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SUMMARY 

An assessment of flat triangular plate bending elements with displacement degrees-of-freedom at the three 
comer nodes only is presented, with the purpose of identifying the most effective for thin plate analysis. 
Based on a review of currently available elements, specific attention is given to the theoretical and 
numerical evaluation of three triangular zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 degrees-of-freedom elements; namely, a discrete Kirchhoff 
theory (DKT) element, a hybrid stress model (HSM) element and a selective reduced integration (SRI) 
element. New and efficient formulations of these elements are discussed in detail and the results of several 
example analyses are given. It is concluded that the most efficient and reliable three-node plate bending 
elements are the DKT and HSM elements. 

1. INTRODUCTION 

Since the earliest development of the finite element method, a considerable amount of research 
has been devoted to the analysis of plate and shell structures. A great number of papers have 
been published on this subject (see, for example, the review papers by Gallagher''2). Consider- 
ing the research and development efforts, various approaches, theories and variational prin- 
ciples to formulate plate and shell elements have been used to circumvent the difficulties that 
arise in the analysis of general plates and shells. However, despite the amount of research that 
has been devoted to the subject, further research effort is still required to provide the practising 
engineers with reliable, cost-effective and accurate computer to solve various plate 
assemblies and complex shell problems. 

In essence, three approaches are being followed in the development of plate and shell 
elements: 

1. A particular shell theory is used and discreti~,ed.'*~ 
2. Three-dimensional continuum equations are used and discretized (isoparametric elements) 
(References 6 and 7, etc.). 
3. Plate bending and membrane element stiffnesses are superimposed and assembled in a global 
co-ordinate system (References 8 and 9, etc.). 

The three approaches have advantages and disadvantages, and it is still difficult to state which of 
the three approaches is most effective based on criteria combining accuracy, computational cost 
and simplicity in use (in the data input phase as well as in the interpretation of results). Approach 
3 received a great deal of attention for the linear analysis of shell structures in the mid-l960s," 
but the activities related to approaches 1 and 2 have dominated the past 10 years. It is only 
recently that a new impetus has been given to the analysis of shells using approach 3. 
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Considering this approach, triangular flat elements having displacements and rotations at the 

corner nodes as degrees-of-freedom-the engineering dof-are particularly appealing for many 
practical reasons; for example, arbitrary shell geometries, general supports and cut-outs, and 
beam stiffeners can be modelled. These elements have a total of 18 dof (3 translations and 3 
rotations at each node) or 15 dof (3 translations and 2 rotations) depending on whether the 
rotation about the normal is included as a dof. The element formulation is based on a 
superposition of membrane and bending actions. Among the most recent papers on this subject, 
References 12 and 13 deal with the linear analysis, whereas References zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9,14,8 and 15 deal with 
the geometrically nonlinear analysis of shells with large displacements and rotations. In 
References 12 ,9  and 14 the hybrid stress formulations are used, whereas in References 13, 8 
and 15, displacement-type formulations are employed. 

A very important consideration in the development of these shell elements is the represen- 
tation of the bending behaviour. Although several theoretical and numerical studies on plate 
bending finite elements have appeared in the past 15 years, a detailed recent study and 
comparison of triangular plate bending elements with only 3 dof at the corner nodes (displace- 
ment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw and rotations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABy, as shown in Figure 1) is not available. 

I o x  = W t Y  , e y = - w , x  

NODE 2 

Figure 1. Nine dof triangular plate bending element 

In this paper we present the results of a detailed theoretical and numerical study of triangular 
plate bending elements with 9 corner dof only. The objective in this study was to identify or 
develop an optimum element for the general linear analysis of plate bending problems. Our 
ultimate aim is to employ this element as the basis of a 3-noded shell element that can be used 
effectively for general geometric and material nonlinear analysis of thin shells. In our work 
specific attention was given to the soundness of the theoretical formulation, the numerical 
efficiency and reliability of the plate bending elements. It is apparent that very accurate and 
efficient elements can be developed for the analysis of specific problems only. However, unless 
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an element zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAalways yields a stable solution, it cannot be recommended for use in a general 
analysis computer program, where reliability of analysis results is of utmost concern. These 
thoughts are particularly important in geometric nonlinear analysis in which the structural 
configuration changes continuously, and it is impractical and dangerous to apply ‘rules’ that tell 
under what boundary conditions and for which structural shapes an element can be employed. 

In this paper we first review alternative formulations of 3-noded triangular plate bending 
elements that have been presented in the literature. This review suggests giving specific 
attention to the theoretical formulation and numerical evaluation of three elements: a DKT 
(discrete Kirchhoff theory) element, a HSM (hybrid stress model) element and a SRI (selective 
reduced integration) element. New and compact formulations of these elements are given in the 
paper, and to identify the relative effectiveness of the elements the results of various sample 
analyses using these elements are presented. 

2. REVIEW OF TRIANGULAR PLATE BENDING ELEMENTS WITH 9 DOF 

In this section we review the formulation and behaviour of the available triangular plate bending 
elements with 9 dof: the displacement zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw and the rotations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6, and 8, at the three corner nodes. 
The converged solution is the classical Kirchhoff thin plate solution. These elements can be 
classified as 

1. Displacement models based on the classical Kirchhoff thin plate theory. 
2. Hybrid stress models based also on the Kirchhoff plate theory. 
3. Displacement models derived from the theory of plates with transverse shear deformations. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.1. Displacement-based Kirchhoff plate .theory elements 

The early attempts to develop satisfactory triangular elements with 9 dof are reported in 
References 16 and 17. The element formulations are based on the principle of minimum 
potential energy, where the compatibility requirements involve the displacements w and the 
rotations w,, = - 8, and w,, = 8,. Elements labelled A, T and T-10 in Reference 16 are based on 
cubic polynomials in local co-ordinates x and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy. Their ineffectiveness is due to the following 
reasons: incompleteness (A), incompatibility (A, T, T-lo), lack of invariance with regard to 
element orientation (T, A) and singularity (T). It was then realized that it is impossible to 
formulate a compatible triangular element with 9 dof with a single-field polynomial expansion 
for w. One of the first compatible triangular elements is the well-known HCT element.’6 Its 
formulation is based on the subdivision of the complete element into three subtriangles. An 
incomplete cubic (9-term) polynomial is used in each subregion for the displacement w, and the 
normal slope along the exterior edge of each region varies linearly. The formulation of this 
element has also been discussed using area co-ordinatesl’ (where it is called LCCT-9). The HCT 
element has frequently been regarded as a reference element for bending analysis of plates, 
mainly because of the extensive numerical results presented with its formulation. However, the 
formulation involves cumbersome algebraic manipulations and the element is rather stiff. The 
element has also been the subject of several theoretical studies (e.g. order of convergence, error 
estimates).” 

In Reference 17 a non-conforming element (labelled BCIZl in this study) and a conforming 
element (labelled BCIZ2) are presented. The BCIZl element is a non-conforming element that 
satisfies the rigid body mode and the constant strain states. The shape functions expressed in 
area co-ordinates are given explicitly in sohe  The important drawback of the 
BCIZl element is due to its incompatibility: it does not converge to the exact answer for some 
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mesh patterns. The study of this drawback is given in Reference 17 and can be understood as the 
first application of what is now called the 'patch-test'. 

