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The Galitskii Feynman T matrix, which sums the infinite ladder series in a 
many-fermion system .['or both particle~article and hole-hole scattering, is 
studied in detail for a family of realistic He-He interactions. The structure of 
the S-wave bound-state singularity, reported previously, and its dependence on 
the bare interaction are documented at length. Special attention is detoted to 
the T matrix in the scattering region, where the c.m. energy of the interacting 
pair is positive. In particular, the on-energy-shell T matrix in this region is 
parametrized in terms of real -effecti~,e" phase shifts incorporating many-body 
effects. The critical behavior discussed previously in the bound-state region 
manifests itself clearly in the zero-energy limit of these phase shifts for the 
S wave. Below (abot, e) a certain critical denszty, which is a fimction of both 
temperature and c.m. momentum, this limit approaches the t, alue O( - 7r) radians. 
A generalized Let'inson's theorem relates this behavior to the existence of 
fermion-fermion pairing. An especially striking feature of these many-body 
phase shifts is the cusp behat, ior exhibited at the Fermi szoface in the low- 
temperature limit, which turns out to arise essentially ft'om the structure of 
the particle and hole occupation probabilities. Throughout this stud)' the 
temperature dependence of the T matrix is particularly emphasized. 
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1. INTRODUCTIO N  

A dense Fermi system such as liquid 3He may be studied theoretically 
within the framework of either a phenomenological or a microscopic 
approach. Phenomenological theory, typified by the Landau theory of 
Fermi fluids,1 has long provided a most lucid, self-consistent description of 
normal Fermi fluids. A relatively few parameters are determined experimen- 
tally and then used to predict other phenomena. The validity and applications 
of this theory, together with its manifold extensions and finite-temperature 
corrections, 2 form the substance of an impressive corpus. 

The microscopic approach, on the other hand, starts with the properties 
of the constituent 3He atoms and usually, but not necessarily, with the 
assumption that these atoms interact pairwise via a static binary potential. 
Since the electronic excitation energies of the 3He atom 3 are typically 
10 5 times as large as the binding energy of the liquid per atom, 4 the excited 
states of the atoms need not appear explicitly in our theoretacal description of 
the liquid state. The atoms, then, may be treated as the elementary particles 
of the many-body system from which the bulk and transport properties can 
be derived using one of three major approaches. In the first place there is 
the generalized variational treatment in the manner of Feenberg and his 
school. 5 Secondly, there are the powerful methods of quantum statistical 
mechanics which Mohling and his collaborators 6 have developed, following 
the pioneering work of Lee and Yang, v and which are highly reminiscent 
of the more familiar techniques used by Ursell and Mayer in their theory of 
the equation of state of a classical real gas. 8 Finally, we consider such 
generalized perturbation approaches as the Brueckner-Bethe-Goldstone 9 
and Gali tskii-Feynman 1~ formalisms, whose fundamental starting point is 
the evaluation of some density and temperature-dependent effective inter- 
action for the quasiparticles in the many-body medium. The self-energy, and 
hence all physical observables, of the system can then be expressed in terms 
of this effective interaction. 1 

In this study we focus our main attention on the Galitskii-Feynman 
(GF) formalism, which has been the subject of two recent communications 12 
(henceforth referred to as I and II, respectively). In these two papers the zero 
and finite-temperature GF formalisms have been outlined, and preliminary 
results presented for the GF T matrix in the bound-state region. Since this 
matrix plays the role of the effective interaction in the theory, a thorough 
investigation of its properties is essential prior to any more comprehensive 
calculations of physical observables. Unlike the analogous quantity in the 
Brueckner-Goldstone (BG) theory which sums repeated particle particle 
scatterings outside the Fermi sea, the GF T matrix sums these as well as 
repeated hole-hole scatterings inside the sea. The holes and particles are, 
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therefore, treated symmetrically in the GF formalism. Another aesthetically 
very appealing advantage of this formalism is the simple manner in which 
it incorporates the temperature dependence, which enters solely through 
the one-body Green's functions representing particle and hole propagation. 

