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ABSTRACT

Context. Our knowledge of the intrinsic properties of short duration Gamma-Ray Bursts has relied, so far, only upon a few cases for
which the estimate of the distance and an extended, multiwavelength monitoring of the afterglow have been obtained.
Aims. We carried out multiwavelength observations of the short GRB 061201 aimed at estimating its distance and studying its
properties.
Methods. We performed a spectral and timing analysis of the prompt and afterglow emission and discuss the results in the context of
the standard fireball model.
Results. A clear temporal break was observed in the X-ray light curve about 40 min after the burst trigger. We find that the spectral
and timing behaviour of the X-ray afterglow is consistent with a jet origin of the observed break, although the optical data can not
definitively confirm this and other scenarios are possible. No underlying host galaxy down to R ∼ 26 mag was found after fading of
the optical afterglow. Thus, no secure redshift could be measured for this burst. The nearest galaxy is at z = 0.111 and shows evidence
of star formation activity. We discuss the association of GRB 061201 with this galaxy and with the ACO S 995 galaxy cluster, from
which the source is at an angular distance of 17′′ and 8.5′, respectively. We also test the association with a possible undetected,
positionally consistent galaxy at z ∼ 1. In all these cases, in the jet interpretation, we find a jet opening angle of 1–2 degrees.

Key words. gamma rays: bursts

1. Introduction

Short duration Gamma-ray Bursts (GRBs) are historically de-
fined as those GRBs with burst duration less than two seconds
and hard spectra (Kouveliotou et al. 1993). As the sample of
short GRBs increases, in order to take into account all the spec-
tral and temporal properties of the prompt emission, alternative
empirical definitions of short GRBs have been introduced (e.g.
Norris & Bonnell 2006; Zhang et al. 2007).

The expected progenitor for short GRBs is a merging binary
system of compact objects. However, our present knowledge of
the intrinsic properties of short bursts mainly relies upon a few
cases for which the distance could be derived and an extended

� The results reported in this paper are partially based on observations
carried out at ESO telescopes under program 078.D-0809.
�� INAF personnel resident at ASDC.

multiwavelength monitoring of the afterglow was carried out.
From these it appears that short bursts are less energetic and less
collimated than long GRBs (e.g. Fox et al. 2005; Burrows et al.
2006; Soderberg et al. 2006). Intrinsic spectral parameters such
as the peak energy Ep of the EF(E) spectrum of the burst and
the equivalent isotropic energy Eiso, do not match the Ep − Eiso
correlation for long GRBs (e.g. Amati 2007).

The short bursts for which unambiguous hosts have been
found are at redshifts between z = 0.10 and z = 0.55. The opti-
cal afterglows of seven short bursts and their likely host galaxies
have been recently observed with telescopes such as ESO/VLT,
Gemini, Magellan and HST, but no firm estimation of the red-
shift could be obtained. The apparent faintness of the likely host
galaxies indicates that they are at redshift z ≥ 0.7 and con-
sequently that about 25% of the short bursts revealed in the
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Swift/HETE-2 era may reside at larger distances than found so
far (Berger et al. 2007).

So far, for all short GRBs, host galaxy candidates with var-
ious statistical significance have been found. In particular, ev-
ery well localized short GRB (<5′′) has a candidate host galaxy
consistent with negligible offset. In this work we present a mul-
tiwavelength study of a short GRB detected by Swift (Gehrels
et al. 2005), GRB 061201, for which the optical afterglow was
clearly detected, but no underlying galaxy was found. We in-
vestigate the possibility that the progenitor of this short GRB
resides at large distance (z ≥ 1) or far away from its host galaxy,
as for the case of a merging binary system with high kick ve-
locity and/or long coalescing time. Another intriguing feature
of this short GRB is that its X-ray afterglow showed an early
(0.7 h after the burst) steepening of the light curve. We explore
possible origins of this steepening and discuss its implications.
We present the observations and the performed data analysis in
Sect. 2, the obtained results and the discussion in Sects. 3 and 4,
respectively and a brief summary of the main results in Sect. 5.
All quoted errors are at the 90% confidence level, unless speci-
fied.

2. Observations and data analysis

2.1. Swift observations

2.1.1. BAT

GRB 061201 was discovered with the Swift coded mask
Burst Alert Telescope (BAT, Barthelemy et al. 2005) on 2006
December 1 at t0 = 15:58:36 UT (Marshall et al. 2006). The
BAT event data were analyzed following standard procedures
(Krimm 2004) with the BAT analysis software included in the
HEASOFT distribution (v.6.1.2).

The burst had a duration of T90 = 0.9 ± 0.1 s in the
15–150 keV band and two main peaks, one starting at the trigger
time t0 and the other peaking 0.8 s later (Fig. 1). We find that
the flux in the 15–25 keV energy band lagged the 50–100 keV
flux by 2.7+3.3

−2.4 ms and the one in the 25–50 keV energy band
lagged the 100–350 keV flux by −0.8+1.5

−1.3 ms. These values are
consistent with the typical (negligible) temporal lag values mea-
sured for short GRBs (Gehrels et al. 2006). We find no evidence
of softer, extended emission at late times (e.g. Norris & Bonnel
2006).

The time integrated spectrum from t0 s to t0 + 0.9 s in
the 15–150 keV energy range can be modelled by a simple
power law as F(E) ∝ E−α, with best fit energy spectral index
α = −0.30±0.15 (photon index Γ = 0.7) and χ2 = 19.8 for 25 de-
grees of freedom. This value is consistent, within errors, with
the results from the 20 keV–3 MeV Konus-Wind observations
(Golenetskii et al. 2006). The latters provide a time-integrated
spectrum of GRB 061201 that was well fitted by a power law
with exponential cutoff model, dN/dE ∝ E−αe−(2−α)E/Ep , with
α = 0.36+0.40

−0.65 and Ep = 873+458
−284 keV (Golenetskii et al. 2006).

