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ABSTRACT

The domains of definition of the operators used to
factorize the generalized Veneziano model are studied within the

Hilhert space defined by the harmoniec oscillator creation and
a(r)T,aaf>. Thesze

may not be well behaved although, of course, the matrix elemcnts

annihilation operators incividual operators
used in the conventional operational factorization are well defined.
Concerning the individual operators it is shown that

the ground-state vertex written as

V(D)= oxp(= 2GR exp ( 2 GaI)

is nowhere adefined withir the Hilbert space; the product with =
twisting operator j)iq)V(p} is, kowever, densely defined, as is
the symmetrical three-reggeon vertex. The propagator D(p) is
bounded everywhere, away from its poles. The twisting operatcr
Il(p) is undefined on finite occupation states, but is densely
defined on a subset of conerent states; 1ts Hermitian conjugate
_[1f(p) is densely defined on both ¥inite occupation and coherert
states. It is found <that a suitable re-written form of the pro-
duct D(q)V(p) is densely defined for certain values of momenta;
this relates 4o the fact that off-mass shell states satisfying
(LO —L_I»-1)|ﬂ:>=:0, where Ln are the conventional gauge oper-

ators, are better defined than those satisfying (LO—L_r+r—1)|ﬁﬂ>=O.
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I¥TRODUCTION

The study of the properties of the N particle gereralization
of Veneziano's beta function dual model Tor two-body scatiering nas been
greatly facilitated by the harmonic oscillator opsrator formaliss 1). This
operator Tormalisr maxes manifest the factorization properties and the spectrum
27 states wnich are not obvious in the original integral representation.
It can be written in a form where both the Tactorization ard Mibias

!

. . - . : 2 . -

invariance properties are displayed simultaneously . Tor a review ol the
3)

formalism we refer the reader to tahe article of Alessandrirni % al., 7/ and

the references citedé therein,

In the present paper we shall be concerrned with the operator
formalism developéd in Ref. 1), togezker with =—he twisting operator and
symmetric ihree-reggeon wvertex of Ref. 4}, Witk the three operators: the
propagator D(p), the symmetric vertex V(p1p2p3] and “ne twisting operator
jl(p) or.e can, asice from Tne gauge Identities {which we shall consider
towaras tne end of the article In discussing the physical states), build up

the whole theory including loops.

We shall discuss the mathematical basis of the operator formalism,
ir particular the properties within the Ililbert space defined by the Fock

gspace of harmonic oscillator states.

Concerning the three principal operators, regarded as operaltors
acting on Hilbert space states, the resulis nmay ke summarized: the propagator
D(p) is bounded over the whole space; the ground state vertex V(p) i=m
nogwhere defined, while tane gymmetric vertex _fl(q}V(p} and its generalization
to the symmetrical thres-reggeon vertex V(przpﬁ) are densely defined;
the twisting operator .fl(p} is rot asfined except on states with null

. : o + . . .
four-momertum, while its adjoint E!.(p) Ls densely definead,

0f course, the Hilbert spaces is rather a restricted concept and
similar diflficulties of staying within a Filbert space occur already in non-
relativigtic quantum mechaniecs 5). The conventional usage of the operator
formalism involves always matrix elements of stirings of operators (VDVD...V)
and these are well defined in *ferms ol generalized beta Zunctions and tneir
analytic continuation; thus the results of the present paper do not, of
course, cast any doubt on the wvalidity of +the normal use of the operalor

formalism (i.e., on the matrix elements). Tke mathematical properties of



the specific operators are important to know, if one wants to extract as
much as possible out of the operator formalism, It is also of importance
in understanding dual models and might provide a means Tor further

developments and for constructiorn of other more realistic duasl models.,

The organization of the paper is as follows: 1in Section 2
we give some mathematical definitions of what we mean by certain classges
of wvectors within the Hilbert space and introduce some terminology useful
for discussing the domains of definition of operators. We study the
propagator and twisting operator in Section 3, while in Section 4 the vertex
is investigated, firstly the ground-state vertex and then the fully sym-
metric three-reggeon vertex. Section 5 1s concerned with the redefinition
of the product D(q)V(p), and witk the altermative definitions of physical

states. The final Section & is devoted to some discussion.

MATHEMATICAL DEFINITIONS

When we, in the following sections, are going to claim that
certain operators are defined what we shall mean is really only that they
are defined as operators mayping a Hilbert space into itself (or possibly

into another Hilbert space).

