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ABSTRACT

Well-defined relationships between oligonucleotide

properties and hybridization signal intensities (HSI)

can aid chip design, data normalization and true

biological knowledge discovery. We clarify these

relationships using the data from two microarray

experiments containing over three million probes

from 48 high-density chips. We find that melting

temperature (Tm) has the most significant effect on

HSI while length for the long oligonucleotides

studied has very little effect. Analysis of positional

effect using a linear model provides evidence that

the protruding ends of probes contribute more than

tethered ends to HSI, which is further validated by

specifically designed match fragment sliding and

extension experiments. The impact of sequence

similarity (SeqS) on HSI is not significant in compar-

ison with other oligonucleotide properties. Using

regression and regression tree analysis, we prior-

itize these oligonucleotide properties based on their

effects on HSI. The implications of our discoveries

for the design of unbiased oligonucleotides are

discussed. We propose that isothermal probes

designed by varying the length is a viable strategy

to reduce sequence bias, though imposing selection

constraints on other oligonucleotide properties is

also essential.

INTRODUCTION

Microarray technologies have become widely used in
genome-wide gene expression studies. However, the
interpretation of microarray data can be challenging
because of technical and biological variation (1) and bias
introduced by differences in probe sequences. Mounting
evidence (2–6) has shown that sub-optimally designed
probes are widely used in common microarray platforms.
Presently, the noise resulting from biological and technical
variation can be largely removed by using a number of
different controls and proper preprocessing methods.
Removing the sequence-biased signals is more difficult
due to insufficient knowledge of the basis and components
of noise caused by sequence bias. It is generally beneficial
to minimize sequence similarity among probes, minimize
the likelihood of secondary structure formation, achieve
melting temperatures with a limited target range, max-
imize local complementarity and maintain a reasonably
fixed oligonucleotide length (7,8). However, a comprehen-
sive study of the relative importance of each of the factors
for HSI has not been conducted, partly because of the cost
to perform large-scale experiments for studying how
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oligonucleotide properties affect hybridization. Currently,
most experiments performed to explore design criteria are
small scale and can cover only a few oligonucleotide
properties (4,7,9–11). Small-scale experiments can be
well designed and controlled; however, they typically do
not comprehensively evaluate a multitude of attributes
that affect HSI or investigate interactions among these
attributes.

Tm is known to be crucial for nucleic acid hybridization,
but to what degree Tm affects HSI is unknown. Micro-
array signal intensity has been shown to increase mono-
tonically with increasing negative free-energy change (12),
implying that HSI increases positively with Tm (because
the change of free energy is Tm based). A relationship
between HSI and Tm is implicated in earlier melting
experiments (13). In addition to Tm, the relationship
between length and HSI for long oligonucleotides has not
been comprehensively studied. One study covering oligo-
nucleotides with lengths of 25, 50, 70, 100, 150 and 500 nt
(14) concluded that longer probes generally yield better
signal intensity. However, lengths of 100 nt or longer are
rarely used in existing microarray technology because of
difficulties in synthesis. Signals change radically from 25 to
50 nt and also from 70 to 100 nt, but there is very little
change between 50 and 70 nt. With a few widely spaced
lengths, it is difficult to accurately assess a relationship
between length and HSI. SeqS has been a major concern
since the advent of microarrays; however, only a few
studies (7,15,16) have addressed the effects of SeqS on
HSI, and the results from these studies are limited to
homology beyond which cross-hybridization can occur.
The effect of secondary structures on HSI has been
implicated in multiple studies (4,17–20); however, the
probes that were studied are exclusively of short oligonu-
cleotides. Only one study (21) covered long oligonucleo-
tides, but the effect of secondary structure can be observed
on only 23 of 54 chips, suggesting nothing more than a
weak and inconsistent relationship between secondary
structures and HSI.

In this study, we explore a large quantity of expression
and expression tiling microarray data to define relation-
ships between oligonucleotide properties and HSI to assist
in the design of unbiased probes or in the normalization of
raw data that arise from biased probes. We calculate
several oligonucleotide properties including Tm, SeqS,
longest polyN, repeats, and others, and then perform a
comprehensive study of these properties using regression
tree analysis. We provide a ranking of the various
oligonucleotide properties with regard to their effect on
HSI, and show evidence for interactions among different
oligonucleotide attributes. The possible mechanism for the
effect of each oligonucleotide property on HSI is
discussed.

MATERIALS AND METHODS

Microarray and data preprocessing

Two datasets were used in this study. Dataset I contains
39 high-density human gene expression arrays manufac-
tured by NimbleGen Systems (www.nimblegen.com),

each with 388 486 probes from �36000 human locus
identifiers from the HG17 assembly. All probes are
60-mers with a varying melting temperature between
458C and 768C, according to the formula shown in the
next section. All chips were hybridized to genomic
DNA (gDNA) that was extracted from human embryonic
stem cells (hESCs) and then sonicated into fragments with
an average length of 300 base pairs (bp) before being
labeled with Cy3. Raw data were extracted using
NimbleScan software v2.1. The signal intensities from
these arrays were normalized with the Robust Multiple-
chip Analysis (RMA) algorithm (22). Dataset II is a set of
nine expression-tiling arrays with a resolution of 22 nt,
each containing about 385 000 probes to interrogate the
expression of 32 424 regions throughout the genome. All
probes have a design target Tm of 568C according to the
formula provided in the next section. The actual Tm varies
between 468C and 638C and the length ranges from 45 to
75 nt. All of these nine chips were hybridized to cDNAs
that represents mRNAs extracted from undifferentiated
hESCs. The expression raw data were extracted using
NimbleScan software v2.1. To correct for systemic bias
caused by sample labeling and other sources, we applied
qspline normalization to this tiling array data (23). We
then conducted median normalization for the log probe
intensities across chips based on the control sets that were
tiled on the chips. All arrays used to produce Dataset I
and Dataset II were manufactured by NimbleGen
Systems, using their Maskless Array Synthesis technology
(24). There was a 5-nt thymidine linker between each
probe and the glass surface of each chip.
While we are using an expression tiling array design in