The 15–150 keV fluence observed by BAT was (3.4 ± 0.2) ×
10−7 erg cm−2 s−1. The 20 keV–30 MeV fluence from Konus
Wind data was F20 keV−3 MeV = 5.3× 10−6 erg cm−2 (Golenetskii
et al. 2006). During the burst there was clear evidence of a hard-
to-soft evolution from 0.5 s after the trigger to the end of the
burst (Fig. 2).

2.1.2. XRT

Swift slewed immediately to the burst and the X-Ray Telescope
(XRT, Burrows et al. 2005) began data acquisition at t0+86 s in
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Fig. 1. BAT count rate (counts/s/det) versus time since trigger for sev-
eral energy bands. No extended emission is evident in the softer energy
bands (e.g. 25–50 keV) for this short GRB.
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Fig. 2. Time evolution of the hardness ratio during the burst. A hard-to-
soft trend is apparent starting from the second of the two peaks present
in the burst light curve.

Windowed Timing mode. Between t0+99 s and t0+1.1 day the
XRT was operated in Photon Counting mode. The XRT data
were processed following standard procedures (Capalbi et al.
20051), by using the last version of the dedicated XRT pipeline
(xrtpipeline v 0.10.6). Grade filtering was applied by selecting
the 0–2 and 0–12 ranges for the WT mode and PC mode data,
respectively. Using 699 s of overlapping XRT Photon Counting
mode and UVOT (UV-Optical Telescope, Roming et al. 2005)
V-band data, we find an astrometrically corrected X-ray position
(using the XRT-UVOT alignment and matching to the USNO-B1
catalogue, see Goad et al. 2007) which is RA = 22h08m32.23s,
Dec = –74d34′49.1′′ (J2000.0) with an uncertainty of 1.7′′ (ra-
dius, 90% containment). This is 1.5′′ from the XRT position
(Perri et al. 2006).

For the WT mode data, the afterglow signal was extracted
from a rectangular region centered on the source position, with
40 pixels of width and 20 pixels of height. Due to the short expo-
sure time in this mode (12 s), the number of photons was insuf-
ficient for a spectral analysis. For the PC mode data, spectra and
light curves were extracted from a circular region of 10 pixels
of radius centered at the source position. From 99s to 719s after
the burst, the PC mode data were above 0.5 cts/s, the threshold
above which pileup effects become significant. In this time inter-
val, we thus extracted the source photons from an annular region

1 http://swift.gsfc.nasa.gov/docs/swift/analysis/
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Fig. 3. The 0.3–10.0 keV unabsorbed flux light curve extracted from the
BAT (open black circles, extrapolated to 0.3–10 keV range) and XRT
(filled red circles) data sets as well as the optical flux from UVOT data
(UVW1 filter, filled blue triangles) and from VLT data (I band filter,
open squares), not corrected for Galactic extinction (E(B − V) = 0.08).
The plotted model (solid line) is a broken power law fitted to the XRT
data only. This gives a best temporal break of tb = (2.39+0.58

−0.52) ks. The
dashed line is the extrapolation of the best fit model up to the temporal
range covered by BAT.

with 3 pixels and 20 pixels as inner and outer radii, respectively,
in order to avoid pileup effects. Ancillary files were generated
for each analyzed temporal region with the xrtmkarf task apply-
ing corrections for the PSF losses and CCD defects. The latest
response matrices distribution (v8) was used. The count rate was
corrected for effective area loss due to the presence of bad pixels
in the extraction region.

The extracted 0.3–10.0 keV XRT light curve (Fig. 3, Table 1)
shows a fading behavior in the two covered temporal intervals
after the burst, that is from 86 s to 719 s and from 1.5 h to 34.3 h.
The decay rate of the light curve in the two intervals featured a
steepening. Assuming a broken power law model, where F(t) ∝
t−δ1 for t < tb and F(t) ∝ t−δ2 for t > tb, we found a good
agreement with the data (χ2 = 28.2 with 28 degrees of freedom),
with an early decay index δ1 = 0.54 ± 0.08, temporal break at
tb = 2386+584

−521 s and late time decay index of δ2 = 1.90 ± 0.15
(errors are at 1σ confidence level).

The 0.3–10.0 keV energy spectrum was extracted in two
epochs, before and after the temporal break. For both intervals
we found a good agreement of the data with an absorbed power
law model as F(E) ∝ E−αX e−σph(E)NH , where σph(E) is the photo-
electric cross section and NH is the equivalent hydrogen column
density. Before the break, we found an energy spectral index of
αX = 0.4 ± 0.2 and an equivalent hydrogen column density of
NH = (10 ± 6) × 1020 cm−2 assuming that the absorbing mat-
ter is cold and with solar chemical abundance (χ2 = 15.4 with
14 degrees of freedom). We note that the galactic hydrogen col-
umn in the direction of this burst is NH,Gal = 4.75 × 1020 cm−2

(Dickey & Lockman 1990), i.e. a factor of about two less than
the total column required by the data. In the spectrum after
the break we found an energy spectral index αX = 0.5 ± 0.5
(0.5±0.2 at 1σ confidence level) and column density upper limit
of NH ≤ 1.7×1021 cm−2 (90% confidence level), consistent with

Table 1. The 0.3–10 keV unabsorbed flux light curve.