The Hilbert space of interest for us iz the Fock space in the
operator formalism 1) of the Veneziano model. Let us first consider a get

of occupation number states of the type
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(2.1}

where

(2.2}
with



Here the £¢ﬁs are zero for n sufficiently large. The state with all
occupation numbers identically cgual to zero is called the vacuum state

0>,

We define the space E} as the wvector space consisting of all
(finite) lipear combinations of the vectors (2.1). We call E* the space

of finite occupation states. A typical siate |f:’€:EF may be written
l(-'> = Z Cg,,g \¥Q3>
$e3

where only finitely many of the coefficients C {ﬂ? are non-zero.

The space 1s made a pre-Hilbert space by defining the inner

product

<HINIEy - 2 i G

(2.3)
which follows from {2.1) when we put
bo
(™
2 a.) a,
Ny
Mn= &N
(2.4)

A norm is defined by || |£>]|| =4/ <f [P [Fr>. Xote that this definition

of the metric is not Lorentz invariant.

Completing the space E% we obtain the full Hilbert Fock-space
?& . The points |h$> of the Eilbkert space j1 , which we will consider
in this article, can be written as formally infinite linear combinations

of states of type (2.1}, i.e.,

> = D i 11D

ied (2.5)

but now an infinite number of coefficients C P) may be different from

7ero. However, the norms in J4 are bounded and it is thus regquired that



S lg) <
$e3 (2.6)

As a consequence of the non-covariance of the metric r‘ , Eg. (2.4), the

Hilbkert space .H ig not covariant,

An example of a state in ‘H i5 the coherent state defined by

]o(‘“’> WY( % o, amT> \c>

(2.7)
where we nave required
b 3
w 14
> 2> WO < e
ne ’“D (2.8)

We shall denote tne set of all firite linear combinations ¢of finite-norm

coherent states as c .

A function j that maps every vector 'h> < @ inte a
vector 'j In> EAE:H ig called an operator in the space .'H defined on
the domain % and A‘ is callsd the image when it is reguired that each
element in A has the form :j |h‘;~.

In the following =seciions we shall be interested in whether the

domain @ ig a dense set 1in tH y 1l.e., waether

o - H
— (2.9)

whe re ﬁ iz the closure ofa , acceording to the topology defined by the

Nnorm.

We shall also be interested in whetner the operators ars hounded.

4 linear operator ',J is bounded when

o Jawsl < »

<!
k> €9

(z.10)



3, MOBIUS GROUP OPERATORS

In the operator formalism of the dual rescnance model certain
representations of the zroup of Motius transformations leaving a circle

invariant SL{2,R)FHSD(2,1} nomomorpaic to SU(1,1) play an important
role 3). In the conventional model the generators are

Po -
L.(p - F' =S na®t
L ('f) = - El a(a)-l_-P — ‘i '“(""H) 1 a('m-o-t a(-q
* h=)

.
Lop= Gop) (5.1)

Of particular interest are *the following furctions of these generators:

the propagator

j) = (.Ln - D_l

(3.2)
znd the twisting operators
~L L Lo
No= G e e et D
_ L, L L.
of = eh N = e e
(3.3)

In the upper hal? of the Table The boundedness and domain pro-

perties of guch operators are summarized.

We now indicate how these entries in the Table were obtained.

1) D(p) ana_ D7 (p)

On the space F, D(p) is bounded, siance the eigenvalue of
-1 . o
(10_1) of an E} state 1s bounded. This is because the eigenvalue of

(LO_1)'1 on a state |f> is given by



C) 16py= 2 o O 1R

Sy P §“nt—5‘ 53,5
$¢3 "

il

(3.4)
and the norm of this state || (LO_1}_1]f:>H is always bounded off-mass
shell. Now we can apply a theorem about bounded operators to be found, for
example, in Naimark's book
Theorem

In a Eilbert space 54 , a bounded linear operator A 1is
extengiple by continuity from its domain %D A to a bounded linear opcrator

with &) 4» Lee., the closure of D 4 @s its domain of definition.

Ir the vresent case, since D(p} iz oounded on E} it can be
extended, therefore, by continuity to be bounded on 3- :_H s the full
Hilbert space.

