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ABSTRACT 

Trimethylamine oxide (TMAO) was first described in marine organisms as an 

osmolyte, involved in the balance of water and solutes. After its discovery, it was 

found to be part of a subset of osmotic constituents termed counteracting solutes. 

These solutes exhibit stabilizing properties and can preserve protein functionality 

against biological and environmental perturbations. TMAO acts as a universal 

stabilizer, protecting macromolecular structure and function in response to numerous 

stressors, including urea destabilization, hydrostatic pressure, temperature and salinity. 

The studies presented in this dissertation address the regulatory and environmental 

factors affecting TMAO accumulation.  

Both exogenous and endogenous sources are involved in the maintenance of 

TMAO. Exogenous TMAO accumulates through absorption from the diet while 

endogenous TMAO is synthesized from dietary or cellular precursors with the flavin-

containing monooxygenase trimethylamine oxidase (TMAoxi). Species without a 

physiologically relevant synthetic capacity are hypothesized to rely entirely on dietary 

contributions for accumulation. Chapter 1 examines the necessity of an exogenous 

TMAO source on long-term maintenance in elasmobranch species with and without 

the ability for endogenous synthesis. These data show that presence or absence of 

TMAoxi cannot be used as a proxy to determine the importance of dietary TMAO on 

prolonged conservation. It seems that all species, regardless of synthesizing potential, 

rely to an extent on contributions from the diet. 

Chapter 2 further examines the regulatory factors affecting TMAO. This study 

provides evidence for endogenous production via an understudied synthetic pathway 



 

  

whereby TMAO is accumulated as a byproduct during lipid storage. The existence of 

this pathway is supported by a correlation between TMAO content and total lipid in a 

variety of Hawaiian mid-water fishes. The regulatory role of evolutionary relatedness 

on accumulation potential is also addressed in this chapter. Phylogenetic independent 

contrasts (PIC) showed no relationship between phylogeny and TMAO content across 

27 species spanning nine orders. This suggests that environmental factors impart a 

larger influence on TMAO retention than evolutionary history.  

 Chapter 2 goes on to examine TMAO’s role in combatting the environmental 

stress associated with increasing hydrostatic pressure. TMAO was shown to increase 

with increasing depth of occurrence across all species of Hawaiian mid-water fishes 

studied. These data support previous reports of TMAO accumulation as an 

environmental adaptation to combat the destabilizing effects of elevated hydrostatic 

pressure.  

 Chapter 3 explores TMAO’s ability to counteract environmental fluctuations in 

temperature. Previous in vitro studies showed intracellular transport and accumulation 

of TMAO with increasing temperature in elasmobranch red blood cells. Further, this 

was shown to suppress the traditional heat shock response of heat shock protein 70 

(HSP70) upregulation. However, we saw no increase in plasma or tissue TMAO in 

response to elevated temperature for two shark species in vivo. Either mechanisms 

established in vitro are not applicable at the organismal level or additional regulatory 

factors are limiting TMAO accumulation.  

Lastly, a brief study examining regulation of TMAO through ontogeny in an 

elasmobranch species, Squalus acanthias, is presented in the Appendix. Pups of this 



 

  

species exhibit low levels of urea and TMAO, their two primary osmolytes. However, 

total osmotic pressure is maintained at adult levels. Therefore, a shift in the osmotic 

milieu occurs sometime between birth and adulthood. These findings are in contrast to 

those reported for the little skate, Leucoraja erinacea, which expresses adult levels of 

these osmotic constituents early in development. These data point to divergence in the 

early osmoregulatory strategies of differing elasmobranch groups. 

 In the enclosed chapters, key objectives regarding the regulatory and 

environmental factors influencing TMAO are addressed. Specifically, this research 

examines how contributing sources, evolutionary restrictions and environmental stress 

affect TMAO accumulation. These studies elucidate TMAO’s multifaceted role in 

marine organisms and provide insight into the factors regulating its adaptive potential. 
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PREFACE 

This dissertation is prepared in manuscript format. Chapter 1, entitled “Synthetic 

capacity does not predict elasmobranchs ability to maintain trimethylamine oxide 

levels without a dietary contribution,” is being prepared for submission to the journal 

of Comparative Biochemistry and Physiology. Chapter 2, entitled “Trimethylamine 

oxide accumulation as a function of depth in Hawaiian mid-water fishes,” was 

published in Deep-Sea Research I in 2016. Chapter 3, entitled “Trimethylamine oxide 

and HSP70 regulation during acute temperature stress in elasmobranchs,” is being 

prepared for submission to the Journal of Experimental Biology. The appendix 

includes a supplementary study in support of the chapters presented in this 

dissertation. It is written as a short communication for publication in The Biological 

Bulletin under the title “Ontogenetic osmotic shift in spiny dogfish, Squalus 

acanthias.” 
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Abstract  

Trimethylamine oxide (TMAO) is an organic osmolyte that also acts as a universal 

protein stabilizer. Its role as a cytoprotectant is particularly important in 

elasmobranchs that accumulate high levels of urea, a macromolecular destabilizer and 

their primary form of nitrogenous waste. Feeding is a key component in the turnover 

and maintenance of these nitrogenous compounds; however, previous studies 

examining the endogenous and exogenous sources involved in TMAO regulation have 

been completed using starved animals, when nitrogen balance is altered. Here, we test 

the ability of three elasmobranch species with differing TMAO production capacities 

to maintain levels independent of a dietary contribution for 56 days. Smoothhounds 

(Mustelus canis), spiny dogfish (Squalus acanthias), and little skates (Leucoraja 

erinacea) exhibited species-specific differences in their ability to conserve TMAO 

when fed a low TMAO diet. Additionally, these differences were not obviously 

dependent on a species TMAO synthetic capacity. Spiny dogfish, a species with no 

ability for synthesis, showed a decrease in plasma TMAO when fed a low TMAO diet. 

However, plasma TMAO was maintained in both the smoothhound and little skate. 

Further, smoothhounds, the only species examined with the ability to endogenously 

produce TMAO, showed a decrease in muscle TMAO when fed a low TMAO diet. It 

is possible that all species rely to an extent on absorption of TMAO from the diet or 

that alternate endogenous synthetic pathways exist that have not yet been identified.
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1. Introduction 

 Trimethylamine oxide (TMAO) is a small compound accumulated as an 

intracellular osmolyte in a diversity of marine organisms (Norris and Benoit, 1945; 

Bickel, 1969; see Seibel and Walsh, 2002; Yancey, 2005 for reviews). It serves an 

additional role as a universal protein stabilizer (Yancey and Siebenaller, 1999; Yancey 

et al., 2001; Yancey et al., 2004), protecting structure and function against a multitude 

of environmental stressors. TMAO can counteract perturbations in protein function 

due to salinity (Pillans et al., 2005; Hammerschlag, 2006; Deck et al., 2016), 

temperature (Raymond and DeVries, 1998; Treberg et al., 2002), hydrostatic pressure 

(Yancey et al., 2002; Bockus and Seibel, 2016) and the nitrogenous waste compound, 

urea (Somero, 1986; Baskakov et al., 1998; Yancey, 2001; Zou et al., 2002). TMAO is 

retained at exceptionally high levels by elasmobranchs (sharks, skates and rays) that 

accumulate urea as their primary osmolyte (Smith, 1929; Forster and Goldstein, 1976; 

Withers, 1998; Trischitta et al., 2012). These species maintain a 2:1 ratio of urea to 

TMAO + other stabilizing osmolytes (Yancey and Somero, 1979; Treberg et al., 2006) 

to promote macromolecular stability (Barton et al., 1999). 

 There are two general mechanisms used by elasmobranchs to regulate TMAO. 

Some possess the flavin-containing monooxygenase, trimethylamine oxidase 

(TMAoxi), and have the ability to synthesize TMAO from endogenous or dietary 

precursors such as choline (Ágústsson and Strøm, 1981; Raymond, 1998; Schlenk, 

1998; Seibel and Walsh, 2002). Species without this enzyme are thought to 

accumulate TMAO from the diet alone (Benoit and Norris, 1945; Treberg and 

Driedzic, 2002; Treberg et al., 2006), requiring prey items rich in TMAO to maintain 
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intracellular levels. However, there is little direct evidence for dietary absorption and 

it is possible that alternate synthetic pathways exist that have yet to be described. 

 Several previous studies have examined TMAO maintenance during extended 

starvation. One study showed that spiny dogfish, Squalus acanthias, were unable to 

synthesize TMAO from radiolabeled precursors and postulated that constant plasma 

levels were achieved during 20 days of starvation through active reabsorption at the 

kidneys and release from tissue pools (Goldstein et al., 1967). The winter skate, 

Leucoraja ocellata, was also found to maintain plasma TMAO over 45 days of 

starvation (Treberg and Driedzic, 2006). Maintenance in this case was attributed to 

decreased excretion with no increase in TMAO synthesis found. Treberg and Driedzic 

(2007) also examined muscle TMAO in the winter skate over 28 days of starvation 

and speculate that constant levels were due to release from tissue catabolism and 

subsequent recycling. Another study showed stable plasma TMAO and urea over 56 

days of starvation in spiny dogfish. These authors also suggest that the large pools of 

TMAO stored in various tissues, primarily muscle, supply adequate amounts for 

plasma maintenance (Kajimura et al., 2008).  Another possible explanation for 

prolonged maintenance was provided by Seibel and Walsh (2002), who suggested that 

TMAO could be synthesized in the absence of dietary contributions from choline, 

released during hydrolysis of membrane phospholipids, whether endogenous or 

dietary. 

Although it is possible that each of these processes may contribute to 

conservation of TMAO, all aforementioned studies examined TMAO flux in 

elasmobranchs during starvation when nitrogen metabolism is significantly altered 
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(Wood et al., 2005). Fasted skates have been shown to suppress TMAO excretion 

during starvation (Treberg and Driedzic, 2006) and dogfish exhibit decreases in 

plasma urea and total osmolarity during fasting (Leech et al., 1979). In another study, 

spiny dogfish were able to preserve urea during long-term starvation, although it was 

reported to come at the cost of significant protein catabolism. It was estimated that 

69.5 g of protein would need to be broken down over 56 days for continued urea 

synthesis under starvation conditions (Kajimura et al., 2008). Further, urea synthesis is 

an energy-expensive process requiring 5 moles of ATP per 1 mol urea (Anderson, 

2001; Lee et al., 2006). 

It is thought that spiny dogfish must feed every 5-6 days to sustain nitrogen 

balance (Kajimura et al., 2006). In fact, the rate of nitrogen loss does not increase after 

feeding, suggesting these animals are nitrogen limited (Wood et al., 2005, 2007; 

Treberg and Driedzic, 2006). After a meal, there is a switch from net urea efflux to net 

intestinal absorption (Liew et al., 2013) and plasma urea spikes 20 hours 

postprandially in spiny dogfish (Kajimura et al., 2006; Kajimura et al., 2008) 

indicating absorption from dietary constituents or elevated synthesis. Similarly, 

plasma TMAO also increases 20 hours after feeding in this species (Kajimura et al., 

2006; Wood et al., 2010 for review). 

It has been suggested that elasmobranchs excrete between 4-14% of their 

whole body TMAO per day (Goldstein and Palatt, 1974). Treberg and Driedzic (2006) 

published a more conservative estimate for the winter skate, Leucoraja ocellata, of 

less than 1% whole body TMAO lost per day. However, the rate of TMAO loss 

decreased after one week of starvation, which would have reduced Treberg and 
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Driedzic’s estimate. Even if elasmobranchs lose an average of 1% TMAO per day, this 

would amount to losses greater than 50% of total body stores over 56 days without an 

endogenous or dietary input. As elasmobranchs are already nitrogen limited (Armour 

et al., 1993; Wood et al., 2005), questions of TMAO flux and maintenance are better 

addressed under less stressful physiological conditions when individuals are actively 

feeding. 

 Here, we directly test the effect of diet on TMAO content in three 

elasmobranch species with differing synthetic capacities. The smoothhound, Mustelus 

canis, a shark with TMAoxi activity was compared to the spiny dogfish, Squalus 

acanthias, and little skate, Leucoraja erinacea, two species with negligible synthesis 

(Treberg et al., 2006). Individuals were fed a high or low TMAO diet for 56 days to 

examine the effects of an exogenous source on long-term TMAO maintenance.  



 

 
 

7 

2. Materials and Methods 

2.1. Collection and transport 

Three elasmobranch species were obtained by otter trawl off the commercial 

fishing vessel Virginia Marise. Smoothhounds, Mustelus canis (n=10), spiny dogfish, 

Squalus acanthias (n=13), and little skates, Leucoraja erinacea (n=19), were captured 

in Narragansett Bay, RI during summers 2013 – 2015. Males and females were placed 

in 150 L insulated coolers provided with chilled, aerated seawater and transported to 

holding facilities less than an hour away. Individuals were placed in a random fashion 

into one of two 2.4 m diameter, 2850 L continuous flow circular holding tanks. Sharks 

were housed up to n=5 and skates up to n=10 per tank. 

2.2. Feed trials 

Seawater temperature was maintained at 17 ± 0.22°C (mean ± SEM) and light 

on a 12h:12h light/dark cycle for the duration of the experiment. Individuals were 

acclimated for a minimum of 72 hours before initiation of a feeding trial. After 

acclimation, animals were fed diets high or low in TMAO content for 56 days. The 

high TMAO diet was comprised of a mixture of herring (Clupea harengus) and squid 

(Doryteuthis pealei) fed at 2.5% body weight, twice a week. Rations were chosen in 

accordance with previous studies (Wood et al., 2005; Wood et al., 2010; Liew et al., 

2013). Herring and squid are part of the regular diet consumed in the wild (Stehlik, 

2007) and a rich source of TMAO (~50-80 mmol kg-1, Carr et al., 1996; Treberg and 

Driedzic, 2007; Supplementary Fig. 1). Individuals placed on a low TMAO diet were 

fed brook trout (Salvelinus fontinalis) at 2.5% body weight, twice a week. Brook trout 

contain negligible levels of TMAO (<0.5 mmol kg-1, Supplementary Fig. 1) and 
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constitute a low TMAO diet. Freshwater fish tissue is known to contain lower 

concentrations of essential vitamins compared to marine tissue (Käkelä et al., 1999); 

therefore, as brook trout are a freshwater species that would not contribute to the 

regular diet experienced by these marine elasmobranchs in the wild, a vitamin 

supplement (SEA TABS for Birds, Turtles, Fish and Sharks by Pacific Research 

Laboratories) was included in the low TMAO diet to ensure individuals experienced 

no confounding deficiencies. Three separate feeding trials were conducted and data 

pooled for analysis. Five spiny dogfish, two smoothhounds and eight little skates were 

included in trial one which ran for 56 days from 2/20/13 – 4/17/13. 11 little skates 

were included in trial two which ran for 56 days from 9/08/14 – 11/03/14. Eight 

smoothhounds and seven spiny dogfish were included in trial three which ran for 56 

days from 7/29/15 – 9/23/15. Test species included in each trial were dependent on 

local availability. 

