF (gray line) of

the residuals of the Z–R transformation, 	ZR, computed from the

dataset of observations analyzed in this study (see Fig. 9).

1094 W E A T H E R A N D F O R E C A S T I N G VOLUME 23



our results confirm the direct relationship between the

brightband intensity and the local Z–R relationship, in-

dicating that the main physical processes involved in

the growth of snow determine both the characteristics

of the bright band (in this case, �Zpeak-to-rain), as dis-

cussed in Fabry and Zawadzki (1995) and quantita-

tively evaluated in Zawadzki et al. (2005), and the re-

sulting Z–R relationship at the ground (Zawadzki and

Lee 2004; Bellon et al. 2007), here, expressed as the

departures 	ZR from the long-term Z–R relationship.

Huggel et al. (1996), following the results of Wald-

vogel (1974) and Waldvogel et al. (1993), found a very

similar result: They showed significant correlation be-

tween the parameters N0 and � of an exponential DSD

and �Zpeak-to-rain, and proposed the use of the bright-

band intensity to estimate 	ZR and, thus, improve radar

rainfall estimates.

On the other hand, it is also worth noting two fea-

tures that can be appreciated in Fig. 11: (i) the maxi-

mum correlation appears for a lag of 5–10 min in the

melting layer (at a height around 2.3 km), which ap-

proximately corresponds to the time needed for the

melting particles to reach the ground (see, e.g., Mitter-

maier et al. 2004), and (ii) the correlation develops

along the snow trails right above the melting layer.

Figure 12a shows the median cross correlation be-

tween 	r(r0, h) and 	ZR obtained from the dataset of 27

events, where the height is now relative to the height of

the brightband peak, and the lag needed by brightband

melting particles to reach the ground, �tpeak-to-ground,

has been subtracted from the time lag. Figure 12 shows

similar behavior to the example case shown in Fig. 11:

low correlation between 	r(r0, h) and 	ZR below the

bright band and above the melting layer, as well as a

significant maximum in the vicinity of the bright band.

Results appear smoother when the same figure has

been derived using VPRs simulated at 120 km, due to

the effect of a wider beam (Fig. 13b), which extends the

effects of the correlation between 	r when observations

are extrapolated from the brightband peak and 	ZR.

7. Resulting error covariance

From the results shown in previous sections, the co-

variance of 	(r, h, t) � (1/b)	r(r, h, t) � 	ZR(t) can be

estimated using (10).

FIG. 12. Median cross correlation between the times series of 	r(r0, h) and 	ZR, corresponding to the 27 events

analyzed in this study, where the height has been referred to the height of the brightband peak and the time needed

for melting particles to reach the ground has been subtracted from the lag. (a) Results using observations from the

McGill S-band radar at the POSS sites and (b) those using reflectivity simulations corresponding to a range of 120

km.

FIG. 11. Cross correlation between the time series of 	r(r0, h)

and 	ZR obtained from the series of Figs. 3, 4a, and 4c, from radar

and POSS-1 observations measured from 0630 to 1710 UTC 18

Oct 2000.
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Figures 13 and 14 show the resulting error ACF and

covariance, respectively, at close range and at 120 km

for the cases when the brightband peak is located be-

tween 2.2 and 2.6 km and 3.0 and 3.4 km. The errors, 	,

below the melting layer have longer decorrelation lags

than above. This is due to the fact that in the lower

heights the error is dominantly due to the Z–R trans-

formation. Therefore, below the melting layer, �̂
	
(r, h)

stays between 1.4 and 2 dB(R), and the decorrelation

lags between 1.5 and 2 h (very similar to the decorre-

lation lags of 	ZR). For elevated observations, the stan-

dard deviation of the error is around 2.5–3.5 dB(R) and

the decorrelation is significantly shorter (between 40

and 60 min). This is due to the fact that, in this region,

�̂
	
(r, h) is significantly higher than �̂ZR (as shown in

previous sections), and, therefore, the error with range

has more weight in the resulting ACF. Similarly, at fur-

ther ranges, the error decorrelation is around 1 h,

though the ACF and the covariance are smoother with

height due to the effect of a wider beam.

Up to this point we have only considered the tempo-

ral structure of the error affecting radar rainfall esti-

mates. Similarly to Zawadzki (1973) and Lee et al.

(2007), here we assume the validity of the Taylor hy-

pothesis to infer the spatial structure of this error. As-

suming the climatological advection velocity of precipi-

tation patterns for the region of Montreal (around 40

km h�1), the spatial decorrelation of the error affecting

radar rainfall estimates, 	, becomes around 60–80 km at

near range and low heights, and decreases up to 40 km

when the observations are taken aloft.