-1
D (p) is unbounded on E} y but it is defined there, i.e.,
iaD‘j(pﬁg b, which is easily seen from Eg. (3.4) written for (LO~ 1).

. -l X .
Now we consider D ( ) acting on a conerent state

Fp1a> = (o) 140
- (pmZ ) WY

(3.5)
The nerm of this state 1ig given by
+
[3cp tas]l =
)
(Pl"'01<°'6“‘ 03(“)> + l(r"ﬂv 2 T\ldmr <°<('h\)p{(h]>
h=|
*
+ i “ld(n\]l — S “L Id(n‘l'b <°{['ﬁ)] d(\ﬁ>
o =t (3.6)
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| . - .
and the summatiors can diverge, Wnile still <u,n]o(v1> is finite.
Therafore, D‘j(p) is rot defined on % . It is, however, defined on a
dense subset, for example, the dense subset i[ﬂ(n = ﬁzn>3 waere |z| < 1

and A is a constant four-vector.
. +
i1) L2 (p)
On a state of the l'a_ 3pace wWe have

o (P }
a1y - G0 P

(3.7)

How the exponential in !L—(p)| becomes a polynomial; alsgso the
mode summation in L-(p) is finite., Therefore, the state eL'(p)|f> hasg
finite but unbounded rnorm. The operator (—1}L0(p) is unitary and, there-
fore, norm preserving. It follows that _Oj{p:] is defined on 3‘, but
unbounded on both F  and & 3‘#- Since ]0)'-'-13', L2 (p) is definea

on the wvacuum.

For a coherent statc |o(n,p>
Lo(P) Lo(s) Po
DM Adyy = D e ep(-2 CRLY 1y
(3.8)
Uging the canonical lormalism of Alessandrini et al. 3) we now have
L.
e ldapy = | Z Contm, B
(3.9)
where
) - n
S s - & (B)
=y d1;1 q;? —Z
(3.10)
Thus,

| s wa( E 13T G «l)-

o (B Wl 2T Bl )

(%.11)
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which for all ©&X , >0 can be divergent even for E |O(]q|£ finite. To show
that it can be defined on a dense sel of € we use of =1 27/ with

then we have

[Pl = o (00 2 35 15[+

b

<13

X €xp (—-2?»:_[—_ é: -‘z;\: ?‘P—_D
(3.12)

§+ﬁ y which is convergent for [e Z‘C% Therefore, _O_+{p)

is definea on & denss sct in G .

where |fi| =1

iii) ;Z(Eg

R 2
For gereral op we have

o) = ep Qpr 2 )

4
b
Hote that for pr' =3 we have _O_(O:?fO}: !0>. Thus, on Vvacuun, _Q.(p) is
not dcfined wi-hir the Hilbert space for p. AU.

r.

For an occoupation state |£2 we investigate first a singly

)

s
W

peccupied level, where

/“ﬂ(°) a‘; [o,@ r. - ” 1e.-if.,;(a) a; |°c§ ”1=

%

b )
= Z Q' [ = o, frany 921

?
I“i. .j..h
h:b %' q

(7.14)
where we have used the expiicit form of L,(0), Eg. {2.1), and the fac* th=t
(—ULO(O} isg unitary. It is mot diffizult to convince oneself +that this
argument generalizes to any ]E> state. Therelore, _ﬂ.{o) is unbounded

on '3' , and on its closure g =3if.



For & cohercnl ztate we car wriie

[l - 1t ™ ap(E @R) o]

- e».cp( 5 '1“{ \ni-;(:\ LD ‘,I*l*)

s

(3.15)

IT we chooze 0(1;1= -Zmp Y“/ﬁ such Lhat |/J <1A |‘| -zJ <1 +ther this leads

)

to a Tinite aorm. By adding to o{m lower powers of » {obtaired by

differentiating O(m as is discassed Zn more detall for the vertex in
i - L Fo . . .
Sectior 4 below) we can show uﬁat,JQ.kp; Ig delired on & dexnse subset of

e

sucn tnat, for example, O0Z>z>-1.