Dataset II, we do not utilize target level analysis (e.g.
evaluating the probes as a probe set for one cDNA) in this
article, as this article focuses on the properties of the
oligonucleotide probes.

Calculation of oligonucleotide properties

The properties of oligonucleotides calculated in this study
include melting temperature (Tm), oligonucleotide length,
GC content, entropy change (iS), enthalpy change
(iH), free energy change (iG), longest polyN, repetitive
sequence (repeat), LSL, the potential for secondary
structure and sequence similarity. Tm was calculated
with nearest neighbor model using the formula from
(21,25) which was slightly modified based on the condi-
tions used in this study:

Tm ¼ ð�Hx1000Þ=ðAþ�Sþ R lnðCt=4ÞÞ�

ð16:6 log
ð½Naþ�=ð1:0þ0:7½Naþ�ÞÞ
10 �269:3Þ � F

where [Na+]=0.6M, A is helix initiation factor equal to
�10.8, R is the universal gas constant (1.987 cal/deg/mol),
Ct is the molecular concentration of the oligonucleotide
strands estimated from the probe density and volume
of hybridization buffer used in this study, and F is
the correction in formamide, which is 0.638C per 1%
formamide.
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The changes of entropy, enthalpy and free energy
of each oligonucleotide were calculated based on the
position-dependent nearest neighbor relationships of
nucleotides along probe sequences, using the unified
parameters described previously (26). Initial or terminal
ends have a penalty because they contribute less to overall
stability. Longest polyN and repeat are calculated as
follows. The potential for secondary structure, represented
by the minimum energy folding (MEF), the optimal
folding (OF) and the length of a potential stem-loop
(LSL), were computed with the following programs;
Minimum energy folding (MEF) was calculated using
hybrid-ss-min program, which is contained in
OligoArrayAux package (http://frontend.bioinfo.rpi.edu/
applications/hybrid/man/) and optimal folding (OF) is
calculated using mFold, which was used for calculating
secondary structure of DNA oligonucleotides (27), LSL
was computed by using the palindrome application
contained in the EMBOSS package (http://emboss.sour-
ceforge.net/apps/). The length of the longest stretch was
selected to represent the longest polyN. All polyN
stretches were found by regular expression and then
sorted by length. All repeats, including all polyN stretches
with a minimal length of two and the nucleotide stretches
containing at least two different bases and having at least
one repeat in the sequences were found by regular
expression and exhaustive searching respectively. All
stretches were summarized and then normalized to the
lengths of oligonucleotides to represent the repeat.
Sequence similarity (SeqS) was computed as follows: (1)
Performed Basic Local Alignment Search Tool (BLAST)
analysis to find the regions that have over 70% homology
to the oligonucleotide of the query. The unmasked human
genome sequences of HG18 assembly were used as the
database; (2) Fetched the sequences that have over 70%
matches to the query sequence; (3) All sequences with 70%
match to a given oligonucleotide were aligned and SeqS
was calculated using the following formula:

SeqS ¼ ð
XL

i¼1

XN

j¼1

CijÞ=100� L

where N is the number of similar regions fetched with
respect to a specific oligonucleotide and L is the length of
a given oligonucleotide of query. Cij is the score for
position i of a sequence j in N. Cij=100 if the base at that
position is consistent with the base at the same position in
the oligonucleotide of query, Cij=0 otherwise. SeqS is a
summarization of the number of potential targets and the
homologies of these targets. When all potential targets
have a homology of 100%, SeqS is simply the number of
potential targets. Otherwise, SeqS will be a representative
number of targets of 100% matches.
Previous work (16) suggests that oligonucleotide probes

having >75% identity with nontargets cause cross-
hybridization. There are other studies with slightly
different results, e.g. 70% homology to 60-mer probes
(15) and 85% homology to both 50- and 70-mer probes
(7). We chose 70% homology as a cutoff for calculating
SeqS after studying our datasets. We found that the HSI
declines to �12% when SeqS drops to 70% and does not

drop significantly further with SeqS below 70% (see
Supplementary Data).

Marginal analysis of individual oligonucleotide properties

The impact of individual oligonucleotide attributes on the
hybridization signal can be observed by performing a
marginal analysis. To that end, we classified each
oligonucleotide attribute into very small bins. The signals
in each bin were averaged and the difference between two
adjacent bins can be viewed as a marginal change. Plotting
this marginal change in terms of the median and average
HSI allows us to view the marginal effect of an
oligonucleotide attribute on HSI. We classified each
attribute into very small bins so that the effect of even a
very small change on an oligonucleotide property can be
observed. To reduce the biases that may be introduced
from a small number of oligonucleotides, all the bins
containing more than 200 oligonucleotides are displayed
except one bin (LSL=2) in LSL versus HSI (Figure 1).