In this paper we undertake a detailed investigation of the GF T matrix. 
We both document at length the structure of the S-wave bound-state 
singularity appearing as a first-order pole in this matrix, as established in 
I and II, and also extend our treatment to the scattering region where the 
c.m. energy of the interacting pair is positive. In particular, we use a general- 
ized unitarity relation to parametrize our on-energy-shell T matrix in this 
region in terms of real "effective" phase shifts incorporating many-body 
effects. These phase shifts turn out to be very useful in analyzing the critical 
behavior reported previously. ~2 Below (above) a certain critical density, 
which is a function of both temperature and c.m. momentum, the zero-energy 
limit of these phase shifts approaches the value 0( - 7r) radians. A generalized 
Levinson's theoremS3 then relates this limit unambiguously to the existence 
of pairing in the GF  formalism corresponding to pairing between quasi- 
particles which are linear combinations of particle and hole states. This 
behavior is found to exist in the S wave only, for the particular potentials 
studied. 

An especially striking feature of these many-body S-wave phase shifts 
is the cusp behavior exhibited at the Fermi surface in the low-temperature 
limit (<0.2 K). This effect arises essentially from our definition of these 
phase shifts which involves the particle and hole occupation probabilities: 
it is not related in any direct manner to the cusps associated with two-channel 
scattering processes, 14 nor to the resonance phenomena familiar in, for 
example, nuclear and atomic physics.15 

In passing we introduce a new integration mapping which improves, in 
certain cases, the accuracy of matrix-inversion techniques 16 in solving the 
GF integral equation, which is singular in the scattering region. We believe 
that persistent attempts of this kind are essential in the continuing attempt 
to find more efficient methods for solving singular integral equations of the 
kind encountered here. 

The remainder of this paper is divided as follows. In Sec. 2 we outline 
the main ingredients of the GF formalism for an arbitrary temperature. 
We then present details of our numerical methods (Sec. 3) followed by our 
results (Sec. 4). Finally we discuss these results in Sec. 5. 

2. T H E  GF F O R M A L I S M  

We consider an extended system of N 3He atoms, mass M each, occupy- 
ing a volume ~ at zero pressure and an arbitrary temperature. This system 
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has already been examined, in its zero-temperature limit, within the frame- 
work of both the Brueckner-Bethe-Goldstone 17 and Mohling 18 formalisms. 
As usual when studying such a many-body system, we shall be interested in 
the thermodynamic limit N --, zc., 92 --, ~ .  The ratio N/92,  however, remains 
constant as the limit is taken, and is simply the normal density of the system 
defined by 

p = N / ' ~  = k ~ / 3 n  2 (1) 

for spin-�89 particles with no other internal quantum numbers, and where 
k F is the Fermi momentum.* 

It is now well established experimentally that this system has a "). 
point ''a9 : at zero pressure, it undergoes a phase transition at a temperature 
of 0.93 mK. However, since our formalism is not sufficiently well developed 
at present to handle this and other related phenomena in this field, 2~ we 
shall ignore them. In fact, our intention in this section is merely to outline 
briefly the principal ingredients of the T-matrix formalism, since this has 
already been described in I and II. 

In the c.m. frame of the interacting pair the GF  T matrix is defined 
operationally by the equation 

T ( s , P ,  fl) = u - u [ Q ( P ; f l ) g o ( s )  - Q ( P ; f l ) g * o ( s ) ] T ( s , P ,  fl) (2) 

where the parametric dependence on s, P ,  and/3 is shown explicitly, and 
where these parameters denote, respectively, the total energy of the inter- 
acting pair m the c.m. frame, their average momentum,  and the reverse 
temperature. The operator u = M h - 2 V  = �89 where V is the bare H e - H e  
interaction. The free two-body Green's  function go(s) is specified by go(S) = 
(�89 0 - s - iy/)-t, H0 being the kinetic energy operator  and q a positive 
infinitesimal in the scattering region (s > 0) and zero otherwise, and where 
the factor �89 is equal to twice the reduced mass in our system of units. Finally, 
Q(~)) is the product of two single-particle (hole) occupation probabilities. 
In momentum space the single-particle occupation probability is just the 
Fermi-Di rac  distribution function, which reduces to the unit-step function 
at zero temperature. When subtracted from unity, this yields the single-hole 
occupation probability. 