, although not on € itself since %  inecludes states wish o(l;'

THE YERTEX

In tais Seection we consider the corventiional urtwisted veritex,
?(p) Tor emisaion of a scalar ground siate meseon; the result will bte that
?(p} is nownere defined within the Hilbert space. We shall, hewever, find
that toe twisted veriex Il(p rq)pr) s a densely delined unbounced
operator. More generaily the cyclically aymrmetric Caneschi-Schwimmer-Veneziano
vertex will be found to bz defined Zor a certain dense set ol coherent states
ir the wsensc that vputiipg I one Lype ol cokerent state 01 one leg, Logether
with anolher type or a second leg, one wWill obotain at t?e third leg a

normalizakle state.

We shail first give sorme rather simple arnd corvincing arguments
that the vertex Vi(p, 1is ro: defined as lorg as the momentum p has no
time component {whica is possible “or special aspacalike momentum), and
farther is not defined, for gereral momentum, O any 4 or '5' state.
Only then sghall we irtroduce a more akstract approack tco demonstirate that

Vipl iz guite generally ardeiized.

The convenzional ground state vertex in the opesrator formelism is

1)

written formally

S (@™p D)
VG - oop (- ZEER) e (2 5K

(4.1)
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so the W oint funciior can lLaen he wristen Tormally (in a multiparipaersal
B h E P

configuration)

B, = <ol V) DE)Vik) D6g) v Vo) DE DV

{(4.2]
where SiJ = '\} Bi gt e +p_.}d, and the bra and ket vacuum states have
momenta 1, kl‘? respectively.

We row will skow the uankappy resul’ lkat the operaior Vig) is
not defired anywhere within the Hilbert space. Define an operator
I>° ™
o oMy o
- __t x ._r;. x
h-[ h
(1.3}

. PrE I3 ! - a Ay . - s Lo -
so that ylil’;-l '.F'X\\p) = -.-(p,.'; also define, Tor —momentum wizh no wine component,

tne unitary operator

.u,( r, v..) z “P ( P 2 ___ “(o.f-\_ a('-!+)>

{4.4)
U(p,x) iz unitary (ard bounded) rn '3- . How, we use the [act
bo
V l¥> € H JF Sequeace ;_ H’u?gm.
such that
ﬂ_&r« l‘b‘» = ¥y where ald H’»> < 3
n—> bo
(4,5



witk the o rnamker

C(?,n) = exp(-— -E— f %)

=

. R :.: i HL 1.= W):.
A DTIRRTON N 7 I

(4.8)
and then we zee that
N 2 2
Lup ]+ Jewaf | uoa ]
2
= ( C(p,x)r' “ML)“
| (4.9)
Therelore ?x(pj ‘g bounded by |el(p,x) and, for ]x|-<1, Vx(p} is
derined on E}. For x—1, however, on a gensral state f*’>
> [ Kl@}r
S RN B N
%X-»1 x»>1
= b
(4.10)

Taus we deduce, Zor momsntuam with ro tirme component, Llaat V(p) is undefined
everywiere ia tke Hilbert space.
For goncral pe.y it i3 easy to show that W(p) ig not defined
o1 ary conerenl siate or any E} state, as = Hilbert space operator. In
the case of a cokerent state | gd r} 4> there occurs, in the norm

|| (o] {d n; yo>|| , en exporenlial of a zerm

[+ 2+



which canngt be cancelled by any choice of the °<n such *hai

Laid kA

2 ) <

e}
That V(p) 15 not defined on = stakes is seen by noticing that the
harmeonic oscillators abvove a certain mode number are eXcited by V(p} in
just the =ame way as menticned already for the coherernt state.

The more abksiract general proof for the non-existence of Vip)
proceeds in three steps (i) the derivation of an operstor identity foar
Vx(p)*]1 Vx(p); (ii) the proof that the expectation valus of an exponeniial
of a Hermitian operator is strictly greater than zero; and (i11) the deduction

from (i} and (ii) that any image of V{p) has infinite norm.
{1i) Using the commutation rules, Eq. (2.2}, for the narmonic coscillator

operators, it is siratgntlorward to find 1hat (Iorma]ly), Tor

P = (pO.L yB) s

po wt w0
LT PG = e (b2 ) e (-h 2 ).

o (—h 2 % “P(Frg%

S pr ~
= (I-X-" P ‘P uxQ’LP("H,‘)rIWP(H,_) ux

as an operator idertity, where

r~ bo +
_ Apo +90o "
u;_ ) GMP ( Fo 1\2.-1 Y * (4,12)
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is Hermitian with respect to the indefinite metric