T a
start T a

end Flux
(s) (s) (10−12 erg cm−2 s−1)
86 98 298 ± 43
99 119 230 ± 28
119 139 200 ± 26
139 159 215 ± 27
159 179 200 ± 26
179 199 200 ± 26
199 219 163 ± 23
219 239 178 ± 24
239 269 133 ± 17
269 299 114 ± 16
299 319 163 ± 23
319 349 109 ± 16
349 379 104 ± 15
379 409 104 ± 15
409 439 109 ± 16
439 469 123 ± 17
469 499 104 ± 15
499 529 118 ± 16
529 559 128 ± 17
559 589 118 ± 16
589 629 81.5 ± 12
629 669 100 ± 13
669 699 94 ± 14
699 729 71 ± 13

5579 5809 7.7 ± 1.5
5809 6079 6.6 ± 1.3
6079 6289 8.5 ± 1.6
6289 6479 9.4 ± 1.8
6479 12230 3.0 ± 0.6

12230 17930 1.7 ± 0.4
21390 58440 0.18 ± 0.03
86430 160500 0.03 ± 0.01

a Time from trigger.

the corresponding values before the break. In the absence of any
evidence for spectral variations, we thus performed a simultane-
ous fit of the two spectra in order to better constrain the model
parameters. In this fit all spectral parameters but the normaliza-
tion were forced to be the same across different spectra. From
the simultaneous fit we find αX = 0.4 ± 0.2 and a total column
density of NH = (8 ± 2) × 1020 cm−2 (χ2 = 22.8 with 20 degrees
of freedom).

Finally we constructed the light curve from the trigger time
(BAT data) to the latest time at which the X-ray afterglow was
detected (XRT data). As the BAT and the XRT data cover dif-
ferent energy bands, we extrapolated the BAT data into the
XRT energy range (0.3–10.0 keV). To this end, we fitted the
BAT extracted spectrum by assuming a simple power law spec-
tral model plus an absorbing column NH fixed at the value ob-
tained from XRT data analysis. We confidently extrapolated the
BAT best fit model down to 0.3–10 keV since we know that,
from the Konus-Wind observations, the peak energy for this
burst is at energies much higher than the BAT energy range.
We computed the unabsorbed 0.3–10 keV flux and compared
it with the corresponding observed (average) count rate, find-
ing 1 c/sBAT = 2.6 × 10−8 erg cm−2 s−1. The XRT count rate
(corrected for effective area loss) was converted into flux by as-
suming the best fit spectral model obtained from the XRT data
and comparing the unabsorbed 0.3–10.0 keV flux with the rel-
ative observed (average) count rate per second. We found that
1 c/sXRT = 6.8 × 10−11 erg cm−2 s−1 (Fig. 3).
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Fig. 4. X-ray afterglow spectra extracted from XRT data taken in
PC mode before and after the temporal break. No spectral variation is
evident. The solid line is the best fit model from simultaneous fitting of
the two spectra (see Sect. 2.1.2).

2.1.3. UVOT

The first UVOT finding chart was obtained starting at t =
t0 + 86 s. A faint source was detected in the U, UVW1, UVM2,
UVW2 and white filters. The highest signal to noise ratio detec-
tions were obtained with the UVW1 (0.27 µm) filter and with
the white filter. Using the 290 s exposure in the white filter,
the best fit position of GRB 061201 is RA = 22h08m32.4s and
Dec = – 74◦34′ 47.1′′ (J2000) with 90% confidence error of 1′′.
This is 0.67′′ and 0.22′′ away in RA and Dec respectively from
the original UVOT position (Holland & Marshall 2006).

The source count rate has been obtained from a circular re-
gion of aperture of 2.5′′ and the background has been computed
in an annulus region with inner radius of 15′′ and outer radius of
25′′. This aperture size was chosen to improve the signal to noise
ratio for a weak source compared to the standard apertures for
UVOT photometry. Aperture corrections were computed using
stars in the image to make the rates correspond to the standard
UVOT photometry apertures of 6′′ for the visible filters and 12′′
for the white and UV filters.

In Table 2 we quote the magnitude obtained for each filter at
several epochs with errors at 1σ and 90% confidence level upper
limits. The only filter for which we could confidently compute
a timing analysis was UVW1. Thus, we fitted the UVW1 data
at times later than the X-ray break with a simple power law
F(t) ∝ t−δ. The 90% confidence power-law decay index is within
the range δ = 1.2 ± 0.6. This is slightly flatter than the X-ray
data, but still consistent with them. No detection was found in
either the V or B filter (see Table 2). This could be due to the
short total exposure with the B filter (200 s) around t0 + 6000 s,
and the lower sensitivity of the V filter compared to that of the
other filters, for bursts that do not suffer from extinction (see also
Sect. 2.3).

2.2. VLT observations

We observed GRB 061201 with the ESO−VLT at six different
epochs, starting about 8.6 h after the burst. All the observa-
tions were carried out by using the FORS1 and FORS2 cameras
in both imaging and spectroscopic mode. All nights were pho-
tometric, with seeing in the 1.1′′–1.7′′ range. Image reduction
was performed by following the standard procedures: subtrac-
tion of an averaged bias frame and division by a normalized flat
frame. Observations in imaging mode were carried out in the R

and I bands. The photometric calibration was achieved against
Landolt standard stars, observed at different nights. Astrometric
solutions were computed by using the USNO B1.0 catalogue2.
Our spectra were taken with resolution of 8 Å in the wavelength
range from 4000 to 9000 Å. We always used a 1′′ slit and grat-
ing 330V. The extraction of the spectrum was performed within
the IRAF3 environment. Wavelength and flux calibration of the
spectra were obtained by using the helium-argon lamp and ob-
serving spectrophotometric stars. In Table 2 we present a com-
plete log of our VLT observations.