Analysis of positional effect

We adopted and modified the method of Naef and
Magnasco (28) in investigating probe affinity on intensity
in large datasets via a linear model, and developed the
following linear model to investigate the positional effects
of different nucleotides on HSI.

log2 Intensity ¼
X60

k¼1

X

j2fA,T,C,Gg

�j,kIðbk ¼ jÞ

where k is the position along the probe, j is the nucleotide
letter and I (bk= j) is the indicator taking the value 1 if
nucleotide j is present in position k, and 0 otherwise. �j,k is
the contribution of nucleotide j at the position k.

Removal of sequence-biased signals

We used the average intensities of the random probes
across the 39 chips in Dataset I to further explore how
much bias of oligonucleotide properties of HSI is
removable. Random probes are considered negative
controls in which any signals arising from these probes
are due to nonspecific hybridization. The random probes
are divided into a training set and a test set. A regression
tree was built on the training set to study the effect of
oligonucleotide attributes on probe intensities. We used
this regression tree to predict the bias of intensities on the
test set. Since the test set is not used in constructing the
regression tree, the corrected probe intensities obtained by
subtracting the predicted intensities from the observed
intensities will reflect the significance of the effect of
oligonucleotide attributes. To measure the extent of
removal of the bias in the observed intensities due to
oligonucleotide properties, we used a clustering algorithm
package in R (mclust) (29) to predict the number of
Gaussian distribution components that best explain the
observed intensities. In an ideal case, we expect the mclust
algorithm to predict a single Gaussian component that
represents the noise distribution on the log base 2
transformed intensities of the random probes.
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Regression tree analysis of multiple
oligonucleotide properties

A regression tree is a piecewise linear estimate of a
regression function, which is constructed by recursively
partitioning the data and sample space. In this study,

we employed the GUIDE (Generalized, Unbiased,
Interaction Detection and Estimation) algorithm to
build the piecewise linear regression models with uni-
variate splits. Compared to other algorithms, (such as
AID, CART and FIRM), GUIDE can control bias more
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Figure 1. Marginal analysis of each oligonucleotide property on HSI. All boxplots shown were generated from Dataset I (genomic DNA
hybridization) and the number of probes in each bin> 200 except LSL=2, which contains 11 samples. For display, log base 2 transformation was
applied before the data was plotted (except for averages). Red circles represent the log base 2 averages of untransformed data in each bin, not the
average of log base 2 transformed data. This allows the fold change to be viewed in the original scale. MEF, OF, iS, iH and iG are all of
negative values.
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effectively by integrating chi-squared analysis of residuals
and bootstrap calibration of significance probabilities.
More importantly, GUIDE allows for direct detection of
local two-variable interactions (30).
GUIDE works by recursively partitioning the data into

subsets such that the deviance is the smallest among all
possible partitions. We kept partitioning the data, i.e.
growing the tree until the number of probes in each subset
is below a certain threshold to obtain a maximal tree
structure. To avoid over-partitioning the data, i.e. over
fitting, the regression tree was pruned back so that the
deviance of the final tree is within an assigned standard
error of the original maximal tree. Choosing a reasonable
standard error for pruning would result in a tree of
moderate size that is sufficient enough to differentiate the
contribution of different oligonucleotide attributes on HSI
without losing predictive power. An oligonucleotide
property that appears higher on the tree as a splitting
variable has a more significant effect on HSI. Here is a
brief illustration of how GUIDE works.

Tm≤76 

repeats≤3

8.5 

 9.5  10

This regression tree partitions the data into three
subsets. Probes that have Tm� 768C have mean intensities
of 8.5. Probes with Tm> 768C and a repeat score� 3 have
mean intensities of 9.5. Probes with Tm> 768C but a
repeat score >3 have mean intensities of 10.
For large datasets such as those used in this study,

regression trees have the potential to demonstrate
relatively complex forms of data structure, which may
not be detected with conventional regression modeling. In
addition, regression trees are capable of capturing non-
additive effects from large datasets like interaction
between different predictors (31).

Match fragment extension (MFE) and match
fragment sliding (MFS) experiments

We designed two experiments to test HSI variation with
respect to the position (MFS) and length (MFE) of a
subsequence that matches a target (Figure 2). In the MFE
experiment (Figure 2A), 1145 probes of 60-mer length
were randomly selected from Dataset I. Then each of these
1145 probes served as a template to generate nine
oligonucleotides with an identity length of 15, 20, 25, 30,
35, 40, 45, 50 or 60-mer at the protruding end (50 end). The
rest of the sequence was filled with random bases from [A,
T, C, G]. In total, 10 305 probes were generated. The MFE
experiment thus tests the effect of longer and longer
matching probes starting from the 50 end. In the MFS
experiment, 155 template probes were randomly drawn
from Dataset I. For each template, 36 oligonucleotides

were generated, each with a 25-mer fragment identical to
the original template starting at a position between 1 and
36. The rest of the sequence was filled with random bases
from [A, T, C, G]. In total, 5580 probes were generated.
The MFS experiment thus tests the importance of position
for the matching 25-bp fragment. The hybridization
conditions were the same as described (32) and there
were four replications for both MFE and MFS
experiments.