Fard

U= Uy

. (4.13)
and unitary with respect Zo the rl netric
~ .y Ll
U - T u
x
(4.14)
and where
bo +
oo h2 Seme
A °
N=| n
{4.15)
ig Hermitiar in thac r1 metric
*
Hx-' r‘ H'l.. rl
(4.18)

Iin deriving Eq. (4.11) we usad

" -Rz s
ex‘;(lhﬁ S QXN o (""@ ‘a"l(“x) Uy

T

The ' norm equared of V(p)
value of this onerator C4.11Y and fromw the ultimate glep in Hq. (£.11) we

h> where |h> €J=‘ is the expeciation

zee thai this expeciation value iz equsl to a diverging ¢ number multiplied
by tne expectaiion value of an exponential eXp(QHX) for the state ﬁxih>.

~

Since Ux is unitzry and so bounded tnis state UX|h> exiaets for all

h)&(ﬁ and is in fact different from zero, since i| ﬁx|h}|: =H|h>|| .
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(ii) HNow we wish to show that the sxpectation value <h]exp(ﬂ)|h>, for

H =& Hermitian operator, is greater thar zero.

7)

cperators we may write the Stieltjes integral form of H

ktocording o the spectral thecorem of vor Neumann for Hermitian

bo

1

H t dI,

~ 2

(4.17)

where It iz the family ol projectors for the coperator H. More
generally we nmay make such an integral representation for ary operator

function of H, using the same spectral l[unction It; in particular,

oxp (W) = -fb e (4) AT,

(1.18)
The resolution of the identity, It’ is defined such that t%}mq}Itzzo
and lim I, =71. Therefore, there exisis a +' suchk that
t=+m "t

<Kl =T [W >©

é'
<k| er(ﬂ)\L} = S exp (¢) <kl dT, |L> +

- |
+ 5 oxp (£) <h|dT, \W>
o
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we sce tnat ke first ternm on the rigaf-hand side is greater than
or equal to xero, wnils Lhe second term satisfies
OQ w

{ exp(®) ¢h1dI th> > exp(t) jtmamm
t '

2 exp (') <hI(I-Tp)lh> > 0

(4.20)
It Z“ollows that

<h| exp (H) Ik S o Q.5.D.

(4.21)

(iii} Now we combine the results of Egs. (4.11) and (4.21) to deduce that

-3 02_- 2
IV Ihsh?e tim [ (1-x3) "% 78
X 1

chl U, oexp (28,) B lho)=

2 ~ -~
[um u-x-")‘"'"*"”]%klu.+'|“exp(1H.)u.|h>
=21

= 00
(4.22)

Ey Lhis we have shown that the vertex V(p) iz non-existent within

the Wilbert =space.

Despitzs the bad properties ol ?(p} the operator L), V corresponding
to Tthe cyclically symrmetrice vertex can in fact be defined somewhere even
Tor spacelike momentum of ‘ke zround state particle. HNote that we must

regard the operator 4, ¥V a5 a single entity rather than as a product of
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two operators, if we wish to remain in the Hilbert space. In fact let

o0 (n)t
b oln Q
|, 3>= T e 10,95
nel (4.23)

be a coherent state with four-momentum q, the twisted ground state vertex

ig formally written Il (Q»rp)V(p} when acting on |cx,q> and

¢ ()t

Qlp+q) VIP) 113> = Qo) e (P91 i

(h)* QJHJ
el A= P2 s
Y e ™ | o, 9> =

e
-~
tw)t
Q
- = tmf
= e ql\sl VA :EXP(-X Q“ CChm-Snm] lei): :
n,m
(n}
epi%'f | o, §>
T «
Pl pem L
se W TG -G L, 90
(4.24)
Here
mn
Com = @ t1) (“‘)
It is rather easy to see that by takirg for instance
zl"t
o(n-'-‘ﬁ-q with |z\41/\l|-2|‘1
(4.25)
and using
oy m n
T Com 2= = 0=2) =
M=l W\ \'T\.-
(4.28)

that the expression for the formal Symbollll(p-+q)?(p)|bc,q:>
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8

z\'\
P .
e i |{.. {1 z)q3-| 2, ‘q>

aM

(4.27)
which i= a finite norm cohsrent state. To be specific Lhe norm is
> .n :
9% & 1-2)b o 1.
pe FTa R - R YL a0
“ 00 n oo 2
2 1 (1-2) 2
=eXP(QeP'an-IK+Q_Z E_ 19! )
B L=l
{(4.28)

ard this cxponential is finite when ‘z| <1 and |1-z]<1.

