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Abstract
Deep neural networks have advanced the state-of-the-art in
automatic speech recognition, when combined with hidden
Markov models (HMMs). Recently there has been interest
in using systems based on recurrent neural networks (RNNs)
to perform sequence modelling directly, without the require-
ment of an HMM superstructure. In this paper, we study the
RNN encoder-decoder approach for large vocabulary end-to-
end speech recognition, whereby an encoder transforms a se-
quence of acoustic vectors into a sequence of feature represen-
tations, from which a decoder recovers a sequence of words.
We investigated this approach on the Switchboard corpus us-
ing a training set of around 300 hours of transcribed audio data.
Without the use of an explicit language model or pronunciation
lexicon, we achieved promising recognition accuracy, demon-
strating that this approach warrants further investigation.
Index Terms: end-to-end speech recognition, deep neural net-
works, recurrent neural networks, encoder-decoder.

1. Introduction
Neural network (NN) based acoustic models have significantly
improved the accuracy of automatic speech recognition (ASR)
systems [1]. In this framework, a neural network is used to
estimate the posterior probabilities of hidden Markov model
(HMM) states, which may be transformed into (scaled) like-
lihoods, replacing the conventional Gaussian mixture model
(GMM) state-based pdfs – the hybrid NN/HMM system [2, 3,
4]. These systems have been scaled-up to be both deeper (many
hidden layers) and wider (large number of context-dependent
outputs), through the availability of increased computational
power, in particular general purpose graphical computational
units (GPGPUs) [1, 5, 6].

Hybrid NN/HMM approaches have been largely based on
feed-forward networks which carry out limited temporal mod-
elling through a finite input context, typically ±3–7 frames.
The main sequential modelling is carried out by the HMM su-
perstructure of context-dependent phone models, pronunciation
models, and language models. Richer temporal models have
been employed in this framework. Feed-forward networks have
been replaced by recurrent neural networks (RNNs) which of-
fer potentially infinite context. RNN acoustic models were first
developed by Robinson [7], and further developed as a hybrid
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RNN/HMM system [8, 9]. In such a hybrid system, the RNN
is used to provide richer local temporal context – possibly bidi-
rectional [8, 10] – with the temporal structure at the phone level
and above provided by the HMM. More recently, state-of-the-
art performance was achieved using a long short-term memory
(LSTM) RNN/HMM hybrid system [11].

HMMs have been the cornerstone of ASR for several
decades [12, 13, 14, 15], providing a coherent temporal mod-
elling approach that is well-matched to the problem of sequen-
tial modelling of speech signals. The HMM framework scales
elegantly to model speech units at different levels of granularity
and can take practical advantage of the underlying theoretical
framework of finite automata [16]. Although the HMM itself
is a generative model, discriminative training has been devel-
oped and used extensively and successfully, regardless of the
choice of acoustic model [17, 18, 19, 11]. Nevertheless, HMMs
have a number of limitations including the first-order Markov
and the conditional independence assumptions, and the diffi-
culty to globally optimise all the system components. Further-
more, HMM-based models usually rely on the availability of
pronunciation lexicons for high accuracy, which may cause the
development of ASR systems for new languages to be costly.

To address these limitations, a number of alternatives to the
HMM sequence model have been investigated [20, 21, 22, 23,
24]; however these approaches did not improve speech recogni-
tion accuracy. Recently there has been an interest in the use of
RNNs as the main sequence model for speech recognition, en-
abling direct end-to-end training of an ASR system [25]. This
idea has been applied to machine translation [26, 27, 28] and
image caption generation [29, 30], as well as to speech recogni-
tion [31, 32, 33, 34]. Graves [31] proposed the use of an RNN
with a connectionist temporal classifier (CTC) output layer for
end-to-end speech recognition. CTC does not rely on a prior
alignment between input and output sequences, but integrates
over all possible alignment during the model training – this can
be interpreted as a specific HMM on the output layer; how-
ever the bulk of the sequence modelling is performed by the
RNN. This approach was successfully scaled to large vocabu-
lary ASR [34].