2.3. Sampling 

Blood samples were taken by the caudal method at time 0 and once monthly 

using an 18-gauge hypodermic needle. Prior to blood sampling, specimens were 

anaesthetized with 0.05 g l-1 MS-222 dissolved in a seawater bath. Red blood cells 

were separated by centrifugation at 10,000 rpm for three minutes and discarded.  

Plasma was flash frozen in liquid nitrogen and stored at -80 for later analysis. 

Measurements of weight, standard and total lengths were taken on each sampling day. 

Sex and spiracle length were also recorded. These parameters were used to assess 

growth and as an estimate of age to help assess the influence of size, ontogeny or sex-
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related differences on feeding habits and TMAO content (Alonso et al., 2002; Bockus 

and Seibel, in prep).  

On day 56, individuals were euthanized with MS-222 (0.15 g l-1) dissolved in a 

seawater bath. Length and weight measurements were taken. Plasma samples were 

obtained by the caudal method as described above. White muscle (~1 g) was harvested 

from the left dorsolateral epaxial muscle. The whole liver was removed and weighed. 

A sample of liver tissue (~1 g) was harvested from the periphery of the major lobe. All 

samples were duplicated for each individual and immediately flash frozen for later 

analysis. The presence of maturing embryos was recorded to take into account any 

gestational influence. All and analyses were conducted in accordance with IACUC 

#AN12-07-026. 

2.4. Analytical techniques 

 Plasma, muscle and liver samples were analyzed for TMAO and urea. Samples 

were deproteinated and homogenized 1:5 in 5% trichloroacetic acid solution. TMAO 

content was determined spectrophotometrically with ferrous sulfate and 2% picric acid 

as described by Wekell and Barnett (1991). Homogenates were further used to assess 

urea using the diacetyl monoxime method (Rahmatullah and Boyde, 1980). Total lipid 

was measured in liver tissue using a 2:1 chloroform to methanol extraction modified 

for small sample mass (Lee et al., 1996).  

2.5. Statistical analysis 

 Where variables scaled with tissue or body weight, individual values were 

normalized to a common mass before analysis. Means of individuals fed a high or low 

TMAO diet were compared between time points by two-way-, or two-way-RM, 
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ANOVA followed by a Holm-Sidak post-hoc test. Terminal samples were compared 

between diets within species using one-way unpaired student’s t-test. Significance was 

set at p<0.05. Statistics and graphs were generated using GraphPad Prism 7.0. 
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3. Results 

3.1. Lipid 

Liver lipid content was not different between diets within species (Fig. 1). 

Smoothhounds fed a high TMAO diet had a mean lipid content of 36.93% wet wt. ± 

9.29 SEM compared to low TMAO diet individuals at 18.67 ± 7.62%. Spiny dogfish 

fed a high TMAO diet had a mean lipid content of 62.11 ± 11.22% compared to low 

TMAO diet individuals at 51.96 ± 12.91%. Little skates fed a high TMAO diet had a 

mean lipid content of 22.38 ± 5.13% compared to low TMAO diet individuals at 23.57 

± 4.26%. 

3.2. Plasma  

TMAO 

Plasma TMAO (mmol kg-1) values at day 0, 28 and 56 listed in Table 1. 

Plasma TMAO dropped significantly from 78.38 ± 4.07 mmol kg-1 at day 0 to 45.36 ± 

3.61 mmol kg-1 at day 56 in low TMAO diet spiny dogfish (two-way ANOVA, 

p=0.02). Plasma TMAO was lower at day 56 in low TMAO diet spiny dogfish than 

high TMAO diet individuals (73.02 ± 4.79 mmol kg-1; two-way ANOVA, p=0.04). 

There were no further differences across time points within diets or between diets at 

an individual time point within species (Fig. 2a-c). 

Urea 

 Plasma urea (mM) values at day 0, 28 and 56 listed in Table 1. Little skates fed 

a low TMAO diet showed an increase in plasma urea from day 0 at 368.91 ± 11.15 

mM to day 28 at 416.97 ± 9.08 mM (two-way RM ANOVA, p=0.01) and day 56 at 
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433.70 ± 21.17 mM (p=0.002). There were no further differences across time points 

within diets or between diets at an individual time point within species (Fig. 3a-c).  

3.3. Tissue 

Scaling 

 TMAO in liver (y) decreased with increasing liver mass (x) in spiny dogfish 

(linear regression y=-0.05588x + 35.80, r2=0.37, p=0.04, Fig. 4). Liver mass ranged 

from 148.87 - 432.40 g and TMAO was normalized to a common mass of 250 g 

before further analysis. Urea concentration (x) decreased in the liver with increasing 

liver mass (y) in smoothhounds (linear regression y=-2.014x + 319.0, r2=0.47, p = 

0.03) and little skates (linear regression y=-5.849x + 491.5, r2=0.26, p=0.03; 

Supplementary Fig. 2). Liver mass ranged from 14.33 – 79.50 g in smoothhounds and 

5.82 – 41.72 g in little skates, and urea values were normalized to a common mass of 

30 and 22 g respectively. Little skate muscle urea (x) decreased with increasing total 

body wet weight (y) (range 0.26 - 0.80 kg; linear regression y=-245.8x + 557.4, 

r2=0.24, p=0.03; Supplementary Fig. 3) and was normalized to an average body 

weight of 0.60 kg before analysis.  

TMAO 

 Tissue TMAO (mmol kg-1) values at day 56 listed in Table 2. Smoothhound 

muscle TMAO was lower in low TMAO diet individuals at 100.63 ± 9.91 mmol kg-1 

than high TMAO diet individuals at 133.07 ± 22.76 mmol kg-1 (one-way unpaired 

student’s t-test, p=0.03). There were no further differences between diets within tissue 

types for individual species (Fig. 5). 

Urea 
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 Tissue urea (mM) values at day 56 listed in Table 2. Liver urea was lower in 

low TMAO diet spiny dogfish at 120.48 ± 13.94 mM than high TMAO diet dogfish at 

195.72 ± 23.67 mM (one-way unpaired student’s t-test, p=0.04). There were no further 

differences between diets within tissue types for individual species (Fig. 6). 
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4. Discussion 

 Animals in this study readily fed on the high and low TMAO diets. Lipid 

levels were conserved across groups in all species (Fig. 1), as would be expected in 

actively feeding individuals not relying on protein or lipid stores to support 

metabolism. Plasma TMAO fell by day 56 in dogfish fed the low TMAO diet but not 

in the smoothhound or little skate (Fig. 2a-c). This suggests that spiny dogfish (a 

nonsynthesizing species) do rely, to an extent, on dietary contributions for TMAO 

maintenance. When faced with an absence of TMAO in the diet, they may transport 

plasma TMAO to alternate tissues, such as muscle or liver, that depend on TMAO for 

preserved cellular function. Given these results, one would also expect to see a drop in 

plasma TMAO in the little skate that similarly exhibit no TMAO synthetic capacity. 

However, TMAO was maintained in the plasma of the little skate regardless of diet. 

Skates rely to a lesser extent on TMAO to support osmotic potential. Skates retain 

plasma TMAO at half the content present in spiny dogfish. Further, they exhibit 

similar concentrations of urea but higher levels of alternative amino acid osmolytes 

(King and Goldstein, 1983). It is possible there is a greater discrepancy in the way 

sharks and skates regulate TMAO than previously thought. TMAO accumulation 

patterns are different through spiny dogfish and little skate ontogeny, perhaps 

supporting disparities in the way this molecule is utilized between the two species 

(Steele et al., 2004; Bockus and Seibel, submitted).  

Surprisingly, muscle TMAO fell in smoothhounds fed a low TMAO diet, the 

only species in this study to exhibit a TMAO synthetic capacity (Treberg et al., 2006), 

but was maintained in spiny dogfish and the little skate (Fig. 5). Feeding provides 
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ample precursors, such as choline (Seibel and Walsh, 2002), to support endogenous 

production supposedly minimizing this species reliance on dietary TMAO for long-

term maintenance. It is possible that all species, whether they can synthesize TMAO 

or not, rely on dietary contributions for absorption and retention. Alternatively, species 

that can readily synthesize TMAO may not express the regulatory pathways for 

reabsorption and retention. Spiny dogfish and little skates appear to exhibit a greater 

capacity for TMAO conservation than smoothhounds via such possible mechanisms as 

reabsorption at the gill and kidney, transfer between tissue pools, and recycling 

through catabolism, leading to a greater capacity for TMAO retention over time. In 

accordance with this view, spiny dogfish and little skates maintained muscle TMAO 

regardless of whether TMAO was present in the diet or not. These data support 

previous findings showing TMAO maintenance during prolonged starvation in spiny 

dogfish and the winter skate L. ocellata (Goldstein et al., 1967; Treberg and Driedzic, 

2006, 2007; Kajimura et al., 2008) and likely result from a combination of the 

proposed retention mechanisms. The possibility of unidentified TMAO synthetic 

pathways cannot be ruled out as a source contributing to extended preservation. 

Urea excretion accounts for 90% or more of the total nitrogen excreted by 

elasmobranchs (Wood et al., 2005; Kajimura et al., 2006). Urea conservation depends 

largely on selective impermeability at the gills (Wood et al., 1995; Part et al., 1998; 

Wood et al., 2013); however, there is an unavoidable “leakiness” (Kajimura et al., 

2008) and urea stores must be supplemented through exogenous absorption or 

endogenous synthesis from dietary precursors. Dietary urea may be provided by the 

low concentrations retained in some marine fishes or by the observed cannibalism of 
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other marine sharks rich in urea (Stehlik, 2007). In this study, there was no difference 

in plasma urea between diets in any species. Although there were subtle, but 

significant, differences in plasma urea concentration over time in the little skate (Fig. 

3c), all values fell within the range reported previously for wild caught specimens of 

this species.  

There was a decrease in liver urea in spiny dogfish fed a low TMAO diet but 

not the other two species studied (Fig. 6). Again, although the difference in spiny 

dogfish was significant, it fell within the previously reported range and is not likely 

physiologically relevant. There is no reason to expect the low TMAO diet would 

restrict the urea synthetic pathway (ornithine-urea cycle) or affect retention 

mechanisms. However, freshwater fishes exhibit lower concentrations of urea, 

~1.5mM in brook trout (Rehulka and Minarik, 2007), compared to marine fish with 

reported concentrations up to ~25mM (Raymond, 1994). Therefore, less urea was 

available for direct dietary absorption in our low TMAO diet, perhaps explaining the 

difference.  

A number of the given explanations for TMAO and urea regulation are likely 

involved in the conservation of these molecules. However, the presence or absence of 

TMAoxi cannot be used as a metric to assess a species reliance on dietary TMAO. 

Treberg et al. (2005) found TMAoxi activity did not correlate to TMAO content in 

smelt (Osmerus mordax). Likewise, although FMO activity was present in the winter 

skate (L. ocellata), there was no evidence of TMA oxidation (Treberg and Driedzic, 

2006). This suggests that although TMAoxi has been shown to oxidize TMA to 

TMAO it may not be the key enzyme regulating TMAO synthesis and retention. In 
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fact, there is some discrepancy in the literature regarding the ability of dogfish and 

skates to synthesize TMAO (Schlenk and Li-schlenk, 1994; Schlenk, 1998; Treberg et 

al., 2006) although these concerns were addressed by Treberg and Driedzic (2006) that 

support the conclusion that these species are incapable of physiologically relevant 

production. However, this disagreement demonstrates the lack of understanding with 

regard to relevant sources involved in TMAO production. There may be alternate 

enzymes capable of oxidizing TMAO such as cytochrome P450 monooxygenases 

(Ágústsson and Strøm, 1981; Raymond, 1998) or others that have not been identified. 

Additionally, TMAO oxidation by gut microflora (Koeth et al., 2013) may diminish a 

species reliance on dietary contributions from prey tissue.  

When accumulation of an organic osmolyte is limited, animals have been 

shown to replace the osmotic deficit with alternate compounds. Treberg et al. (2006) 

showed an increase in betaine, another methylamine, to offset TMAO losses and 

maintain osmotic balance in the little skate. Similarly, NaCl replaced urea in the 

plasma of nitrogen-limited European dogfish (Armour et al., 1993). Although these 

alternatives pose possible short term solutions, increasing NaCl intracellulary has been 

shown to destabilize protein function (Yancey et al., 1982) and betaine, although a 

protein stabilizer, is not as effective at preserving protein structure as TMAO (Yancey 

et al., 2004). Therefore, the concentration of betaine needed to affect the same degree 

of stability would require an increase in total osmolarity or decrease in other 

osmolytes. The vitamin supplement we added to our low TMAO diet did include 

taurine, an alternative counteracting solute, which may have been accumulated in 
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place of TMAO. However, this would not explain the differences we saw between 

species and tissue types of individuals fed the low TMAO diet. 

 This study shows species specific differences in elasmobranchs ability to 

regulate TMAO without an exogenous source. Further, there was no clear delineation 

between synthesizing potential and ability to regulate TMAO without a dietary 

contribution. Therefore, presence or absence of TMAoxi activity cannot be used as a 

proxy to determine whether a dietary contribution is needed for long-term TMAO 

maintenance. Diet was also important for urea conservation, although effects seem to 

differ between tissue type and species. Although alternative compounds may be 

substituted to maintain osmotic balance when TMAO or urea accumulation are 

limited, these molecules serve a variety of functions and fluctuations caused by shifts 

in diet may affect a number of physiological processes in these animals. More 

evidence is needed to determine the mechanistic regulatory pathways involved in 

preservation of these nitrogenous compounds, specifically those controlling TMAO
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Figure 1. Total liver lipid (% wet weight) in elasmobranchs fed a high or low 

TMAO diet for 56 days. Smoothhound (Mustelus canis, n=10), spiny dogfish 

(Squalus acanthias, n=7) and little skate (Leucoraja erinacea, n=19) means ± SEM. 