2.2.1. Optical photometry

I and R band observations of GRB 061201 were obtained about
8.6 hours after the burst (D’Avanzo et al. 2006a). We revealed a
faint candidate with I = 22.36 ± 0.08 mag and R = 23.05 ±
0.12 mag at RA = 22h08m32.09s and Dec = – 74d34′47.08′′
(J2000) with uncertainty of 0.2′′, consistent with that previously
reported by Holland & Marshall (2006). We note that this is the
most accurate position available. In our second epoch of obser-
vation (33.1 h after the burst) we could not detect the candi-
date down to a limiting magnitude of I > 23.6 (3σ confidence
level). This confirmed that the object was the optical afterglow
of GRB 061201 (D’Avanzo et al. 2006b). Subsequent J band ob-
servations with the Southern Astrophysical Research telescope
(SOAR), taken 10.2 and 33.6 h after the burst, revealed a similar
fading (Haislip et al. 2006). After correcting for the Galactic ex-
tinction, that is E(B− V) = 0.08 (Schlegel et al. 1998), we com-
puted the afterglow color for GRB 061201 of R− I = 0.63±0.14.

We continued to monitor the field of GRB 061201 until 2006
Dec. 18 (about 16.4 days after the burst): no underlying galaxy
was detected down to limiting magnitudes R > 24.9 and I >
24.8 (3σ confidence level, see Table 2). Assuming a power law
slope (F(t) = F0t−δ) we constrained the flux decay index to be
δ ≥ 0.85 from the first I band flux upper limit.

On 2007 May 22 we performed another exposure of the field
with the R filter. No host galaxy was detected down to R > 25.9
mag with 1.6 h of exposure (Table 2).

2.2.2. Optical spectroscopy and host galaxy candidates
for GRB061201

After the identification of the optical counterpart we took an
optical spectrum of the afterglow in two epochs (see Table 1).
Unfortunately, due to visibility constraints, we could integrate
only for one hour, resulting in a low signal-to-noise spectrum.
This was characterized by a very weak continuum with no dis-
tinguishable emission nor absorption features (except for telluric
ones). Therefore, no redshift could be determined.

As seen from Fig. 5, two bright objects (object “a” and “b”)
are present close to the afterglow position. We took an optical
spectrum of both, in order to investigate their nature and look
for possible relations with GRB 061201.

Object “a” is located 7.5′′ NW of the position of the optical
afterglow and has a stellar-like profile. Our photometry shows
that this object is particularly red, with (R−I) = 1.00± 0.04 mag,
suggesting that it could be a main sequence late−type star. This
hypothesis was confirmed through the analysis of the spectrum
of this object, characterized by a strong Na line and several TiO

2 http://www.nofs.navy.mil/data/fchpix/
3 IRAF is distributed by the National Optical Astronomy

Observatories.
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Table 2. Observation log and photometry, not corrected for Galactic extinction.

UT observation t − t0 Exposure Instrument mag Filter
(days) (s)

2006 Dec. 1.70269 0.037 290 Swift/UVOT 20.90 ± 0.30 White
2006 Dec. 1.70369 0.038 214 Swift/UVOT 20.86 ± 0.54 U
2006 Dec. 1.70569 0.040 202 Swift/UVOT >21.14 B
2006 Dec. 1.70769 0.042 122 Swift/UVOT 19.94 ± 0.41 UVW2
2006 Dec. 1.73669 0.071 1111 Swift/UVOT >21.23 V
2006 Dec. 1.77269 0.107 519 Swift/UVOT 20.75 ± 0.36 UVW1
2006 Dec. 1.78869 0.123 676 Swift/UVOT 21.44 ± 0.54 UV M2
2006 Dec. 2.02461 0.359 14 × 260 VLT/FORS2 22.36 ± 0.08 I
2006 Dec. 2.03886 0.373 3 × 260 VLT/FORS2 23.05 ± 0.12 R
2006 Dec. 2.12769 0.462 11529 Swift/UVOT 22.72 ± 0.47 UVW1
2006 Dec. 3.09469 1.429 19928 Swift/UVOT >22.97 UVW1
2006 Dec. 3.04453 1.379 20 × 260 VLT/FORS2 > 23.6(3σ) I
2006 Dec. 5.05761 3.392 40 × 3 × 20 VLT/FORS2 >24.0(3σ) I

2006 Dec. 15.03991 13.374 2 × 180 + 1 × 60 VLT/FORS2 >24.9(3σ) R
2006 Dec. 18.04937 16.383 12 × 120 VLT/FORS2 >24.8(3σ) I
2007 May 22.29685 171.631 24 × 240 VLT/FORS2 >25.9(3σ) R
2006 Dec. 2.07588 0.410 2 × 1800 VLT/FORS2 − 300V +GG375

2006 Dec. 15.06615 13.400 2 × 1200 VLT/FORS1 − 300V +GG375

Fig. 5. VLT finding chart for GRB 061201.
The afterglow is marked with solid lines.
Objects “a” and “b” are the candidates host
galaxies studied in the present paper. See
Sect. 2.2 for details.

bands, which are typical features of a M0−M2 main sequence
star.