The integral counterpart  of Eq. (2) is trivially obtained for our trans- 
lationally-invariant system in the relative momentum representation, 
using closure 

f dk T(p, p'" s, P,/3) = u(p - p') - (~)3~)3 u(p - k) [Q(k ; P,/3)go(k, s) 

- Q ( k ; P ,  f l ) g * o ( k , s ) ] T ( k , p ' ; s , P ,  fl) (3) 

* T h r o u g h o u t  th~s w o r k  we use umts  such that  h = 2 M  = k 8 = 1, where  k B is the B o l t z m a n n  

cons tant .  The  co n v e r s ion  umt  is h 2,'2M = 8.0425 K A z. 
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where the relative momenta  p, p' and the average momentum P are related 
to the individual momenta  of  the interacting pair by the equations 

P = 2~P, -- P2); P' = �89 - P'2) 
(4) 

P = ~Pl  + P2) = ~P'I + P2) 

To proceed further we then make the customary approximation of  
angle-averaging the Q and Q operators. The resulting expressions are listed 
in Table I for convenience. This approximation renders it possible to decom- 
pose T ip.to the uncoupled partial-wave expansion 

T(p, p ' ;  s, P, fl) = ~ (21 + l)Tt(p, p'" s, P, fl)P~(~. P') (5) 
l 

With this and a similar equation for u, Eq. (3) can finally be reduced to 

fo~ k r Q(k, P, fl) Q(k,P, fl) ] 
Tt(p, p': s, P, fl) = u,(p, p') - 2re ~ dkut(P' k)[k2 k T ~ - s  T itl] 

x Tt(k , p ' ;  s, P, fl) (6) 
where 

fo ut(p, p') = 4rr r 2 drjl(pr)u(r)jl(p'r ) (7) 

and jr(x) is the spherical Bessel function of order I. 

TABLE I 

R6sum6 of the Angle-Averaged Q and 0 Operators for fi- t > 0 

fi-  ' Q(k, P. fi) Q_.(k. P, ,8) 

fi , 

P < k  F 
O. 0_</~ < { k ~ -  P2)  t ' z  1 : O<_k<kv-P  

(p2+kZ-h~) /2Pk;  ( k ~ - p 2 l ~ ' Z < k < k F + P  ( k 2 - p a - k X ) / 2 P k :  k F - P < k < _ ( k 2 - p 2 )  z'2 
1: k >  kr + P 0: k > ( k 2 -  p211"2 

= 0  

P >  k F 

1. O < k < P - k  F 
(p2+k2-k~),:2Pk: P -  k v < k < _ P + k  F 

1: k > P + k ~  
0 : everywhere 

/ ~ > 0  

{ 2 f l P k [ 1  - e x p  ( - 2 f i X ) ] ]  - tL(k, P) {2flPk[exp ( 2 f i X )  --  13} - ~L(k, P) 

/co~h { ~ - r r  + k~ ~ - k~3} / 
L(k, P) =_ In/cosh {�89 - k) 2 - k~]}l 

X -~ P Z 4 - k 2 - k 2  
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The solution of Eq. (6) represents our fully-off-shell GF T matrix 
pertaining to a relative partial-wave I. The on-energy-shell counterpart  
T~(p;P ,  B) is obtained directly from this by setting p = p' and s = p2. The 
T matrix is an implicit function of k v ,  this dependence arising via the Q and 
Q operators. On setting ~) = 0, hole hole scattering is switched off and the 
BG T matrix is obtained. Since liquid 3He is a relatively dense system, 
in the sense that the range of the two-body interaction is commensurate 
with the 3He-3He interatomic spacing, hole-hole scattering is not expected 
to be insignificant. Accordingly, the GF formalism should describe this 
system better than BG. The accurate solution of the integral Eq. (6) in both 
the bound-state (s < 0) and scattering (s > 0) regions provides our central 
theme in this work. We note that in the free-scattering limit Q(~)) ~ 1(0), 
so that T reduces to the familiar Lippmann-Schwinger t matrix. 