No significant differences (one-way unpaired student’s t-test, p<0.05) between diets 

within species. 
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Table 1. Plasma contents over time in elasmobranchs fed a high or low TMAO diet. Smoothhound (Mustelus canis), spiny 

dogfish (Squalus acanthias) and little skate (Leucoraja erinacea) plasma TMAO (mmol kg-1) and urea (mM) ± SEM. n values given 

in parentheses. # indicates a significant difference within a diet from time 0. * indicates a significant difference between high and low 

TMAO diet means at an individual time point within a species (two-way or two-way RM ANOVA, p<0.05).

 TMAO (mmol kg-1)   Urea (mM) 
(days) 0 28 56 0 28 56 

Smoothhound       
 high TMAO (4) 60.18 ± 10.88 56.65 ± 5.76 54.94 ± 5.17 358.87 ± 13.23 345.11 ± 9.31 302.85 ± 32.48 
 low TMAO (6) 58.26 ± 5.09 42.46 ± 3.69 46.38 ± 4.00 353.32 ± 19.73 357.20 ± 20.34 361.28 ± 23.23 
Spiny dogfish       
 high TMAO 75.33 ± 0.81 

(2) 
60.59 ± 15.87 
(2) 

73.02 ± 4.79 
(7) 

385.35 ± 34.22 
(2) 

368.00 ± 18.84 
(2) 

388.42 ± 35.24 
(7) 

 low TMAO (5) 78.38 ± 4.07 54.01 ± 9.1 45.36 ± 3.61#* 391.68 ± 17.69 363.51 ± 21.43 337.28 ± 32.61 
Little skate       
 high TMAO (9) 33.14 ± 7.25 33.48 ± 5.71 36.32 ± 3.28 407.22 ± 15.03 375.15 ± 17.98 420.96 ± 23.17 
 low TMAO (10) 35.08 ± 8.11 32.66 ± 4.14 29.92 ± 2.76 368.91 ± 11.15 416.97 ± 9.08# 433.70 ± 21.17# 
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Figure 2a-c. Plasma TMAO (mmol kg-1) over time in elasmobranchs fed a high or 

low TMAO diet. Smoothhound (Mustelus canis, n=10), spiny dogfish (Squalus 

acanthias, n=12) and little skate (Leucoraja erinacea, n=19) plasma TMAO ± SEM at 

time 0, 28 and 56 days. # indicates a significant difference from time 0 within a diet. * 
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indicates a significant difference between high and low TMAO diet means at an 

individual time point within a species (two-way or two-way RM ANOVA, p<0.05).
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Figure 3a-c. Plasma urea (mM) over time in elasmobranchs fed a high or low 

TMAO diet. Smoothhound (Mustelus canis, n=10), spiny dogfish (Squalus acanthias, 

n=12) and little skate (Leucoraja erinacea, n=19) plasma urea ± SEM at time 0, 28 
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and 56 days. # indicates a significant difference from time 0 within a diet (two-way or 

two-way RM ANOVA, p<0.05). 
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Figure 4. Spiny dogfish liver TMAO (mmol kg-1) decreases with increasing liver 

mass (g). TMAO in spiny dogfish (Squalus acanthias, n=12) liver decreased as liver 

mass increased from 148.87 – 432.40 g. Linear regression y=-0.05588x + 35.80, 

r2=0.34, p=0.04. Livers ranged from 148.87-432.40 g and TMAO was normalized to a 

common liver mass of 250 g before further analysis. Reference results section 3.3 and 

Supp. Fig. 2 - 3 for complete list of variables shown to scale with mass.
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 TMAO (mmol kg-1) Urea (mM) 
 muscle liver muscle liver 
Smoothhound     
    high TMAO  

(4) 
133.07 ± 22.76 47.76 ± 7.71 296.07 ± 25.07 226.88 ± 19.59 

    low TMAO 
(6) 

100.63 ± 9.91* 41.01 ± 3.13 329.87 ± 21.43 272.53 ± 44.08 

Spiny dogfish     
    high TMAO 

(7) 
162.93 ± 8.43 21.89 ± 4.52 378.40 ± 18.06 195.72 ± 23.67 

    low TMAO 
(5) 

144.72 ± 20.79 19.94 ± 2.90 313.45 ± 36.68 120.48 ± 
13.94* 

Little skate     
    high TMAO 

(9) 
102.10 ± 15.06 50.13 ± 5.91 417.41 ± 40.74 367.46 ± 47.24 

    low TMAO 
(10) 

90.18 ± 12.73 33.71 ± 3.23 429.81 ± 23.09 374.58 ± 47.06 

 

Table 2. Tissue contents in elasmobranchs fed a high or low TMAO diet for 56 

days. Smoothhound (Mustelus canis), spiny dogfish (Squalus acanthias) and little 

skate (Leucoraja erinacea) muscle and liver TMAO (mmol kg-1) and urea (mM) ± 

SEM. n values given in parentheses. * indicates a significant difference between diets 

within a tissue type of an individual species (one-way unpaired student’s t-test; 

p<0.05).
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Figure 5. TMAO (mmol kg-1) in muscle and liver of elasmobranchs fed a high or 

low TMAO diet for 56 days. Muscle and liver means ± SEM for smoothhound 

(Mustelus canis, n=10), spiny dogfish (Squalus acanthias, n=12), and little skate 

(Leucoraja erinacea, n=19). Spiny dogfish liver TMAO scaled with liver mass (Supp. 

Fig. 3) and was normalized using regression y=-0.05588x + 35.80 before analysis. 

Significant differences (*) determined between diets within tissue types for individual 

species (one-way unpaired student’s t-test, p<0.05). 
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Figure 6. Urea (mM) in muscle and liver of elasmobranchs fed a high or low 

TMAO diet for 56 days. Muscle and liver means ± SEM for smoothhound (Mustelus 

canis, n=10), spiny dogfish (Squalus acanthias, n=12), and little skate (Leucoraja 

erinacea, n=19). Skate urea concentration scaled with body weight and was 

normalized to an average of 0.6 kg before analysis (regression y=-245.8x + 557.4, 

Supp. Fig. 3). Smoothhound and skate liver urea scaled with liver mass and were 

normalized (regression y=-2.014x + 319.0 and y=-5.849x + 491.5 respectively, Fig. 

4). Significant differences (*) determined between diets within tissue types for 

individual species (one-way unpaired student’s t-test, p<0.05).
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Supplementary Figure 1. Muscle TMAO (mmol kg-1) in high and low TMAO diet 

feed components. The high TMAO diet was made up of squid (Doryteuthis pealei) 

and herring (Clupea harengus). The low TMAO diet consisted of brook trout 

(Salvelinus fontinalis). Squid (n=4) exhibited muscle TMAO at 101.60 ± 0.17 mmol 

kg-1, herring (n=4) at 61.88 ± 0.41 mmol kg-1 and brook trout (n=4) at 0.05 ± 0.03 

mmol  kg-1.
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Supplementary Figure 2. Urea concentration decreases with increasing liver 

mass. Little skate (Leucoraja erinacea, n=19) and smoothhound (Mustelus canis, 

n=10) liver urea (mM) scaled with liver mass (g). Regression lines for skate (y=-

5.849x + 491.5, r2=0.26, p=0.03) and smoothhound (y=-2.014x + 319.0, r2=0.47, 

p=0.03) used to normalize urea to common masses of 22g and 30g respectively before 

analysis.
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Supplementary Figure 3. Little skate muscle urea (mM) decreases with 

increasing body wet weight (kg). Urea decreased in little skate (Leucoraja erinacea, 

n=19) muscle from a body weight of 0.26 to 0.80 kg and was normalized to an average 

weight 0.60 kg before analysis. Linear regression y=-245.8x + 557, r2=0.24, p=0.03.
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Abstract 

Trimethylamine oxide (TMAO) is a common osmolyte and counteracting solute. It is 

believed to combat the denaturation induced by hydrostatic pressure as some deep-sea 

animals contain higher TMAO levels than their shallow water counterparts. It has also 

been proposed that TMAO may accumulate passively during lipid storage resulting in 

a correlation between lipid content and TMAO levels in some groups. Previous 

research showed that lipid content decreased with depth in species of Hawaiian fishes 

presenting a novel test of these competing hypotheses. TMAO ranged from 20.4 to 

92.8 mmol/kg. Lipid content ranged from 0.50 to 4.7 % WW.  After completing a 

comprehensive search for depths available in the literature, provided here, we 

analyzed TMAO and lipid as a function of average, minimum and maximum depth of 

occurrence for 27 species of fishes from nine orders.  We found that TMAO is 

positively correlated with all measures of habitat depth (hydrostatic pressure) but the 

relationship is strongest with average depth. We further showed using phylogenetic 

independent contrasts that this relationship was not influenced by the evolutionary 

relatedness of these species.  Interestingly, we found that lipid content increased with 

depth, in direct contrast to previous studies.  TMAO is thus also positively correlated 

with lipid content.  While we are unable to distinguish between these hypotheses, we 

show that TMAO is strongly correlated with depth in mid-water fishes. 
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1.1 Introduction 

Trimethylamine oxide (TMAO) is an important cellular component in a wide 

range of taxa, from bacteria to humans (Chen et al., 2011; Treacy et al., 1995). It was 

first described in marine organisms (Bickel, 1969 in ref. Suwa, 1909; Norris and 

Benoit, 1945) as a prominent osmolyte (Cholette and Gagnon, 1973; Forster and 

Goldstein, 1976). Later, it was shown to be a strong counteracting solute, (Yancey and 

Somero, 1979) protecting protein structure (Yancey and Siebenaller, 1999; Qu and 

Bolen, 2003) and function (Baskakov et al., 1998) from various environmental 

perturbants including, hydrostatic pressure (Gillett et al., 1997), urea and ammonia 

toxicity (Yancey and Somero, 1980; Minana et al., 1996), and temperature stress 

(Treberg et al., 2005; Villalobos and Renfro, 2007).  

TMAO increases with habitat depth inter- and intraspecifically in benthic 

fishes and skates as well as some invertebrate groups (Kelly and Yancey, 1999; 

Yancey et al., 2001; Yancey et al., 2002; Laxson et al., 2011; Samerotte et al., 2007), 

suggesting that this molecule is used to combat the increasing stress of hydrostatic 

pressure. Most recently, Yancey et al. (2014) showed a hadal snailfish at 7,000 m with 

a TMAO content of 386 mmol/kg, almost eight times higher than the average fish in 

the euphotic zone. These observed correlations with depth have been further supported 

by evidence that TMAO prevented hydrostatic pressure denaturation in vitro (Yancey 

and Siebenaller, 1999).  

However, not all taxa show an increase in TMAO with depth (Seibel and 

Walsh, 2002).  Some shallow-living squids have TMAO levels that approach that 

reported for the hadal snailfish.  These authors suggest a novel mechanism of TMAO 
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synthesis leading to accumulation as a byproduct of lipid metabolism and storage and 

that TMAO is not necessarily retained as a specific adaptation to high hydrostatic 

pressure. This hypothesis was supported by a strong correlation between total lipid 

content and TMAO in cephalopods as well as anecdotal evidence in a variety of other 

groups.  For example, lipid content is often higher in deep-living and polar species, 

which may explain the tendency of species in those habitats to accumulate large 

quantities of TMAO. However, a subsequent study did not find a relationship between 

mean TMAO and triacylglycerol content in fishes (Samerotte et al., 2007), perhaps 

due to the differing time courses of accumulation and retention that resulted in 

differing size-scaling relationships of these two compounds. 

Furthermore, an evolutionary relationship has been suggested for TMAO 

synthetic capacity between elasmobranchs and chimaeras (Treberg et al., 2006), which 

may impose inherited limitations on accumulation potential. If phylogeny also plays a 

role in TMAO accumulation in teleosts, it is possible that depth-related differences are 

driven by evolutionary history rather than environmental selection or substrate 

availability. Alternatively, a relationship to phylogeny may coexist and mask 

environmental trends making analyses between distantly related taxa difficult. 

In (1990), Childress et al. examined a population of Hawaiian mid-water fishes 

that exhibited decreasing lipid content with increasing habitat depth (and hydrostatic 

pressure). Here, we examine TMAO and lipid content in 27 species of Hawaiian fishes 

from the same region studied in Childress et al. (1990) to test the competing 

hypotheses of hydrostatic pressure and lipid content on TMAO accumulation. A 

stronger relationship to hydrostatic pressure should elicit an increase in TMAO with 
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habitat depth while a decrease with depth may be seen if TMAO is primarily 

accumulated as a by-product of lipid metabolism. Alternatively, an increase in lipid 

and TMAO with depth could represent a situation in which fishes accumulate TMAO 

passively during lipid storage with deeper fishes retaining the molecule for further 

pressure counteraction.  
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1.2 Materials and Methods 

1.2.1 Collection and Sampling 

 Fishes were collected aboard the R/V Kilo Moana (University of Hawaii) in 

June 2012 off the west coast of Oahu in the Hawaiian Islands. Specimens were 

captured using a modified opening-closing Mother Tucker trawl with 3 m2 mouth 

(Childress et al., 1978) between depths of 50-2000 meters. Animals were recovered in 

a 30-l thermally insulated cod end and immediately processed for later analysis. 

Individuals from 17 different species were gently blotted dry then flash frozen whole 

for determination of total lipid content. Additionally, muscle tissue was excised from 

similar specimens of the same and additional species, for a total of 27 species, and 

flash frozen for subsequent analysis of TMAO. All samples were collected in 

accordance with IACUC #AN12-07-026 and stored at -80ᵒC until experimentation was 

conducted. Representatives of each species were preserved in 5% formalin or 

photographed for later identification using taxonomic and identification references 

available in the literature. 

1.2.2 Analytical Techniques 

 Total lipid content for whole body was measured using a similar method to the 

2:1 chloroform to methanol extraction described by Bligh and Dyer (1959) paired 

down for small sample mass (Lee et al. 1996). Muscle tissue samples were 

deproteinated and homogenized in 5x volume 5% trichloroacetic acid (TCA) followed 

by spectrophotometric determination of TMAO using the ferrous sulphate-EDTA 

assay (Wekell and Barnett, 1991). All values represent averages taken from replicate 

individuals from n = 1 to 12. 
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1.2.3 Depth analysis 

Habitat range was determined according to currently published literature 

values describing the depth distribution of each species.  Average depth is reported as 

the median of the habitat range, especially in highly migratory species or as average 

depths specifically reported in the literature. The average depth of a species can be 

considered as the depth at which the fish spends most of its time (in non-migratory 

animals) or as a depth that represents the average level of depth stress (e.g. hydrostatic 

pressure) encountered by the species (migratory species). Minimum depth of 

occurrence (MDO) is defined as the depth below which 90% of the population of each 

species can be found (Childress and Nygaard, 1973). Here, MDOs were taken directly 

from the literature. Where no MDO was available, the shallowest reported depth for 

the species was used, substituting 10 m for those reported at the surface. TMAO, lipid 

and size were further analyzed against capture depth with no correlations found (data 

not shown). 