RESULTS

Melting temperature (Tm)

The marginal analysis of Tm on HSI (Figure 1) shows that
Tm is one of the most important factors, as minor changes
in Tm can cause a substantial change in HSI. The probes
with a Tm between 50 and 578C have low HSI while
probes with Tm between 588C and 768C show increasing
HSI with Tm. Probes with higher Tm tend to have higher
HSI. Under our experimental conditions, a probe with a
Tm of 748C exhibits an average HSI of 8-fold of that of
a probe with a Tm of 508C and a median HSI of more than
6-fold of that of a probe with a Tm of 508C.

The significant impact of Tm on hybridization signal can
be easily explained. The probes with higher Tm also have
higher annealing temperature, Ta. Tm is the temperature at
which 50% of DNA double-helix molecules become
denatured to single strands, while the annealing tempera-
ture is the temperature at which probes anneal to the
complementary DNA strands and form stable helices.
Ta is estimated empirically to be 5–108C lower than Tm

0 10 20 30 40 50 60 nt 

B

A

Figure 2. (A) MFE. The matched fragment has a starting length of 15
and extends 5 nt each time until the length reaches 50 nt (original full-
length template was added as control). (B) MFS. Length of the sliding
fragment is 25 nt. Matching regions are shown in black bars, while
nonmatched regions are shown in lines. The sliding step is 1 nt.
The positions of nonmatched were filled with a random base from
A, T, C and G.
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(33,34). Therefore, oligonucleotides with higher Tm should
have a higher Ta accordingly, and they can easily form
more stable double strand polynucleotides at a lower
hybridization temperature owing to the formation of more
hydrogen bonds between the two strands.

The conspicuous relationship between Tm and HSI is in
agreement with the observation that signal intensities
increase monotonically with the increasingly negative free
energy changes (12) because the change of free energy is
Tm based (iG=�RT ln K). Tm and iG are highly
correlated (r=�0.98) in our dataset. The relationship
between Tm and HSI is also consistent with melting
experiments in which the degree of hybridization is a
function of temperature (13).

Length and hybridization

A relationship between HSI and probe length was
inspected with microarray data expression tiling arrays
containing a total of �3.4 million probes. All HSIs were
plotted with boxplots (Figure 3A). It is obvious that most
probes of a variety of lengths have nearly equal median
and average HSI. Probes with length of 71 nt have nearly
the same median as adjacent lengths but a higher average;
this is caused by outliers (Figure 3A). Thus, if we are able
to explain the two other exceptions of 45 and 49 nt, we
then can conclude that the influence of length on HSI is
limited.

As we have just shown, Tm has a significant influence on
HSI, the higher median and average HSI of the 45 nt and
lower average and median HSI of 49 nt are likely to be

caused by the higher and lower Tm of these two groups
respectively. The 45-nt oligonucleotides have a median Tm

of 62.18C and an average Tm of 62.78C. 49-nt oligonucleo-
tides have a median Tm of 53.98C and an average Tm of
53.78C. The oligonucleotides of other lengths have a
median Tm between 55.68C and 57.78C and an average Tm

between 55.38C and 57.68C. If Tm is primarily responsible
for the HSI difference seen in oligonucleotides of 45 and
49 nt, we should observe approximately the same HSI for
all lengths once the probes with higher and lower Tm in
these two lengths are excluded. To test this, we removed
the probes with Tm< 538C and Tm> 638C for all sizes. We
then re-plotted length versus HSI (Figure 3B). Probes of
45 and 49 nt now have approximately the same median as
probes of other lengths, implying that higher and lower
Tm is primarily responsible for stronger and weaker
signals observed for 45 and 49 nt lengths, respectively.

Sequence similarity

The propensity for homologous sequences to cross-
hybridize has clearly been demonstrated in Southern,
northern and in situ hybridization, and it is for this
reason that some researchers and chip vendors have
attempted to design oligonucleotides with low SeqS. The
effect of SeqS on HSI has not been comprehensively
studied. Our results suggest that influence of SeqS on HSI
can be classified into three distinct types. HSI increases
nearly linearly with SeqS from 1 to 16 (Figures 1 and 4).
HSI is relatively uniform between SeqS of 17–39. A surge
of hybridization signals was observed when SeqS is >39
(Figure 4). In this case, HSI can reach 11-fold in median
and 5.4-fold in average of their values at SeqS of 1. The
median/average HSI fluctuates dramatically with SeqSs
above 39 due to the small number of observations at each
SeqS. Nevertheless, the median/average HSI is much
higher with SeqS above 39 than it is with lower SeqS
values. From the definition shown earlier, a SeqS of 40
means there are 40 copies of 100% match or 57 copies of
70% match to the oligonucleotide probes in the human
genome. In this sense, we are able to conclude that the use
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of probes that have more than 40 perfect matches in the
genome significantly increases the sequence-biased
signals. Although only �0.5% probes have a SeqS> 39,
the genes represented by these probes have a high chance of
being called expressed, or highly expressed when in fact
they are not.