The BCIZ2 element is a compatible element obtained by appropriate superposition of 
polynomials and rational shape functions in area co-ordinates. Due to the presence of these 
rational functions, a very high-order numerical integration scheme is needed (16 points in 
Reference 17) to evaluate the stiffness matrix. Some results for free vibrations of plates using the 
BCIZl and BCIZ2 elements are given in Reference 17, where better results are reported using 
the BCIZl element for the meshes and problems considered. The A-9" element is derived from 
the BCIZ2 element by replacing the true second derivatives of the shape functions with 
smoothed derivatives. These pseudo-derivatives are the least square linear polynomial versions 
of the true second derivatives, and the result is that only three numerical integration points are 
needed to evaluate the stiffness matrix. The pseudo-derivatives are not given explicitly in 
Reference 21, but good numerical results are reported for several static problems. 

In Reference 21 a close relationship of the A-9 element to a hybrid stress formulation has 
been reported. At present the A-9 element replaces the BCIZl and BCIZ2 elements in some 
computer codes (Reference 3, Chapter 13). 

In the computer program ICES-STRUDL 11, the element CPT is a 9 dof triangular element." 
Two subtriangles are used in the formulation. The normal slope continuity is enforced along the 
three sides but the transverse displacement is not inter-element continuous along one side.23 
Only a few numerical results using this element have been published. 

2.2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHybrid zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstress elements 

The elements described above have been derived from the principle of minimum potential 
energy and the Kirchhoff plate theory. The hybrid stress (or hybrid mixed) methodz4 was 
developed to overcome the difficulties that are encountered in the development of pure 
displacement models due to element compatibility requirements. Various authors have presen- 
ted hybrid stress triangular elements for plate bending problems.' The most effective and also 
simplest element is called the HSM element in this study. This triangular bending element is 
derived from the Kirchhoff plate theory. The element has a linear distribution of bending 
moments in the interior and a cubic displacement variation with a linear normal slope zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(w,")  
variation along the edges of the element. The formulation of the HSM element has been 
discussed by several a ~ t h o r s ' ~ * ~ ~ - ~ ~  and slightly different ways have been devised to obtain the 
stiffness matrix depending on the expression of the functional used. The derivation of the 
stiffness matrices of hybrid stress elements appears to be rather cumbersome, and the evaluation 
of the element matrices appears to involve more algebraic manipulations and computer storage 
than comparative displacement models. However, some effective techniques are available to 
evaluate the stiffness matrix (References 9 and 26; see also Section 3.2). 

Extensive numerical results are available with the HSM element for static as well as free 
vibration analyses of plates, and it is certainly one of the most effective 9 dof triangular elements 
available. Its formulation is given in detail in Section 3.2, where the stiffness matrix is given in 
compact form. Theoretical studies related to hybrid stress models and the HSM element are 
found in References 26,29 and 30. 

In References 27 and 31 the HSM element has been derived using a hybrid displacement 
approach instead of the hybrid stress model. Hence, several alternatives are available to 
formulate the stiffness matrix of the HSM element; however, they do not seem to offer any 
advantage over the standard hybrid stress method as far as the derivation of the stiffness matrix 
is concerned. The main advantage of the hybrid displacement approach3' for deriving the HSM 
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element lies in the more simple and accurate calculation of consistent loads due to pressure 
loading. Identical numerical results to the A-9 element?' are obtained. The calculations 
presented in Reference 21 require more basic operations than our evaluation presented in 
Section 3.2, but about the same high speed storage. 

In Reference 51 a triangular hybrid stress element based on the theory of plates including 
transverse shear effects has been used to build quadrilateral elements with 12 dof. This element 
appears to be quite effective for plates of various length-to-thickness ratios and for sandwich 
plates. 

Another class of 9 dof triangular elements for the analysis of Kirchhoff plates can be obtained 
with the so-called simplified hybrid displacement method (Reference 52 among others) by using 
a 10-term cubic polynomial for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw and correcting the stiffness matrix (which is the same as the 
T-10 element in Reference 16) to restore the continuity of w," along the sides. The resulting 
element is a 10 dof element; the reduction to 9 dof is carried out by static condensation. A 
critical assessment of this triangular element is given in Reference 32, where it is shown that the 
stiffness matrix can in some cases be singular (after the introduction of boundary conditions). 
Acceptable results are reported and applications to linear and nonlinear analysis of plates and 
shells have been given, but the elements are not reliable. 

2.3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADiscrete Kirchhoff theory elements 

The formulation of elements based on the discrete Kirchhoff theory for bending of thin plates 
is obtained by first considering a theory of plates including transverse shear deformations (see 
Section 3.1). In this case the independent quantities are the deflection zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw, and the rotations pX 
and p, and only Co continuity requirements need to be satisfied. The transverse shear energy is 
neglected altogether and the Kirchhoff hypothesis is introduced in a discrete way along the edges 
of the element to relate the rotations to the transverse displacements. This approach has been 
used to formulate effective 9 dof triangular bending that converge to the classical 
thin plate solution. The element labelled QQ3 in Reference 33 and KC in Reference 36 were the 
most effective at the time of their presentation. Together with the HSM element they still 
represent the most effective 9 dof triangular plate bending elements available (QQ3 and KC are 
labelled DKT, discrete Kirchhoff theory, in our study). However, they are not well known, 
which can be attributed to several reasons. The formulation might appear to be 'strange- 
looking' (mathematically cloudy is the expression used in Reference 37) and the presentations 
used in References 33-36 are neither attractive nor simple. No special variational principle is 
associated with the model. Several plate and shell triangular elements based on the discrete 
Kirchhoff theory used subregions and/or m i d - n o d e ~ ~ ~ * ~ * * ' ~  and the potential of the basic simple 
elements themselves was not reco nized completely. Some researchers found the practical 
application of the element dificult?'or the implementation complicated.'? Furthermore, it was 
claimed that the element predicts stresses relatively poorly.43 The final result is that the DKT 
element has not received widespread adoption and has also not been implemented in any major 
computer code. 

In this paper we demonstrate the generally good behaviour of the DKT element in several 
analyses (Section 4). These results are also complemented by recent theoretical ~ t u d i e s . ' ~ . ~ ~ ~ .  
In Reference 19, an approximation theory is used to derive error estimates associated with the 
DKT model. It is proved that the displacements and the free vibration eigenvalues are 
converging quadratically to the C' Kirchhoff solution of thin plates. 

The above theoretical results are in agreement with the results obtained in References 38,39 
and 40. In these papers the development of Co plate bending elements of quadratic accuracy is 
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thoroughly described, both theoretically and numerically. In Reference 39 a family of triangular 
9 dof plate bending elements with a parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc to control their flexibility are presented. The 
formulation of these elements is similar to the formulation of the DKT element and the discrete 
Kirchhoff constraints are also introduced along the sides. The DKT element can be considered 
as the element of the family presented in Reference 39 with c = O .  Imposing the Kirchhoff 
hypothesis along the sides of the elements and keeping the transverse shear energy is somehow 
contradictory; however, the converged solution is the classical thin plate solution and for 
different values of c the convergence is quadratic (c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 included). Depending on the value of c, 
different results are obtained for coarse meshes. The choice of the optimum value of c is 
therefore problem-dependent. However, the arguments and derivations given in the papers are 
valuable to justify the DKT element. The formulation of triangular elements for plates with Co 
deflection fields not described by the Kirchhoff bending theory is discussed in Reference zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA44. 