Object “b” is located 17′′ to the NW of the afterglow and
is clearly extended. Our VLT spectrum (Fig. 6) shows several
emission lines among which we identified the [O II] and Hα
lines redshifted at z = 0.111. This result is consistent with
previous findings (Berger et al. 2006a). As indicated by the
prominent emission lines, star formation is still present in this
galaxy. For the [O II] and Hα emission lines we measured lu-
minosities of 9.92 × 1039 and 1.83 × 1040 erg s−1 (corrected
for slit loss). This corresponds to an unobscured star forma-
tion rate of 0.14 M� yr−1 (Kennicutt 1998), which corresponds
to about 1.2 M� yr−1 L−1∗ once normalized to L∗ (assuming
MB = −18.6 for the galaxy4 and MB

∗ = −21 for field galax-
ies). This is significantly less than the typical SFR observed in
long GRB host galaxies (Christensen et al. 2004). Comparing
with other short GRBs host galaxy SFRs, this is lower than
that of the host of GRB 051221A by a factor of 3.3 (Soderberg
et al. 2006) but much larger than that of the hosts of the short

4 As determined in the USNOB1 catalog and corrected from Galactic
extinction.

GRBs GRB 050509B (Bloom et al. 2005, Gehrels et al. 2006)
and GRB 050724 (Berger et al. 2005), by factors of more than
about 20 and 60 respectively. We also note that our SFR value
is of the same order as that measured for GRB 050709, a short
GRB for which the association to a star-forming galaxy is secure
(Covino et al. 2006).

We finally tested the hypothesis that the host galaxy is
coincident with the optical afterglow but too faint to be de-
tected. If the host galaxy of GRB 061201 were similar to that
of GRB 050709 it would have an absolute magnitude of MR =
−18.3. In this case, in order to not be detected in the R band down
to 25.9 mag, the host galaxy should be at redshift higher than ∼1.
If GRB 061201 host were a normal galaxy, its R band upper limit
would indicate a redshift above ∼1.5 (e.g. Berger et al. 2007, see
also Sect. 3.2).

2.3. Multiwavelength analysis

Despite the fact that the afterglow was detected up to the
UVW2 filter, no B and V bands emission was found. In addition,
the afterglow R− I color is quite red, measuring 0.63±0.14 mag
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Fig. 6. VLT spectrum of the nearest galaxy (object “b” in Fig. 5) at
z = 0.111.

(after correcting for the Galactic extinction). We further inves-
tigate these observational aspects by extracting an optical-to-
X-ray spectral energy distribution (SED).

Due to the temporally sparse sample of optical data and the
large uncertainty on the optical decay rate, we identified two
epochs at which the optical afterglow was detected at least with
three different filters nearly simultaneously, thus minimizing er-
ror propagation during the extrapolation at a common epoch for
the SED extraction. These epochs are t = t0 + 0.040 day (3.4 ks)
for the V , B, U, UVW1, UVW2 filters and t = t0 + 0.463 day
(40.0 ks) for the I, R and UVW1 filters (Table 1). After correct-
ing for the Galactic extinction (E(B − V) = 0.08), we rescaled
the corrected magnitudes and the unabsorbed X-ray flux to the
selected epochs. We then converted the magnitudes into fluxes
and we construct the optical-to-X-ray SED for each epoch.

During the first epoch (3.4 ks), that is just after the ob-
served temporal break, we find that the optical-to-X-ray SED
is well described by a simple power law with spectral index
αopt,X,1 = 0.5±0.1. The latter is consistent with the spectral index
we find from the X-ray analysis based on the averaged spectrum
extracted after the temporal break (see Sect. 2.1.2). The V and
B bands upper limits are consistent with not being deep enough
for the detection (Fig. 7). During the second epoch (40 ks), we
find that to connect the X-ray flux to the optical fluxes, a steeper
power law is required, with αopt,X,2 = 0.82±0.15. The I−R color
is consistent with this spectral slope. However, the large uncer-
tainty on the UVW1 flux prevented us from firmly excluding any
possible reddening (Fig. 7).

3. Results

3.1. The origin of the break in the X-ray light curve

The spectral and temporal properties of the prompt emission of
GRB 061201 that we find, are consistent with the identification
of this burst as a short GRB. The most interesting feature for
this GRB is perhaps the clear X-ray light curve steepening (tem-
poral break) observed ∼0.7 h after the burst. This is the best
example of a temporal break in the X-ray afterglow of a short
burst to date. Only one other short burst so far showed con-
vincing evidence of a temporal break in the X-ray light curve
(GRB 051221A, Burrows et al. 2006; Soderberg et al. 2006).

A simultaneous light curve steepening at all frequencies and
with similar post-steepening decay rate is generally interpreted
as evidence of a jet-collimated afterglow (e.g. Sari et al. 1999).
For GRB 061201, the achromatic nature of the temporal break

Fig. 7. Observed spectral energy distributions at two different epochs
(both after the temporal break). The optical fluxes have been corrected
for the Galactic extinction. The solid lines are the best fit power law
models find at each epoch, where α is the best fit spectral index. The
dashed lines define the expected range of values at 90% confidence
level.

could not be firmly established. The UV light curve shows a de-
cay after the break that is somewhat shallower than the X-ray
decay but consistent within the uncertainties, while the I band
observations provide only an upper limit, yet consistent with the
X-ray decay rate after the break.

We checked whether the observed steepening of the light
curve may be due to a synchrotron characteristic frequency
crossing the energy range of the XRT. If this were the case, a
change in the X-ray spectral index of ∼0.5 simultaneous with
a steepening of the light curve would be expected (Sari et al.
1998). The large uncertainty on the post-break spectral index
prevented us from reaching firm conclusions. Nevertheless, the
best fit post-break spectral index value is consistent with the
spectral index before the break and the associated uncertainty
excludes any spectral variation at 68% confidence level. A more
contrainings result comes from the observed XRT light curve
steepening, that corresponds to an increase of the decay index of
∆δ = 1.4 ± 0.2 that is much larger than expected in the case of
a synchrotron frequency crossing the X-ray energy range (e.g.
Panaitescu 2006), definitively excluding this scenario.

