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SUMMARY

An assessment of flat triangular plate bending elements with displacement degrees-of-freedom at the three
corner nodes only is presented, with the purpose of identifying the most effective for thin plate analysis.
Based on a review of currently available elements, specific attention is given to the theoretical and
numerical evaluation of three triangular 9 degrees-of-freedom elements; namely, a discrete Kirchhoff
theory (DKT) element, a hybrid stress model (HSM) element and a selective reduced integration (SRI)
element. New and efficient formulations of these elements are discussed in detail and the results of several
example analyses are given. It is concluded that the most efficient and reliable three-node plate bending
elements are the DKT and HSM elements.

1. INTRODUCTION

Since the earliest development of the finite element method, a considerable amount of research
has been devoted to the analysis of plate and shell structures. A great number of papers have
been published on this subject (see, for example, the review papers by Gallagherm). Consider-
ing the research and development efforts, various approaches, theories and variational prin-
ciples to formulate plate and shell elements have been used to circumvent the difficulties that
arise in the analysis of general plates and shells. However, despite the amount of research that
has been devoted to the subject, further research effort is still required to provide the practising
engineers with reliable, cost-effective and accurate computer programs>* to solve various plate
assemblies and complex shell problems.

In essence, three approaches are being followed in the development of plate and shell
elements:

1. A particular shell theory is used and discretized.'*

2. Three-dimensional continuum equations are used and discretized (isoparametric elements)
(References 6 and 7, etc.).

3. Plate bending and membrane element stiffnesses are superimposed and assembled in a global
co-ordinate system (References 8 and 9, etc.).

The three approaches have advantages and disadvantages, and it is still difficult to state which of
the three approaches is most effective based on criteria combining accuracy, computational cost
and simplicity in use (in the data input phase as well as in the interpretation of results). Approach
3 received a great deal of attention for the linear analysis of shell structures in the mid-1960s,'°
but the activities related to approaches 1 and 2 have dominated the past 10 years. It is only
recently that a new impetus has been given to the analysis of shells using approach 3.
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Considering this approach, triangular flat elements having displacements and rotations at the
corner nodes as degrees-of-freedom—the engineering dof—are particularly appealing for many
practical reasons; for example, arbitrary shell geometries, general supports and cut-outs, and
beam stiffeners can be modelled. These elements have a total of 18 dof (3 translations and 3
rotations at each node) or 15 dof (3 translations and 2 rotations) depending on whether the
rotation about the normal is included as a dof. The element formulation is based on a
superposition of membrane and bending actions. Among the most recent papers on this subject,
References 12 and 13 deal with the linear analysis, whereas References 9, 14, 8 and 15 deal with
the geometrically nonlinear analysis of shells with large displacements and rotations. In
References 12, 9 and 14 the hybrid stress formulations are used, whereas in References 13, 8
and 15, displacement-type formulations are employed.

A very important consideration in the development of these shell elements is the represen-
tation of the bending behaviour. Although several theoretical and numerical studies on plate
bending finite elements have appeared in the past 15 years, a detailed recent study and
comparison of triangular plate bending elements with only 3 dof at the corner nodes (displace-
ment w and rotations 6, and 8,, as shown in Figure 1) is not available.
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Figure 1. Nine dof triangular plate bending element

In this paper we present the results of a detailed theoretical and numerical study of triangular
plate bending elements with 9 corner dof only. The objective in this study was to identify or
develop an optimum element for the general linear analysis of plate bending problems. Our
ultimate aim is to employ this element as the basis of a 3-noded shell element that can be used
effectively for general geometric and material nonlinear analysis of thin shells. In our work
specific attention was given to the soundness of the theoretical formulation, the numerical
efficiency and reliability of the plate bending elements. It is apparent that very accurate and
efficient elements can be developed for the analysis of specific problems only. However, unless



THREE-NODE TRIANGULAR PLATE BENDING ELEMENTS 1773

an element always yields a stable solution, it cannot be recommended for use in a general
analysis computer program, where reliability of analysis results is of utmost concern. These
thoughts are particularly important in geometric nonlinear analysis in which the structural
configuration changes continuously, and it is impractical and dangerous to apply ‘rules’ that tell
under what boundary conditions and for which structural shapes an element can be employed.