8. Conclusions and discussion

In this study we have developed a methodology for

the analysis of the error covariance matrix of radar

rainfall estimates at the ground. Our approach is based

on detailed study of each source of error so that it can

be applied to different conditions, regional characteris-

tics, and radar operations. This method also provides a

physical understanding of error sources affecting radar

measurements.

FIG. 13. ACF of 	(r, h) obtained for the cases where the brightband peak is (a), (b) between 2.2 and 2.6 km and

(c), (d) 3.0 and 3.4 km. Results from using (left) radar observations at the POSS sites and (right) reflectivity

simulations at 120 km from the radar. The white line corresponds to ACF values of 1/e.
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Our aim is to give a better characterization of errors

for the assimilation of surface radar rainfall observa-

tions into NWP mesoscale models. We have concen-

trated here on the structure of the errors resulting from

the two major sources of uncertainty affecting radar

rainfall observations at nonattenuated wavelengths

(i.e., the range-dependent error and the error associ-

ated with the Z–R transformation) and only in strati-

form conditions. For this purpose we analyzed long

time series of collocated radar reflectivity and DSD

observations obtained in Montreal.

The analysis of the biases introduced by the range-

dependent error has shown characteristics already

found by other authors: little bias close to the ground

(below the bright band), a significant overestimation

when reflectivity observations at the ground are extrap-

olated from the melting layer, and progressive under-

estimation as the radar samples at higher elevations.

The effects of the beamwidth increasing with range can

be appreciated as a clear smoothing of radar observa-

tions. The autocorrelation function of these errors has

also been characterized and we show that the errors are

mainly uncorrelated in the rain region. As the observa-

tions are taken farther aloft, the errors become more

correlated (with decorrelation lags below the bright-

band peak around 2 h) and slightly less correlated in the

snow region. The latter is somewhat surprising because

one would expect more correlation in snow due to the

more uniform nature of the fields and could be attrib-

uted to the small-scale variability of the VPRs in the

snow region.

The errors due to the uncertainty associated with the

reflectivity transformation at the ground when a single

Z–R relationship is used have also been characterized

in terms of their variability and average ACF. During

stratiform conditions, a standard deviation of 1.37 dB

has been found and the decorrelation time shows that

the consistency of the departures from the climatologi-

cal Z–R persists for around 2 h for resolutions corre-

sponding to 15 � 15 km2.

Finally, we have also studied the cross correlation

between the two analyzed sources of error. We have

FIG. 14. Covariance [dB(R)2] of 	(r, h) obtained for the cases where the brightband peak is (a), (b) between 2.2

and 2.6 km and (c), (d) between 3.0 and 3.4 km. (left) Results using radar observations at the POSS sites and (right)

from using reflectivity simulations at 120 km from the radar.
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shown that, below and above the melting layer, negli-

gible correlation exists between the two types of errors

while contamination by bright band is responsible for a

significant correlation. This simply reflects the fact that

the physical processes dominating the generation of

precipitation above the melting layer have a direct ef-

fect on both the intensity of the bright band (for which

the error with range is a proxy) and on the resulting

Z–R relationship at the ground.

The resulting error covariance shows that the stan-

dard deviation of the resulting error remains within

very narrow limits at near ranges and at low heights

[between 1.5 and 2 dB(R)], while the ACF shows that 	

decorrelates at lags of 1.5–2 h or, alternatively, 60–80

km. At farther ranges, when the observations are ob-

tained in the melting layer or aloft, the standard devia-

tion of 	 increases up to 2.5–3.5 dB(R) and the error

decorrelates faster (after 40–60 min, or 25–40 km).

Considering the results described above and that,

with the resolution of the observations used in this pa-

per (15 � 15km2), the obtained decorrelation distances

of 60–80 km result in four to six grid points (or two to

three grid points for elevated observations), we con-

clude that (i) the usual hypothesis of homogenous er-

rors is not realistic at ranges where the CAPPI used to

estimate rainfall at the ground is constructed from the

lowest PPI (i.e., from observations significantly higher

than the nominal CAPPI height), and (ii) at the region

where �
	

remains within reasonable limits (where the

radar measures in the rain region), the decorrelation

distance of the error is significantly longer than the

resolution of the observations and, therefore, the as-

sumption of uncorrelated errors (very common in

schemes assimilating radar rainfall measurements) is

not generally valid.

From a more hydrological perspective, Ciach et al.

(2007) and GBSTZ looked into the problem by char-

acterizing the structure of the residuals between radar

rainfall estimates at ground and gauge observations. In

this way, they account for the general effects of the

errors affecting radar estimates, assuming the gauges to

be perfect.