2.4. Selective reduced integration element 

Recent and somehow successful developments of a beam element, quadrilateral plate 
 element^^^'^' and axisymmetric shell  element^,'^ based on selective reduced integration 
concepts and the theory of plates including transverse shear effects, suggest that a simple 
selectively integrated triangular plate element with 9 dof may be effective. The formulation of 
such an element is presented in Section 3.3 and some numerical results using the element are 
summarized in Section 4.3. Based on these results it is concluded that the element is not effective 
when compared with the HSM and DKT elements. 

3. FORMULATION OF THE STIFFNESS MATRIX OF THE DISCRETE 
KIRCHHOFF THEORY ELEMENT AND THE 

HYBRID STRESS MODEL ELEMENT 

3.1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThis discrete Kirchhoff theory element (DKT)  

Before presenting the derivation of the DKT element, we briefly summarize the theory of 
plates including transverse shear that is used in the element derivation. 

3.1 .l. Small displacement theory of plates with transverse shear included. The theory of plates 
with transverse shear deformations included (the plate theory of Reissner or M i ~ ~ d l i n ~ ~ )  uses a 
generalization of the Kirchhoff hypothesis: ‘points of the plate originally on the normal to the 
undeformed middle surface remain on a straight line but which is not necessarily normal to the 
deformed middle surface.’ With this assumption in the small displacement bending theory the 
displacement components of a point of co-ordinates x ,  y, z are: 

where w is the transversal displacement, /3, and By are the rotations of the normal to the 
undeformed middle surface in the x-z and y-z planes, respectively, Figure 2. (In the Kirchhoff 
plate theory, B, = - w,, and /3, = - w , ~ . )  

(a) The bending strains (linear through the thickness) 

The linear strain expressions are 



THREE-NODE TRIANGULAR PLATE BENDJNG ELEMENTS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1777 

Figure 2. Positive directions of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK is the three-component vector of curvatures: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P X . Y  4- PY.1 

(b) The transverse shear strains (constant through the thickness) 

W,Y + PY 

s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

(3) 

(4) 

As in the Kirchhoff plate theory, the state of stress in the plate is defined with plane stress 
assumption, i.e. uz = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, and with the assumption of plane anisotropy (no coupling between u b  

and y ) .  In the most general case of multilayered composite plates and sandwich plates, the 
stress-strain relations (for an elastic material) for a particular layer are: 

and 

where the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEii, i, j = 1, 3, are the components of the three-dimensional elasticity matrix and 

With the kinematics as given by equations (1)-(4) and the material description as given by 
equations ( 5 )  and (6) the strain energy is 

u=ub+us (7) 
where 



1778 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ.-L. BATOZ. K.-J. BATHE AND L.-W. HO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
hl2 hl2 

D, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= I-hl2 D(z) r2  d z ;  D, = k E(z) dzk (10, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11) 
I -h I2  

The variables Ub and V, represent the bending and transverse shear contributions, respectively, 
and k in equation (1 1) contains shear correction factors to account for the non-uniformity of the 
transverse shear stresses through the plate thickness. 

In equations (8) and (9) the matrices Db and D, are functions of the thickness of the plate, h, 
and of the elastic properties of the different layers; the variable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA is the area of the middle 
surface of the plate. For the important practical case of an isotropic homogeneous plate of 
constant thickness we have 

The explicit expressions Ub and U, are then 

The variables E and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv in equations (12) and (14) are the Young’s modulus and Poisson’s ratio, 
and k is the shear correction factor usually taken zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas 5/6 .  

By definition, the bending moments M and shear forces Q are obtained by integration of the 
stresses through the thickness: 

and 

h12 

a, dzk = D,y 
Q = [:;I = I,, 

The expression of U as given by equations (7)-(9), or (13) and (14), is used to formulate finite 
elements for the analysis of thick plates, moderately thick plates, sandwich plates and multi- 
layered plates where the transverse shear effects are important. The independent quantities 
subjected to variation are w, Px and By with the conditions that w = 13, PX = px and 0,  = &, on 
the part of the boundary where displacements are prescribed. The Co continuity requirements 
are not difficult to fulfil and various elements can be developed. In thin plate analysis, selective 
reduced integration has been employed for low-order (see Section 3.3). It is 
interestin to note that with high-order elements neither reduced nor selective integration is 

3.1.2. Stiffness matrix of the DKT element. For thin plates the transverse shear strains and 
therefore the transverse shear strain energy U, are negligible compared to the bending energy. 

required. 8 1 7  
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The finite element model based on the functional in equations (7)-(9), or (13) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(14), must be 
able to represent this constraint. Therefore, the stiffness matrix of the DKT element for the 
analysis of thin plates is based only on the expression 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA is the middle surface of an element and K and Db are given by (3) and (lo), or (12a), 
respectively. 

Equation (17) contains only the first derivatives of BX and By and hence it is relatively easy to 
establish interpolation functions that satisfy the compatibility requirements. However, since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPI, 
By are the variables in equation (17), it is necessary to relate the rotations of the normal to the 
middle surface to the transverse displacement w (which does not appear in equation (17)). This 
goal should be achieved with the following considerations: 

(a) The triangular element must have only 9 dof; that is, the displacement w and the rotations 0, 
and 8, at the three corner nodes. 
(b) Since the Kirchhoff solution of thin plates is sought, the nodal point rotations should be 
8, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= + w, and OY = - w,, (so that the Kirchhoff kinematical boundary conditions be satisfied). 
(c) Since the element models thin plates, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas governed by the Kirchhoff plate theory, the 
Kirchhoff plate theory assumptions can be imposed at any discrete points. 
(d) The compatibility of the rotations PI and By should not be lost. 

following assumptions: 

(1) Px and P, vary quadratically over the element, i.e. 

The formulation of the DKT element as presented in References (33)-(36) is based on the 

where PI, and By, are the nodal values at the corners and at the mid-nodes, Figure 3, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN,(& v )  
are the shape functions given in Appendix A, 6 and 7 are the area co-ordinates; 
(2) The Kirchhoff hypothesis is imposed at: 

(a) the corner nodes 

y = [  P x  + w,x ] = O  a t n o d e s 1 , 2 a n d 3  
P Y  + w,, 

(b) the mid-nodes (defined anticlockwise around the element boundary, Figure 3) i.e. 

Psk + w,,* = 0 k = 4 , 5 , 6  (20) 

(3) The variation of w along the sides is cubic, i.e., 

3 1 3 1 
W,,& = -- wi -4 w,,, +- wj zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-4 w,*, 

2 lij 2 l,, 

with k denoting the mid-node of side i j  and 1, equal to the length of the side ij. 
(4) A linear variation of is imposed along the sides, i.e. 

P n ,  = t ( B n ,  + B n , )  (22) 

where k = 4 , 5 , 6  denotes the mid-node of the sides 23,31 and 12, respectively. 
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t '  

, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwn2' 

S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=9i j  

It is appropriate here to make the following remarks before continuing with the derivation of 
the stiffness matrix. 