Due to the limited amount of data available for these fishes, references were 

taken from studies conducted circumglobally (Supplementary Table 1). For some 

species, reported depths vary widely between publications; in such cases, the depths 

chosen for use in this study were based on the most recent and regionally specific data 

available. Occasionally a species vertical distribution changes with size, where smaller 

fish are frequently found at shallower depths (Collins et al., 2008). In these instances, 

reported depths are specific to the size of fish analyzed in this study; therefore, authors 

should be cautious when reporting these listed depths elsewhere.  

1.2.4 Phylogenetic Comparison and Statistical Analysis 
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 TMAO data were subjected to independent contrasts phylogenetic analysis 

(PIC) to determine if the phenotypic trends seen in this study could be explained by 

evolutionary relationships among fish species (Felsenstein, 1985; Seibel and Carlini, 

2001). The phylogenetic tree used for this analysis was a compilation of trees 

previously published in the literature (Stiassny et al., 1996; Harold, 1998; Miya and 

Nishida, 1998; DeVaney, 2008; Davis, 2010; Kenaley, 2010; Betancur-R, 2013; 

Denton, 2014). The tree was further rooted in the outgroup Chondrichthyes; however, 

this group is not included in the analysis as elasmobranch values deviate significantly 

from all teleost values. All data concerning TMAO, lipid, depth of occurrence and 

weight were further analyzed using regression analysis to assess whether any 

statistically significant relationships occurred. Statistics and graphs were generated 

using GraphPad Prism 6.0 and the phylogenetic tree used for PIC was made with 

statistical package R. Estimated TMAO and depth values were calculated for all 

ancestral nodes assuming equal branch lengths (punctuated model) and included in 

Supplementary Fig. 1. Further, contrast values were calculated for each node, which 

indicate both TMAO and depth after points have been made independent by 

accounting for any phylogenetic signal.
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1.3 Results 

1.3.1 Fish collection 

We collected 27 species of mid-water fishes from 15 trawls ranging in depth 

from 50 to 2000 m.  The species represent 12 families from 9 orders.  The habitat 

depths of each species (average, minimum and maximum) are listed in Table 1.   

1.3.2 TMAO vs. depth 

 Average TMAO content ranged between 20-93 mmol/kg wet mass (Table 1), 

which is consistent with values reported for fishes elsewhere (Carr et al., 1996). 

TMAO content increased linearly with all measures of habitat depth.  The relationship 

was strongest with a species’ average depth (r2 = 0.5309, p < 0.0001; Fig. 1a) but was 

also significant as a function of MDO (r2 = 0.5074, p < 0.0001; Fig. 1b) and maximum 

depth (r2 = 0.2520, p = 0.0076; Fig. 1c). Separating fishes into non-migrating and 

vertically migrating species did not strengthen the trend with depth and variance 

between these groups was not significantly different (data not shown).  Additionally, a 

phylogenetically independent analysis of the data (Phylogenetic Independent 

Contrasts) also resulted in a significant positive relationship between TMAO and 

habitat depth ((r2 = 0.4036, p = 0.0009; Fig. 2), which suggests the trend is 

independent of any phylogenetic relationships across these 27 species.   

1.3.3 Lipid vs. depth and TMAO 

 Lipid content ranged between 0.5 – 4.7% wet weight in these fishes. Lipid 

values showed a significant increase with increasing average depth (r2 = 0.2888, p = 

0.0261) in the 17 species analyzed for lipid in this study. Additional lipid values taken 

from the literature (n = 6) strengthened this relationship (r2 = 0.2496, p = 0.0152; 
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Table 1, Fig. 3). Lipid values from the literature were only included for species in this 

study where lipid was not measured directly. Lipid also significantly increased with 

MDO but not maximum depth (data not shown). When divided into non-migrating and 

vertically migrating species, groups did not exhibit significant differences in variance 

(data not shown). Further, lipid was positively correlated with size in the family 

Myctophidae (r2 = 0.4145, p = 0.0009) and negatively correlated with size in the 

species, Sternoptyx diaphana (r2 = 0.8834, p = 0.0175; Fig. 4). However, size was not 

related to any measure of habitat depth for these species (data not shown).  TMAO 

increased linearly with increasing lipid content (r2 = 0.2744, p = 0.0309) across the 17 

fish species analyzed. Adding lipid values from the literature (n = 6) strengthened this 

relationship (r2 = 0.4328, p = 0.0006; Fig. 5).  
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1.4 Discussion 

1.4.1 TMAO vs. depth 

 TMAO increases with a species’ habitat depth in a number of different clades 

including, anemones (Yancey et al., 2004), crustaceans (Zerbst-Boroffka et al., 2005), 

Chondrichthyes (Laxson et al., 2011) and teleosts (Kelly and Yancey, 1999; Yancey et 

al., 2002). Yancey and colleagues hypothesize that these groups have converged on a 

similar mechanism of using TMAO to counteract the perturbing effects of hydrostatic 

pressure on protein function. TMAO is able to protect protein function against 

pressure better than other osmolytes such as betaine, glycine, taurine and myo-inositol.  

These compounds do show some stabilizing potential against hydrostatic pressure 

(Yancey et al., 2004) but higher concentrations are required to counteract comparable 

pressures. Additionally, TMAO acts as a universal cytoprotectant and is able to 

stabilize different types of proteins (Yancey and Somero, 1979) as well as protein 

homologs from distantly related species (Yancey and Siebenaller, 1999) against 

denaturation. 

 Samerotte et al. (2007) found a sigmoidal pattern in the relationship between 

TMAO and habitat depth in benthic teleost fishes between 0-1400 m and a linear 

relationship at greater depths to at least 7,000 m (Yancey et al., 2014).  The TMAO 

values we report fall near those found in the fishes previously examined but increase 

linearly with depth to 1,200 m.  This supports the hypothesis that TMAO is being used 

to counteract hydrostatic pressure but that the relative accumulation needed for 

stabilization may be different between groups, ecotypes or locations. Alternatively, 

extracellular to intracellular volume ratios may be different between the mid-water 
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fishes studied here and the demersal fishes examined previously, which would imply 

similar intracellular TMAO contents between these groups. 

 TMAO showed increases when examined against average, minimum and 

maximum habitat depth of these fishes (Fig. 1a-1c), with the strongest relationship to 

average depth. MDO is commonly used to relate metabolic rate to depth as metabolic 

rates in strongly visually-orienting taxa seem to be largely dependent on light and 

visual predator-prey interactions that are most important at the upper depth limit of the 

organism (Childress, 1995; Drazen and Seibel, 2007; Seibel and Drazen, 2007).  

Conversely, one might expect TMAO to correlate most strongly with the maximum 

pressure experienced by a species if accumulation is being driven by pressure 

counteraction. However, it is interesting to note that TMAO accumulation is most 

tightly coupled to average depth, where fishes may spend the majority of their time. 

TMAO fluctuations may be inhibited by time-course restrictions, especially in diel 

vertical migrators, which could impose limitations on their ability to match TMAO to 

minimum and maximum depths and explain the strong relationship to average depth. 

Therefore, it is possible that these fishes are experiencing modest conformational 

changes to protein structure during their time spent at maximum depth. This has been 

shown to occur during dormancy (Muir et al., 2008) and other circumstances of urea 

destabilization (Yancey and Somero, 1979). These changes could be used to facilitate 

metabolic suppression and energy conservation during the time spent at daytime 

depths among vertically migrating species.  However, metabolic suppression has only 

been demonstrated for vertical migrators living in pronounced oxygen minimum zones 
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(Seibel, 2011; Seibel et al., 2014) so further evidence is needed to support this 

supposition.   

1.4.2 Phylogenetic Comparison 

 The only study to examine the evolutionary history of TMAO synthetic 

capacity, as described by the activity of trimethylamine oxidase (TMAoxi), found it to 

be a derived characteristic in elasmobranchs and chimaeras (Treberg et al., 2006). 

Species lacking measurable TMAoxi activity must rely on dietary contributions to 

accumulate TMAO (Treberg and Driedzic, 2002), potentially placing ecological 

restrictions on their ability to use TMAO as a counteracting solute.  If teleosts were to 

exhibit a similar phylogenetic pattern, it would suggest differing capacities for TMAO 

regulation between clades and could influence inherent TMAO concentrations as well 

as certain species ability to accumulate TMAO. We found no relationship between 

total TMAO content and evolutionary relatedness (Supplementary Fig. 1). Instead, 

when the interrelatedness between data points imposed by evolutionary history was 

accounted for (contrast values), there was still a significant increase in TMAO with 

depth (Fig. 2). Therefore, in these Hawaiian fishes, trends seem to be driven primarily 

by environmental and ecological variability and not by an innate phylogenetic signal. 

1.4.3 Lipid vs. depth 

 High energy materials, such as protein and lipid, decrease with depth in 

Southern California fishes and are replaced by less expensive materials such as water 

which lowers organisms’ metabolic demands and allows deep-sea species to reach 

larger sizes with minimal cost (Childress and Nygaard, 1973). A similar trend was 

shown for Hawaiian fishes (Childress et al., 1990) where decreasing lipid levels with 
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depth were attributed to lower metabolic rates. However, many species increase lipid 

levels with depth as has been shown in copepods (Lawrence, 1976), crustaceans 

(Childress and Nygaard, 1974), zooplankton, fish (Reinhardt and Van Vleet, 1986) 

and cephalopods (Seibel and Walsh, 2002). We showed increasing lipid with average 

depth for Hawaiian fishes (Fig. 3). These results are opposite those reported by 

Childress et al. (1990).  

The methods employed for lipid analysis by Childress and colleagues are best 

for samples of large mass with the size of these fishes averaging less than five grams 

wet weight. We found the modified protocol for small sample mass to yield more 

reliable results, perhaps explaining the discrepancy. The three values included in this 

study do not reflect the overall trend found by Childress of decreasing lipid with 

depth, most likely due to the large variability found in that study (0.2 to 10% wet 

weight) and the small number of data points included here. We also found evidence of 

changing lipid content with size in some species, which may complicate 

interpretations based on habitat alone (Fig. 4). It is not likely that seasonal variability 

plays a large role in lipid storage for the warm water fishes studied here (Childress et 

al., 1990). Alternatively, it is possible that the deeper living species accumulate lipid 

to sustain them between the intermittent meals experienced in the deep-sea 

environment or to fuel extensive egg-brooding periods as in the squid, Gonatus onyx 

(Seibel et al., 2000), and the lophigastrid crustacean, Gnathophausia ingens (Childress 

and Price, 1983). The increase in lipid with depth may also be due to replacement of 

the gas-filled swim bladder with fatty tissue for buoyancy shown to occur in other 

myctophid species (Butler and Pearcy, 1972).  In such cases, swim bladders are 
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typically filled with wax esters which are derived from metabolic pathways 

independent of the diacylglycerol ethers and triacylglycerols whose formation leads to 

accumulation of TMAO precursors (e.g. choline; Seibel and Walsh, 2002). All these 

factors can impart selective pressure on lipid content and it is possible the additional 

taxa included in the Childress study were experiencing different combinations or 

levels of selection resulting in the opposite trend with depth. 

1.4.4 TMAO vs. lipid 

 Although TMAO may be used to combat hydrostatic pressure in many 

organisms, there are species that do not accumulate TMAO with depth: such as some 

echinoderms, mollusks, polychaetes, and vestimentiferans (Yancey, 2005). These 

animals seem to accumulate a plethora of alternative osmolytes with potential 

stabilizing properties including a serine-phosphate compound, other methylamines and 

polyols (Yancey et al., 2002). Therefore, a number of mechanisms exist whereby 

fishes may be combatting hydrostatic pressure aside from TMAO accumulation. In 

fact, TMAO performs a number of roles including osmotic balance, buoyancy 

regulation, as well as urea and temperature counteraction, all of which may impart 

competing selection on TMAO content. However, the ability of TMAO to aid in 

buoyancy is limited in hypoosmoregulating fishes (Gillett et al., 1997) and plays a 

larger role in invertebrates and elasmobranchs. Further, TMAO regulation may be 

influenced by diet or passive accumulation during lipid storage (Seibel and Walsh, 

2002).  

 The latter hypothesis, passive TMAO accumulation during lipid storage, has 

received little attention. In 2002, a new synthetic pathway for TMAO was proposed 
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whereby phosphatidylcholine, a compound readily available from the diet or the 

breakdown of cellular membranes, is converted to diacylglycerol or triacylglycerol 

(TAG) for lipid storage. During this process a choline moiety is cleaved from 

phosphatidylcholine, which can then be transformed to TMAO (Seibel and Walsh, 

2002). These authors demonstrate a correlation between lipid and TMAO content in 

cephalopods and discuss the tendency of many organisms from deep and polar 

environments to accumulate high concentrations of both TMAO and storage lipid. 

Although no correlation between total TAG and TMAO was found for 15 species of 

fish caught in the eastern Pacific (Samerotte et al., 2007), the relationship between the 

two may be confounded by retention or excretion of TMAO and the active use of 

storage lipid for metabolic purposes.  Cell membrane restructuring during growth or 

osmotic challenges, for example, may also lead to TMAO precursor availability 

without the accumulation of storage lipid (Seibel and Walsh, 2002). Additionally, 

dietary TMAO may negate the need for endogenous production. However, little 

information is available regarding turnover or TMAO content in the diet of these 

fishes making conclusions speculative. The fishes in this study show increasing levels 

of TMAO with total lipid content (Fig. 5), supporting evidence for the possible 

existence of a synthetic pathway whereby TMAO is accumulated during lipid storage. 

1.4.5 Conclusions 

 TMAO was positively correlated with depth in the 27 species of 

Hawaiian teleost fishes studied here. Additionally, this trend was independent of 

phylogenetic relatedness suggesting that environment, not evolution, is playing a 

larger role in driving the relationship. As depth and lipid were positively correlated, it 
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was not possible to definitively rule out either the hydrostatic pressure or the lipid 

accumulation hypothesis although we provide supportive evidence for both. However, 

the two hypotheses are not mutually exclusive and it is possible the choline substrate 

produced during lipid accumulation may be converted to TMAO and actively retained 

to counteract hydrostatic pressure. 
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Family Species TMAO 
(mmol/kg) 

Lipid  
(% wet wt.) 