Secondary structure

Three oligonucleotide attributes that represent secondary
structure were analyzed. They are MEF, OF and LSL.
MEF and OF are highly correlated (r=0.987) and the
correlation coefficient between MEF and HSI and the
correlation coefficient between OF and HSI are identical
(r=�0.30). Their effects on HSI are very similar
(Figure 1), which is also suggested by regression tree
analysis (Figure 9). Therefore, using either one of them to
represent secondary structure is equally sufficient.
Compared to LSL, MEF and OF appear to be better
attributes to represent secondary structure than LSL
(Figure 7A and B). The scaled importance of either MEF
or OF from regression tree analysis is slightly larger than
that of LSL (28.1 versus 22.8) for expression tiling and
much larger than that of LSL (34 versus 17.8) for gDNA
hybridization. In addition, the correlation coefficient
between LSL and HSI (0.1) is much smaller than that
between either MEF and HSI or OF and HSI.
Oligonucleotides that have LSL� 2 tend to have

much higher HSI than the oligonucleotides that have
LSL� 3 (Figure 1). The average and median HSI with
LSL� 2 is 3.4- and 5.1-fold more than these with LSL� 3,
suggesting that intramolecular pairings of 3 nucleotides
can form a secondary structure that significantly reduces
hybridization.

Other oligonucleotide attributes

The impact of polyN on HSI is difficult to determine
because the polyN only ranges from 2 to 6 in this study.
HSI increases slightly with polyN from 2 to 4 and then
starts to decline with higher polyN (Figure 1). The same
pattern was still observed when probes within a narrow
range of Tm(558�Tm� 55.58) were plotted (not shown).
Nevertheless, although the relationship between polyN
and HSI is not monotonous, polyN stretches can indeed
cause the HSI to change up to twofold in median and
1.6-fold in average in the data we analyzed.

Position-dependent effects on HSI

DNA probes immobilized on a solid surface at high
density exhibit different hybridization dynamics than
DNA in solution, as shown by several studies
(10,35–41). Protruding ends of probes are postulated to
have a larger role in hybridization than the tethered-ends
in hybridization, likely due to steric effects. We employed
linear regression models to investigate the ranking of
importance of positional effect along the probes. The
result is shown in Figure 5. We found that the bases
contribute to the HSI in descending order of
G>C>T>A within the position 0–40 from the protrud-
ing end. This order was in agreement with the order
concluded from a previous study (42) on Affymetrix

25-mer oligonucleotides but slightly different from the
order concluded from NimbleGen 36-mer oligonucleo-
tides, in which C>G>T>A was observed (42). Our
results suggest that the relative contribution of nucleotides
becomes indistinguishable after position 40 in 60-mer
probes. As anticipated, protruding ends contribute more
to HSI than tethered ends. The contribution of nucleotides
to HSI reaches a peak around position 10 from the
protruding ends.

To confirm that protruding ends produce more signal,
we designed MFS and MFE experiments to test this, and
results from these two experiments are in agreement with
above analysis. The result from the MFS experiment
clearly showed that the protruding ends contribute more
to the HSI with match fragments at the protruding end
having 1.77-fold more signal than match fragments at the
tethered end (Figure 6A). Results from the extension
experiment showed that the first 40 nucleotides near the
protruding ends on average produced 99.3% signal of that
of a 60-mer probe (Figure 6B), suggesting that the 20
nucleotides near the tethered ends do not contribute to the
signal.

Regression tree analysis of all studied oligonucleotide
properties

Marginal analysis provides us a way to assess the impact
of individual oligonucleotide properties on HSI. A more
comprehensive statistical approach is needed to look at
the relationships between various oligonucleotide proper-
ties and HSI. Regression trees with GUIDE can fulfill this
purpose not only because GUIDE trees provide a good
compromise between comprehensibility and predictive
accuracy, but also because they provide unbiased predic-
tion and are more sensitive to the local interaction during
the split selection (30). A regression tree comprises a
hierarchy of nodes. At each node except the bottom ones,
a logical test is performed on one of the predictor (input)
variables. The leaves of the tree contain the average
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Figure 5. Contribution of oligonucleotide composition to HSI at
different positions.
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prediction of the model. Each test has the form Variable
Operator Value (e.g. Temperature <45.7), and has two
possible outcomes, true or false. Any path from the top
node to a leaf can be seen as a conjunction of logical tests
on the predictor variables. The trees grown with the
recursive partitioning algorithm are typically postpruned
to ensure a better compromise between comprehensibility,
predictive accuracy and to prevent over-fitting.

We applied the regression tree GUIDE algorithm to
our microarray datasets with HSI as the predicted
attribute and oligonucleotide properties as input attributes
or regressors. The results from Dataset I and Dataset II
suggest that Tm is the variable that has the most significant

impact on HSI, and that all other properties have less than
40% the impact on HSI that Tm does (Figure 7A and B).
Small differences in the ranking of different properties in
genomic DNA and cDNA hybridization were observed.
Repeats contribute threefold more in whole genomic
DNA hybridization (Figure 7A) than in cDNA hybridiza-
tion (Figure 7B). iS also plays a more important role in
genomic DNA hybridization than in cDNA hybridization
(Figure 7A and B). polyN contributes slightly more in
genomic DNA hybridization than in hybridization of
cDNA. LSL has an equivalent effect in either genomic
DNA or mRNA samples. Consistent with the marginal
analysis, cross-hybridization does not play a significant
role in genomic DNA hybridization, and length contri-
butes very little to the HSI compared to other oligonu-
cleotide attributes.
The interaction among different oligonucleotide proper-

ties on HSI can be observed in Figure 9. The interaction
seems to be more complicated as Tm increases. When Tm is
low, Tm shows occasional interaction with secondary
structure represented by MEF or OF. When Tm is
moderate, Tm has a stronger interaction with MEF or
OF and occasional interaction with R (repeats). When Tm

is high, Tm interacts more intensively with polyN, repeats
and LSL. The regression tree analysis suggests that
repeats, polyN and LSL contribute more sequence-
biased noise in oligonucleotides with higher Tm while
MEF or OF contributes more sequence-biased noise in
oligonucleotides with a moderate Tm.