The possibility {(4.25) is only one out of infirnitely many siace
we can add to the zeries ok ary =serics for wnich C.p has finite rorm,

Tee., for which

o0 g a
I l Z Chw\ pm \
n=z| M3l
(4.29)
Uzing (4.26) il is sasy by differentiation for example to find an infinite
nurher of such scrics P, rare’y
(r. n-r
A - Ain-t) ... (n-t+})
n n
(4.30)
whare ==1,7,... and |7, <1/\|1-zi <1, Ir fact one finds
o0
(r) " . n-r n=1)...{n-r+t)
z Crm B = (1) (1-2) nin=

-. =

(4.31)
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which is obviously of finite norm because |1—z|<1. We romark for iss own
il

. . 1 » . . - N .
interest taat for z=3% the sesries ﬁrr ‘g arn zigenvcetor of the matrixz O
i}

with eigenvalue (-1)".

m
ot
=
—+
m
[

We row want to show that by mears of the wokerent

finile

l {ﬁ 9 }lal.z...‘- ‘g' C"F

(r)

N -

y 9O

fa.%2)

where c, are four-vectors, it is possible to argus tnat the cpsrator Qv

i5 defined o1 a dense domain in the Hihert space.

y . .2 ;
Since any conerent state (O > {(with 2 |dr‘; <@ ; «ar be
i . g .. ! . ,
approximated by arother ons @ > provided we can approximate the scries

O by ' in the norm of Lhe Hilbert space 2, af series wita convergert

e

square sum, we can show tha® the statcs of type (4.%7) can approximate any
coherent state. By choosinzg =z in (4.30) grall but dilferent rom zzro one
easily shows ihat linear combinations of series ‘3 can apeorox.mala aty sorics
whicn has only zeros aftcr a certain ster and thus any serics at all. Dy

choosing z sutfficiently small we can make the norm of

2' o1
g w I,

. ‘- . N i PR A
arbitrarily small too arnd so states of the Torm 1 4.%2; car approximabc zay
conerent astate and so oy faking Tinite Jirear combinatiors we can approximatc
a1l states in the Hilkert space by states for which LNV  is aefined. Taar s

to say RV is densely defined.

It is rather easy to see thet also the Careschi-Scwmwimtcr-Veneziano
y
4,

three-reggeon vertex ig defined on a densce sel in the following sense:

there exists a dense set o vecliors y1> for waich whe "wvertex opcrator"

Lo £01 V(P P By) 14> 12> 10>,

mapping the space 2 into space 3 1is

domain in Eilbert space 2.
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We shall see that lne domain in space 2  can ve chosen the same
wnatever the slate Tl} 2 as long as 1> %belorgs to the dense set

mentiored ir space 7.

Irn fact we can, for <hne cyclically symmelric vertcx
+
V(r,P ,R) = Lol ol expl-9p.c +P,a+P:b

s lab]_ ~ Loel]. - [c‘*a]_] ja>lb> (0>,

(4.34)
on Am
0((3] Vnr B(-nym)
f\=i
srnow that it is deliped for tne Tollowing coherent state:
$inile
tr)
la>= |{ & P+2 Cefn Ynena. PO
(4.35)
|2 state of type (4.211], ahere
(21 ¢l A 14-21¢1
(4.36)

and a slate |b> that is either a finite occupation number state or a
coherert state with only finitely many modes excited. We shall prove it

explicitly for the latter case.

It is in fact rataer easy to checlk that with such states a>

and |b> tnie vecIor (é.34] becomes of finifte norm. First it is noticed

. . . . P2.a
that both |[a> and |$> are eligenstates of regpectively e and
3.k o . -
ij with Zirite eigenvalucs beocause of respectively the exponential
convergerce o and the cut-off. Secondly

exp ( rQb]-) \Q)lb) QXP( convergent o number)'q> lb)

(4,37)
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because of the cut-off in the excitations ir [b> and the exponential

decreasge from fa> . Thirdly, also in {ihe factors involving o can the
a's and b's be repiaced by ¢ numbers and the overlap with the vacuur
states < O|b<10] Just results in a finite ¢ number too. So the whole

expression becomes a formal coherent state in space 3%, idi.e., of the form

oo
1
exp ( Z' ¥a ™7 ) 10,
n=

(4.38)
and the only thing to be checked is that the norm is finite, and that will be

the case provided

o )
Y 1¥.] <o
n=li
(4.39)

o)) i —
The contribution to 2 xnc(ﬂ)r from be' |_ is only different from zero
1
n =

for a finite number of ¥ » i-€.y n<N. It is thus not able to spoil (4.39).