In this paper we first review alternative formulations of 3-noded triangular plate bending
elements that have been presented in the literature. This review suggests giving specific
attention to the theoretical formulation and numerical evaluation of three elements: a DKT
(discrete Kirchhoff theory) element, a HSM (hybrid stress model) element and a SRI (selective
reduced integration) element. New and compact formulations of these elements are given in the
paper, and to identify the relative effectiveness of the elements the results of various sample
analyses using these elements are presented.

2. REVIEW OF TRIANGULAR PLATE BENDING ELEMENTS WITH 9 DOF

In this section we review the formulation and behaviour of the available triangular plate bending
elements with 9 dof: the displacement w and the rotations 6, and 6, at the three corner nodes.
The converged solution is the classical Kirchhoff thin plate solution. These elements can be
classified as

1. Displacement models based on the classical Kirchhoff thin plate theory.
2. Hybrid stress models based also on the Kirchhoff plate theory.
3. Displacement models derived from the theory of plates with transverse shear deformations.

2.1. Displacement-based Kirchhoff plate theory elements

The early attempts to develop satisfactory triangular elements with 9 dof are reported in
References 16 and 17. The element formulations are based on the principle of minimum
potential energy, where the compatibility requirements involve the displacements w and the
rotations w,, = — 8, and w,, = 8,. Elements labelled A, T and T-10 in Reference 16 are based on
cubic polynomials in local co-ordinates x and y. Their ineffectiveness is due to the following
reasons: incompleteness (A), incompatibility (A, T, T-10), lack of invariance with regard to
element orientation (T, A) and singularity (T). It was then realized that it is impossible to
formulate a compatible triangular element with 9 dof with a single-field polynomial expansion
for w. One of the first compatible triangular elements is the well-known HCT element.'® Its
formulation is based on the subdivision of the complete element into three subtriangles. An
incomplete cubic (9-term) polynomial is used in each subregion for the displacement w, and the
normal slope along the exterior edge of each region varies linearly. The formulation of this
element has also been discussed using area co-ordinates'® (where it is called LCCT-9). The HCT
element has frequently been regarded as a reference element for bending analysis of plates,
mainly because of the extensive numerical results presented with its formulation. However, the
formulation involves cumbersome algebraic manipulations and the element is rather stiff. The
element has also been the subject of several theoretical studies (e.g. order of convergence, error
estimates)."’

In Reference 17 a non-conforming element (labelled BCIZ1 in this study) and a conforming
element (labelled BCIZ2) are presented. The BCIZ1 element is a non-conforming element that
satisfies the rigid body mode and the constant strain states. The shape functions expressed in
area co-ordinates are given explicitly in sofne textbooks.'®?° The important drawback of the
BCIZ1 element is due to its incompatibility: it does not converge to the exact answer for some
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mesh patterns. The study of this drawback is given in Reference 17 and can be understood as the
first application of what is now called the ‘patch-test’.

The BCIZ2 element is a compatible element obtained by appropriate superposition of
polynomials and rational shape functions in area co-ordinates. Due to the presence of these
rational functions, a very high-order numerical integration scheme is needed (16 points in
Reference 17) to evaluate the stiffness matrix. Some results for free vibrations of plates using the
BCIZ1 and BCIZ2 elements are given in Reference 17, where better results are reported using
the BCIZ1 element for the meshes and problems considered. The A-9%! element is derived from
the BCIZ2 element by replacing the true second derivatives of the shape functions with
smoothed derivatives. These pseudo-derivatives are the least square linear polynomial versions
of the true second derivatives, and the result is that only three numerical integration points are
needed to evaluate the stiffness matrix. The pseudo-derivatives are not given explicitly in
Reference 21, but good numerical results are reported for several static problems.

In Reference 21 a close relationship of the A-9 element to a hybrid stress formulation has
been reported. At present the A-9 element replaces the BCIZ1 and BCIZ?2 elements in some
computer codes (Reference 3, Chapter 13).

In the computer program ICES-STRUDL I, the element CPT is a 9 dof triangular element.?*
Two subtriangles are used in the formulation. The normal slope continuity is enforced along the
three sides but the transverse displacement is not inter-element continuous along one side.”
Only a few numerical results using this element have been published.