Correction of sequence-biased signals

Since random probes are negative control probes, the log
base 2 transformed intensities should obey a Gaussian
distribution, analogous to noise. Therefore we expect the
mclust algorithm (29) to predict a single Gaussian
component on the intensities of random probes in an
ideal case. However, as evidenced in panel A of Figure 8,
the mclust algorithm predicted five Gaussian mixture
components on the intensities of these random probes,
demonstrating the presence of bias in the observed signals.
Figure 8B shows the same analysis on the corrected probe
intensities by removing the effect of oligonucleotide
properties. This again illustrates the majority of the bias
of oligonucleotide properties on HSI can be removed, as
shown by the reduction in the predicted number of
Gaussian mixture components on an independent test set.
Moreover, the distributions of the probe intensities
become more symmetrical after the correction as would
be expected for random probes. Similar results are
observed when the analysis was implemented on the
probes in Dataset I as given in the bottom two panels
(C and D) of Figure 8.

DISCUSSION

Although microarray technology has been employed for
more than ten years, concern over the quality of
microarray data persists because the technology involves
multiple complicated processes that are very difficult to
control or fully understand. The design of unbiased probes
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Figure 6. (A) The expression levels (log base 2) measured by 25-mer
perfectly matched sliding fragments within 60 nt oligonucleotides. For
each start position, 620 probes (155 template oligonucleotides� 4
replicates) were used for computation. (B) Extension of the matched
fragment from the protruding end to the tethered end of oligonucleo-
tide. The number preceding the ‘M’ is the length of matched fragment
and the number preceding the ‘R’ is the length of random sequences.
For each matched length, data harvested from 1145 template
oligonucleotides� 4 replications were used for computation.
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is one of the most crucial steps of these processes, and
studying and understanding the behavior of oligonucleo-
tides on a solid surface at high density is the first step to
designing unbiased probes. In this study, we determine the
importance of oligonucleotide properties in affecting
hybridization signals by investigating a large volume of
high-density microarray datasets, covering both expres-
sion chips hybridized with DNA and expression tiling

chips hybridized with cDNA reverse transcribed from
mRNA samples. This information is useful for
guiding the design of sequence unbiased oligonucleotides
or in normalizing data from chips with biased
oligonucleotides.

The probes that have the potential for strong sequence-
biased signals are those that have higher Tm (Figure 9).
Higher Tm probes are capable of capturing nonspecific
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Figure 8. Comparison of original sequence-bias contained data (left) with sequence-bias corrected data (right). Results from random probes are
shown in the upper panel and the results from Dataset I (genomic DNA hybridization) are shown in the lower panel.
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Figure 7. Scaled scores of different oligonucleotide properties resulted from regression tree analysis on six randomly partitioned subsets of datasests.
(A) Dataset I: genomic DNA hybridization. (B) Dataset II: cDNA hybridization. SecS: secondary structure represented by MEF or OF.
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targets, mainly due to their stronger affinities arising from
more G/C in their sequences which is augmented by the
presence of polyN stretches and repeats, both enhancing
the generation of sequence-biased signals on higher Tm

probes. The bias of HSI by secondary structures seems to
be favored in the probes with modest Tm, suggesting that a
partial duplex is probably formed before the melting of
secondary structures. As a result, the secondary structure
strongly impedes the hybridization. This result is in
agreement with a recent observation that secondary struc-
ture is not the rate-limiting factor at high temperature (43).
In general, high Tm probes show more interaction with
other attributes (such as LSL, polyN and secondary
structure) than do probes with low Tm.

For the first time, we provide evidence that length in
long oligonucleotides plays a minor role in influencing
HSI. One earlier study (14) involving only 56 probes of
50 nt length and 56 probes of 70 nt length reported that the
signal intensities changed very little at the two different
lengths. Intermediate length probes were not studied,
making interpretation difficult. In our report, length was
studied at 1 nt increments between 45 and 75 nt, and our
results were derived from more than 3 million probes.
Based on the fact that Tm has the largest marginal effect on
HSI and length has the smallest marginal effect on HSI, we
suggest designing isothermal probes by relaxing the
constraint imposed on length. NimbleGen was one of the
first microarray vendors to take the isothermal approach
and many vendors are following suit. Unfortunately,
vendors often impose constraints on the shortest or longest
length allowed. These limitations may confound results
because of effects on HSI caused by variant Tm values in

the length-limited cases. Although other oligonucleotide
properties, including SeqS, polyN, repeat, LSL and
entropy (iS), usually have 40% or less impact on HSI
compared to the effect of of Tm, their effect on HSI cannot
be neglected because the change of HSI caused by these
attributes can reach a few fold which is enough to change
the interpretation of microarray data results.
It is easy to imagine that HSI is proportional to SeqS.