The temporal and spectral properties of the X-ray afterglow
are consistent with the relationships predicted by the fireball
model in the context of a collimated emission. In fact, both the
X-ray spectral index (αX = 0.4 ± 0.1 at 1σ confidence level)
and the temporal decay before the break (δ1 = 0.54 ± 0.08) are
consistent with an expanding fireball in a slow cooling regime,
with the cooling frequency νc still above the X-ray energy do-
main (Sari et al.1998). Thus, the expected energy spectral index
is αX = (p−1)/2 from which we can derive the electron spectral
index p = 1.8 ± 0.2. The predicted decay rate after a temporal
break due to the presence of a jet is expected to be identical to p
(Sari et al. 1999): this is in agreement with the observations. The
spectral index obtained from the optical-to-X-ray spectral analy-
sis 3.4 ks after the burst, that is just after the break, is consistent
with the one obtained from both the pre and post break averaged
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Table 3. Energy estimations for different redshift.

Redshift Eiso n θjet Eγ
(1050 erg) (cm−3) (deg) (1048 erg)

0.0865 0.8 10−3 ÷ 4 × 10−2 1.3 ÷ 2.2 2 × 10−2 ÷ 6 × 10−2

0.111 1.4 10−3 ÷ 3 × 10−2 1.2 ÷ 1.9 3 × 10−2 ÷ 8 × 10−2

∼1 140 8 × 10−5 ÷ 2 × 10−3 0.4 ÷ 0.6 0.3 ÷ 0.8

X-ray spectra. However, it shows a possible steepening of the
spectrum at late times (10 hours after the break, Fig. 7). This is
difficult to explain in a jet scenario as the crossing of the cool-
ing frequency towards lower energies, since νc is not expected to
vary after the jet break (Sari et al. 1999).

We further investigate other possible scenarios. In particu-
lar, the pre-break X-ray light curve can be identified with the
shallow decay (with typical decay index δ ≤ 0.5) observed in
several long GRB X-ray afterglows in the Swift era, followed
by the “normal” decay after the break (with typical decay index
δ ∼ 1, see Liang et al. 2007, Willingale et al. 2007, O’Brien et al.
2006). As observed so far for long GRBs, no spectral variation
is present across the break: this is also the case of GRB 061201.
The origin of the “shallow phase” is still a mystery (e.g. Zhang
2007). On the contrary, the “normal phase” is expected to fol-
low the standard afterglow closure relationships. In this sce-
nario, the observed spectral steepening of the optical-to-X-ray
SED observed in two epochs after the temporal break, could
be explained by the crossing of the cooling frequency. We note,
however, that the X-ray decay index of GRB 061201 during the
“normal” phase (post-break) is much steeper than typical values
observed so far for long GRBs (Liang et al. 2007), and its consis-
tency with the electron spectral index measured from the X-ray
spectral analysis should be considered as a coincidence.

3.2. Distance estimates

For this GRB no underlying host galaxy was detected after the
fading of the optical afterglow and no firm redshift could be ob-
tained. The Swift/UVOT detection in the UVW2 filter proves
that the source is at z ≤ 1.7 (we conservatively considered the
red limit of the filter). The optical afterglow position lies 8.5′
from the center of the rich ACO S 995 cluster of 22′ diame-
ter (Abell et al. 1989) for which no redshift was found in the
literature5. The spectra of nine apparent members of this clus-
ter were obtained by Berger et al. (2006a) within a redshift
range of 0.0843 < z < 0.0877, concluding that the redshift of
ACO S 995 is z = 0.0865. Our VLT images revealed the stel-
lar nature of the nearest object to GRB 061201 (“a” in Fig. 5)
in sky projection but, more importantly, place tight constraints
on the presence of an underlying host galaxy. We demonstrated
that, if the host galaxy of GRB 061201 were similar to the host
of the short GRB 050709, it should be at z ≥1 in order to not be
detected. Moreover, if we compare our magnitude limit with a
sample of faint galaxies at known redshifts (Benitez et al. 2004;
Berger et al. 2007), GRB 061201 would be likely at redshift
above 1.5. We find that the nearest galaxy (with offset of 17′′)
is at z = 0.111 (object “b” in Fig. 5), confirming previous re-
sults from Berger et al. (2006b). We also demonstrated that this
galaxy shows evidence of star formation activity.

5 We note that the redshift z = 0.237 estimated for the ACO S
995 cluster by Blondin et al. (2006) has been confirmed to be wrong
(Blondin, private communication).

We tested the consistency of the association of GRB 061201
with the ACO S 995 cluster and with the z = 0.111 nearby
galaxy. From a collection of orbital parameters of various ec-
centric binary systems by Champion et al. (2004), it appears
that these systems can be split into those that will and will not
coalesce within a Hubble time. The former group into which
GRB 061201 should be put by definition, is characterized by
coalescing times τ within 0.1 and 3 Gyr. If the nearby galaxy
(object “b” in Fig. 6) at z = 0.111 is the host of GRB 061201,
its angular offset would imply a projected distance of 42 kpc
and thus a kick velocity of ≥10–400 km s−1. If GRB 061201
was instead at the redshift of the ACO S 995 galaxy cluster at
z = 0.0865, it would be at ≥0.9 Mpc from its center, requiring a
high kick velocity ≥300 km s−1 up to uncomfortably high lower
limits (few ×103 km s−1) if τ ∼ 0.1 Gyr. Therefore, for a coa-
lescing time τ ≥ 1 Gyr, both the ACO S 995 galaxy cluster and
the z = 0.111 galaxy are consistent with hosting GRB 061201,
while for τ ≤ 1 Gyr, only the galaxy at z = 0.111 should be
considered as the host candidate.