Average 
depth (m) 

MDO  
(m) 

Maximum 
depth (m) 

Vertical 
migrator 

Anoplogastridae        
 Anoplogaster cornuta 73.9 (1) 3.20* 725 550 900 no 
Eurypharyngidae        
 Eurypharynx pelecanoides 80.7 (1) -- 975 650 1300 no 
Giganturidae        
 Gigantura indica 69.1 (1) -- 875 750 (750) 1000 no 
Gonostomatidae        
 Cyclothone pallida 53.0±11.4 (7) 1.21±0.44 (2) 600 600 (600) 1000 no 
 Gonostoma atlanticum 74.5±23.4 (8) 4.70** 520 481 (150) 560 yes 
 Gonostoma elongatum 58.6±8.3 (8) 1.18±0.30 (10) 643 560 (200) 725 no 
Melamphaidae        
 Poromitra macrophthalma 92.1±21.3 (6) 3.50* 820 640 1000 no 
Myctophidae        
 Ceratoscopelus warmingi 56.2±14.6 (5) 1.76±0.30 (2) 700 600 (50) 900 yes 
 Diaphus perspicillatus 79.9±19.2 (8) 3.52±1.95 (8) 700 500 900 yesa 
 Hygophum proximum 54.5±26.5 (2) 2.11 (1) 500 10 1000 yes 
 Lampanyctus niger “H” 52.1±5.0 (4) 0.98±0.21 (4) 300 100 (sp b, 

165) 
500 nob 

 Lampanyctus tenuiformis 92.8±14.5 (4) 1.76±0.60 (4) 800 700 (250) 900 yesc 
 Taaningichthys bathyphilus 65.2±21.4 (10) 1.57±0.35 (4) 852 582 (600) 1122 no 
Oneirodidae        
 Danaphryne nigrifilis 72.1±4.6 (2) -- 1082 1082 1082 no 
Opisthoproctidae        
 Opisthoproctus soleatus 72.4±12.6 (3) 1.85±0.94 (2) 600 500 (450) 700 no 
Paralepididae        
 Magnisudis atlantica 45.4 (1) -- 468 445 490 -- 
Serrivomeridae        
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 Serrivomer sector 67.3±40.3 (8) 0.79±0.49 (5) 700 700 1800 no 
Sternoptychidae        
 Argyropelecus affinis 49.2±15.1 (6) 0.79±0.16 (2) 350 200 (225) 500 no 
 Danaphos oculatus 61.1±22.3 (12) 2.60* 540 430 (430) 650 no 
 Sternoptyx diaphana 45.3±4.2 (7) 2.26±1.22 (3) 660 422 (450) 899 no 
Stomiidae        
 Aristostomias grimaldi 58.3±15.7 (2) 1.02 (1) 425 100 750 yes 
 Chauliodus sloani 45.1±10.1 (2) 1.40** 300 100 (175) 500 yes 
 Flagellostomias boureei 39.5±11.6 (3) 0.89±0.31(4) 450 10 900 -- 
 Idiacanthus antrostomus 44.4±6.0 (4) 0.66±0.19 (3) 225 150 300 yes 
 Photostomias liemi 59.1±5.6 (3) 1.63±0.74 (3) 386 10 762 yesd 
 Photostomias lucingens 40.4 (1) 0.71±0.21 (2) 63 10 115 yesd 
 Thysanactis dentex 20.4 (1) 0.50** 280 10 (75) 550 yes 

 

Table 1. Composition and habitat parameters of Hawaiian mid-water fishes. Depth and migration data derived from the literature 

(Supplementary Table 1). Minimum depth of occurrence (MDO) listed as updated values used in this study with Childress et al. (1990) values 

listed in parentheses where available. TMAO and lipid values reported as averages ± standard deviation with number of individuals analyzed in 

parentheses. 

* data taken from Neighbors, 1988; ** data taken from Childress et al., 1990 

a Rao, 2010; b Clarke, 1978; c Hulley, 1990; d Inferred for genera by Kenaley, 2008 
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Figure 1a-c. TMAO as a function of depth. TMAO increased significantly with 

increasing habitat depth. Each data point (n = 27) represents the average calculated for 

an individual species. Depth values were calculated from the literature (Table 1 and 

Supplementary Table 1). A Average depth is defined as the depth at which the species 

can most commonly be found or the median depth for highly migratory species. Linear 

regression y = 0.05022x + 31.20 (r2 = 0.5309, p < 0.0001). Values are plotted against 

the analysis performed by Samerotte et al. (2007), which found a sigmoidal 

relationship between TMAO and capture depth in the upper 1,400 m for fishes in the 

eastern Pacific. B The MDOs were taken from previously reported literature values. 

Where a MDO has not been reported, the shallowest reliable observation was used. 

Linear regression y = 0.04275x + 42.35 (r2 = 0.5074, p < 0.0001). C Linear regression 

y = 0.02539x + 39.69 (r2 = 0.2520, p < 0.0076).
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Figure 2. Standardized contrasts of TMAO against standardized contrasts of 

average depth. Contrast: TMAO increases significantly with increasing Contrast: 

depth. Contrast values establish phylogenetic independence; calculated using 

Phylogenetic Independent Contrasts from 26-taxon tree (Supplementary Fig. 1; 

punctuated model assuming equal branch length). Linear regression y = 0.06965x + 

5.225 (r2 = 0.4036, p = 0.0009).
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Figure 3. Total body lipid as it relates to average habitat depth. Lipid increased 

significantly with increasing depth. Each data point (n = 23) is the measured average 

for an individual species. Closed circles are measured lipid values, triangles are lipid 

values from Neighbors (1988), x’s are values from Childress et al. (1990). Linear 

regression without literature values y = 0.001839x + 0.4836 (r2 = 0.2888, p = 0.0261). 

Linear regression with literature values y = 0.002599x + 0.3926 (r2 = 0.2496, p = 

0.0152).
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Figure 4. Total lipid as it relates to body size. Lipid showed a significant increase 

with increasing size in all myctophid species (triangles) and a significant decrease 

with increasing body size in the species Sternoptyx diaphana (open circles). Each data 

point represents a measurement for a single individual (n = 23 for myctophids, n = 5 

for S. diaphana). Myctophid linear regression y = 0.9395x – 0.03917 (r2 = 0.4145, p = 

0.0009). S. diaphana linear regression y = -0.7241x + 3.559 (r2 = 0.8834, p = 0.0175).
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Figure 5. TMAO content as a function of total body lipid. TMAO increased 

significantly with increasing % lipid. Each data point (n = 23) represents the average 

for an individual species. Black circles are measured lipid values, triangles are lipid 

values from Neighbors (1988), x’s are lipid values from Childress et al. (1990). Linear 

regression with no additional literature values y = 10.06x + 43.53 (r2 = 0.2744, p = 

0.0309). Linear regression with all values y = 10.27x + 40.80 (r2 = 0.4328, p = 

0.0006).
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 Supplementary Figure 1. Phylogenetic tree used to determine contrast values. 

For simplicity, only species with TMAO and depth values from this study are shown. 

TMAO (mmol kg-1) and average depth (m) are shown to the right of the taxon name. 

Ancestral TMAO and depth values calculated by PIC are plotted at the nodes. Due to a 

lack of phylogenetic data all branch lengths were considered equal and a punctuated 

model of change was assumed. Contrast values calculated from this tree are shown in 

Fig. 2.
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Family Species Depth (m); Reference Type Region  
Anoplogastridae         
 Anoplogaster cornuta 600; Meek and Childress, 1973** 

550-900; Childress, 1975* 
550; Neighbors, 1988 
550; Janssens et al., 2000 

MDO 
MDO, max 
MDO 
MDO 

Southern California 
Southern California 
Southern California 
NE North Pacific 

Eurypharyngidae         
 Eurypharynx 

pelecanoides 
2300; Vaillant, 1883 
650-1300; Clarke and Wagner,  1976*,** 
971,1532; Owre and Bayer,1970 
1020; Campbell and Gartner, 1982 
500-2750; Nielsen et al., 1989 

C 
C 
average 
C 
C 

SE North Atlantic 
Hawaii 
SW North Atlantic 
NW North Atlantic 
Atlantic Basin 

Giganturidae         
 Gigantura indicaa 750-1000; Clarke and Wagner, 1976*,** 

750; Childress et al., 1990* 
947; Tomiyama et al., 2008 

C 
MDO 
C 

Hawaii 
Hawaii 
Japan 

 

Gonostomatidae         
 Cyclothone pallida 500-1000; Badcock, 1982 

400-1000; Miya and Nemoto, 1987 
600; Childress et al., 1990* 
600-1000; Craddock et al., 1992*,** 
500-700; McClain et al., 2001** 
400-1377; Ross et al., 2010 
 

C 
C 
MDO 
C 
C 
C 

Tropical Atlantic 
Japan 
Hawaii 
NW North Atlantic 
Tropical Atlantic 
Gulf of Mexico 

 Gonostoma atlanticum 200-560; Clarke, 1974** 
150; Childress et al., 1990* 
481-560; De Forest and Drazen, 2009* 
 

C 
MDO 
C 

Hawaii 
Hawaii 
Hawaii 

 Gonostoma elongatum 560-725; Clarke, 1974*,** 
80-350; Hopkins et al., 1981 

C 
night/day 

Hawaii 
SW North Atlantic 
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25-325; 425-725; Lancraft et al., 1988 
200; Childress et al., 1990*  
50-500; Ross et al., 2010 
500-1200; Sutton et al., 2010  

night/day 
MDO 
C 
C 

Gulf of Mexico 
Hawaii 
Gulf of Mexico 
Sargasso Sea 

Melamphaidae         
 Poromitra 

macrophthalmab  
450; Ebeling and Cailliet, 1974 
400; Ebeling, 1975 
640-1000; Clarke and Wagner, 1976*,** 
655; Kotlyar, 2010 

MDO 
C 
C 
C 

Southern California 
Indo-Pacific 
Hawaii 
Indian/Pacific Oceans 

Myctophidae          
Ceratoscopelus 
warmingi 

80-700; Hopkins et al., 1981 
50; Childress et al., 1990* 
>600; Craddock et al., 1992*,** 
500-900; Hulley, 1992* 
50-100;400-500; Saito and Murata, 1996 
1000; Boxshall, 2000 
 

night/day 
MDO 
C 
C 
night/day 
C 

SW North Atlantic 
Hawaii 
NW North Atlantic 
SE North Atlantic 
Japan 
tropical South Pacific 

 Diaphus perspicillatus 40-400; Balachandran and Abdul Nizar, 
1990 
surface; Gartner et al., 1989 
500-900; Hulley, 1992* 
132-353; Ross et al., 2010 

C 
 
C 
C 
C 

India 
 
Sargasso Sea 
SE North Atlantic 
Gulf of Mexico 

  
Hygophum proximum 

 
20-75; Hartmann and Clarke, 1975 
larvae below 50; Ropke, 1993 
SSL; Tsarin, 1997** 
shallow; De Forest and Drazen, 2009 
0-150; 500-1000; Drazen et al., 2011* 
 

 
C 
C 
C 
C 
night/day 

 
Tropical Pacific 
Arabian Sea 
Arabian Sea 
Hawaii 
Hawaii 

 Lampanyctus niger "H" 100-500; Hartmann and Clarke, 1975* C Tropical Pacific 
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165 (sp b); Childress et al., 1990* 
 

MDO Hawaii 

 Lampanyctus 
tenuiformis 

0-200; Kinzer and Schulz, 1985 
250; Childress et al., 1990* 
700-900; Hulley, 1992* 
81-262; Ross et al., 2010 
 

C 
MDO 
C 
C 

Tropical Atlantic 
Hawaii 
SE North Atlantic 
Gulf of Mexico 

 Taaningichthys 
bathyphilus 

650; Paxton, 1967** 
800; Ebeling and Cailliet, 1974 
600; Childress et al., 1990* 
582-1122; Garcia and Morgan, 2002* 
1000-1550; Gartner et al., 1987 

C 
MDO 
MDO 
C 
C 

Southern California 
Southern California 
Hawaii 
SW South Atlantic 
Gulf of Mexico 

Oneirodidae         
 Danaphryne nigrifilis 1082; Moller et al., 2010* ,** 

in ref to Stearn and Pietsch, 1995 
0-1011; Moore et al., 2003 

C 
 
C 

Labrador Sea 
 
NW North Atlantic 

 

Opisthoproctidae         
 
 

Opisthoproctus 
soleatus 

500-700; Krefft, 1976 
500-600; Clarke and Wagner, 1976** 
450; Childress et al., 1990* 
500-700; Gagnon et al., 2013* 

C 
C 
MDO 
C 

Tropical Atlantic 
Hawaii 
Hawaii 
N/A 

Paralepididae         
 Magnisudis atlantica 445-490; Maslenikov et al., 2013* C Bering Sea  
Serrivomeridae         
 Serrivomer sector 600; Williams and Weiss, 1973 

300; Janssens et al., 2000 
700-1800; Robison et al., 2010*,** 

C 
MDO 
C 

Southern California 
Eastern North Pacific 
Eastern North Pacific 

Sternoptychidae         
 Argyropelecus affinis 100-350,350-600; Somiya, 1976 

400-550; Hopkins et al., 1981 
night/day 
night/day 

Indian/Pacific Oceans 
SW North Atlantic 
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200-400; Bailey and Robison, 1986** 
200; Neighbors, 1988 
400-500; Kinzer and Schulz, 1988* 
225; Childress et al., 1990* 
200; Janssens et al., 2000* 

C 
MDO 
C 
MDO 
MDO 

Eastern North Pacific 
Southern California 
Tropical Atlantic 
Hawaii 
Eastern North Pacific 

  
Danaphos oculatus 

 
430-650; Clarke, 1974*,** 
430, Childress et al., 1990* 
183-914; Shinohara et al., 1994 
in ref to Eschmeyer et al., 1983 
 

 
C 
MDO 
C 

 
Hawaii 
Hawaii 
Indian/Pacific Oceans 

 

 Sternoptyx diaphana 600-900; Baird, 1971 
600-800; Badcock and Baird, 1980 
150-500; Hopkins et al., 1981 
500-1200; Bailey and Robison, 1986** 
500-800; Kinzer and Schulz, 1988 
450; Childress et al., 1990* 
600-1000; Craddock et al., 1992** 
625-725; Baird and Jumper, 1995 
422-899; Ross et al., 2010* 
700-1200; Sutton et al., 2010 

C 
average 
night/day 
C 
C 
MDO 
C 
average 
C 
C 

circumglobal 
Tropical Atlantic 
SW North Atlantic 
Eastern North Pacific 
Tropical Atlantic 
Hawaii 
NW North Atlantic 
Hawaii 
Gulf of Mexico 
Sargasso Sea 

Stomiidae         
 Aristostomias grimaldi 100-750; Clarke, 1974* 

 
C Hawaii  

 Chauliodus sloani 175-600; Clarke, 1974 
70-450; Hopkins et al., 1981 
175; Childress et al., 1990* 
450-950; Sutton and Hopkins, 1996 
100-500; Butler et al., 2001* 
984-2169; Cartes and Carrasson, 2004 

C 
night/day 
MDO 
average 
C 
C 

Hawaii 
SW North Atlantic 
Hawaii 
Gulf of Mexico 
Arabian Sea 
Mediterranean Sea 
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400; Dalyan and Eryilmaz, 2008 
 

C Mediterranean Sea 

 Flagellostomias 
boureei 

0-900; Sutton and Hopkins, 1996* 
1460; Vazquez et al., 2013 
 

average 
C 

Gulf of Mexico 
NW North Atlantic 

 Idiacanthus 
antrostomus 

150-600; Bailey and Robison, 1986** 
150; Neighbors, 1988* 
300; Smith-Beasley, 1992* 
250; Janssens et al., 2000 
500-2000; Gagnon et al., 2013 
 

C 
MDO 
C 
MDO 
C 

Eastern North Pacific 
Southern California 
Southern California 
Eastern North Pacific 
N/A 

 Photostomias liemi 0-762; Kenaley, 2009*,** 
 

C Hawaii  

 Photostomias lucingens 0-115; Kenaley, 2009*,** 
 

C Hawaii  

 Thysanactis dentex 150-700; Clarke, 1974 
0-550; Jorgensen and Munk, 1979* 
75; Childress et al., 1990* 

C 
C 
MDO 

Hawaii 
Tropical Atlantic 
Hawaii 
 

 

 

Supplementary Table 1. Depth (m) data for individual teleost species. Data represent available reported depths for each species 

circumglobally.  Type of depth is reported as minimum (MDO), maximum (max), capture (C), average or day/night depths for vertical 

migrators. Region of each study is also included. Some reported depth values are specific to the size of fish observed and analyzed in 

this study. 