(1) From the relations in equations (18)-(22) it is seer. that the relation between the rotations 
and the transverse displacement w is given by equation (20) by assuming a cubic variation of w 
along the sides (or a quadratic variation of w , ~ ) .  
(2) There is no need to define an interpolation function for w on the element (but the 
assumption of a cubic variation of w along the sides is the property of a cubic polynomial on the 
element). 
(3) Since w varies cubically along the sides, w , ~  varies quadratically and so does p,. Since w , ~  
matches & at the three points along each side, the Kirchhoff hypothesis (ys  = & + w , ~  = 0) is 
satisfied along the entire boundary aA (Figure 4). 
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ON THE BOUNDARY d A l  

7, = P ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ w, ,=o  

0 PI quadratic 

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPn l i n e a r  

Figure 4. The DKT element 

(4) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAConvergence towards the classical thin plate solution is obtained because the transverse 
shear strain energy is neglected, equation (17), and because the Kirchhoff hypothesis is satisfied 
along the element boundary. 
( 5 )  It follows from equations (8-22) that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw , ~ ,  PI and Pn are compatible (interelement 
continuous) along the sides (note that w,, has not been introduced since w is not defined in the 
interior). 
(6) With the restriction imposed on Pn in equation (22), Pa and P,  are given by complete 
polynomials of degree one in the element. The global discretization error in the energy is 0(l2), 
where 1 is the measure of the sue of the element.19’39 
(7) When the forhulation is applied to a one-dimensional beam, the exact stiffness matrix of a 
thin beam (with a cubic polynomial w )  is obtained. 
(8) The formulation is readily extendable to obtain quadrilateral elements with 12 dof (e.g. the 
QC element in Reference 36) and other polygonal elements. 

To obtain Px and By in terms of the nodal dot 

uT= [w l  ex, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe,, w 2  ea, eY,w3 ex, e,,] (23) 

the following geometrical relations are needed on each side: 

and 

[:;:I =[: -:I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[:I 
where c = cos(2, r i i i )  and s =sin(.?, Zi i ) ,  Figure 3. 

Using equations (18)-(25), the following expressions are obtained for Bx and 0, 

PI = H: (6, v)U 
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where H, and H, are the nine component vectors of new shape functions. The components are 
functions of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANi, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1,6 and the co-ordinates of the nodes, 

H,, = 1.5 ( U & ~ - ~ S N S )  (274 

The functions Ha, H,,, H,, Hy4, Hy, and Hy6 are obtained from the above expressions by 
replacing N1 by N2 and indices 6 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 and 6, respectively. The functions H,,, H,,, H,, H,, 
HyB and Hyp are obtained by replacing NI by N3 and indices 6 and 5 by 5 and 4, respectively. 
Also, 

(28) 2 
a k  = -x,;/k; 

2 
bk = bi;Yi j /  l i j  

ck = ( h i ,  - 2 y i i  )/hi 

d k  = - Yij/lij 

et = (ayij -2x i j  ) l l i j  

2 1 2  2 

2 

1 2 1 2  2 

1,' = (Xi? + yij7 

where k = 4, 5,6  for the sides i j = 23, 31, 12 respectively (Figure 3). 

displacement method. 
The evaluation of the stiffness matrix follows the standard procedures of the finite element 

Using equations (3) and (26), 

K = B U  (29) 

where B is the strain-displacement transformation matrix: 

and 2A = ~ 3 1 ~ 1 2  - ~ 1 2 ~ 3 1 .  

The derivatives of H, and Hy with respect to 6 and t) are given explicitly in Appendix A. 
The stiffness matrix of the DKT element becomes 

If the thickness and the material properties are constant over the element, the exact integration 
of K is obtained using three numerical integration points located at the mid-nodes or inside" 
because the integral involves only quadratic terms. 
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Once the nodal displacements have been calculated, the bending moments zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM at any point in 

the element can be obtained using equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(15) and (29): 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x =xl+5;r2l+77x31 

Y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Y 1 + 6Y 21 + VY 31 

(33) 

Since, in general, M depends upon all the components of U, M is not unique along the boundary 
shared by two elements. 

3.2. The hybrid stress model element zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(HSM) 

In the formulation of the HSM element the classical Kirchhoff thin plate theory is used 
directly. With the notation used in Section 3.1, y = 0 everywhere in the plate, 6. = - w,. = 8, 
and By = - w,, = - 8,. 

The so-called h brid stress functional for plate bending under the Kirchhoff assumptions can 
be e~tablished:~" 0.46 

(a) either from the Hellinger-Reissner functional by assuming that the equilibrium equation of 
the plate in terms of bending moments is satisfied and that the geometrical boundary conditions 
are also satisfied, or 
(b) from the complementary potential energy by relaxing the natural boundary conditions and 
by assuming that the geometrical boundary conditions are satisfied. 

The following expression has been found convenient for the derivation of the stiffness matrix 
of the HSM element: 

Y 

UHS = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI, -B(Mij) dx dy + ( w a n  - w,nMn - w,&fM) dS (34) 

where A represents the middle surface of the element, t3A its boundary, and B(Mii) is the 
complementary energy per unit middle surface. For a general multilayered rigidly bonded 
composite plate: 

B(Mii) = $MTDb-'M (35) 

where M is the vector containing the bending moments zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM,, My, Mxy, and D b  is defined in 
equation (10). For the important practical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcase of a homogeneous isotropic plate, Db is given in 
equation (12a) and 

(36) 

Also, On, M,, and M,,, are the shear force, normal and twisting bending moments, respectively, 
along the boundary (Figure 3): 

12 
B ( M d = E h f { ( M .  +M,I2+2(1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+N&, -M.M,)) 

On =c(Mx.z +M.y ,y )+~(My.y  + M x y a )  
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where c and s abbreviate cos (2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn') and sin (2, n'), respectively; n' is the (outward) normal along 
the contour. 

The independent quantities subject to variation in the hybrid stress functional are the 
components, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMx, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMy, Mry in A and w and w,, along the contour zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaA with the subsidiary 
conditions: 

M X J X  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 2My.xy + 4 . y y  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 in A (38)  

w = G, w,, = G,, on C, (39) 

and 

(C, is the part of the boundary on which displacements are prescribed.) It is assumed that 
uniform loading is represented by direct lumped loads. 

The HSM element proposed by several authors (see Section 2) is based on the assumption that 
the bending moments vary linearly in the interior of the element and w varies cubically along the 
sides with a linear variation of w,,. The nodal dof are the same as for the DKT element, equation 
(23).  Thus, it is assumed that 

where 

M = P B  (40) 

Po=[l x Y l  

p is a nine-component vector of generalized parameters. 
Using equations (35) and (40). the complementary strain energy is 

U1= 
where 

Owing to the nature of P, the 9 x 9 matrix H can be expressed as 

where the Cij are the coefficients of the Dbl matrix and 

1 X Y  

+ = j  A P;fPodxdy = j A  [; x2 XI] dx dy 

XY Y 

(43) 

(44) 

(45) 

If, for simplicity, the origin of the x and y local axes is taken at the element centroid (Figure 31, 
we have 

A 0 0  

O * Y  

4 = [ 0  ff *] (47) 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA is the surface area of the element, 

A 2  2 2 
Q =-(XI + x Z  + ~ 3 )  

12 

A 
12 CL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=- ( X l Y I  + X 2 Y 2 + X 3 Y 3 )  

(x i ,  y i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi = 1,3 are the co-ordinates of the nodes with the centroid as the origin.) 
For the evaluation of the stiffness matrix we need to compute H-’: 

d i i A  d 1 2 A  d i d  

d i A  d 2 3 A  d 3 3 A  

H’.’ = [ di2A d 2 2 A  d z 3 A  ] 

(48) 

(49) 

where the dii are the components of the Db matrix, equation (lo), and 

f f y - C L 2  0 

(50) 

The procedure used here to define H-’ is found to be valid and very effective for a general Db 
matrix. The technique is similar to that used in Reference 9. The only difference is that in 
Reference 9, area co-ordinates are used instead of the x and y co-ordinates, equations 
(40)-(42). The result is that in Reference 9 the A matrix is simpler in form than equation (50); 
however, the G matrix, as introduced in the discussion below, is more difficult to formulate. This 
is due to the different nature of the generalized parameters f3 in both approaches. 