In this paper, we follow a similar approach using the RNN
encoder-decoder model recently introduced for machine trans-
lation [27, 28]. In this approach, an encoder transforms a se-
quence of input vectors into a sequence of feature representa-
tions using RNNs, from which a decoder recovers the corre-
sponding output sequence. Chorowski et al. [33] studied this
approach for phoneme recognition using TIMIT database. In
this paper, we focus on the large vocabulary case using Switch-
board. Unlike [33], we directly use words as output units, re-



moving the dependence on the pronunciation lexicon, and not
requiring an implicit HMM at the output layer.

2. RNN encoder-decoder
2.1. The decoder

The RNN encoder-decoder is a neural network model that di-
rectly computes the conditional probability of the output se-
quence given the input sequence without assuming a fixed align-
ment, i.e. P (y1, . . . , yO|x1, . . . ,xT ) where the lengths of the
output and the input, O and T respectively, may be different.
For speech recognition, the input is usually a sequence of acous-
tic feature vectors, while the output is usually a sequence of
class indices corresponding to units such as phonemes, letters,
HMM states, or words. The idea of the encoder-decoder ap-
proach is that for each output yo, the encoder maps the input
sequence into a fixed-length hidden representation co, to which
we refer as context vector (cf. Section 2.2). From the previous
output symbols and the context vector, the decoder computes

P (y1, . . . , yO|x1, . . . ,xT ) =

O∏
o=1

P (yo|y1, . . . , yo−1, co).

Since the probability P (yo|y1, . . . , yo−1, co) is conditioned on
the previous outputs as well as the context vector, an RNN can
be used to compute this probability which implicitly remembers
the history using a recurrent layer.

Let yo be a vector representation of the output symbol yo,
where yo is an one-hot vector indicating one of the words in the
vocabulary followed by a neural projection layer for dimension
reduction. The posterior probability of yo is computed as

P (yo|y1, . . . , yo−1, co) = g(yo−1, so, co) (1)
so = f(yo−1, so−1, co), (2)

where so denotes the output of a recurrent hidden layer f(·)
with inputs yo−1, so−1, and co. g(·) is a softmax function with
inputs yo−1, so, and co. We condition both f(·) and g(·) on the
context vector to encourage the decoder to be heavily reliant
on the context from the encoder. The previous output yo−1 is
also fed to the softmax function g(·) to capture the bigram de-
pendency between consecutive words [28]. We have also in-
vestigated a simpler output function without the dependence
on the previous output yo−1, i.e. P (yo|y1, . . . , yo−1, co) =
g(so, co). See Section 4 for further discussion.

2.2. The encoder

As discussed above, the computation of the conditional proba-
bility relies on the availability of the context vector co for each
output yo. The context vector is obtained from the encoder
which reads the input sequence and generates a continuous-
space representation. In [28], the context vector co is obtained
by the weighted average of all the hidden representations of a
bidirectional RNN (BiRNN) [10]:

co =
∑
t

αotht (3)

where αot ∈ [0, 1] and
∑

t αot = 1; ht =
(−→
ht,
←−
ht

)
and
−→
ht,
←−
ht

denote the hidden representations of xt from the forward and
backward RNNs respectively. In [26, 27], the context vector
co is global, for instance, co = hT . This means the context
vector does not depend on the index o, meaning that the whole

input sequence is encoded into a fixed vector representation.
This approach has produced state-of-the-art results in machine
translation when the dimension of the vector is relatively large
[26]. When the model size is relatively small, however, the use
of a dynamic context vector – as in Eq. (3) – has been found to
be superior, especially for long input sequences [28].