In the formal theory of scattering it is well known 13 that the probability 
amplitude for a transition of a system from some initial to another final 
state may be described by a scattering matrix S. The unitarity of S for 
Hermitian hamiltonians, representing conservation of the flux of particles 
participating in the scattering process, leads to a parametrization of this 
matrix in terms of real phase shifts 6~(p). This, in turn, leads to the following 
parametrization of the on-energy-shell Lippmann-Schwinger t matrix/1 : 

t~(p) = - (4n /p )  exp [ @(P) l  sin 6z(p) (8) 

Likewise, we may use a generalized unitarity relation to parametrize 
T~(p' P,/~) in terms of real "effective" many-body shifts 6 f ( p  ; P,  ~6) according 
t O  22 

T~(p ; P ,  fl) = - ( 4 n / p ) [ Q ( p  ", P ,  fl) + Q(p  ; P ,  fl)~ - ' 

• exp [ i6 f (p ;  P,  fi)] sin 6 f ( p ;  P ,  fl) (9) 

whence 

6f(p; P, fl) = arctan Jim Tt(p; P, fl)/Re T~(p; P,/3)] (10) 

Re T~(Im Tl) denoting the real (imaginary) part of T~. 
These latter two quantities can most easily be extracted from Eq. (6) 

through a real matrix K defined by an integral equation identical to (6), 
save for taking the principal value (PV) of the integral. Using the standard 
relations 

PV[go(S)] = lim �89 + g*o(S)] (11) 
q ~ O  

l/(k 2 - s T- i~l) = PV/(k 2 - s) • in6 (k  2 - s) (12) 

and 
6(q 2 -- k 2) = (1 /2q)6(q  - k) (13) 
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where PV indicates that the principal value of the implied integral should 
be taken, we finally obtain, after some simple algebra, 

f 2(s, P, fl) 
Re [T1(p,p'; s,P, fl)] = Kz(p,p';s,P, fl) - 1 + f2(s,P, fl) 

[Kz(P,~C;s,P, fl)K,Oc.P';s,P, fl)] (14 ) 
x Kl(tc, ~c ; s, P, fi) 

and 

Im [Tt(p, p': s, P, fl)] = - 

for s > 0, where 

fl(s, P, fl) 
2 S 1 + f t ( , n ,  fl) 

x [  Kt(p'K's'P'fl)Kd~c'p';s'P'fl!]KI(K, K ; s, P, fl) (15) 

and 

and 

f(s, P, fl) =- (~c/4~)[Q0c: P, fl) + O(~c; P, fl)]Kz(~c, ~c ; s, P, fl) 

K = + S  U 2  

For  s < 0 we define 

Re [Tdp, p': s, P,/3) 3 = Kt(p, p': s, P, fl) 

(16) 

(17) 

(18) 

Im [Tz(p, p'; s,P, fl)] --- 0 (19) 

The on-energy-shell quantities Re Tz( p ; P, fl) and Im Tt( p ; P, fl) can then be 
immediately obtained from (14) and (15) by putting p = p' = •. 

We have now all the essential tools for a numerical study of the G F  
T matrix. 

3. THE 3He-3He POTENTIAL AND NUMERICAL METHODS 

The dynamic interaction between two 3He atoms is represented by a 
binary potential, as usual in nonrelativistic physics. This is purely central, 
unlike the nucleon-nucleon potential which is generally spin and isospin 
dependent and which has tensor components and other state dependence. 
The importance of the He-He  potential can hardly be exaggerated here, 
in view of the sensitivity of many-body helium calculations to its exact 
shape, ~7 and since it is the basic input to any microscopic formalism for 
liquid helium. The standard philosophy in this respect is based on the follow- 
ing dichotomy: if we could trust our two-body potential, we might affirm 
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something about our many-body formalism : alternatively, if we could trust 
this formalism, we might end up with some conclusions about the He-He  
potential itself. However, since the theory we are attempting to construct 
within the GF formalism is still in its infancy, and since the helium literature 
abounds with potentials all professing to be suitable candidates for liquid 
3He, we are forced to employ more than one potential in this study. In fact, 
we have investigated five different potentials, including the most highly 
acclaimed. These are listed in Table II. We have presented a critical survey 
of their prime characteristics elsewhere. 2v Note that these are all Fourier- 
transformable; in particular, the MFM potential has an analytic Fourier 
transform given by 

ul(p, p') = 4rr[At l l l ) (p ,  p') + A2II2)(p. p')] (20) 

where 

II ~'(p, p') = [l~/2(pp')Z]Q't(z,) 
(21) 

II2)(p, p') = (1,/2pp')Q,(zu) 