Our results demonstrated that the impact of SeqS on HSI
is small but complex. One possible explanation is that the
hybridization of targets to probes is competition-based
and the displacement of imperfectly-matched targets by
perfectly matched targets happened to some degree when
hybridization is performed for a sufficiently long time.
This explanation is seemingly supported by the evidence
acquired by employing real-time dual-color fluorescence
technology and quartz microscopy (39), in which two
phases of hybridization are observed. During the first
phase, the targets that are in higher abundance dominate
the hybridization, whereas during the second phase, the
targets with high affinity displace those with low affinity.
The surge observed at SeqS equal to �39 is hard to
explain, but indicates SeqS can potentially give rise to
significant bias for high values of SeqS. Although the
probes with SeqS> 39 are only about �0.5% of all
probes, the genes represented by these probes have a high
chance of being called expressed, or highly expressed when
in fact they are not. Due to the significant enhancement,
these false-positives may be selected by biologists for
downstream analysis. We show this phenomenon, as it
may be worthy of further study. The relatively larger
variance based on SeqS (Figure 1) may result from the
complicated interactions of perfect matched oligonucleo-
tides and partially matched oligonucleotides. Certainly, we
could not rule out the possibility that the SeqS is not a
sufficient index to reflect these complicated interactions
during this process that involves the whole genome.
Although we know of some studies attempting to evaluate
cross-hybridization using relative free energy of match and
mismatch duplex formation (10,44), the models proposed
are still not mature. These models are suitable for
evaluating probes and specifically designed targets and
are not robust enough to be used for evaluating probes
and the whole genome.
We speculate that intended targets present in comple-

mentary strands in hybridization buffer can trigger the
formation of complicated hybridization aggregates when
they reach a threshold concentration, at which the
association of a probe to multiple targets or a target to
multiple complement targets become facile and dominat-
ing. In any case, the results shown here suggest that
HSI strongly depends on not only the relative richness of
the targets, but also the concentration of the targets.
Therefore, caution must be taken when more than
adequate quantities of targets are used in hybridization,
which may result in the dramatic increase of HSI for those
probes that have higher SeqS.
We believe this is the first time that thermodynamic

approaches such as MEF/OF have been directly compared
with LSL using large-scale microarray data. Thermodyn-
amic approaches such as MEF or OF represent secondary

A  L1: TTTTTT|TTTTTT|TTTTTT|TTTTTT|TTTTTT|TTTTTT|TTTTTT|TTTTTT
  L2: TTTTTT|TTTTTT|TTTTTT|TTTTTT|TTTTTT|TTTTTT|TTTTTT|TTTTTT
  L3: TTTTTT|TTTTTT|TTTTTT|TTTTTT|FFTTTT|FFTTTT|TTTTTT|TTTTTT
  L4: TTTTTT|TTTTTT|FFFFFF|FFFTFF|FTFFFF|TTFFFF|FFFFFF|NNFNLN

B  L1: TTTTTT|TTTTTT|TTTTTT|TTTTTT|TTTTTT|TTTTTT|TTTTTT|TTTTTT
  L2: TTTTTT|TTTTTT|TTTTTT|TTTTTT|TTTTTT|TTTTTT|TTTTTT|TTTTTT
  L3: TTTTTT|TTTTTT|TTTTTT|TTTTTT|TTFTTT|TTFTTT|TTTTTT|TTTTTT
  L4: TTTTTT|TTTTTT|FFFTFT|FFFFFF|FFFFFF|FFTFRF|FFFFFF|NLNFNF

C  L1: TTTTTT|TTTTTT|TTTTTT|TTTTTT|TTTTTT|TTTTTT|TTTTTT|TTTTTT
  L2: TTTTTT|TTTTTT|TTTTTT|TTTTTT|FFFFFF|FFFFFF|FFFFFF|FFFFFF
  L3: TETTTT|TETTTT|FTTTTT|TTTTTT|TTTTTF|FTTTTT|TTTTTT|TTTTTT
  L4: EEEEEE|TEEEEF|EEEEFE|EFFFFE|FFTTFT|TFTFFF|NEFFNF|RRFRFN

 123456  123456   123456  123456  123456  123456  123456   123456

L1

L2

L3

L4

Figure 9. Complete paths extracted from regression tree analysis of six
subsets of data. Each vertical column is a path on the regression tree
and only four depths are displayed. (A and B) are from Dataset I
(genomic DNA hybridization). (C) is from Dataset II (cDNA
hybridization). For 9A, MEF was used for analysis. For 9B, OF was
used for analysis. L1–L4 represent the depths of the regression trees, T,
Tm; F, MEF/OF; L, LSL; N, polyN; R, repeat; E, leaf node. Eight
branches of the tree are displayed. Each branch is comprised of six
paths derived from six sub-datasets. For each node, the left child is less
than the right child.