* reference used for depth analysis in this study
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** reference used for presence or absence of vertical migration  

a Bathyleptus lisae is a junior synonym used in older publications 

b previously reported as megalops 
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Abstract 

Trimethylamine oxide (TMAO) and heat shock protein 70 (HSP70) are intracellular 

components directly involved in the thermal stress response, both protecting protein 

function at elevated temperatures. Due to their functionally similar roles, we address 

the simultaneous response of these constituents to increasing temperature in vivo. We 

use two elasmobranch species, which possess innately high levels of TMAO, to 

address if regulation of TMAO and HSP70 is coordinated during a 6°C increase in 

temperature for 72 hours. The spiny dogfish, Squalus acanthias, a species with no 

endogenous synthetic capacity for TMAO, was compared to the smoothhound, 

Mustelus canis, a synthesizing species. There was no increase in plasma or tissue 

TMAO with elevated temperature in either species. HSP70 accumulation was 

observed with increasing temperature in white muscle of S. acanthias but not M. 

canis. The HSP70 response in S. acanthias demonstrates that the high TMAO content 

in this species does not confer sufficient protection to offset the denaturing effects of 

elevated temperature. The lack of heat-shock response in M. canis HSP70 was 

surprising and may be explained by species-specific differences in thermal tolerance, 

maintenance of high constitutive levels of HSP70 or preferential accumulation of 

alternate counteracting solutes. Our findings are in contrast to previous studies 

conducted with elasmobranch cells in vitro that show accumulation of TMAO with 

thermal stress and subsequent suppression of a HSP70 response.  
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1. Introduction 

 Trimethylamine oxide (TMAO) is a small intracellular osmolyte and 

cytoprotectant. It acts as a chemical chaperone to conserves protein structure and 

function (Yancey and Somero, 1979; Yancey and Siebenaller, 1999; Yancey et al., 

2001) against a number of destabilizing biotic and abiotic factors including urea 

(Treberg et al., 2006), salinity (Pillans et al., 2005; Deck et al., 2016), hydrostatic 

pressure (Yancey et al., 2014; Bockus and Seibel, 2016), and temperature (see Seibel 

and Walsh, 2002; Yancey, 2005 for reviews). The majority of studies examining 

TMAO’s ability to combat thermal fluctuations in vivo have focused on teleost fishes 

and their response to cold acclimation. Rainbow smelt (Osmerus mordax) increased 

serum TMAO in response to winter-acclimatization (Raymond, 1994; Treberg et al., 

2002). Similarly, cold-water Pacific herring (Clupea harengus) express elevated serum 

TMAO compared to their temperate water counterparts (Raymond, 1998). In fact, 

some of the highest values recorded for teleosts were found in Antarctic fishes, with 

TMAO increasing total osmolarity and depressing the freezing point (Raymond and 

DeVries, 1998). TMAO accumulation has also been linked to thermal acclimation in 

response to warming temperatures. The presence of TMAO increased RNA melting 

temperatures (Pincus et al., 2008) and addition of TMAO to growth medium enhanced 

heat resistance in Escherichia coli (Velliou et al., 2010) and spiny dogfish, Squalus 

acanthias, cells in vitro (Villalobos and Renfro, 2007; Kolhatkar et al., 2014).  

 An alternative response to elevated temperature is accumulation of heat shock 

proteins (HSPs). Upregulation of the inducible isoforms of HSPs has traditionally 

been referred to as the “heat shock response” (Ritossa, 1962), with preferential 
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accumulation of HSP70 (Luft et al.,1996) a highly conserved and widely studied 

biomarker. Under a variety of stress conditions, HSP70 expression is induced to 

counteract protein misfolding (Freeman et al., 1999). HSP70 is an ATP-dependent 

protein chaperone that functions as part of the proteostasis network to prevent 

aggregation and promote refolding of misfolded and denatured proteins in 

collaboration with several co-chaperone partners and other chaperone systems (Feder 

and Hofmann, 1999; Powers and Balch, 2013; Finka et al., 2015 for reviews). A 

number of fish species increase hsp70 mRNA transcript levels and HSP70 protein in 

response to thermal stress (Basu et al., 2002; Iwama et al., 2004 for review), including 

tilapia (Molina et al., 2000), rainbow trout (Currie et al., 2000), brook trout (Lund et 

al., 2003), gilthead seabream (Feidantsis et al., 2009) and common carp (Sung et al., 

2014). Additionally, fish preconditioned to sublethal elevated temperatures 

accumulate HSP70 resulting in enhanced thermotolerance (Sung et al., 2014).  

 As TMAO and HSP70 serve similar functions, albeit by different mechanisms, 

in the thermal stress response, recent attention has focused on potential interactions 

between these pathways. S. acanthias subjected to hyposmotic stress showed 

decreasing levels of TMAO in gill tissue and subsequent accumulation of HSP70, 

while muscle TMAO and HSP70 did not change (MacLellan et al., 2015). The authors 

suggest that protein stabilization provided by TMAO, when present, may inhibit the 

HSP70 response. A similar relationship was found in S. acanthias choroid plexus 

tissue, with addition of TMAO to incubation medium suppressing HSP70 

accumulation in response to increased temperature (Villalobos and Renfro, 2007). 

Presence of extracellular TMAO also inhibited HSP70 accumulation following heat 
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shock in S. acanthias red blood cells (Kolhatkar et al., 2014). Although these studies 

provide evidence of cooperation between the two pathways, to our knowledge no work 

has been done to examine these interactions in response to elevated temperatures in 

vivo.  

 Here, TMAO and HSP70 were measured in two elasmobranch species during 

72 hours at elevated temperature. Marine elasmobranchs were used as a model system 

as they retain exceptionally high levels of TMAO (~180mmol kg-1) due to their unique 

osmoregulatory strategy of accumulating urea, a protein denaturant (Withers, 1998; 

Trischitta et al., 2012). The smoothhound (Mustelus canis), a species capable of 

TMAO synthesis, was compared to S. acanthias, which requires dietary TMAO input 

(Treberg et al., 2006). This study examines whether TMAO can be accumulated as an 

alternative to HSP70 during the thermal stress response in these species and whether 

endogenous TMAO production leads to preferential use of TMAO over HSP70. 



 

87 
 

2. Materials and methods 

2.1. Experimental animals 

S. acanthias (n=14) and M. canis (n=16) of mixed sex were captured by otter 

trawl from Narragansett Bay, RI off the F/V Virginia Marise in summers 2013 – 2015. 

Individuals ranging from 0.54 to 4.68 kg were obtained from a field site near the 

mouth of the bay with an average bottom temperature of 16.19°C. Animals were 

placed in 150 l insulated coolers with flow-through seawater and aeration up to n=3 

per cooler. Coolers were transported from Galilee, RI marina to the Graduate School 

of Oceanography, University of Rhode Island within one hour of capture. Individuals 

were tagged using a tag gun (Avery Monarch SG) with markers inserted near the base 

of the first dorsal fin. Animals were housed in 2.4 m diameter, 2850 l flow-through 

circular holding tanks up to n=5. Tanks were provided with temperature regulated 

(15°C) filtered seawater at a flow rate of 12 l minute-1. Individuals were fed a mixed 

diet of herring and squid twice a week at 2.5% body weight in accordance with 

previous studies (Wood et al., 2005; Wood et al., 2010; Liew et al., 2013). All animals 

were acclimated for a minimum of 72 hours before initiation of a temperature trial. 

2.2. Treatment 

Control individuals were maintained at 15°C ± 0.86 for 72 hours. Temperature 

was increased from 15°C to 21°C at a rate of 2°C every two hours in treatment tanks 

and held constant at 21°C ± 0.78 for 72 hours. At time 0 control specimens were 

anaesthetized with 0.075 g l-1 MS-222 dissolved in a seawater bath one at a time. 

Blood samples were obtained from the caudal vein using an 18-gauge hypodermic 

needle pretreated with 30 units heparin. Blood was centrifuged at 10,000 rpm for three 
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minutes and the plasma isolated. The sex, weight and length were recorded for each 

animal. Treated individual were similarly sampled at 2 and 20 hours. Muscle biopsies 

were also taken from the dorsal epaxial muscle of treated individuals using a 5 mm 

biopsy punch (Alimed). Tissue samples (20-50 mg) were removed and the procedure 

completed in less than two minutes. All animals were fed mixed herring and squid at 

2.5% body weight 30-48 hours after initiation of a temperature trial to ensure TMAO 

availability for S. acanthias individuals lacking a synthetic capacity. 

At the end of 72-hours, control and treatment animals were euthanized with 

0.25 g l-1 MS-222 dissolved in a seawater bath one at a time and subsequently 

cervically transected. The liver was weighed and blood plasma separated by 

centrifugation at 10,000 rpm for three minutes. Blood plasma, white and red muscle, 

and liver were flash frozen in liquid nitrogen and stored in a -80 °C freezer for later 

analysis. Terminal samples were collected in triplicate. 

2.3. Analyses 

Samples were homogenized 1:5 in 5% trichloroacetic acid (TCA) with a glass 

homogenizer or mortar and pestle on ice. Supernatant was obtained by centrifuging at 

10,000 rpm for five minutes. TMAO was measured in duplicate using the ferrous 

sulfate/EDTA method described by Wekell and Barnett (1991). Homogenates were 

run in triplicate for urea using diacetylmonoxime (Rahmatullah and Boyde, 1980).  

Soluble protein was extracted from white muscle tissue by homogenization in a 

buffer containing 50mM Tris-HCl (pH 7.5), 2% sodium-dodecyl sulfate (SDS), and 

protease inhibitor cocktail (88666 ThermoFisher Scientific). Following 

homogenization, sample protein concentrations were determined by the bicinchoninic 
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acid (BCA) assay (BCA-1KT Sigma Aldrich). Samples (15µg) were separated by 

SDS-PAGE using 4-12% Bis-Tris 10-well acrylamide gradient gels and transferred to 

a nitrocellulose membrane. Samples were immunoblotted with rabbit polyclonal anti-

Hsp70/Hsc70 primary antibodies (Agrisera, AS05 083A) and goat anti-rabbit IgG 

secondary antibodies (Invitrogen, G-21234) at 1:10000 dilution. Hsp70 bands were 

detected with SuperSignal West Femto Chemiluminescent substrate (Thermo 

Scientific 34095). Specificity was not tested as only minor non-specific bands 

distinguishable from 70 kDa were detected. Images were captured using 

autoradiography film (Life Technologies) and band intensities quantified through 

densitometry analysis using ImageJ. Bands were normalized to a S. acanthias control 

sample run adjacent to each set of samples included in the analysis.  

2.4. Statistics 

Time points within control groups were compared using one-way paired 

student’s t-test. Where sample sizes differed between time points, data were compared 

using one-way unpaired student’s t-test. Time points within treatment groups were 

compared using one-way RM ANOVA with Holm-Sidak post-hoc test. Tissue 

comparisons between treatments within species were determined using one-way 

unpaired student’s t-test. Linear regression was performed to assess variable scaling 

with mass. Significance was set at p<0.05. All analyses and graphs were generated 

with GraphPad Prism 7.0.
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3. Results 

3.1. TMAO 

After comparing two temperature treatments, 15°C and 21°C, we observed no 

significant difference in plasma TMAO content. Plasma TMAO was 74.43 ± 4.42 

mmol kg-1 and 76.41 ± 10.10 mmol kg-1 between 0 and 72 hours in control S. 

acanthias. Plasma TMAO was 77.08 ± 1.72 mmol kg-1, 68.54 ± 4.58 mmol kg-1 and 

74.42 ± 3.15 mmol kg-1 between 2, 20 and 72 hours in treated S. acanthias (Fig. 1). 

Plasma TMAO was 64.52 ± 2.05 mmol kg-1 and 68.21 ± 4.33 mmol kg-1 between 0 

and 72 hours in control M. canis. Plasma TMAO was 60.61 ± 1.8 mmol kg-1, 58.76 ± 

1.64 mmol kg-1 and 67.54 ± 5.46 mmol kg-1 at 2, 20 and 72 hours in treated M. canis 

(Fig. 1).  

 Similarly, there was no significant difference between treatments in white 

muscle TMAO. White muscle TMAO was 162.30 ± 5.98 mmol kg-1 at 72 hours in 

control S. acanthias. White muscle TMAO was 139.61 ± 5.42 mmol kg-1, 129.57 ± 

11.71 mmol kg-1 and 166.98 ± 11.87 mmol kg-1 at times 2, 20 and 72 hours in treated 

S. acanthias (Fig. 2). White muscle TMAO was 179.51 ± 9.60 mmol kg-1 at 72 hours 

in control M. canis. White muscle TMAO was 153.48 ± 4.96 mmol kg-1, 147.58 ± 

4.72 mmol kg-1 and 188.30 ± 5.69 mmol kg-1 at 2, 20 and 72 hours in treated M. canis. 