2u = (p2 -F p,2 -F- 122)/2pp ' 

and where ( A 1 , A 2 ; / ~ ) = ( - 2 . 1 1 4 9 5  x 104A 2: 5.60304 :x: 1 0 4 / ~ - 2 ;  

2.68792). The Q:s are Legendre functions of the second kind, and the prime 
denotes their first derivative with respect to z u. We have evaluated Qt m 
terms of which Q't may be expressed, using standard 28 recursion relations for 
zu less than some Zmi n (~ 2.0), and hypergeometric functions for z;, > Zm~ . .  
AS for the other potentials quoted in Table II, we have computed their Fourier 
transforms numerically using Gausslan quadrature, together with an 
appropriate mapping. 12.1 v 

Once again we have found the matrix inversion method of Haftel and 
Tabakin ~6 most helpful in solving the GF integral equation (6) in both the 
bound-state and scattering regions. As a check this procedure was first 
tested in the free-scattering limit. 27 To achieve fairly stable and accurate 

TABLE II 

List of the He-He  Potentials Studied m This Work 

Potenual  Abbrevlauon Ref. 

F r o s t - M u s u h n  of Bruch and McGee ~1970) FDD-1 23 
Morse of Bruch and McGee (1970) MDD-2  23 
Beck (1968) B 24 
Sposlto (1970) S 25 
Modified Fros t -Musul in  (1954, 1974) M F M  26. 12 
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b 

/ [ 

k v - P 

k! p21"2 p 

/ 

k 

Fig 1. The structure of the angle-averaged operator (Q - Q) as a function 
of k, illustrating its symmetry about the point (k~ - p2jl,z (cf. Table I). 

results we have main ly  used Gauss ian  meshes of  size >_ 96 points. The  sole 
addi t ional  feature to the me thod  (as expounded  in I) is the scaling factor  
2(kv, P) we have associa ted here with the m a p p i n g  

k = 2(kv, P) tan �88 + x) (22) 

which maps  a set of  Gauss i an  quadra tu re  points  x i given on the interval  
( -  1, 1) into a set of  points  kl suitable for integrals over  the interval (0, co), 
and  where 

2(kF ' p)  = (k 2 _ p 2 ) 1 , ' 2  (23) 

O u r  mot iva t ion  for in t roducing this m a p p i n g  is its p roper ty  of  dis t r ibut ing 
the given Gauss i an  points  symmetr ica l ly  abou t  the point  (k 2 -p2)1. ,2 .  
This is highly desirable in view of the s tructure of the opera to r  (Q - Q) 
needed in evaluat ing  the principal  value integral in Eq. (6). This is sketched 
in Fig. 1. 

4. R E S U L T S  

We are concerned  here main ly  with the proper t ies  of  the S-wave G F  
T matr ix  in bo th  the bound-s ta te  and scat tering regions, since the interesting 
physics we shall be discussing below is confined to this relative part ial  wave 
only. However .  for comple teness  we shall occasional ly allude to the P and  
D waves. 
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In the bound-state region (s < 0) the GF integral equation (6) is non- 
singular and the Tmatr ix  is real [Eqs. (18) and (19)]. As established in I and II, 
this matrix has a singularity in the s plane appearing as a first-order pole 
at s o with factorizable residue at the pole. The quantity s o, denoting the 
binding energy of the bound-state pair embedded in the many-fermion 
medium, is a function of k e (or, equivalently, p), P, and/3-  ~. The basic point 
is that for fixed P and fl- ~ there exists a critical Fermi momentum kvc(P, fi- t) 
at which s o is zero and below which no binding occurs. Alternatively, for 
fixed k r and/3-1 (or P) a critical c.m. momentum Pc(kv, fl-t) [or a critical 
temperature fi~ ~(kv, P)] exists above which no binding occurs. 

This behavior has been amply discussed in I and II. Motivated by our 
new choice of mapping, Eqs. (22) and (23), we have repeated our former 
calculations for the M F M  potential and extended them for the other four 
potentials listed in Table II. Our new results for s < 0 are displayed in 
Tables III and IV and in Figs. 2 through 4. It is gratifying to note that the 
previous numerical instabilities (conspicuous, for example, in Fig. 2 of I) 
have vanished, thereby vindicating our expectations of the new mapping. 
This is also evident from Table III, where we compare the values kec(P = 0, 
/3- t = 0) for the five potentials obtained with both the new and old mappings. 
We note that with the latter mapping these quantities are difficult to determine 
accurately: they seem to lie exactly at the mapped mesh points. ~6 Table [II 
also shows how close the values kv~ are for all five potentials. 