3.3. Energetics

Given the distance uncertainties, we computed the energetics
of GRB 061201 at each proposed redshift, i.e. z = 0.0865 and
z = 0.111. We also discussed the possibility of a positionally
coincident host galaxy at z ∼ 1 (see Sect. 3.2). In the follow-
ing calculations we assumed a flat Friedman-Robertson-Walker
cosmology with Hubble constant of H0 = 71 km s−1 Mpc−1,
ΩM = 0.27 and ΩΛ = 0.73. In order to compute the total
isotropic equivalent energy Eiso we used the 20 keV–3 MeV
Konus-Wind observed fluence (rather than the 15–150 keV BAT
fluence) which provides a fair approximation of the bolometric
value (see Sect. 2.1.1). Results are quoted in Table 3.

We then make the hypothesis of a collimated emission, as
the temporal and spectral properties of the X-ray observations
suggest. From the rest frame time of the light curve break, we
computed the allowed values of jet opening angle. This is pos-
sible since at the time of the break, the increasing relativistic
beaming angle of the fireball emission 1/Γ(t) (where Γ(t) is the
Lorentz factor of the fireball) is expected to be equal to the geo-
metrical opening of the jet. From this it is possible to derive the
expression of the jet opening angle θjet as a function of the pa-
rameters which Γ(t) depends on: these are the relativistic outflow
energy E, the density of matter n in the GRB surroundings and
the fraction of kinetic energy of the outflow that goes into the
prompt emission radiated energy (efficiency) η = Erad/E (Sari
et al. 1999). We assumed that Eiso is an estimate of the prompt
emission radiated energy and that η = 0.1.

We attempted to estimate the density of matter from the start
time of the afterglow, that is, from the time td at which the ex-
panding fireball has swept up enough matter to start its decelera-
tion: this is td = 0.1×15(E/1050 erg)1/3(1 cm−3/n)1/3(300/Γ)8/3 s
(e.g. Vietri2000). Assuming that the afterglow emission starts
before the XRT observations starting time, that is td ≤ 86/(1+ z)
s, we could infer a lower limit to the density from the inequality
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n ≥ 10−3(15 s(1 + z)/td)3(E/1050 erg)(300/Γ)8 cm−3. We note,
however, that this estimation strongly depends on the cube of
the unknown deceleration time td, that can be up to one order of
magnitude shorter than the XRT observations starting time and,
more importantely, on the eighth power of the uncertain value
of the fireball Lorentz factor Γ that for long GRBs is thought to
be ∼300 (e.g. Molinari et al. 2007) and for short GRBs it might
reach values down to 40 (Nakar 2007): we assumed here an av-
erage value of 170.

Another estimate of density lower limit can be achieved
from the peak flux of the X-ray afterglow fmax = 2.6 mJy(1 +
z)(εB/0.01)(E/1050 erg)(n/1 cm−3)1/2(DL/1027 cm)−2, assuming
that fmax is above the first XRT flux measure (that is the X-ray
flux at t = t0 + 86 s), where εB is the fraction of energy that
goes into magnetic field and DL is the luminosity distance (Sari
& Esin 2000). These estimations however provide very low, thus
useless, lower limits.

We note that the ratio of the X-ray flux at time t multiplied
by t to the 15–150 keV prompt observed fluence fX,γ depends on
the density if νX < νc as fXγ = 0.01(1/η)(εe/0.1)3/2(εB/0.01)
(E/1050 erg)1/3(n/1 cm−3)1/2 where εe is the fraction of to-
tal energy that goes into the electron population (Nakar 2007).
However, if we interpret the temporal break as a jet signature, the
above expression for fX,γ could not be applied since it assumes
an isotropic energy release.

Density upper limits can be measured through the syn-
chrotron cooling frequency density dependence (Sari et al.
1998). Since the X-ray spectrum is consistent with νX <
νc, by imposing this condition to the νc expression given
by Sari et al. (1998) for the case of an adiabatic,
isotropic expansion, we could derive a density upper limit as
n < 1.3 × 10−3(εB/0.01)−3/2(E/1050 erg)−1/2(νX(1 + z)/1.2 ×
1018 Hz)−1(td/0.028(1+ z) day)−1/2 cm−3. We fixed the time de-
pendence at td = tjet, that is at the maximum time where we
could assume a spherical geometry, and we assumed νX as cor-
responding to the energy of 5 keV.

The estimation of θjet was obtained at each redshift assuming
for the density of the environment the most constraining range
of values find above ( that is, lower limits from the afterglow
deceleration time and upper limits from the cooling frequency
density dependence). We then computed the allowed values for
the beaming corrected energy by applying the beaming correc-
tion factor (1−cos θjet) to the estimated range of Eiso. Results are
given in Table 3.

4. Discussion

We have presented a multiwavelength study of the short burst
GRB 061201. The most interesting feature of this burst is the
presence of a clear steepening of the afterglow light curve ob-
served in X-rays at ∼0.7 h after the burst. This is probably the
best evidence so far for a temporal break in a short GRB af-
terglow. We demonstrated that the temporal and spectral prop-
erties of the X-ray afterglow are consistent with a jet origin of
this break, although optical data can not definitively confirm this
scenario and other explanations are possible.