White muscle TMAO increased significantly in treated M. canis from 2 to 72 hours 

(p<0.0001, Fig. 2). 

 TMAO was not significantly different between 15°C and 21°C for any tissue in 

S. acanthias or M. canis at 72 hours. S. acanthias TMAO decreased from 37.27 mmol 
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kg-1 to 10.01 mmol kg-1 as liver weight increased from 87.37 to 432.40 g. The scaling 

relationship was defined by y=-0.06856x + 39.81 with an r2 of 0.59 and p=0.0012 

(Fig. 3). Liver TMAO was corrected to a common weight of 250 g in S. acanthias 

before further analysis. Plasma TMAO was 74.67 ± 5.07 mmol kg-1 in control and 

72.41 ± 3.36 mmol kg-1 in treated S. acanithas. White muscle TMAO was 165.88 ± 

4.74 mmol kg-1 in control and 157.84 ± 7.86 mmol kg-1 in treated S. acanthias. Red 

muscle TMAO was 101.72 ± 6.45 mmol kg-1 in control and 97.10 ± 9.77 mmol kg-1 in 

treated S. acanthias. Liver TMAO was 21.37 ± 4.38 mmol kg-1 in control and 24.04 ± 

3.02 in treated S. acanthias (Fig. 4A). Plasma and white muscle TMAO for control 

and treated M. canis at 72 hours are the same as reported above. Red muscle TMAO 

was 123.21 ± 5.87 mmol kg-1 in control and 118.15 ± 3.10 mmol kg-1 in treated M. 

canis. Liver TMAO was 41.28 ± 1.61 in control and 46.83 ± 3.02 in treated M. canis 

(Fig. 4B).  

3.2. Urea 

 There was no significant difference in urea concentration between treatments 

within tissue types for either S. acanthias or M. canis at 72 hours. Urea was around 

400 mM in all tissues (plasma, white and red muscle) except liver where it was closer 

to 200-300 mM. Plasma urea was 387.37 ± 27.23 mM in control and 407.60 ± 20.25 

mM in treated S. acanthias. White muscle urea was 378.84 ± 22.93 mM in control and 

388.54 ± 10.37 mM in treated S. acanthias. Red muscle urea was 429.75 ± 22.08 mM 

in control and 391.25 ± 24.62 mM in treated S. acanthias. Liver urea was 185.61 ± 

13.41 mM in control and 185.61 ± 13.41 mM in treated S. acanthias (Fig. 5A). Plasma 

urea was 407.77 ± 12.71 mM in control and 363.51 ± 20.14 mM in treated M. canis. 



 

92 
 

White muscle urea was 404.47 ± 24.30 mM in control and 379.88 ± 21.01 mM in 

treated M. canis. Red muscle was 405.34 ± 27.19 mM in control and 384.23 ± 11.37 

mM in treated M. canis. Liver urea was 265.04 ± 22.88 mM in control and 297.39 ± 

25.31 mM in treated M. canis (Fig. 5B). 

3.3. HSP70 

There was no significant difference in HSP70 between 15°C and 21°C white 

muscle in M. canis (Fig. 6A and C) or between either M. canis group and S. acanthias 

15°C control. In contrast, 21°C S. acanthias exhibited an almost 3 fold higher relative 

HSP70 concentration than 15°C individuals at 72 hours (Fig. 6B and D, p=0.0008).
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Discussion 

Both S. acanthias and M. canis are acutely temperature sensitive with seasonal 

thermal fluctuations regulating migration patterns both in - offshore and latitudinally 

(Bigelow and Schroeder, 1948; Compagno, 1984; Rountree and Able, 1996; Stehlik, 

2007; Ulrich et al, 2007). Adult S. acanthias in the northwest Atlantic express a 

thermal preference of ~10-11°C (McMillan and Morse, 1999; Stehlik, 2007) with 

catches occurring at temperatures as low as 6°C (Stehlik, 2007). This population of S. 

acanthias was found off the coast of South Carolina within a range of 10.5 – 29.1°C 

and exhibited a mean catch temperature of 15.45°C. S. acanthias appeared in this area 

when temperatures dropped to 13°C and departed when temperatures reached 19°C 

(Ulrich et al., 2007).  

Catch rates for the northwest Atlantic population of M. canis decline 

significantly at temperatures above 21°C (Skomal, 2007). M. canis was shown to 

occur within a narrower thermal range of 12.2 - 24.5°C with a mean of 17.72°C. 

Temperature dictated migration in this region with M. canis arriving when 

temperatures dropped to 18°C and disappearing when temperatures rose above 19°C 

(Ulrich et al., 2007). The inner waters of estuaries serve as nurseries for this species 

(Skomal, 2007), and likely represent the upper end of their recognized thermal range. 

These upper temperatures do not accurately describe the preferred habitat of adults 

that are found deeper and further offshore - up to depths greater than 300m (Zagaglia 

et al., 2011).  

Both species co-occurred in this study. The capture site (41°26.3’ N, 

71°25.4’W) in Narragansett Bay, RI had May – September bottom temperatures 



 

94 
 

ranging from 7.54°C to 21.09°C and averaging 16.19°C. Although adult M. canis is 

found further inside the bay than S. acanthias (personal observation), surface 

temperatures in this area average 16-17°C in spring-summer (Collie et al., 2008), with 

temperatures experienced by these demersal species notably lower. The northwest 

Atlantic population of M. canis seems to prefer temperatures slightly above those of S. 

acanthias but both species favor temperatures well below 21°C. Based on previous 

reports of these populations’ recognized thermal range and tolerance as well as our 

own observations, both species are likely stressed at the treatment temperature of 

21°C. 

Previous authors have shown accumulation of both TMAO and HSP70 with 

elevated temperature stress. A recent in vitro study showed intracellular transport and 

accumulation of TMAO with further suppression of the HSP70 heat shock response in 

S. acanthias red blood cells (Kolhatkar et al., 2014). At the organismal level, we find 

no evidence of plasma or tissue TMAO accumulation in 21°C treated individuals 

relative to 15°C controls in these two shark species (Fig. 1, 2, 4). Although TMAO 

increased over time in M. canis 21°C white muscle (Fig. 2), treated individuals did not 

exhibit higher TMAO than 15°C controls and thus this increase cannot be directly 

attributed to a temperature effect. If these sharks do induce TMAO in response to 

elevated temperature, 72 hours may not have been long enough for the increase to 

become apparent; although elasmobranch red blood cells in culture were able to 

accumulate TMAO from the external medium within two hours of encountering 

thermal stress (Kolhatkar et al., 2014). The dynamics regulating these interactions may 

be more complex at the organismal level or the +11°C employed in the Kolhatkar 
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study may have elicited a stronger cellular response than the +6°C administered here. 

Further, Kolhatkar targeted an elevated temperature of 24°C compared to our 21°C, a 

condition deviating more significantly from this species thermal optimum and possibly 

resulting in a higher level of treatment stress. 

Elasmobranchs with no endogenous synthetic capacity for TMAO are 

dependent on dietary contributions for maintenance and accumulation (Treberg and 

Driedzic, 2002; Treberg et al., 2006). Although food was offered during the 

experiment, consumption was suppressed in some heat stressed individuals (personal 

observation), which would have limited availability of dietary TMAO for 

accumulation. This may have contributed to the lack of increase at 21°C in 

nonsynthesizing S. acanthias (Fig. 4A). In fact, the repressed feed response at elevated 

temperature is problematic as recent evidence suggests all elasmobranchs depend on 

dietary contributions for TMAO maintenance regardless of synthetic capacity (Bockus 

and Seibel, in prep). This could further explain the lack of accumulation with elevated 

temperature in either species (Fig. 4A-B). However, plasma TMAO spikes 20 hours 

postprandially (Wood et al., 2010) providing ample time for assimilation in 

individuals that did feed.  

Another possibility is that TMAO accumulation is not initiated as a thermal 

protective mechanism at the whole organism level, with preferential regulation of 

other cytoprotective pathways. Accumulation may be restricted by the high levels of 

urea found in elasmobranch tissue (Fig. 5A-B). Urea is retained in elasmobranchs as a 

major osmolyte and their primary form of nitrogenous waste (Forster and Goldstein, 

1976; Withers, 1998; Trischitta et al., 2012). Here, urea averaged ~400 mM in plasma 
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and muscle of these species, levels well established in the literature for marine 

elasmobranchs (Kempton, 1953; Walsh et al., 1994; Wood et al., 2015). Regulation of 

urea and TMAO is tightly coupled as the two act in an additive capacity for optimal 

protein stabilization (Mello and Barrick, 2003) and are generally found in a 2:1 ratio 

of urea to TMAO + other stabilizing osmolytes (Yancey and Somero, 1979). The high 

concentration of urea in elasmobranch cells may diminish their capacity to adjust 

TMAO to combat alternate stressors due to co-regulation of these compounds. In 

comparison, ammonotelic teleost fishes have the ability to synthesize urea, particularly 

during early development (LeMoine and Walsh, 2013), but retain negligible levels 

(Wood et al., 1995; Raymond, 1998; Wood et al., 2015). These species may serve as 

better models for future studies examining TMAO regulatory processes in response to 

environmental perturbations.  

Like TMAO, HSP70 is a known component of the stress response that acts on 

diverse protein substrates to protect them from inactivation. Elevated HSP70 levels 

elicited by increasing temperatures have also been shown to provide additional 

protection against subsequent stresses such as exposure to environmental pollutants 

(Padmini and Rani, 2008) and ammonia (Sung et al., 2014). Surprisingly, no increase 

in HSP70 was observed in M. canis at 21°C compared to 15°C.  However, we 

observed significantly higher levels of HSP70 in white muscle of S. acanthias at 21°C 

compared to 15°C (Fig. 6). Although S. acanthias may transiently experience 

temperatures in the mid to upper 20s in the wild, the present study shows they are 

temperature stressed at 21°C, further supported by previous catch data and adults 

preference for cooler, deeper waters (Stehlik, 2007). As TMAO was not shown to 
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increase in either species (hypothetically with the ability to combat the HSP70 

response), the question remains as to why HSP70 increased in S. acanthias but not M. 

canis. 

M. canis is not likely more temperature tolerant than S. acanthias, based on 

this species’ narrower thermal range. Therefore, the lack of HSP70 accumulation in M. 

canis at 21°C is surprising. As has been shown to occur in Antarctic ice fishes (Place 

et al., 2004; Place and Hofmann, 2005), constitutively high expression of inducible 

HSP70 in M. canis may impart partial protection against a rise in temperature. 

Although 15°C M. canis HSP70 levels were not significantly higher than 15°C S. 

acanthias, relative expression was around 1.0 compared to 0.5 respectively (Fig. 6). 

Further, the methods used in this study did not differentiate between constitutive and 

inducible isoforms, which would provide a clearer understanding of innate differences 

between these species.  

Aside from the regulation of HSPs, M. canis may combat thermal stress using 

different mechanisms altogether. A number of other osmolytes are categorized as 

“counteracting” solutes (Yancey, 2005) and have the ability to protect cellular 

function against a variety of stressors, including thermal fluctuations. These include 

certain methylamines, carbohydrates and amino acids; although TMAO is one of the 

most effective stabilizers, lowering the Km of NADH under elevated pressure more 

than betaine, myo-inositol or glycine (Yancey et al., 2004). Organisms express a wide 

array of these compounds (Yancey, 2005) with preferential accumulation changing by 

clade. Some cephalopods and molluscs retain betaine as their primary osmolyte, while 

crustaceans and decapods accumulate glycine, and euphausids and fishes express high 
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levels of TMAO (Carr et al., 1996). However, significant levels of TMAO and other 

osmolytes, such as taurine, are also retained in many of these organisms. 

Accumulation of other protein stabilizers in response to thermal stress and their 

cooperation with HSP70 is an understudied alternative in need of further investigation. 

Here, we show no increase in plasma or tissue TMAO in response to thermal stress. 

These data are in contrast to previous in vitro studies showing elevated TMAO and 

suppressed accumulation of HSP70. Additionally, our observation of elevated HSP70 

in S. acanthias at 21°C demonstrates that innate muscle TMAO (around 180 mmol kg-

1 in both species) is not sufficient to combat the destabilizing effects of elevated 

temperature in these elasmobranchs. Although it is possible that the TMAO and 

HSP70 responses are effected differently by elevated temperature and the pathways 

are more independent than previously thought. Further, we show differences in these 

species HSP70 response at 21°C. A more detailed study of the factors contributing to 

these interactions is warranted. HSP70 genes do not have introns in fishes (Molina et 

al., 2000) and upregulation can occur in a matter of minutes. However, evidence 

suggests changes in TMAO may take 2 to 20 hours depending on availability of 

substrates for synthesis vs. absorption from the diet (Wood et al., 2010; Kolhatkar et 

al., 2014). TMAO regulation may be further limited by ecological availability of prey 

items and coupling to urea in ureosmotic organisms. Much remains to be done to 

elucidate the role of alternate counteracting solutes in the thermal stress response and 

how these cytoprotectants work in concert in elasmobranchs. 
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Figure 1. Plasma TMAO (mmol kg-1) during 72 hours at control and elevated 

temperature. 15°C control (n=7 at time 0, n=3 at time 72) and 21°C treated (n=4) 

Squalus acanthias and 15°C control (n=8) and 21°C treated (n=8) Mustelus canis. 