Nucleic Acids Research, 2008, Vol. 36, No. 9 2935

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/n
a
r/a

rtic
le

/3
6
/9

/2
9
2
6
/1

0
9
9
8
4
6
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



structures much better than LSL. Secondary structures
predicted with internal base-pairing approaches are still
widely used. The lower accuracy of LSL in representing
secondary structures suggests that the probes may not
necessarily fold to form a typical stem-loop structure with
maximal stem length. Nevertheless, we have observed
higher HSIs for oligonucleotides with LSL� 2 than we do
for oligonucleotides with LSL� 3, indicating that LSL
should be considered in oligo design. In addition,
secondary structure represented by MEF/OF is one of
the higher-ranking oligonucleotide properties in affecting
the HSI (Figure 7A and B), and thus, they should receive
much more attention in oligonucleotide design. This
conclusion is in agreement with a prior study (4), which
indicates that secondary structures affect probe binding
efficiency noticeably and should receive more attention.
Our results from MFS and MFE experiments clearly

imply there is a penetrable layer for hybridization, and the
depth of this layer is 40 nt for 60-mer oligonucleotides.
Coincidently, oligonucleotides tend to have the same
average HSI when they are more than 45 nt long. Steel’s
flexible coil configuration model (38) is probably not valid
for long oligonucleotides because the phenomenon was
not observed on high density arrays, and it cannot explain
the reduced influence of probe length on HSI when probes
are more than 45 nt long. We propose an alternative
scenario based on our results from studying the length–
HSI relationship, and MFS as well as MFE experiments:
We speculate that probes, when synthesized at very high
density, take on a ‘coil-like’ configuration. The persistent
length of ssDNA is �10 bases or �4 nm (45), suggesting
that the first ten bases near the surface is stiff and the rest
is flexible and presumably forms a coil-structure. In
addition, the radius of gyration in hybridization phase
(ssDNA) is 15–20 nm (45), which is larger than the average
distance between two adjacent probes in NimbleGen high-
density chips (NimbleGen high-density chips contain �106

probes in 15� 15�). In this case, the depth of the
penetrable ‘layer’ for hybridization depends more on
probe density than on length. Prior data implicates the
density of probes as a factor affecting target-capture rates
(36). In addition, length is a confounding factor and the
impact of length on other attributes e.g. Tm becomes
insignificant when the oligonucleotides are >40 nt long.
For example, when length is between 25 and 30 nt long,
one base change in length can cause Tm to change �0.88C.
This impact is decreased to �0.278C for oligonucleotides
with a length between 41 and 45 nt and �0.18C for
oligonucleotides with length between 76 and 80 nt,
implying that the same length change in shorter oligonu-
cleotides can cause more dramatic changes in the
resulting HSI. As protruding ends produce more signals,
we suggest that probe selection criteria should attach
more weight to the protruding ends of oligonucleotide
candidates.
Differences in the ranking of different properties in

genomic DNA and cDNA hybridization can be explained
in the context of a biological scheme. For example, repeats
contribute 2.5-fold more in genomic DNA hybridization
than in cDNA hybridization. Although the mechanism for
this is not clear, repetitive sequences present in the probe

sequences may result in more nonspecific signals when
targets are genomic DNAs, as in situ hybridization
experiments show that the stringency wash is crucial for
getting rid of nonspecific signals (5).iS also plays a more
important role in genomic DNA hybridization than in
cDNA hybridization (Figure 7). This may be caused by
the formation of more dsDNA during hybridization that
demands more change in entropy for hybridization (43).
polyN contributes slightly more in genomic DNA
hybridization than in hybridization of cDNA, probably
because there are more nonspecific targets in the genomic
DNA samples. LSL is an intramolecular pairing structure,
and once formed, it probably challenges genomic DNA or
cDNA samples similarly. We indeed observe relatively
invariant contribution of LSL in genomic DNA hybridi-
zation and cDNA hybridization. However, the folding
properties as represented by MEF and OF do play
different roles when targets are genomic DNA and
cDNA derived from mRNA. Folding ability plays a
more important role in enhancing target-probe formation
or stability when targets are genomic DNAs. We thus
observed more impact of MEF and OF in genomic DNA
hybridization.

The analysis performed on Dataset II did not take into
account SeqS, because Dataset II is derived from
hybridization of cDNAs that represents mRNAs. It is
impossible to calculate SeqS of oligonucleotides for
transcripts given the unknown number of transcripts and
their abundance in the genome. New technologies have
revealed an unprecedented number of transcripts, which
include polyA� mRNA species, an extensive repertoire of
siRNA, and numerous previously unidentified RNA
species resulting from alternative promoter usage and
intron splicing (46–49). Nevertheless, given that the
impact of SeqS on HSI is limited and that there is no
significant correlation between SeqS and other oligonu-
cleotide properties, we assert that the general ranking and
importance of the oligonucleotide properties concluded
from Dataset II are correct.

When two channels are used, some sequence bias can be
removed by taking a ratio of the two channels. However,
the quantity of sequence bias removed is not well
documented. In addition, two-color labeling has been
shown to introduce its own sequence bias and complicate
normalization (50,51). Finally, two channels are not
employed in many large-scale expression and tiling
experiments owing to the increased cost. Removing or
minimizing sequence bias at design time avoids these
issues.

Many other factors such as type of hybridization buffer,
type of solid surface, length of stilt, probe density (36),
as well as target concentration and target properties (52),
may affect the relationships within oligonucleotide
properties and between oligonucleotide properties and
HSI found in this study. Therefore, the results we
present require further study on other platforms and
other experimental conditions. Nonetheless, we believe
that the results presented here are useful for the design of
sequence-unbiased probes, allowing for more accurate
representations of biological phenomena via microarrays.
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SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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