2.2. Hybrid stress elements

The elements described above have been derived from the principle of minimum potential
energy and the Kirchhoff plate theory. The hybrid stress (or hybrid mixed) method®* was
developed to overcome the difficulties that are encountered in the development of pure
displacement models due to element compatibility requirements. Various authors have presen-
ted hybrid stress triangular elements for plate bending problems.’ The most effective and also
simplest element is called the HSM element in this study. This triangular bending element is
derived from the Kirchhoff plate theory. The element has a linear distribution of bending
moments in the interior and a cubic displacement variation with a linear normal slope (w,,,)
variation along the edges of the element. The formulation of the HSM element has been
discussed by several authors'>**"?® and slightly different ways have been devised to obtain the
stiffness matrix depending on the expression of the functional used. The derivation of the
stiffness matrices of hybrid stress elements appears to be rather cumbersome, and the evaluation
of the element matrices appears to involve more algebraic manipulations and computer storage
than comparative displacement models. However, some effective techniques are available to
evaluate the stiffness matrix (References 9 and 26; see also Section 3.2).

Extensive numerical results are available with the HSM element for static as well as free
vibration analyses of plates, and it is certainly one of the most effective 9 dof triangular elements
available. Its formulation is given in detail in Section 3.2, where the stiffness matrix is given in
compact form. Theoretical studies related to hybrid stress models and the HSM element are
found in References 26, 29 and 30.

In References 27 and 31 the HSM element has been derived using a hybrid displacement
approach instead of the hybrid stress model. Hence, several alternatives are available to
formulate the stiffness matrix of the HSM element; however, they do not seem to offer any
advantage over the standard hybrid stress method as far as the derivation of the stiffness matrix
is concerned. The main advantage of the hybrid displacement approach® for deriving the HSM
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element lies in the more simple and accurate calculation of consistent loads due to pressure
loading. Identical numerical results to the A-9 element®' are obtained. The calculations
presented in Reference 21 require more basic operations than our evaluation presented in
Section 3.2, but about the same high speed storage.

In Reference 51 a triangular hybrid stress element based on the theory of plates including
transverse shear effects has been used to build quadrilateral elements with 12 dof. This element
appears to be quite effective for plates of various length-to-thickness ratios and for sandwich
plates.

Another class of 9 dof triangular elements for the analysis of Kirchhoff plates can be obtained
with the so-called simplified hybrid displacement method (Reference 52 among others) by using
a 10-term cubic polynomial for w and correcting the stiffness matrix (which is the same as the
T-10 element in Reference 16) to restore the continuity of w,, along the sides. The resulting
element is a 10 dof element; the reduction to 9 dof is carried out by static condensation. A
critical assessment of this triangular element is given in Reference 32, where it is shown that the
stifiness matrix can in some cases be singular (after the introduction of boundary conditions).
Acceptable results are reported and applications to linear and nonlinear analysis of plates and
shells have been given, but the elements are not reliable.

2.3. Discrete Kirchhoff theory elements

The formulation of elements based on the discrete Kirchhoff theory for bending of thin plates
is obtained by first considering a theory of plates including transverse shear deformations (see
Section 3.1). In this case the independent quantities are the deflection w, and the rotations S,
and B, and only C° continuity requirements need to be satisfied. The transverse shear energy is
neglected altogether and the Kirchhoff hypothesis is introduced in a discrete way along the edges
of the element to relate the rotations to the transverse displacements. This approach has been
used to formulate effective 9 dof triangular bending elements®*~>* that converge to the classical
thin plate solution. The element labelled QQ3 in Reference 33 and KC in Reference 36 were the
most effective at the time of their presentation. Together with the HSM element they still
represent the most effective 9 dof triangular plate bending elements available (QQ3 and KC are
labelled DKT, discrete Kirchhoff theory, in our study). However, they are not well known,
which can be attributed to several reasons. The formulation might appear to be ‘strange-
looking’ (mathematically cloudy is the expression used in Reference 37) and the presentations
used in References 33-36 are neither attractive nor simple. No special variational principle is
associated with the model. Several plate and shell triangular elements based on the discrete
Kirchhoff theory used subregions and/or mid-nodes****° and the potential of the basic simple
elements themselves was not recognized completely. Some researchers found the practical
application of the element difficult,*’ or the implementation complicated.*? Furthermore, it was
claimed that the element predicts stresses relatively poorly.** The final result is that the DKT
element has not received widespread adoption and has also not been implemented in any major
computer code.

In this paper we demonstrate the generally good behaviour of the DKT element in several
analyses (Section 4). These results are also complemented by recent theoretical studies.'**%°,
In Reference 19, an approximation theory is used to derive error estimates associated with the
DKT model. It is proved that the displacements and the free vibration eigenvalues are
converging quadratically to the C' Kirchhoff solution of thin plates.