The approach to computing radar errors used here

has more similarities to that of Jordan et al. (2003). The

main differences are (i) we used a much longer dataset

and (ii) in their study, the analyzed error sources were

assumed to be independent (which, as has been shown,

is not necessarily satisfied when the measurements are

contaminated by the bright band) and stationary in

space.

In our approach, there are some assumptions and

considerations that need further discussion and that

could be taken into account in further characterizations

of the error covariance matrix of radar rainfall esti-

mates:

(i) Both radar rainfall estimates and the error have

been considered in logarithmic units. By doing

this, we assume that the distribution of the error

	(x) is more Gaussian-like than the multiplicative

version of the error [as was also argued by Jordan

et al. (2003) and Ciach et al. (2007)]. This has been

adopted so as to satisfy the hypothesis of Gaussian

errors implicit in most of the assimilation schemes;

however, at the same time, it also imposes assimi-

lating rainfall observations in logarithmic units.

(ii) We have neglected here to consider a possible de-

pendence of the error structure on rainfall inten-

sity [as was also done by Jordan et al. (2003) and

GBSTZ]. However, since here we limit our study

to stratiform rain, and consequently to a limited

dynamic range of intensities, we should expect

little advantage in further stratification with inten-

sity, although this remains to be verified.

(iii) The presented methodology assumes that the

height of the brightband peak is known, and this is

not always the case within the framework of radar

data assimilation. Here, we propose using the in-

formation of the 0°C isotherm provided by the

background term and/or the information about the

brightband peaks identified by an algorithm such

as the one proposed by Sanchez-Diezma et al.

(2000).

(iv) The fact that the study has been carried out using

long-term observations means that the resulting

error covariance matrix is representative of the

mean stratiform conditions and it may be not fully

appropriate for each individual situation. It also

has to be mentioned that it is limited to certain

conditions of the quality control of the data.

Mainly, it is valid when no correction is applied to

compensate for the range-dependent error [or, al-

ternatively, when the climatological VPRs strati-

fied according to the height of the brightband peak

are used to compensate the range-dependent er-

ror, similar to methodology C3 of Bellon et al.

(2007); we would expect less correlated 	r if

method C2 in the same paper were applied] and

when a climatological Z–R transformation for

stratiform precipitation is used. Finally, it has to be

mentioned that although the methodology can be

applied elsewhere, the results shown here corre-

spond to the specific region where the study has

been done (Montreal, Quebec, Canada) and to the

scanning strategy and characteristics of the radar

used for the analysis. For instance, characterizing
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the error covariance matrix becomes a much more

complex problem at shorter wavelengths, since at-

tenuation due to precipitation becomes a signifi-

cant source of error, and modeling it can be a se-

rious challenge due to its complexity (e.g., the at-

tenuation error is clearly nonstationary).

(v) Similarly, it has to be noted that the presented

results have been obtained at a resolution of radar

rainfall observations of 15 � 15 km2. This can be

considered a typical resolution for schemes assimi-

lating surface rainfall observations to constrain the

profiles of temperature and pressure of mesoscale

models. However, the resolution of the observa-

tions has a direct impact on their error covariance

and it is, thus, not correct to use the results pre-

sented in this work for different resolutions (in a

follow-up paper, we will discuss the impact of reso-

lution on the resulting error structure).

(vi) In our study we have only characterized the instru-

mental error of radar rainfall estimates, while the

error covariance matrix of observations R should

also include the component due to the uncertain-

ties in the observation operator H() used to trans-

form model variables to the observation domain

(see Kalnay 2003). The error covariance matrix

derived in our study would, thus, underestimate

the errors affecting the assimilation of radar rain-

fall estimates into NWP models.

It is also worth mentioning that one interesting ap-

plication of the error covariance matrix of radar rainfall

estimates (as the one proposed here) is to study how

the uncertainty in rainfall observations is propagated

through a rainfall–runoff model in terms of the uncer-

tainty in simulated flows (see Krzysztofowicz 1998;

Krzysztofowicz 2002). In this sense, some authors (e.g.,

Jordan et al. 2003; Berenguer et al. 2005; Germann et

al. 2006; Ciach et al. 2007) propose a probabilistic ap-

proach based on ensemble of equiprobable rainfall

fields compatible with radar observations [first at-

tempts have been presented in the works of Pierce et al.

(2005), Lee et al. (2007), Berenguer et al. (2006), and

GBSTZ] and use them as inputs for a rainfall–runoff

model to analyze the impact of the uncertainty in rain-

fall products in terms of the simulated discharges.
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