In Eq. (3), the weight αot is computed by a learned align-
ment model for each co, which is implemented as a neural net-
work such that

αot =
exp(eot)∑
t′ exp(eot′)

(4)

eot = a(so−1,ht) (5)

where a(·) is a feedforward neural network that computes the
relevance of each hidden representation ht with respect to the
previous hidden state of RNN decoder so−1. As in [28], the
alignment model is a single-hidden-layer neural network:

a(so−1,ht) = v> tanh(Wso−1 +Uht), (6)

where W and U are weight matrices, and v is a vector so that
the output of a(·) is a scalar. More hidden layers can be used in
the alignment model, however, this proved not to be helpful in
our experiments (cf. section 4.3).

In the case of using a fixed context vector [26, 27], using an
RNN to map the whole input sequence into the context vector
is necessary because this vector must represent all the relevant
information in the input sequence. In this study, we used the
dynamic context vector approach Eq. (3), which averages over
all the hidden representations from the input sequence to gen-
erate the context vector. In Section 4 we inverstigated whether
the encoder RNN could be replaced by a feed-forward network.

2.3. Model training

Given a set of input and output sequence pairs, the model can
be trained by maximising the average conditional log-likelihood
over all the training set as

M̂ = argmax
M

1

N

N∑
n=1

logP (yn1 , . . . , y
n
O|xn

1 , . . . ,x
n
T ,M)

where M denotes the set of model parameters, and N is the
number of training utterances. Since all the functions used in
the encoder and decoder are differentiable, we can use stochas-
tic gradient decent (SGD) to train the model. As in [28], we
used the Adadelta algorithm [35] to automatically estimate the
learning rates, instead of empirical tuning them. In our internal
experiments on a small scale problem, we found that Adadelta
performed comparable to the well tuned exponential schedul-
ing approach [36] with momentum. However, the latter is more
cumbersome in tuning the hyperparamters. Refer to [28] for
more details on the model training of an encoder-decoder.

3. Experimental Setup
3.1. Encoder types

We have investigated three different types of encoder for speech
recognition (Figure 1). The first approach is referred to the
tied BiRNN encoder, in which the forward and backward RNNs
read the same feature representations from a single feedforward
neural network. In the untied BiRNN encoder approach, the
forward and backward RNNs use separate feedforward neural
networks which are expected to learn complementary feature
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Figure 1: The three types of encoders studied in this paper. a) Tied BiRNN encoder: the forward and backward RNN use the same
feedforward network for feature extraction. b) Untied BiRNN encoder: the forward and backward RNN use separate feedforward
network for feature extraction. c) Feedforward encoder: the RNN is not used in the encoder, and decoder directly reads features from
the feedforward network.

extractions. In both cases, we use bi-directional RNNs which
have been shown to be superior to a unidirectional RNN [32].
Finally, we explore a feedforward encoder approach, which
does not use an encoder RNN, with the decoder directly read-
ing the features from the feedforward neural network. As dis-
cussed above, the aim is to validate whether using a RNN in
the encoder is necessary if we use the dynamic context vector
approach. It is difficult for conventional RNNs with a simple
activation function, such as tanh, to capture long-term depen-
dencies in sequences due to the problem of vanishing and ex-
ploding gradient [37]. In this work, we have used the gated
recurrent unit [27] to mitigate this problem, which is similar to
the long short-term memory unit [38].

3.2. Downsampling

Unlike machine translation where the input sequences are usu-
ally relative short (less than one hundred words), speech recog-
nition uses input sequences of acoustic vectors, whose length
can be hundreds or thousands of frames. Modelling such long
sequences is challenging to RNNs even with gated recurrent
units, especially due to high computational requirement. We
explore an approach of downsampling the input sequence at the
low-level acoustic features xt and at the level of encoder rep-
resentations ht. The latter approach is similar to the “striding”
approach in [34]. The advantage of downsampling the output
of the recurrent hidden layer, is that the history learned by the
recurrent layer is not down sampled, and thus reducing the in-
formation loss.