Similar conclusions apply to P, and tic-*. However, as is clear from 
Figs. 2 and 3, the values /37 : correspond to temperatures sufficiently high 
for quantum effects to be negligible by the correspondence principle; the 
system then becomes purely classical in behavior. For orientation purposes 
in this respect we list in Table V some temperatures appropriate to normal 
liquid 3He. 

TABLE III 

The Crmcal Fermi Momentum krc for P = 0 A -~ and 
fi- : = 0 for the Five Potentials Listed in Table II" 

kv~(P = O. fl-L = O ) , , ~ - I  

Potennal New mapping Old mapping 

FDD-1 0.742 0.753 
MDD-2 0.718 0.715 
B 0.722 0.715 
S 0.689 0.678 
MFM 0.714 0.715 

aThls should be compared with the experimental value 
kt = 0.788/~ 1 (Ref. 29) 
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TABLE IV 

The CriUcal c.m. M o m e n t u m  Pc as a Funct ion of k r 
f o r 3  -~ = 0 ~ 

kF , ,~- I  p~(k v :~ - I  =O),]k I 

0.75 0 362 
0.78 0.467 
0.82 0.566 
0.86 0.645 
1.00 0 857 
1.50 1.44 

"The potentml is the MFM.  Note that Pc increases 
with increasing k r (cf. Figs. 3 and 4 for fi7 l). 

0,. 

4 

0 0 2  0.4 0 6  0 8  
p [A;] 

Fig. 2. The position of the bound-state  singularmty 
s o ( P ; k e , f 1 - 1 )  m the S-wave G F  Tmat r ix  as a function of P 
f o r / / -  1 = 0 and for a family of k F. The potential here and 
in the remaining figures is the M F M .  
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10 .2 

..-,. 

,2 

Q,. 

io-~ 

0 O I  0 2  0 3  
p[.~"] 

Ftg. 3 so(P. k r, fi- ~) as a funcuon of P for k F 

for a family of fl- 1. 
=0.75A I and 

On the other  hand,  in the scat tering region (s > 0) the G F  equat ion  is 
s ingular  and  T is complex  [Eqs. (14) and (15)]. Both Re To and Im T o are 
well behaved  in the s plane. However ,  as soon as we examine the effective 
phase shifts 6f defined by Eq. (10) the picture abrupt ly  becomes  more  complex.  
This is i l lustrated in Figs. 5 th rough  8. There  are two per t inent  features 
wor thy  of note  here. The  first is the peak in 68 occurr ing at the Fermi  surface. 
In the low- tempera tu re  limit this manifests  itself as a cusp (Figs. 5 and 6) 
which becomes  gradual ly  depleted as fi-1 increases. This peak  seems to 
persist for higher relative part ial  waves as well (cf. Fig. 8 for the P and 
D waves), a l though it no longer occurs at the Fermi  surface. 

The  second, physically more  interesting, feature is the behavior  of 6f 
at zero relative m o m e n t u m ,  p. Below k w (or above  Pc or /~-~), 6o~(p = 0; 
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I0 

L~ 

~o 
i 

Id:' 

I d '  i 

I 0  2 I 0  t I I 0  10 2 

#" [ K] 

Fig. 4. So(iS- I, p, kv ) as a funct ion of [t - 1 for P = 0 A - 1 and for 

a family of k v 

p, fl t) = 0; whereas above kF~ (or below P~ o r  fl~- 1), ~E(p = 0"~ P, fl 1) = 
- 180 ~ This critical behavior occurs only for the S wave. We shall presently 
proceed to analyze these results. Prior to this, however, we emphasize again 
the identical qualitative behavior of all five He-He potentials. In particular, 
for the parameters we have selected in plotting Figs. 5-8, it is not possible to 
distinguish between the potentials on the scale used. 