The above theoretical results are in agreement with the resulits obtained in References 38, 39
and 40. In these papers the development of C° plate bending elements of quadratic accuracy is
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thoroughly described, both theoretically and numerically. In Reference 39 a family of triangular
9 dof plate bending elements with a parameter ¢ to control their flexibility are presented. The
formulation of these elements is similar to the formulation of the DKT element and the discrete
Kirchhoff constraints are also introduced along the sides. The DKT element can be considered
as the element of the family presented in Reference 39 with ¢ =0. Imposing the Kirchhoff
hypothesis along the sides of the elements and keeping the transverse shear energy is somehow
contradictory; however, the converged solution is the classical thin plate solution and for
different values of ¢ the convergence is quadratic (¢ = 0 included). Depending on the value of ¢,
different results are obtained for coarse meshes. The choice of the optimum value of c is
therefore problem-dependent. However, the arguments and derivations given in the papers are
valuable to justify the DKT element. The formulation of triangular elements for plates with C°
deflection fields not described by the Kirchhoff bending theory is discussed in Reference 44.

2.4. Selective reduced integration element

Recent and somehow successful developments of a beam element, quadrilateral plate
elements*>** and axisymmetric shell elements,>® based on selective reduced integration
concepts and the theory of plates including transverse shear effects, suggest that a simple
selectively integrated triangular plate element with 9 dof may be effective. The formulation of
such an element is presented in Section 3.3 and some numerical results using the element are
summarized in Section 4.3. Based on these results it is concluded that the element is not effective
when compared with the HSM and DKT elements.

3. FORMULATION OF THE STIFFNESS MATRIX OF THE DISCRETE
KIRCHHOFF THEORY ELEMENT AND THE
HYBRID STRESS MODEL ELEMENT

3.1. This discrete Kirchhoff theory element (DKT)

Before presenting the derivation of the DKT element, we briefly summarize the theory of
plates including transverse shear that is used in the element derivation.

3.1.1. Small displacement theory of plates with transverse shear included. The theory of plates
with transverse shear deformations included (the plate theory of Reissner or Mindlin*®) uses a
generalization of the Kirchhoff hypothesis: ‘points of the plate originally on the normal to the
undeformed middle surface remain on a straight line but which is not necessarily normal to the
deformed middle surface.” With this assumption in the small displacement bending theory the
displacement components of a point of co-ordinates x, y, z are:

u=2zB:(x,y); v=2zBy(x,y); and w=w(x,y) (1)

where w is the transversal displacement, B, and B, are the rotations of the normal to the
undeformed middle surface in the x—z and y-z planes, respectively, Figure 2. (In the Kirchhoff
plate theory, B, = —w,, and 8, = —w,,.)

The linear strain expressions are

(a) The bending strains (linear through the thickness)

€5=2ZK (2)
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Figure 2. Positive directions of B, and 8,
where Kk is the three-component vector of curvatures:
Burx
K= By.y (3)
BX-Y + BY-X
(b) The transverse shear strains (constant through the thickness)
wt+8
=[5 @
wa)’ + B)‘

As in the Kirchhoff plate theory, the state of stress in the plate is defined with plane stress
assumption, i.e. o, =0, and with the assumption of plane anisotropy (no coupling between o,
and ¥). In the most general case of multilayered composite plates and sandwich plates, the
stress—strain relations (for an elastic material) for a particular layer are:

oy | Dy Dy Dis
o,=|o,|=2 Dy, Dj; k=zDk (5)
Txy_ (Sym) D33
and
-7xz El3 EZZ!]
..Tyz] [E23 E33 ¥ ¥

where the E;;, i, j =1, 3, are the components of the three-dimensional elasticity matrix and

Ei3E3i

D,',' = Ei,' - E33

With the kinematics as given by equations (1)—(4) and the material description as given by
equations (5) and (6) the strain energy is

U=U,+U; 7
where
U, =—1—I x' D,k dx dy 8
2)a
1 T
U,=3 [ vDaydray ©)
2Ja



1778 J.-L. BATOZ, K.-J. BATHE AND L.-W. HO

and

h/2 /2
D,,=I D(z)z%dz; Ds=kj E(z)dzk (10, 11)
—h/2 ~h/2

The variables U, and U, represent the bending and transverse shear contributions, respectively,
and k in equation (11) contains shear correction factors to account for the non-uniformity of the
transverse shear stresses through the plate thickness.