The observation of jet breaks in short GRBs is of utmost
importance because it opens the possibility to infer the degree
of collimation of the jet and burst energetics which are ulti-
mately related to the progenitor model so we deeply inves-
tigated this possibility. While for long GRBs the stellar en-
velopes of the progenitor are expected to drive the release of
energy into fairly highly collimated jets, numerical simulations

of coalescing binary systems, that are thought to be among the
progenitors of short bursts, predict a lower degree of collima-
tion. Short burst jet opening angles estimated so far were ob-
tained for GRB 051221A, angle of ∼4–8 degrees (Burrows et al.
2006; Soderberg et al. 2006) based on multiwavelength observa-
tions (from radio to X-rays) and for GRB 050709, based how-
ever on few data points that provided a poorly constrained jet
angle of about ∼15 degrees (Fox et al. 2005; but see also Watson
et al. 2006). For GRB 050724, a jet angle of ∼8–12 degree was
claimed from radio and NIR observations (Berger et al. 2005).
This measure is however still under debate since no break was
observed in the X-ray light curve up to three weeks after the
burst, implying a jet opening angle lower limit of 25 degrees
(Grupe et al. 2006, Malesani et al. 2007). For comparison, long
GRBs show evidence of jet opening angles that goes from 4 de-
grees (e.g. Frail et al. 2001) to 10 degrees (e.g. Guetta et al.
2005). The uncertainty on the distance of GRB 061201 and on
the density of the surrounding environment, prevented us from
firmly estimating a jet opening angle. However, exploring dif-
ferent redshift and density ranges, we find that if the jet break
interpretation is correct, GRB 061201 seems to be more colli-
mated than those short GRBs for which evidence of collimation
was detected so far, extending the jet opening angle for short
GRBs below two degrees, and more collimated than many long
bursts despite average predictions of binary merger models.

Alternatively to the jet interpretation, the observed break in
the X-ray light curve can be identified with the transition from
an early shallow decay to a “normal” afterglow decay, as ob-
served in several long GRBs in the Swift era. Several mechan-
sims have been invoked to explain this phenomenology that go
from refreshed external shocks due to continuous energy injec-
tion from a long-term central engine or from an ejecta with a
wide Lorentz factor distribution, to X-rays echoes from dust
scattering (see Zhang 2007, for a review). Despite the uncertain-
ties on the interpretation, should the observed X-ray temporal
break for GRB 061201 be identified with this phenomenology,
all these models should be refined in order to include the class of
short GRB progenitors that is expected to be different from that
one of long GRBs.

We checked whether GRB 061201 satisfies the Ep,i−Eiso and
Ep,i − Eγ correlations found for long GRBs (Amati et al. 2002;
Ghirlanda et al. 2004), where Ep,i is the intrinsic peak energy
of the νFν spectrum of the prompt emission. We find that, by
rescaling the measured Ep = 873+458

−284 keV from Konus-Wind ob-
servations (Golenetskii et al. 2006) at each proposed redshift for
this burst, the isotropic and beaming corrected energy are sev-
eral orders of magnitudes lower than the values predicted by the
correlations. This behavior is in line with past results for short
GRBs (e.g. Amati 2007) and supports the idea of a different ori-
gin of long and short GRBs.

So far, short GRBs with measured spectroscopic redshift
had isotropic equivalent energies Eiso ranging between 1048 erg
and 1051 erg (e.g. Fox et al. 2005). Five short GRBs with no
clear host galaxy association, but for which galaxies were de-
tected within the XRT error circle, were claimed to reside at
redshift above 0.7 and for these sources Eiso ranges between
1050–1052 erg (Berger et al. 2007). In one case (GRB 051221A)
the collimation factor was measured from solid evidence of a
jet break in the X-ray afterglow light curve and the beaming
corrected energy was (1–5) ×1049 erg (Burrows et al. 2006).
If collimated, the short GRB 050709 would have a beaming
corrected energy of 2 × 1048 erg and GRB 050724 of 4 ×
1048 erg. Thus, so far, no short GRB has shown a released en-
ergy below ∼1048 erg. For GRB 061201, the isotropic equivalent
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energies given in Table 3, estimated assuming different red-
shifts, are within the observed range of values for short GRBs.
However, if the jet break interpretation is correct, the beaming
corrected energy estimated in the low redshift cases (0.0865 <
z < 0.111) is about two order of magnitude less than the min-
imum energy estimation obtained so far for short GRBs. If in-
stead GRB 061201 were residing at high redshift within a faint
host galaxy with R ≥ 25.9 mag at z ∼ 1, its energy content, even
if beaming corrected, would be more similar to previous short
GRBs with estimated redshift.

The lack of any detection of an underlying host galaxy after
the fading of the optical afterglow may suggest some hints on the
origin of this short GRB. One possibility is that GRB 061201 is
far away from its host galaxy, therefore in a low density envi-
ronment as can be the halo of the nearby galaxy at z = 0.111 or
the intracluster medium of the ACO S 995 cluster at redshift of
z = 0.0865 (see Sect. 3.2). In this case, GRB 061201 may rep-
resents the first evidence of a (low energetic, if beamed) class
of coalescing binary system, with high kick velocity and/or long
coalescing time. Another possibility is that the host galaxy is po-
sitionally consistent with the GRB but too faint to be detected,
that is, likely to be at redshift z ≥ 1 (see Sect. 2.2.2). Indeed, a
fraction of 30%–60% of short GRBs with very faint host galaxy
is thought to reside at z ≥ 0.7 (Berger et al. 2007), possibly sup-
porting this scenario.

5. Summary

We carefully analyzed the X-ray and optical emission from the
short GRB 061201. The most relevant results we found are:

– A clear steepening of the X-ray light curve at ∼0.7 h after
the burst trigger with post-break X-ray decay index δ ∼ 2.

– No evidence for a host galaxy after optical afterglow faded,
down to R ∼ 26 mag; the closest galaxy has an offset of 17′′
and is a star forming galaxy at z = 0.111.

The distance of this burst is unknown. A possible association
of this GRB whith the ACO S 995 cluster of galaxies at z =
0.0865 has been suggested. Alternatively, it can be associated
with the nearby galaxy at z = 0.111. We discussed all these cases
as well as the case of a positionally coincident host galaxy at
z ∼ 1, too faint to be detected. If the X-ray light curve break
were due to a jetted fireball, the range of opening angle values
obtained assuming several scenarios (distance scales) would be
below 2 degrees.
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