Downsampling input sequences can also significantly
speedup model training since the unrolled RNNs will be less
deep, and it reduces the cost for the alignment model to com-
pute the context vector and the relevance scores as Eq. (3) -
(5). In addition, downsampling significantly reduces the mem-
ory requirement, as the number of encoded representations ht

is directly proportional to the length of the input sequence. This
is especially important when we use GPUs which often have
limited on-board memory. In our experiments, training without
downsampling resulted in a small maximum usable minibatch
size (10), while downsampling enables the use of a larger mini-
batch size to speedup the training. For example, training our

Table 1: WERs (%) of using the three encoder types. #layers
indicates the number of hidden layers in the feedforward neural
network. Using more hidden layers for feedforward encoder
increased WER, so the results are not presented here.

Encoder #layers CHM SWB Avg
Tied BiRNN 1 70.5 55.0 62.8
Tied BiRNN 2 67.3 51.3 59.3
Tied BiRNN 3 68.1 54.0 61.1
Untied BiRNN 1 61.3 40.8 51.1
Untied BiRNN 2 60.5 41.2 50.9
Untied BiRNN 3 67.7 46.2 57.0
FeedForward 1 93.2 86.5 89.9

model without downsampling for 15 epochs took more than 2
weeks, where as downsampling by a factor of 3 reduced the
training time to be less than 5 days.

3.3. System details

We report results using the Switchboard corpus of [39] released
by LDC with catalog number as LDC97S62. It has a 300 hour
training set, and we show separate results for the Callhome
(CHM) and Switchboard (SWB) evaluation sets. We used 39
dimensional mel frequency cepstral coefficient (MFCC) acous-
tic features, with cepstral mean normalisation (CMN) on per
speaker basis. We then spliced the MFCCs using a left and
right context window of 5 frames (i.e. ±5) unless specified oth-
erwise. As mentioned before, for the output representation yo,
we mapped each word into a one hot vector whose dimension is
the size of the vocabulary (29,877 including the unknown and
end of sentence symbols). This high-dimensional, but sparse
vector is linearly projected into a 500-dimensional continuous
vector, and the projection matrix (or embedding matrix) is es-
timated along with all the other parameters, starting from ran-
dom initialisation. Using words as output units can remove the
dependency on the pronunciation lexicon, but can increase the
problem of out-of-vocabulary words, as the number of words in
the training set is more limited. The dimension of the hidden
layers in the feedforward neural network as well as each en-
coder RNN is 1000, and therefore, the dimension of ht is 2000



Table 2: The results of using different downsampling steps.
step=1 means no downsampling, while step=2 means we
take 1 frame in every 2 frames.

Step Splicing Space CHM SWB Avg
1 ±5 feature 62.7 47.6 55.2
2 ±5 feature 61.3 40.8 51.1
3 ±5 feature 59.9 38.8 49.4
4 ±5 feature 60.2 41.7 51.0
1 ±7 feature 65.5 47.6 56.6
2 ±7 feature 59.9 41.7 50.9
3 ±7 feature 59.8 40.3 50.1
4 ±7 feature 60.0 43.0 51.6
2 ±5 hidden 60.7 42.3 51.5
3 ±5 hidden 58.9 41.7 50.3

for the BiRNN encoders. The number of training utterances in
Switchboard is 192,701, and training each model until conver-
gence took approximately 15 epochs.

4. Results and Discussion
4.1. Results of different encoders

Table 1 shows the word error rates (WERs) of three different
types of encoders. In these experiments, we downsampled the
input sequence at the feature level xt by the factor of 2. In other
words, we took only one frame in every two frames (cf. section
4.2). Our results indicate that using RNN in the encoder is es-
sential for speech recognition, even with the dynamic context
vector approach. This may be explained that since the encoder-
decoder approach does not use an explicit alignment between
the input and output sequences, the hidden representation ht

from an RNN is more robust to the time space distortions be-
cause it can capture the information of the long context — un-
like the feedforward encoder. We also observed that the untied
BiRNN encoder that use separate feedforward neural network
for feature extraction achieved much low WERs compared to
the tied BiRNN encoder. This means that using separate feed-
forward networks can learn complementary feature extractions
for BiRNNs. However, using deep feedforward neural network
did not make much difference for both tied and untied BiRNN
encoders. This may be due to a larger parameter space of the
model which makes learning more difficult, or due to the fact
that the encoder-decoder model already performs sophisticated
feature extraction with deep temporal processing.