The second important step in the formulation of the stiffness matrix is the evaluation of the 
integral on dA = 12+23+31. On side zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi j  (ij= 12, or 23, or 31) we have 

1 
A = + - ] =  A(f fy-42)  [ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz* -A* :a] 

u 2  = { w o n  - w , n M n  - w,&fns} ds (51) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI, 
The components 0, and Mn and Mns are given in equation (37) (Figure 3): 

Using equations (37) and (40) it follows that 

c = cos y.. = - y . . / / . . .  r l  , s = sin Yij = xi,/&, (52) 

[-$“I =Riif3 (53) 
-Mns i j  

where 

-2csy (54) c l  [ O  cs Csx csy -cs - a x  -my -(cc-SS) -(cc-s)x - ( c c - s s ) y  

C 0 0  0 S 0 S 

Rlj= -CC -CCX -CCY -SS -SSX -SSY - 2 ~ s  - 2csx 

with x = x i  - (xii and y = y i  - [y i j  and 5 = s/lii (Figure 3). Thus, Rli is a linear expression in 5. The 
transverse displacement w along the side ij is expressed as a cubic: 

w   HA^ ( t ) w i  +HA* ( O w j + H : l ( t ) w , q  + ~ : 2  ( t ) ~ , ,  ( 5 5 )  
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where 

The normal slope zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW,,, is assumed to vary linearly: 

Using equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(25), (55) and (57) we have 

(57) 

(58) 

where 

and 

Using equations (53) and (58), equation (51) becomes 

where 

Gii is a 9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 6 matrix and the integration is performed in closed form. The compact and explicit 

A 9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 9 matrix G can be defined such that 
expression of Gij  is given in Appendix B. 

{wQ, - w,,Mn - w,,M,} ds = P'GU 
l J 3  = I,, 

with 

The matrix expression for equation (34) is therefore zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
VH, = - BTHP + PTGU (65) 

The stresses (associated with g) vary independently within the elements and the displace- 

p = H-'GU (66) 

ments (associated with U) are common to adjacent elements. Therefore we have 
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and by analogy with the conventional displacement method the stiffness matrix of the HSM 
element becomes 

K H ~ M  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= GTH-'G (67) 

Once the nodal displacements are known, the bending moments are evaluated using equations 
(40) and (66): 

M = P(x, y)H-*GU (68) 

Note that different bending moments are obtained along the interelement boundaries since the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p's are different for different elements. 

3.3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe selective reduced integration element (SRI)  

The formulation of the SRI element is based on the theory of plates with transverse shear 
deformations included (see Section 3.1.1) and follows the approach given in References zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA42 and 
54. The main difficulty in the development of selectively integrated elements is to obtain an 
accurate and reliable element. The issue of reliability is most important in actual practical 
analysis,58 and we would only want to use an element that does not contain spurious zero energy 
modes. 

The basic displacement assumptions for the SRI element are the deformations w, Px and P y  
which vary linearly over the element: 

3 3 3 

i = l  i - 1  i = l  
w =  Z Liwi B x =  1 L8.q B y =  C L&y, (69) 

where Li = 1 - 6 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7, Lz = 6, LJ = 7 and wi, f ix, and By,, i = 1,2,3, are the nine nodal values at the 
corner nodes (Figure 1). 

Using equations (7), (14) and (18) the stiffness matrix of the SRI element is defined as 

KSRI = K b  + K, (70) 

where Kb represents the stiffness matrix due to bending, and K, the stiffness matrix due to 
transverse shear, 

where Db is given in equations (10) or (12a). Also, 

and 

K, = 2A BfD,B, d( dt) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI, 
where D, is given in equations (11) or (12b), and 

(73) 
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In equation (70) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKb is a matrix with constant terms (exact integration), and K, is a matrix 
involving integrals of quadratic terms in 5. 7. If exact integration is used, convergence 
towards the thick plate solution is obtained but the rate of convergence is low. Considering the 
analysis of thin plates the concept of reduced integration can be e r n p l ~ y e d ~ ~ ” ~  by evaluating the 
shear stiffness K, using only one numerical integration point (which is equivalent to assuming 
that y is constant over the element). This element has been tested and the numerical results 
obtained in the analysis of some problems that are given in Section 4.3. These results show that 
the element is not effective in the analysis of thin plates. In addition, the element also contains 
spurious zero energy modes, which would have to be eliminated before the element could be 
recommended for general practical analysis. 

As established in recent s t ~ d i e s ~ ~ ’ ~ ~  in certain cases the stiffness matrix associated with a 
selective integration formulation is equivalent to the stiffness matrix obtained using a mixed 
formulation of the Hellinger-Reissner type, where the dof associated with the stresses are 
considered as internal (element) parameters. If this equivalence can be shown, it provides 
further insight into the formulation of the element. For the present triangular element we show 
this equivalence in Appendix C. 

4. IMPLEMENTATION AND NUMERICAL RESULTS 

The DKT, HSM and SRI plate bending elements have been implemented in the computer 
program ADINA.49 Several sample problems have been solved using these elements and the 
results have been compared with those obtained using other elements. 

4.1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARemarks on the implementation of the elements 

The calculation of the DKT and SRI elements is similar to that of the two-dimensional 
isoparametric plane-stress element (evaluation of B matrix and integration of BTDbB, 
Reference 11). In the case of the HSM element, the matrices H-’ and G are first evaluated. The 
stiffness matrix is then obtained using equation (67). 

Considering the loading on the elements, a uniform loading is represented by lumped 
concentrated loads acting at the nodes, i.e. the element load vector corresponding to a uniform 
pressure load zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 per unit middle surface is 

fT=A/3[y 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 q 0 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq 0 01 (75) 

The bending moments are evaluated using equations (32) and (68) for the DKT and HSM 
elements, respectively. In ADINA, the moments can be evaluated at a maximum of seven 
points: the centroid, the three corner nodes and the three mid-side nodes of each element. 

In dynamic analysis, a diagonal lumped mass matrix is employed. Neglecting the inertia effects 
at the rotational dot, the vector of the diagonal elements of the mass matrix is given in equation 
(75) with p instead of q, where p is the mass density per unit area. The techniques and strategies 
used to evaluate the natural frequencies are those of the ADINA program.49 

A study of the formulations given in Section 3 shows that comparable storage and operations 
are needed to form the stiffness matrix of the HSM element compared to that of the DKT 
element. This is also true for the evaluation of the stresses in the elements. 

4.2. Analysis of sample problems using the DKT and HSM elements 

performances were evaluated and compared with those of other 9 dof elements. 
Several sample problems were analysed using both the DKT and HSM elements. The element 
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E L E  MENT REFERENCE 

D K T  3 3 -  36 
H S M  2 5 -  27 

ECIZl 17 

BCIZ2 1 7 ,  30 

HCT 16 

A - 9  21 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, 31 

STRUDL 2 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

The analysis results of different static and free vibration problems are described in the 
following sections. Some of the results presented have been reported already by other authors, 
e.g. References 19,33,36 and 59 for the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADKT element, and References 26,27 and 28 for the 
HSM element. 