In equations (8) and (9) the matrices D, and D; are functions of the thickness of the plate, A,
and of the elastic properties of the different layers; the variable A is the area of the middle
surface of the plate. For the important practical case of an isotropic homogeneous plate of
constant thickness we have

1 v 0
_ER 1 0 _ Ehk [1 o]
Db_IZ(I_V) 1-v ’ 5_2(1'*'11) 0 1 (12a,b)
(sym) 5
The explicit expressions U, and U; are then
ER® 1—
Uy=sri—r [ {8248, + 208,080+ 2 BB, dxdy  (13)
Ehk ) R
= +B:) +(w,y +
Us 4(1+V) IA{(wyx B ) (w y ﬂy) }dx dy (14)

The variables E and v in equations (12) and (14) are the Young’s modulus and Poisson’s ratio,
and k is the shear correction factor usually taken as 5/6.

By definition, the bending moments M and shear forces Q are obtained by integration of the
stresses through the thickness:

Mx h/2
M=| M, =J' oz dz =D,k (15)
Mxy —h/2
and
Q h/2
Q=[ ] =kI o,dzk =D,y (16)
Qy —h/2

The expression of U as given by equations (7)-(9), or (13) and (14), is used to formulate finite
elements for the analysis of thick plates, moderately thick plates, sandwich plates and multi-
layered plates where the transverse shear effects are important. The independent quantities
subjected to variation are w, 8, and B, with the conditions that w = w, 8, = ﬁ, and B, = E, on
the part of the boundary where displacements are prescribed. The C° continuity requirements
are not difficult to fulfil and various elements can be developed. In thin plate analysis, selective
reduced integration has been employed for low-order elements***” (see Section 3.3). It is

interestinbg to note that with high-order elements neither reduced nor selective integration is
. 17
required.™

3.1.2. Stiffness matrix of the DKT element. For thin plates the transverse shear strains and
therefore the transverse shear strain energy U, are negligible compared to the bending energy.
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The finite element model based on the functional in equations (7)-(9), or (13) and (14), must be
able to represent this constraint. Therefore, the stiffness matrix of the DKT element for the
analysis of thin plates is based only on the expression

U =1J' x'D,k dx dy (17)
24

where A is the middle surface of an element and k and D, are given by (3) and (10), or (12a),
respectively.

Equation (17) contains only the first derivatives of 8, and B8, and hence it is relatively easy to
establish interpolation functions that satisfy the compatibility requirements. However, since 8,,
B, are the variables in equation (17), it is necessary to relate the rotations of the normal to the
middle surface to the transverse displacement w (which does not appear in equation (17)). This
goal should be achieved with the following considerations:

(a) The triangular element must have only 9 dof; that is, the displacement w and the rotations 6,
and 6, at the three corner nodes.

(b) Since the Kirchhoff solution of thin plates is sought, the nodal point rotations should be
8. = +w,, and 8, = —w,, (so that the Kirchhoff kinematical boundary conditions be satisfied).
(c) Since the element models thin plates, as governed by the Kirchhoff plate theory, the
Kirchhoff plate theory assumptions can be imposed at any discrete points.

(d) The compatibility of the rotations 8, and B, should not be lost.

The formulation of the DKT element as presented in References (33)-(36) is based on the
following assumptions:

(1) B, and B, vary quadratically over the element, i.e.

6 6
ﬁx= _zl NiBX[; By=izl MBW (18)
where ,, and B,, are the nodal values at the corners and at the mid-nodes, Figure 3, the N;(¢, n)
are the shape functions given in Appendix A, ¢ and n are the area co-ordinates;
(2) The Kirchhoff hypothesis is imposed at:

(a) the corner nodes

y=[ﬁ‘+w’f] =0 at nodes 1,2 and 3 (19)
By +w,y
(b) the mid-nodes (defined anticlockwise around the element boundary, Figure 3) i.e.
Bs, + w5, =0 k=4,56 (20)
(3) The variation of w along the sides is cubic, i.e.,
w""=_211,~- w,—%w,,,-%-z—:zl-w,—%w,,, (21)

with k denoting the mid-node of side ij and /; equal to the length of the side ij.
(4) A linear variation of g, is imposed along the sides, i.e.