Data presented as means ± SEM. No significant differences found between treatments 

within species (one-way unpaired student’s t-test) or between time points within 

treatments (one-way RM ANOVA or one-way paired student’s t-test, p<0.05).
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Figure 2. White muscle TMAO (mmol kg-1) during 72 hours at control and 

elevated temperature. 15°C control (n=3) and 21°C treated (n=4) Squalus acanthias 

and 15°C control (n=8) and 21°C treated (n=8) Mustelus canis. Data presented as 

means ± SEM. * indicates a significant difference from 2 hours within a treatment 

group (one-way RM ANOVA, p<0.05). No significant differences between treatments 

within species (one-way unpaired student’s t-test, p<0.05). 
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Figure 3. TMAO content (mmol kg-1) decreases with increasing liver weight in 

Squalus acanthias. As liver mass increased TMAO significantly decreased in S. 

acanthias (n=14). Linear regression y=-0.06856x + 39.81, r2=0.59, p=0.0012.
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Figure 4A-B. Tissue TMAO (mmol kg-1) at control and elevated temperature in 

Squalus acanthias and Mustelus canis at 72 hours. A) Plasma, white muscle and 

liver in 15°C control (n=6) and 21°C treated (n=8) S. acanthias. Red muscle control 

(n=3) and treated (n=4) values also included. B) 15°C control (n=7 plasma and liver, 

n=8 white and red muscle) and 21°C treated (n=8) M. canis. Data presented as means 
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± SEM. No significant differences between treatments within tissue types (unpaired 

student’s t-test, p<0.05).
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Figure 5A-B. Tissue urea (mM) at control and elevated temperature in Squalus 

acanthias and Mustelus canis at 72 hours. A) Plasma, white muscle and liver in 

15°C control (n=6) and 21°C treated (n=8) S. acanthias. Red muscle control (n=3) and 

treated (n=4) values also shown. B) Plasma, white and red muscle, and liver for 15°C 

control (n=8) and 21°C treated (n=8) M. canis. Data presented as means ± SEM. No 

significant differences between treatments within tissue types (unpaired student’s t-

test, p < 0.05).
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Figure 6. Hsp70 accumulation in 15°C control and 21°C treated Mustelus canis 

and Squalus acanthias at 72 hours. Quantitation of Hsp70 in white muscle tissue by 

densitometry (A and B) and corresponding Hsp70 immunoblots (C and D) for M. 

canis (A and C, n=4) and S. acanthias (B and D, n=4) held at 15°C and 21°C. Relative 

Hsp70 expression (15 µg total protein per lane) was not significantly different between 

15°C control and 21°C M. canis or between either M. canis group and S. acanthias 

control. However, 21°C treated S. acanthias was higher than S. acanthias 15°C control 

(two-tailed student’s t-test, p=0.0008).
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Abstract 

As osmoconformers, elasmobranchs possess a suite of osmolytes to maintain water 

and solute balance. Previous studies have found interspecific differences in the ability 

of developing elasmobranch embryos to iono- and osmoregulate, which have been 

largely attributed to alternate reproductive strategies. However, most work has focused 

on plasma urea and ions while TMAO, the second most common intracellular 

osmolyte, and tissue osmotic composition have largely been ignored. Here, we provide 

tissue values for urea and TMAO in late term embryos and neonates of the 

ovoviviparous spiny dogfish, Squalus acanthias. We also present the first recorded 

tissue osmotic pressure for pups of this species. Our data show that although 

osmolarity is consistent with adult values, the two primary osmolytes are significantly 

lower, suggesting a developmental shift in the major osmotic constituents. These 

findings are in direct contrast with previously published data in Raja erinacea, 

pointing to further divergence in the early osmotic strategies of different elasmobranch 

groups. 
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Introduction 

 Elasmobranchs (sharks, skates and rays) retain a suite of molecules, including 

sugars, polyols, free amino acids, methylamine compounds and urea, to roughly match 

the osmotic strength of their tissues to that of seawater (~1,000 mOsm), an 

osmoregulatory strategy referred to as osmoconformation. These constituents differ in 

their interactive properties within the cell, and have been categorized as perturbing, 

compatible (having a minimal macromolecular effect) and counteracting solutes, 

which stabilize proteins that may be otherwise denatured by cellular or external 

stressors (Yancey, 2005).  

Unlike other marine animals, most elasmobranchs studied to date retain urea, a 

strong destabilizing agent, as their primary osmolyte. Urea concentrations may reach 

400 mM, and account for almost half an individual’s osmotic pressure; values far 

above the threshold needed to impart protein denaturation. To offset urea’s perturbing 

effects, elasmobranchs also accumulate large concentrations of the counteracting 

solute trimethylamine oxide (TMAO). TMAO content is tightly correlated to 

accumulation of urea and organisms generally exhibit a ratio of 2:1 Urea:TMAO + 

other methylamines (Yancey and Somero, 1979), making TMAO the second most 

common intracellular osmolyte in these organisms. 

Three distinct modes of reproduction - oviparity, ovoviparity and viviparity - 

are present in elasmobranchs and development of the osmoregulatory system in the 

embryo is hypothesized to depend on the composition of the medium surrounding the 

egg and, consequently, on the reproductive strategy employed by the species 

(Kormanik, 1993).  The enzymes necessary for urea synthesis are functional early in 
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both shark and skate ontogeny (Read, 1968) and plasma values reported for late-term 

embryos suggest a fully developed osmoregulatory capacity (Price and Daiber, 1967; 

Read, 1968; Evans et al., 1982).  However, plasma osmolytes may not represent the 

osmotic condition of the entire individual. Osmolyte values in embryonic tissue have 

not, with few exceptions (Read, 1968b; Kormanik et al., 1992; Steele et al., 2004), 

been previously studied and only one of these conducted in an ovoviviparous species 

(Kormanik et al., 1992).   

In this study, we present osmolyte values, including urea and TMAO, for the 

muscle tissue and yolk of late term embryos and neonates (less than 24 hours old, 

hereafter combined and referred to as pups) as well as adults of the ovoviviparous 

spiny dogfish, Squalus acanthias.  We sought to determine how the intracellular 

osmotic state changes through ontogeny and how it compares to literature values of 

elasmobranch species differing in their reproductive strategies.   
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Materials and Methods 

Sample collection 

 Adult male and female spiny dogfish (Squalus acanthias) were caught in 

summers 2013 and 2014 in Narragansett Bay, Rhode Island by otter trawl off the F/V 

Virginia Marise. Animals were provided with ventilated, chilled seawater and 

transported to the seawater facility at the Graduate School of Oceanography, 

University of Rhode Island. Individuals were kept in 2850 l continuous flow circular 

holding tanks up to n = 5. Holding facilities were provided with course filtered 

seawater and temperature maintained at 15°C for the duration of the experiment. 

Adults were held up to two months and fed a mixed diet of herring and squid twice 

weekly at 2.5% body weight. Neonate dogfish (younger than 24 hours) were berthed 

in captivity and late term embryos dissected live from in utero. As no significant 

variability was found between pups collected by these various methods all data have 

been combined. Only late term (>30 cm, yolk sac still present) or fully developed (no 

yolk sac) individuals were used in this study. Due to collection methodology, it was 

not possible to discriminate between the two early ontogenetic life stages during 

analysis.  

 All animals were euthanized with MS-222 (0.15 g l-1 seawater) in accordance 

with IACUC #AN13-05-020. White muscle was excised from the dorsal epaxial of 

adult (n = 11) and pup (n = 37) spiny dogfish and immediately flash frozen in liquid 

nitrogen for later analysis. When yolk sacs were present, they were also removed and 

similarly frozen. 

Laboratory analyses 
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 Tissue was homogenized 1:5 (wet weight:volume) in 5% saturated 

trichloroacetic acid. Homogenates were then assayed for TMAO by the ferrous-sulfate 

method whereby concentration is determined spectrophotometrically by a colorimetric 

reaction between reduced TMAO and 2% picric acid (Wekell and Barnett, 1991). 

TMA is generally very low in marine elasmobranchs (< 2 mmol kg-1) and no 

corrections for endogenous TMA have been made. Homogenates were further 

analyzed for urea, again a colorimetric reaction that spectrophotometrically determines 

concentration against known standards (Rahmatullah and Boyde, 1980). Fresh muscle 

tissue was homogenized 1:1 in deionized water and total osmolarity (mOsm) 

calculated using the freezing point of the solution as determined by the automatic 

osmometer micro-osmette model 5004 (Precision Systems Inc.). Group means ± s.e.m. 

were compared with two-way Student’s t-tests and statistics and graphs generated 

using GraphPad Prism 7.0. Student’s t-test for osmolarity was run with Welch’s 

correction for unequal variance.   
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Results and Discussion 

 Adult spiny dogfish, S. acanthias, exhibited an average tissue TMAO content 

of 154.84 ± 7.43 mmol kg-1 wet wt. In contrast, pups had an average TMAO content 

of only 42.13 ± 2.98 mmol kg-1, more than 3.5 times lower than the adult average (p < 

0.0001) and slightly lower than the whole embryo content of 67.8 mmol kg-1 reported 

by Kormanik et al. (1992). Urea followed a similar trend with adult values averaging 

463.70 ± 28.00 mmol kg-1 wet wt. and pup concentrations less than half that (220.95 ± 

15.21 mmol kg-1; p < 0.0001, Fig. 1). Yolk TMAO and urea were 58.41 ± 2.99 mmol 

kg-1 and 178.13 ± 10.34 mmol kg-1 respectively, similar to pup tissue values. 

 The discrepancy between adult and pup values of the two primary osmolytes 

reported here in Squalus acanthias is in contrast to the situation described for skates. 

Steele et al. (2004) showed little skate, Raja erinacea, embryos and adults contain 

similar concentrations of both osmolytes as early as four months after oviposition and 

well before the embryo hatches from the egg case at nine months. Big skate, Raja 

binoculata, embryos were also shown to exhibit urea at similar concentrations to 

adults with no change in urea or TMAO through development (Read, 1968b). The 

species specific differences between groups may be attributed to alternate modes of 

reproduction in the ovoviviparous spiny dogfish compared to the oviparous skates. 

The majority of literature in this area has concluded that early osmoregulatory ability 

in elasmobranchs can best be ascribed to reproductive strategy (Price and Daiber, 

1967; Evans et al., 1982; Kormanik, 1992).  

The embryos of oviparous species develop inside a highly permeable egg case 

deposited on the sea floor, subjecting the developing embryo to full strength seawater 
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and requiring a working osmotic system soon after fertilization (Price and Daiber, 

1967; Kormanik, 1989). Ovoviviparous species on the other hand begin in egg cases, 

which hatch inside the mother where the embryos finish developing in utero. The 

uterine environment during the first part of development bathes the embryo in a 

solution similar to the composition of maternal plasma establishing low salt and urea 

gradients and relaxing pressure on the osmoregulatory needs of the early individual. 

During the second part of development, the uterine fluid undergoes a compositional 

change and the embryo is surrounded by a medium with characteristic similarities to 

seawater (Kormanik and Evans, 1986). At this time the individual must be able to 

fully osmoregulate in order to maintain water and solute balance (Evans et al., 1982). 

Therefore, ovoviviparous species have a delayed requirement for osmoregulatory 

development based on ionic and osmotic gradients established by the surrounding 

medium. Lastly, viviparous species complete development inside a placental 

environment with fluid resembling the composition of maternal plasma, greatly 

reducing the need for embryonic ionic and osmotic regulation (see Price and Daiber, 

1967; Kormanik, 1992; Kormanik, 1993 for review).  

 These differences in embryonic environment readily explain why the oviparous 

little skate would exhibit early osmoregulatory development.  It may also explain why 

near-term spiny dogfish display a fully operational osmoregulatory system (Kormanik, 

1992). In accordance with this view, we found the tissue osmotic strength of the spiny 

dogfish pup to be 943.3 mOsm and closely match that of adults at 1,009 mOsm (p = 

0.3112, Fig. 2) and the expected value of seawater around 1,000 mOsm. Therefore, 

although the two most important osmolytes, urea and TMAO, were found at 
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concentrations significantly lower than expected, total osmolarity is enough to 

maintain osmotic balance against seawater. These data suggest a large shift in tissue 

osmolyte composition between late term / early life pups and adult spiny dogfish, 

during which urea and TMAO values progressively increase, while some other 

osmolytes or salts decrease, to adult levels.  

Low pup TMAO contents may be explained by limited availability of the 

compound itself. Spiny dogfish do not exhibit the enzyme responsible for endogenous 

TMAO synthesis (Treberg et al., 2006) and rely to an extent on absorption from the 

diet (Treberg and Driedzic, 2002; Bockus and Seibel, in prep); possibly limiting 

accumulation until the pup has eaten its first meal. This limitation may also facilitate 

the concomitant observation of low urea in these pups due to a limited counteracting 

capacity. As mentioned above, optimal protein stabilization is achieved by a 2:1 ratio 

of urea to TMAO + other methylamines and previous studies have shown R. erinacea 

embryos to maintain this ratio early in embryogenesis (Steele et al., 2004). If TMAO 

is limiting, perhaps accumulation of urea is restricted until the cell is able to protect 

against its destabilizing properties via TMAO (or other counteracting solute) 

accumulation. Steele et al. (2004) also showed R. erinacea embryos to rely more 

heavily on TMAO than other counteracting solutes during embryonic development, 

further supporting the possibility that dietary regulation of TMAO may be limiting 

urea accumulation. 

 We show that pups contain significantly lower tissue urea and TMAO than 

adults but exhibit a similar total osmotic pressure. These findings imply a large shift in 

the cellular osmolyte constituents present between birth and adulthood, during which 
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urea and TMAO increase significantly and take over as primary osmolytes; a shift that 

may impose additional restrictions on this group. For example, low levels of TMAO, 

which is the most effective counteracting solute present in the tissue, due to possible 

accumulation restrictions in early ontogenetic stages may render pups particularly 

susceptible to environmental stress. Our findings also raise an important question 

regarding which solute (or solutes), if not urea and TMAO, act as the primary 

osmolyte in pup spiny dogfish. Additionally, this data is in contrast to the oviparous 

species previously studied, which retain a similar osmolyte milieu through 

development and into adulthood.  This suggests divergence in the osmotic 

mechanisms employed by the early life individuals of different elasmobranch groups 

and confirms the need to differentiate developmental osmoregulatory data based on 

reproductive strategy.
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Figure 1. Primary osmolytes of adult and pup Squalus acanthias. TMAO (left Y-axis) 

and urea concentrations (right Y-axis) were compared in the white muscle of adult and 

pup spiny dogfish (S. acanthias). All values reported as mean±s.e.m. and analyzed 

with two-way Student’s t-tests. Adult dogfish (n = 9) exhibited 3.5 fold higher TMAO 

(mmol kg-1 wet wt.) than dogfish pups (n = 28) and urea concentrations (mmol kg-1) in 

adults (n = 11) were twice those seen in similar pups (n = 37). TMAO was 

significantly lower in the white muscle of S. acanthias pups (p < 0.0001) than the 

white muscle of adults, with urea also accumulating at significantly lower 

concentrations (p < 0.0001). Yolk TMAO (n = 10) and urea (n = 12) values also 

shown.  
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Figure 2. Total osmolarity (mOsm) of adult and pup Squalus acanthias. Total tissue 

osmolarity of white muscle in mature spiny dogfish (n = 8) and pups (n = 7). Values 

reported as means±s.e.m. and analyzed with a two-way Student’s t-test with Welch’s 

correction for unequal variance. Osmolarity was not significantly different (p = 

0.3112) between the two and roughly matched the expected osmotic strength of 

seawater.  
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