4.2.1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASquare plate under concentrated and uniform loads with clamped and simply-supported 
edges. In this analysis, a square plate of sides 2a with either simply-supported or clamped edges 
is considered. Owing to symmetry in the problem, only one-quarter of the plate is modelled. The 
plate and the two different mesh orientations (A and B) used in the analysis are illustrated in 
Figure 5 .  Four different sizes of meshes are considered: 2,8,32 and 128 triangular elements are 

SYMBOL MESH UNtFORM L W D  

0 A .  B lumped 
0 A ,  lumped 

0 A lumped 

8 A lumped 

A B lumped 

v A consistent 

* A lumped 

A t ’  B 

MESH ORIENTATION A MESH ORIENTATION B 
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used to form the meshes corresponding to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, 2 , 4  and 8, respectively. For the case of the 
concentrated load (P), the different sizes of meshes in both A and B orientations are employed 
while only mesh orientation A is considered for the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcase of the uniform pressure loading ((I). In 
all cases, the simply-supported as well as the clamped boundary conditions are considered. 

As shown in Figure 5, both the DKT and HSM elements are evaluated with other established 
elements, namely the BCIZ1, BCIZ2, HCT, A-9 and STRUDL elements. The central 
deflections and moments of the DKT and HSM elements for all the above cases are given in 
Reference 53. The comparisons of the predicted results with those of other elements are given in 
Figures 6-15. Some remarks on the results are given in the following: 

2 

I 

I 

-20 -I5W 
I / ’  

4 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 7 8  

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6. Simply-supported plate with concentrated load :error in defkction at Centre 
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(1) Considering first the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcase of the concentrated load application, Figures 6 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 show that the 
DKT and HSM elements are very efficient. Note that mesh B is not effective in modelling the 
clamped plate problem, since all dofs of the comer element vanish. The influence of mesh 
orientation on the displacements is more severe for the DKT element than for the HSM 
element. Convergence from above is obtained for the DKT element, whereas monotonic 
convergence from below is observed for the HSM element. 
(2) 'In the case of uniform loading, monotonic convergence was achieved with the DKTelement 
with both boundary conditions. However, convergence is less rapid in the case of the clamped 
plate. The solution accuracy could probably be increased by employing a consistent load 
representation with a cubic polynomial for w. Monotonic convergence is not achieved in the 
analysis of the clamped plate using the HSM element. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 7. Clamped plate with concentrated 1oad:error in defkction at centre 



1792 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ.-L. BATOZ, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK.-J. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABATHE AND L.-W. HO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4 5 6 7 8  I 2 3 
N 

Figure 8. Simply-supported plate with uniform loading: error in deflection at Centre 

(3) In general, the stresses obtained with the HSM element meshes are slightly better than those 
with the DKT elements for the same problem (see Figures 10-15, and Tables 4-7 of Reference 
53). Similarly, the boundary conditions in terms of stresses such as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM, = O  along a simply- 
supported side are slightly better satisfied with the HSM elements. However, the difference 
between two distinct values of moments at a node connecting two elements is not smaller with 
the HSM elements. 

4.2.2. Twisting ofa square plate. This study is intended to evaluate the twisting behaviour of 
the DKT and HSM elements. Particular attention is given to the DKT element as the twisting 
curvatures due to Bx.v and are not equal in general, equation (3). This problem can, 
therefore, be used to evaluate the ability of the DKT element to represent stresses due to a 
constant twist (a patch test problem). The same problem has been considered in References 16 
and 21 using other finite elements. 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9. Clamped plate with uniform 1oading:error in deflection at centre 

The square plate is simply supported (i.e. w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0) at the corners A, B and D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas shown in Figure 
16. A vertical load is applied at corner C. The exact thin plate solution with the data given in 
Figure 16 is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM, = My = 0 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMxy = 2.5 lb-in/in everywhere in the plate with w, = 0.2496 in and 
wo = 0.0624 in. 

Four different meshes are considered: meshes (a) and (b) are regular with 2 and 4 elements, 
respectively; meshes (c) and (d) are irregular with 4 and 8 elements, respectively. 

The results obtained using both the DKT and HSM elements are excellent. All four meshes 
with either element give the exact solution for stresses and displacements (stresses are evaluated 
at the centroid as well as at the corner nodes). These results are compared in Figure 16 with those 
given in Reference 16. The ACM (a 12 dof incompatible rectangular element) and the HCT 
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Figure 10. Simply-supported plate with concentrated load :error in corner reaction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
results were obtained with a regular fine mesh of 8 x 8 elements. Considering the results given in 
Reference 21, the A-9 and the non-conforming BCIZl elements do reproduce the exact stresses 
with mesh (a), and the BCIZl element cannot predict the exact solution even with very fine 
meshes if the mesh subdivision is irregular. (A 30 per cent error in the stresses exists at the 
centroid for mesh (d).) 
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Figure 11. Clamped plate with concentrated load: error in bending moment at centre of side 
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Figure 12. Simply-supported plate with uniform loading: error in bending moment at centre 

4.2.3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAStatic analysis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof a rhombic cantilever. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThis problem deals with the analysis of a 
rhombic cantilevered plate subjected to a uniform load. The geometry and material properties 
are given in Figure 17. Experimental results of this problem are available for comparison.'6 

A 4 x 4 mesh is used and the results obtained with both the DKT and HSM elements are given 
in Figure 17. It is observed that even with this coarse mesh, the DKT element gives results in 
good agreement with the experimental values. 
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Figure 13. Simply-supported plate with uniform loading: error in corner reaction 
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Figure 14. Clamped plate with uniform loading: error in bending moment at centre 
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Figure 15. Clamped plate with uniform loading: error in bending moment at centre of side 
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Figure 16. Twisting of a square plate with comparison of numerical results 
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Figure 17. Rhombic cantilever plate with comparison between numerical and experimental results 

4.2.4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFree vibration analysis of a square plate with clamped and simply-supported edges. The 
natural frequencies and mode shapes of simply-supported and clamped square plates are 
evaluated using the DKT and HSM elements and a lumped diagonal mass matrix. Two uniform 
mesh orientations (mesh A and B, Figure 5 )  are used with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN = 1,2,4,8. Only doubly-symmetric 
modes were calculated by considering one-quarter of the plate (ABCD in Figure 5). 

The first six eigenvalues (and associated modes) are given in Tables I and 11. The modes are 
described by the number of half-waves m and n parallel to the x and y axes, respectively: ( 1 , l )  
corresponds to the fundamental mode with no nodal line within the plate. The non-dirncnsional 
eigenvalue is A = p ~ ~ [ ( 2 a ) ~ ] / D ,  where p is the mass density per unit mid-surface and w the 
angular frequency. For the simply-supported plate the exact successive eigenvalues are given by 
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Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Free vibration frequencies of simply-supported square plate (symmetric modes) 

Mesh 
orien- N Analytical 

Element tation Mode 1 2 4 8 A =(rn2+n2)2.rr4 

344.54 
6,872.42 
7,240.92 

14,500.13 

401.61 
7,103.64 
7,897.60 

16,607.51 

377.29 
9,126.28 
9,388.30 

27,264.37 
57,129.63 
58,768.28 

392.04 
9,364-95 
9,628.80 

28,311.58 
57,563.00 
59,912.48 

386.46 
9,579.76 
9,653.93 

30,423.29 
64,282.79 
64,859.60 

390.14 
9654.52 
9731.92 

30,727.04 
64,641.36 
65,264.62 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA , =  389.64 

A 4  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 9,740.9 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A7 = 31,560.55 

A lo= 65,848'55 

.. - __ - 
HSM A (1 , l )  305.02 363.03 382.31 387.64 A , =  389.64 

(1,3) 9,068.55 9,639.09 9,698.60 A, = 9,740.91 
( 3 , l )  13,410.28 10,365.19 9,863.15 
(3,3) 32,734-87 31,864.81 31,568.50 

B (1.1) 628.33 431.73 399.34 392.04 A, = 389.64 
(193) 9,415.73 9,922.40 9,783.68 h 4 =  9,740.9, 
(3,1) 13,717.77 10,675.68 9,948.52 
(3.3) 39.898.67 33.273.24 31.917.22 A7 = 31.560.55 

731828.85 671628.48 = 65:848.55 
78,406.69 68,494.33 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

t A = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApw2[(2a)']/D. 