The main trick is that we have arranged 1t =so that althougnh both —[;T é]

and —p1-cf give contributiscns that violate (4.%3) the sum

{-p-ct - [ctall
gives a contribution that obeys restrictioa (4.39). 1In fact the tern
(zn/kfﬁp1 is accurately constructed to provide this cancellation; the fterms
Tigd e Grra(r) give rise through —L§ +§1_ only to a contribution obeying
(5.23%). This completes the proof that the cyclically symmetric vertex is
densely defined.

THE PRODUCT D(g)V(p); _PHYSICAT STATES

We have shown that the ground state vertex V(p) is in general

non-exigtent in the Hilbert space. However, comsider the combination

]

DGV IP) dex x =2 yip)

13

Sldx V{(p,x) x o2
[+]



where

V (P, x) = exp (-rz_ Qepm P

(5.2}
We can use the combination of opsrators ir By. (5.1), defined by the integral
expression containing V(p,x). The rule should be ithat the integration is
done after the integrand has operated. Consider this operator acting now

on a coherent state

Y v -r 2
I ..ZP'QrK/r;. ;P'Qr'x e xLo(q)‘Q ldh>“

i de e r_ e
\ ~9-9° - 1p1?
= g dx.dx,. (K.Kﬂ 1-9 (l— xnxz) "

g .
ep (2 (xia)" | PARELSL SR

OO
(2P, 2 dn "
LI V:
(5.3)
+£2 and Idn-p| = (O(HOpO+ gﬂ-g}. The iast two exponentials
dense subsst of c (narely provided z Nq/ﬁ <® ).

whers | 12_5°
: Pi =P,
ares finite on a
tlence, on this dense set the norm is finite 1T q2<-1 and
P2
|pJ <42 to avold singularities at tke lower ard upper eand-points
respectively. This rsdefinition of the product D{q)V{p) is thus defined

ory a dense subsst of C for these romentar values.

The faclt that the product of propagator times ground state
vertex is better defined ithan ihe vertex alone has some interestirg
consequences on the definition ot an off-mass shell physical state, if we
reguire thalt the ofl-zhell state remains norralizable within the Hilbert
space. In zZereral a physical state defined by 1ts coupling to W ground

state particles



(¢>= DVk)DVik)D... DVikyy)io>

. (5.4)
satisfies the gauge condition &
W, 1¢>= (Le-Lr-1) 16> =0
{(5.5)
It we redefine a physical statc witkout the firnal propagator then i
satisfies instead ths conditions
|¢')'.'-..V(k;)DV(kL)D..-oDV(kN-I)lo)
Iy -
Wy [$'> = (LomL-rtr=1)[¢'>20
(5.6)
In view of the noa-existeace of V(p] as a Hilbert space operator we expeoct

that the [@'> states defined by Bg. (5.6} be vnot normalizable, and it
iz amusing to coanfirm this by constructing such states within the irreducible

representations of the zauge slgebra.

In Ref. 9), it is described how to analyze the spectrum of states
irn terms of irreduczible representatlons of tre Virasors algebra, with generators
L r=0, £, £2, x3,.... For the prescnt purpose we note thait an exactly
similgr analyzls [or Spaceil«e momentum zan be made using irreducible
rapresentations of 1ihe Gliozzi algebra 10) with generators LO, Liq.
Each irreducible representation of the Glioczzi algebra then contains one and
only one state (that having lowest I, sigenvalus) which satisfies
L_1fﬁ"}::0. A1l other states, obtained by rasing with L+1 are The a

‘states.