Bn, = % (Bn; +Bn;) (22)
where k =4, 5, 6 denotes the mid-node of the sides 23, 31 and 12, respectively.
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Figure 3. Geometry of the triangular element

It is appropriate here to make the following remarks before continuing with the derivation of

the stiffness matrix.

(1) From the relations in equations (18)—(22) it is seer: that the relation between the rotations
and the transverse displacement w is given by equation (20) by assuming a cubic variation of w

along the sides (or a quadratic variation of w,;).

(2) There is no need to define an interpolation function for w on the element (but the
assumption of a cubic variation of w along the sides is the property of a cubic polynomial on the

element).

(3) Since w varies cubically along the sides, w,; varies quadratically and so does 8;. Since w,,
matches B, at the three points along each side, the Kirchhoff hypothesis (y; = 8; + w,, = 0) is

satisfied along the entire boundary dA (Figure 4).
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Figure 4. The DKT element

(4) Convergence towards the classical thin plate solution is obtained because the transverse
shear strain energy is neglected, equation (17), and because the Kirchhoft hypothesis is satisfied
along the element boundary.

(5) It follows from equations (8-22) that w, w,,, B, and B, are compatible (interelement
continuous) along the sides (note that w,,, has not been introduced since w is not defined in the
interior).

(6) With the restriction imposed on 8, in equation (22), 8, and B, are given by complete
polynomials of degree one in the element. The global discretization error in the energy is 0(/ 3,
where [ is the measure of the size of the element.'®*

(7) When the formulation is applied to a one-dimensional beam, the exact stiffness matrix of a
thin beam (with a cubic polynomial w) is obtained.

(8) The formulation is readily extendable to obtain quadrilateral elements with 12 dof (e.g. the
QC element in Reference 36) and other polygonal elements.

To obtain B, and 8, in terms of the nodal dof
U =[w, 8, 6,, w2 0y, 6,,w3 6., 6,.] (23)

the following geometrical relations are needed on each side:

[5:] -[; 7] [Z:] (24)
[:j=ﬁ _ﬂ[i] (25)

where ¢ = cos(%, ;) and s = sin(%, ri;;), Figure 3.

Using equations (18)-(25), the following expressions are obtained for 8, and B,:

B.=H; (&)U

and

(26)
By =H; (& 7)U
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where H, and H, are the nine component vectors of new shape functions. The components are
functions of the N;, i = 1, 6 and the co-ordinates of the nodes,

H,‘ =1.5 (a(,N(,—ast) (278)
sz =bsNs+ beNg
H33=N1 —C5N5—C6N6

Hy, = 15(d6N6—d5N5) (27b)
Hy2= —N,+esNs+esgNg
H, = -H,,

The functions H,,, H.,, H,,, H,,, H,, and H,, are obtained from the above expressions by
replacing N, by N and indices 6 and 5 by 4 and 6, respectively. The functions H,,, H,,, H,,, H,,,
H,, and H,, are obtained by replacing N; by N; and indices 6 and 5 by 5 and 4, respectively.
Also,

ar = —xgllii (28)
bi = dxiyil li”

G = (%xiiz - %)’iiz)/ Iiiz

di = —yu/ Iii2

€ = (i')’iiz_%xiiz)/liiz
Iijz = (Xi/2 + y:'jz)
where k =4, 5, 6 for the sides ij =23, 31, 12 respectively (Figure 3).
The evaluation of the stifiness matrix follows the standard procedures of the finite element

displacement method.
Using equations (3) and (26),

x=BU (29)
where B is the strain-displacement transformation matrix:

ysiH e+ y1HY,
1 T T
B(&n) = A —xnHy—x12Hy . (30)
—x3Hz = xHL,+ yuH e+ yoH,

and 2A = X31¥Y12 — X12Y31.
The derivatives of H, and H, with respect to ¢ and n are given explicitly in Appendix A.
The stiffness matrix of the DKT element becomes

1 1—-7¢
Kpkr=2A j J' B'D,Bd¢dn 31
0 Y0

If the thickness and the material properties are constant over the element, the exact integration
of K is obtained using three numerical integration points located at the mid-nodes or inside'°
because the integral involves only quadratic terms.
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Once the nodal displacements have been calculated, the bending moments M at any point in
the element can be obtained using equations (15) and (29):

M(x, y)=D,B(x, y)U (32)

where
x=x1+€xn+7x3
(33)
y=y1+&yz1+nyn

Since, in general, M depends upon all the components of U, M is not unique along the boundary
shared by two elements.