2 2  4 the expression A = (m2+n ) 7r . For the clamped plate the reference solution is taken from 
Reference 50. 

A comparison of the results for the first eigenvalue using different models is given in Table 111. 
The calculated values using the DKT and HSM models (meshes A and B and a lumped diagonal 
mass matrix) are compared with those reported in Reference 19 using the DKT and the HCT 
elements with the same meshes but using a consistent mass matrix. The convergence charac- 
teristics of the DKT and HSM elements (with a lumped diagonal matrix) are compared in Figure 
18 for both types of boundary conditions and meshes. 

(1 )  For the simply-supported plate, modes (1,3) and ( 3 , l )  (or (1,5) and ( 5 1 ) )  (see Table I) are 
theoretically associated with the same eigenvalue. The finite element results are different for 
these modes, but the differences between the values decrease as the mesh is refined and in every 
case both values converge to the reference value. (The nodal line of one of the first two modes is 
circular and the other nodal line is along the diagonal of the plate.) Similar observations also 
hold for the clamped plate and have been discussed previously using other finite element 
 formulation^.^^*^^ 

Considering the analysis results, we make the following observations. 
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Table 11. Free vibration frequencies of clamped square plate 

Mesh 
orien- 

Element tation 

DKT A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- . . .  

B 

. .  

HSM A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

N 
Mode 1 2 4 8 

(1, 1) 529.082 996.29 1,203-25 1,270-82 
(1,3) 8,853.77 15,632.67 16,905093 
(331) 9,388.27 15,974.98 17,103.20 
(3,3) 16,437.16 38,973.41 45,885.33 
(195) 75,470.81 92,043.40 

77,394.62 93,009.73 (51)  

(1 , l )  964.88 1,364-60 1,311.88 1,298.94 
(1.3) 9,645095 16,697.68 17,209.41 
(391) 10,035-82 16,810-73 17,358-68 
(3,3) 17,892.05 41,253.31 46,633.57 
( L 5 )  77,140.12 93,15245 
(5,1) 81,768.01 94,624.76 

. -- .~ 

.. 

.. ~~ ~ ______ 

(1 , l )  1,151-86 1,211.13 1,270.28 1,287.59 
(193) 16,984.70 18,269091 17,621-45 
(391) 20,762.39 19,055.18 17,641-53 
(3,3) 49,216.58 51,216.57 49,015.43 
(195) 11 1,518.97 99,056.45 
(591) 123,653.50 100,681.87 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A 1 = 1.294.94 

17,312.49 
17,477.05 

A, = 

A 7  = 48,391.70 
- 95,252.60 

95,407.10 

A \  = 1,294.94 
17,3 12.49 

' - 17,477.05 
A 7  = 48,391'70 

- 95,252.60 
95,407.10 

hi= 1,294.94 

A i o -  

- 

A -  

A i o  - 

A - 17,312-49 
- 17,477.05 

95,252.60 
95,407.10 

A7 = 48,391'70 

A i o =  

- -~ - - 

€3 (1.1) 3,455.06 1,772.97 1,391.51 1,317-90 A \ =  1,294,94 
(1,3) 18,516.59 19,176002 17,728086 A 4  = 17.3 12.49 
(391) 21,955.02 20,329-77 18,079-46 17,477-05 

(1,5) 115,520.79 100,240.24 95,252.60 
(3,3) 57,521.09 55,178.41 49,875-53 A7=48,391*70 

(5,1) 127.1 38.90 102,157.34 = 95,407.1 0 

t Average of the upper and lower bounds in Reference 50. 
t A = pu2[(2a)']/D. 

(2) The convergence rate for the first eigenvalue is similar using the DKT and HSM elements. 
Mesh B is more efficient for the DKT element, whereas mesh A yields better results using the 
HSM element. A consistent mass representation as used in Reference 19 (Table 111) gives a 
better convergence rate than the lumped mass approach used here. 

4.2.5. Free vibration analysis of a triangular cantilever. This problem deals with the vibration 
of a cantilevered triangular plate representing a fin used in missile stabilization. The problem is 
chosen to compare the natural frequencies and mode shapes predicted by the DKT and HSM 
elements with experimental results and with results obtained by employing other higher order 
finite elements. 

The data and the finite element meshes used in the analysis are given in Figure 19. The natural 
frequencies obtained with the DKT and HSM elements with 10 and 21 mass dof are  given in 
Table IV. Included in the same table are experimental values and results using other finite 
elements."s0 The nodal lines corresponding to the first six modes for the DKT element with 21 
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Table 111. Lowest eigenvalue of square plate-influence of model and mesh orientation 

DKTt 
Mesh Mesh 

N A B 

1 240.2 427.6 
2 344.5 401.6 
4 377.3 392.0 
8 386.5 390.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ ~. 

Reference value: 389.6 

Simply supported square plate 
HSM? DKTS HCTS 

Mesh Mesh Mesh Mesh Mesh Mesh 
A B A B A B 

305.0 628.3 334.6 380.7 497.0 460.6 
363.0 431.7 374.8 374.1 412.1 406.1 
382.3 399.3 385.4 384.6 395.0 393.7 
387.6 392.0 

Clamped square plate 
DKTt HSMt DKTS HCTS 

Mesh Mesh Mesh Mesh Mesh Mesh Mesh Mesh zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N A B A B A B A B 

1 529.1 964.9 1,151.9 3,455.1 979.8 1,491.3 3,22205 8,805.7 
2 996.3 1,364.6 1,211.1 1,773-0 1,141.3 1,259.4 1,528.9 1,663.7 
4 1,203-3 1,311-9 1,270.3 1,391.5 1,24501 1,277.0 1,348.2 1,377.2 
8 1,270.8 1,298.9 1,287.6 1,317.9 

_- .- .- 

Reference value: 1,294-9 

t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALumped mass. 
t Consistent mass.'' 

._ 

Table IV. Natural frequencies of cantilevered triangular plate 

High Experi- 
Shell precision mental 

DKT HSM element' element" value'" 

N = 4  
36 mass 

N = 4  N = 6  N = 4  N = 6  dof N = 3  
10 mass 21 mass 10 mass 21 mass (lumped 40 mass 

Mode dof dof dof dof mass) dof 
-- -. . . . - ~ .. . 

1 34.5: 35.7 34.8 35-8 36.7 36.6 34.5 
2 117.6 128.6 121.3 130.7 133.5 139.3 136 
3 155.6 174.8 164.1 179.1 177.8 194.1 190 
4 271.1 299.6 288.6 308.2 323.0 333.8 325 
5 331.2 395.6 365.2 413.1 410.0 4554 441 
6 403.7 487.6 461.9 518.8 517.0 593.2 578 
7 474.9 571.7 556.4 615.0 621.1 671.3 
8 513.1 661.9 665.8 717.2 753.4 811.6 
9 567.0 744.9 703.6 814.9 997.6 969.6 
10 667.8 868.9 935.0 991.8 1179.0 11 26.6 

? Frequency in Hz. 
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Figure 18. Error of the first eigenvalur of a square plate vs. mesh and model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
mass dof are illustrated in Figure 20, together with experimental results. Considering the results 
we make the following observations. 