4.2. Results of downsampling

Table 2 shows the results of using different downsampling steps.
In these experiments, we only used one hidden layer in the feed-
forward neural networks, and we used the untied BiRNN en-
coder. We see that discarding frames in feature space can in
fact improve recognition accuracy. This may mean that using
short sequences can improve the modelling accuracy of RNNs,
which is more important than providing all the information from
all the frames. We also compare downsampling in the feature
space of xt to the hidden representation space of ht, expecting
that downsampling ht would work better because the RNNs
have seen all the frames and, therefore, they can minimise the
loss of information from downsampling. However, our results
show that the two approaches achieve comparable results. In
the future, we shall investigate more intelligent approaches to
reduce the length of input sequences, for instance, by taking
convolutions in time.

Table 3: Results of using deep alignment and implicit bigram
model. #layers indicates the layers in the alignment model
in Eq. (6).

#layers bigram CHM SWB Avg
1

√
59.9 38.8 49.4

2
√

60.6 40.8 50.8
1 × 59.0 40.4 49.7

4.3. Deep alignment and implicit bigram models

In the previous experiments, we have used just one hidden layer
in the alignment model a(·) as in Eq. (6). We tried to use
more hidden layers in a(·) to make the alignment model deeper
and more powerful. However, this did not improve recogni-
tion accuracy in our experiments as shown in Table 3. In [33],
the authors introduced a gate function in the alignment model
which learns a soft window to encourage the alignment model
to search nearby along the previous hidden state. Our prelimi-
nary experiments using this approach have not been successful,
which calls for further investigation. As mentioned in section
2.1, the output softmax function g(·) takes the previous output
representation yo−1 to predict yo, to which we refer as the im-
plicit bigram model. In our experiments, we found that this is
not necessary. Using a simpler output function g(so, co) in-
stead of g(yo−1, so, co) achieves comparable results as shown
in Table 3, and even slightly speed up the model training.

4.4. Future work

In the future, we shall investigate the use of language model
to improve the recognition accuracy. In the CTC-based end-to-
end speech recognition system [34], the authors obtained much
better results (CHM: 31.8, SWB: 20% and Avg: 25.9%) on the
Switchboard task using 4-gram language model trained on both
Fisher and Switchboard transcriptions, while on the WSJ cor-
pus, the WER obtained without language model is much higher
than that using a bigram language (35.8% vs. 14.1%) [32].
One potential approach to incorporating a language model into
the encoder-decoder model was recently proposed in [40] in
the context of machine translation. Furthermore, we shall also
study improved approaches to shorten the long input sequences
rather than the simple downsampling approach, such as tempo-
ral convolutional neural networks (related to time-delay neural
networks [41]). Finally, regularisation including dropout shall
also be investigated, especially when training large models.

5. Conclusions
In this paper, we study the application of an RNN encoder-
decoder model for large vocabulary end-to-end speech recogni-
tion. Without using any language model or pronunciation lexi-
con, we have obtained encouraging recognition accuracy on the
Switchboard corpus. Our experiments show that using RNNs in
the encoder is essential for the success of this model architec-
ture, and using separate feedforward neural networks for fea-
ture extraction in the encoder can reduce the word error rate.
Reducing the lengths of input sequences can make the RNN
training easier which improves the recognition accuracy, and
is important to speedup the training process. Future work in-
cludes the use of language models, other model architectures of
the encoder-decoder, and exploring other machine learning al-
gorithms to map the long sequences into short ones, as well as
dropout for model regularisation.
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