Within each representation of the Gliczzl algebra it is straight-
Torward to determine the unique state which 1s a physical state according
to the defiritions (5.5}, {5.8) respectively {for r=1). We may wrile for

4

the former case



> n ]
l 4} ) - TE: O(n (Lu) l qb ] c )

nzo
(5.7)

Woerea

i -
Lo [ 8" ¢>=cldic> ; Layldie>=0
Using the commutation relat:on

n-1 “qa
[Lo, L] =2F% it ™
9:0

(5.8)

oae finds that the condition {5.5) for r=1, gives, putting ef o= 1

_ 1L Plewn-i) r{ac¢)
Ny M(e-t) M(2c+n)

Ay

(5.9)

B 1" crlisd

onc then irdsg, always Tor sSpaceliks morxentum witih zero energy, that

1¢> =2 [ L]

n=o&

(5.10)

For larze n the square oracket hehaves as

T oCerdn)t N2 L
9s; G12c+q-1) n?

so ihal ihe state |@> 2as finite norm.

(5.11)

T we write, however,

! o { n I
L !y = T o L) 1% ¢S (5.12)
n=o
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satisfying (5.6) then one finds

=+
- 1 Mlesn) Mi2e) N
97> = nz-o Al Plcen) M c) (L7 1gye>

(5.13)
and hence
oo | n 2
SIS = t (c+9-1)
nLorge o A4
~ Y n
(5.14)

giving a logaritimically divergent norm.

We deduce that unless ¢ 1is a nezalive integer, whereupon the
surmations in Bgs. (5.7) and (5.12) may cut off, all states satisfying
Eq. {(5.6) are not normalizable. The states satisfying Eq. {5.5), on the
gther hand, can be normalizable. Thus, the 1¢)lr condition for an off-
shell physical state is pore satisfactory in this respect than the W_

definition. This is as expected from the better definition of D(q)v(p)

in Bg. (5.1) than that of V(p) =alone of Eq. (4.1},

SUMMARY AND DISCUESION

We have studied the properties of the {hree lfundamwental operaiors
in the operator formalism: D(p), V(p1p2p3} and.‘jl(p). We have fourd
that the vertex for ground state emission, V(p), 1is sirictly speaking
non-existent within the Rilbert space. The twisting operator :l {p]
iz slso non-existent when acting on any state with non-null four-morentum;
its Hermitian conjugate is, however, dernsely defined. The propagator D(p)

ig everywhere defined of¥T-mass shell.
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We have noted that the product {3 {a)V(p) and, more generally, the
gymmetric three-reggeon vertex V(123) are densely defined. Also, the
product D(q)V{p) can be well defined and this was related to the recsgnition
that states annihilated by 1*IJ?:(L0 -L _-1) were more suitable candidates

I
for off-shell physical states than states annihilated by W_rz(Lo -L_r+r-‘l).

The fact that not all operators and their image states can be
represented within the Hilbert space is not very surprising because similar
difficulties already occur in non-prelativistic guantum mechanics, where,
for example, the position operator acting on a square-integrable wave func-
tion can give a new function cutside of the Hilbert space spanned by the

set of all square-integrable functions 5). In that case, extension to a

larger space has proved useful 11).

To conclude, we re-emphasize that the usual operator factorization
(with matrix elements taken) of the generalized Veneziano model 1s well
defined: it is only when we study the operators D, V and LL in iso-
lation, as Hilbert space operators iaat the guestion of good definition arises,
The matrix elemenits usually considered are scattering amplitudes, and for
these we ¥now the analytic structure and can continue analytically to any
kinematical region. If we isplate operators or operator products then there
are no similar analyticity assumptions for these and, therefore, we have

to understand thelr mathematical properties in order to use them correctly.
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BOUNDEDNESS AND DOMAIN FROPERTIES OF CFERATOES

(a} Yes, when

S [pl?=p

iy

:O;
2

+ p°.
o TR

HNO,

otherwise.

Bounded Tefined on | Defined onm | Defined on Defined
on # , finite coherent a dense {(i.e.,
Qperator the full gceupation states, subset of bounded)
Hilbert states, i.e., on the
space i.e., % _ e VACUWIL,
. 2 i.e. L)
@ 2% c D2
* *3 * %) *
D(p) ves ¥) Yes / Yes ¥ Yes Yes *)
o p) Wo Yes Wo Yes Yes
fzf(p) Ho Yes No Tes YTes
N.(r) o No lio Yes (a)
v{(p) o No No o No
Da)v(p) Ho o Wo Tes {a)
2 )
[p| "<+ .
D(q)V(p{q < _) No Tes no Tes Yes
*) We sre always working off-mass shell for D(p).
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