(1) The DKT and HSM elements predict the fundamental frequency accurately. However, the 
higher frequencies are calculated less accurately. 
(2) The 21 mass dof models predict the higher frequencies more accurately than the 10 mass dof 
ones. However, considering the fundamental frequency, the larger dof models give values that 
are further away from the experimental result. This numerical prediction can be explained by 
the fact that the finite element solution converges to the Kirchhoff plate theory result, which 
deviates from the experimental one due to assumptions and experimental errors. 
(3) The first three mode shapes are represented accurately by the DKT element. Qualitative 
representation is still retained in the higher modes. 
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N =4 N=6 

L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.254m 

h = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.55 x lo-', 
E * 2.0685 x 1 0 " N / m 2  

y mo.3 

(moss d e n s i t y  
prr unlt  middle 
s u r f a c e )  

p = 12.152 k g / m 2  

MESHES FOR DKT 6 HSH ELEMENTS 

N.4 
h 

MESH FOR SHELL ELEHENT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ I ]  -- 

Figure 19. Triangular cantilevered plate with finite element meshes used in the analysis 

4.3. Results of some sample static problems using the SRI element zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The standard square isotropic plate (v  = 0.3, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk = 2) was analysed to test the behaviour of the 

simple triangular element based on the reduced integration technique. The concentrated load 
condition was considered and mesh A(N = 1 ,  2 , 4 ,  8 ,  12) was used (Figure 5 )  for the clamped 
plate and the simply-supported plate. The solution results are given in Tables V and VI for 
different values of side to thickness ratios (2a lh) .  These results show that considering a thick 
plate the element converges to the thick plate solution (see, for example, Reference 60); 
however, the element cannot be employed satisfactorily for the analysis of thin plates. 

The selective or reduced integration technique when applied to two-node beam and four- 
node quadrilateral elements gives good results in the analysis of some problems of thin beams 
and plates for aspect ratios up to lo4 (References 42 and 57). However, considering the present 



1804 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ.-L. BATOZ. K.-I. BATHE AND I..-W. HO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N=6 DKT ELEHENTS 

Figure 20. Nodal lines for the triangular cantilevered plate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
triangular element, the behaviour of the SRI element was not found acceptable for the two 
standard tests; hence, no other problems were considered using this element. 

CONCLUSIONS 

In this study, the discrete Kirchhoff theory (DKT) and hybrid stress model (HSM) elements have 
been found to be the most effective 9 dof triangular elements available for bending analysis of 
thin plates. Both elements can be formulated and implemented very efficiently. Their effective- 
ness has been observed in a variety of static and dynamic analyses. Based on theoretical and 
computational considerations and the numerical results, the DKT element is found to be 
somewhat superior to the HSM element. Because of little storage requirements, these two 
elements appear to be very promising for structural analysis on mini- and micro-computers. A 
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Table V. Central deflection zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof a clamped plate subjected zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto a concentrated 
centre-point load (SRI elements. mesh A) 

10 48 1,000 10,000 

1 0.7 1 t 0.03 
2 3.34 0.31 0.0007 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 5.72 1.08 0.003 
8 7.03 2.68 0.013 0*0001 

12 7.43 3.75 0-029 0.0003 
Reference value 
(thin plate solution) 5.60 

Table VI. Central deflection of a simply-supported plate subjected to a 
concentrated centre-point load (SRI elements, mesh A) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA* 

10 48 1,000 10,000 

1 5.85t 5.17 0.5 5.15 
2 6.99 1.23 0.06 0-64 
4 10.76 2.55 0.001 0.0001 
8 12.70 5.75 0.003 0.0004 

12 13.24 7.81 0.008 0.0008 
Reference value 
(thin plate solution) 11.60 

simple triangular element formulated using the theory of plates with transverse shear included 
and using selective integration was found to be not as effective. 
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APPENDIX A: EXPANSIONS FOR THE DKT ELEMENT 

Shape function for DKT element 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA21. Co-ordinates zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 and 

The derivatives of the H, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHy functions with respect to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 and 7 are obtained using 
equation (27). Since. the functions N, are not entirely symmetric in terms of 6 and 77, the 
following arrangement is proposed: 
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H,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 

where 

Using the above expressions and equation (30)  the B matrix needed to evaluate K D ~ T ,  
equation (31) ,  and M, equation (32) ,  is readily obtained. 

P.T.O. 
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APPENDIX C: EQUIVALENCE BETWEEN THE REDUCED INTEGRATION 

PRINCIPLE FORMULATION 

Using the Lagrange multiplier technique the total potential energy function governing plate 
bending with the transverse shear effects included can be written as 

DISPLACEMENT METHOD AND A MIXED HELLINGER-REISSNER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
~ H R = X  (KTDbK- - tK*TDbK*+YTDSY* -~*TD,y * )  dx dy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw'"' (76) 

m A  

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
K, y, Db,D, are given by equations (3), (4). (10) and (11), respectively, and 

K * ~ = [ K ~  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK; K f y ]  and r*'=[y: y ; ]  (77) 

are independent strain components that are not related to the displacements w, and By. Also 
Fz is a uniform normal load in the z direction, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC, is the part of the boundary where vz (shear 
force), and fix,,, uy,, (moments) are prescribed. 

The independent quantities subject to variation in equation (76) are K*, y* ,  w, PX and By with 
the subsidiary conditions 

w = G  P x = &  and @,=By onC, (78) 

Equation (76) can be considered as the Hellinger-Reissner functional in the theory of plates 
with transverse shear included. If the curvature-displacement relations are satisfied, i.e. 

K=K*  (79) 

a modified functional is obtained: 

IIm,oR" = jA (hTDbk + yTD,y* - &*=D,y*) dx dy - W'"' (80) 

The independent quantities in equation (80) are w ,  BX, By and y* with equation (78) as 
subsidiary conditions. 

Finite elements can be formulated based on equation (80), with w, BX and By as nodal dof and 
y* being expressed in terms of unknown generalized parameters ai defined on the individual 
elements. 

If we consider a triangular element with w, BX and By as given by equation (69) and y* a vector 
of two constant parameters: 

then using equations (80), (81) and (23), (69) we have: 

n:;;" = k UTKbU +aTG,U - $aTH,a -UTQ 
m 

where K b  is given.by equation (71) 

G, = D, [A B, dx dy 
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and 

H, =AD, 

The vector Q is the element equivalent nodal-point forces corresponding to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW"") equation (76). 
The stationary conditions associated with (82) give the following relations for each element: 

G,U zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- H,a = 0 

or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a = H-'G,U 

Using equation (84) in equation (82) gives 

llgd = fUTK;;oRdU - UTQ 
rn 

where 

with 

Using equation (83) we have 

K: = GTHi'G, 

* 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A 

K, = - R:D,R, 

with 

R,= B,dA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI, 
Thus the matrix KT corresponds to the matrix K, defined in equation (73) using the reduced 
integration (one-point) scheme. The above derivation shows the equivalence between the two 
different formulations and gives the variational principle associated with the reduced integration 
displacement formulation for the present triangular element. 
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