3.2. The hybrid stress model element (HSM)

In the formulation of the HSM element the classical Kirchhoff thin plate theory is used
directly. With the notation used in Section 3.1, y = 0 everywhere in the plate, 8, = —w,, = 6,
and By = —w,, = -0,

The so-called hybrid stress functional for plate bending under the Kirchhoff assumptions can
be established:?4%4¢

(a) either from the Hellinger-Reissner functional by assuming that the equilibrium equation of
the plate in terms of bending moments is satisfied and that the geometrical boundary conditions
are also satisfied, or

(b) from the complementary potential energy by relaxing the natural boundary conditions and
by assuming that the geometrical boundary conditions are satisfied.

The following expression has been found convenient for the derivation of the stiffness matrix
of the HSM element:

Uns=[ ~BM,) dx dy+ [ (wQy=w,oM, —w,M,.) dS (34)
A A

where A represents the middle surface of the element, dA its boundary, and B(M,;) is the
complementary energy per unit middle surface. For a general multilayered rigidly bonded
composite plate:

BM;)=M'D,”'M (35)

where M is the vector containing the bending moments M,, M,, M,,, and D, is defined in
equation (10). For the important practical case of a homogeneous isotropic plate, D, is given in
equation (12a) and

BM,) = o5 (M, + M,V +2(1 4 )M, ~ MM,)} 36)
Also, Q,, M, and M, are the shear force, normal and twisting bending moments, respectively,
along the boundary (Figure 3):
Q. =cM, .+ M,, )+s(M,,+M,,,)
M, =ccM, +2csM,, +ssM, 37)
M, = —scM, +(cc—ss)M,, +scM,
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where c and s abbreviate cos (£, ) and sin (%, /1), respectively; A is the (outward) normal along
the contour.

The independent quantities subject to variation in the hybrid stress functional are the
components, M,, M,, M, in A and w and w,, along the contour A with the subsidiary
conditions:

M, +2M, ., +M,,, =0 inA (38)

and
wW=Ww, w,,=Ww,, onC, 39)

(C, is the part of the boundary on which displacements are prescribed.) It is assumed that
uniform loading is represented by direct lumped loads.

The HSM element proposed by several authors (see Section 2) is based on the assumption that
the bending moments vary linearly in the interior of the element and w varies cubically along the
sides with a linear variation of w,,. The nodal dof are the same as for the DKT element, equation
(23). Thus, it is assumed that

M=Pg (40)
where
P, 0 O
P={0 P, O (41)
0 0 P
Po=[1 x y] (42)

B is a nine-component vector of generalized parameters.
Using equations (35) and (40), the complementary strain energy is

U,=-3iB"HB (43)
where

H =J' P'D;' Pdxdy (44)
A

Owing to the nature of P, the 9 X9 matrix H can be expressed as

cnud cnd cid
H=|ci2d c2d cnd (45)
ciad caad cud

where the C; are the coeflicients of the D; ' matrix and

1 x vy
¢=J PEPodxdy=J x x? xy|dxdy (46)
A A 2
y xy 'y

If, for simplicity, the origin of the x and y local axes is taken at the element centroid (Figure 3),
we have

A 0 O
d=|0 a ¢ 47)
0 ¢ v
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where A is the surface area of the element,

A
a =E(xf +x§ +x;2;)
A
¢=E(xm +x2y2+X3y3) (48)

A 4
7=§(yi"+y§+,v§)

(x;, y: i = 1, 3 are the co-ordinates of the nodes with the centroid as the origin.)
For the evaluation of the stiffness matrix we need to compute H™*:

dnA dlZA d13A
H_l= dle dzzA d23A (49)
diA dpA diA

where the d; are the components of the D, matrix, equation (10), and
] ay— ¢ 0 0

A=¢p 'l=——| 0 Ay -A 50

The procedure used here to define H™' is found to be valid and very effective for a general D,
matrix. The technique is similar to that used in Reference 9. The only difference is that in
Reference 9, area co-ordinates are used instead of the x and y co-ordinates, equations
(40)—(42). The result is that in Reference 9 the A matrix is simpler in form than equation (50);
however, the G matrix, as introduced in the discussion below, is more difficult to formulate. This
is due to the different nature of the generalized parameters B in both approaches.