TABLE V 

Some T e m p e r a t u r e s  Approp r i a t e  to L lqmd  3He 

D e s c r l p h o n  Tempera tu re ,  K 

L~quid-gas  c rmca l  t empera tu re"  3.32 
N o r m a l  bo i l ing  po in t  b 3.19 
The Fe rmi  t empe ra tu r e  for a d i lu te  3He gas  h ~ 5.0 
The expe r imen ta l  degeneracy  t empera tu re  (at, or below, 

which  q u a n t u m  effects manifes t  themselves)  b ~ 0 1 

"Reference 30. 
hReference 2. 
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5. DISCUSSION AND CONCLUSIONS 

We first dismiss the above cusp behavior as an effect arising from our 
definition of 62 [Eqs. (9) and (10)]. It is intimately related to the structure of 
the Q and Q operators. This we have rigorously shown elsewhere, 22 and 
we shall not discuss this matter any further here. 

The principal conclusion of our results in the bound-state region is that 
above some onset density, which is fairly close to the experimental density, 
our system is unstable against the formation of fermion-fermion pairs in the 
first-order GF theory. 

That this pairing occurs is also confirmed on inspecting closely our 
results for 6g. To demonstrate this we first recall that, in scattering theory, 
the number N t of bound states for a given I and the corresponding phase 
shift 5~(0) at zero energy (defined as the limit from positive p) are related via 
Levinson's theorem, is which is valid for the type of two-body interaction 
we are interested in here (see, however, Ref. 31). The basic content of this 
theorem can be summarized by the statement 

51(0) - 6z(:o) = rrNl (24) 

where 6z(.~) is normally set to zero by convention. We have generalized 
Levinson's theorem to our many-body system 22 in a form suitable for 
interpreting the above results. More specifically we have shown that for the 
case under consideration here, 

6 g ( O ; P ,  f1-1)  - 6eo(Zc,;P, f1-1)  = - u N  o (25) 

where 5g(vc, ;P,  f i - 1 ) =  0, by definition. It is clear, then, that the above 
critical behavior exhibited by our S-wave effective phase shifts is simply a 
reflection of the existence of fermion-fermion pairs in our system. 

We are now studying this pairing phenomenon on a deeper level from 
two different, but complementary, angles. In the first place, regarding our 
bound 3He-3He pairs as boson impurities, we are examining the possible 
consequences of their existence in our many-fermion system. In particular, 
we are attempting to establish whether these boson impurities may condense 
to form a macroscopically occupied state. In this respect, it is interesting to 
note that Kohn and Sherrington 3z have categorized bosons into two basic 
types. Type I bosons are bound complexes of an even number of fermions 
(or fermion-holes), such as 4He atoms. Type II bosons are elementary 
excitations which are bound complexes of fermions and their holes, such as 
excitons and spin waves (see, e.g., Ref. 33). The important point is that when 
a system of the first type condenses, a superfiuid state results, unlike the case 
with the second type, where no superfluidity results, but merely a change in 
spatial order (affecting, however, other properties of the system). The super- 
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fluid state in the former case is characterized by the so-called off-diagonal 
long-range o rde r - -a  concept introduced by Yang. 34 (Perhaps Bose-Einstein 
condensation is the simplest form of this order.) Our investigations along 
these lines should also be enlightening in the context of two other most 
interesting systems--namely, 4He atoms in liquid 3He and superdense 
nucleonic matter containing pion impurities. The latter system is presently 
a subject of intense interest--especially in connection with neutron-star 
theory (see, e.g., Ref. 35). 

Secondly, we have outlined a program to evaluate the proper self-energy, 
Z* (and, hence, the thermodynamic properties), of the system in the following 
manner. We have expressed 57* in terms of its real and imaginary components. 
Our plan is to compute as accurately as possible the real component, and 
to then use it to determine the imaginary component (and, hence, time- 
dependent properties) via an appropriate dispersion relation. We have 
separated the real component,  in its turn, into a "background"  part and 
another pole-dominated part, recalling in the latter case that t2 

R(p ; P, f i-  ')R(p' ; P. fl-  1) 
T~176  5=s~ s -- so(kF, P, f1-1) (26) 

with the product of the functions R being the (factorizable) residue at the 
pole, So. 

Our preliminary results are encouraging and we shall report them 
elsewhere. 
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