The second important step in the formulation of the stiffness matrix is the evaluation of the
integral on dA = 12+23+31. On side ij (if =12, or 23, or 31) we have

Us= [ (wQu=w,uM, — w, M.} ds (51)
ij
The components Q, and M, and M, are given in equation (37) (Figure 3):
c=cos vi; = — yi/ly; s =sin y; = x,/l; (52)
Using equations (37) and (40) it follows that
Q.
-M, = RiiB (53)
—Mru if
where
0 c 0 0 0 s 0 s c
R;=|-cc —ccx —ccy —ss —ssx —ssy —2cs —2csx —2csy |(54)
cs csx csy —cs —csx —csy -—(cc—ss) —(cc—ss)x ~—(cc—ss)y

with x = x; — £&x; and y = y, — &y;; and £ = s/1; (Figure 3). Thus, R;; is a linear expression in £. The
transverse displacement w along the side ij is expressed as a cubic:

w=Hpy (E)w: + Hiy (E)w; + H1, (E)w,s, + H12 (E)w,, (55)
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where

Hi =1-382+2¢° Hy =3¢2-2¢8°
(56)
HY, =1,(£-2£%+¢%) Hi; =l;(-£+¢&)

The normal slope w,, is assumed to vary linearly:

Win = (1 - g)wm‘ + fwm, (57)
Using equations (25), (55) and (57) we have

w
Win | = LiiUii (58)
wss
where
Uy=(w: 6, 6, w 0;, 0,,] (59)
and
Hs  cHn sH 1 Ho; cHi; sHi
0 s(1-¢) -c(1-¢) 0 sé -cé
L,’,’ = (60)
Hbie cHivg sH . Hiae cHize sHisg
L lil Ii]' Iii Ii' Iif Iii

Using equations (53) and (58), equation (51) becomes

U= BTGiiUii (61)

where

l“ 1
Gy = [ 'RIL,ds=1, [ REOL.(0) de (62

G;; is a 9 X 6 matrix and the integration is performed in closed form. The compact and explicit
expression of G;; is given in Appendix B.
A 9x9 matrix G can be defined such that

U, = J' {(WQh — oM — w, My} ds = BTGU (63)
3A
with
GU = G2U;; + G23U23+ G35, U3, (64)
The matrix expression for equation (34) is therefore
Uns = -1 p"HB+B'GU (65)

The stresses (associated with B) vary independently within the elements and the displace-
ments (associated with U) are common to adjacent elements. Therefore we have

B=H'GU (66)
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and by analogy with the conventional displacement method the stifiness matrix of the HSM
element becomes

KHSM = GTH-IG (67)

Once the nodal displacements are known, the bending moments are evaluated using equations
(40) and (66):

M=P(x, y)H 'GU (68)

Note that different bending moments are obtained along the interelement boundaries since the
B’s are different for different elements.

3.3. The selective reduced integration element (SRI)

The formulation of the SRI element is based on the theory of plates with transverse shear
deformations included (see Section 3.1.1) and follows the approach given in References 42 and
54. The main difficulty in the development of selectively integrated elements is to obtain an
accurate and reliable element. The issue of reliability is most important in actual practical
analysis,*® and we would only want to use an element that does not contain spurious zero energy
modes.

The basic displacement assumptions for the SRI element are the deformations w, 8, and B,
which vary linearly over the element:

3 3 3
w=3Slw B=TL8, B=3 LB (69)

where L;=1-¢—-n,L,=§ L;=nand w, B, and B,, i = 1, 2, 3, are the nine nodal values at the
corner nodes (Figure 1).
Using equations (7), (14) and (18) the stiffness matrix of the SRI element is defined as

KSRI = K[, + K, (70)

where K, represents the stiffness matrix due to bending, and K, the stiffness matrix due to
transverse shear,

K,,=2AI BID,B, d¢ dn (71)
A

where D, is given in equations (10) or (12a). Also,

1 0 0 yz 0 0 yaa O 0 Y12
Bb='2—'4— 0 X23 0 0 X31 0 0 X12 0 (72)
0 —ya3 —x23 0 —y31 —x31 0 —yi2 —x12

and
K,=2A j BID,B, d¢ dn (73)
A

where D, is given in equations (11) or (12b), and

U B 0 2AL, s, 0 2AL; yn 0 2AL3]
' 2A|-xas -2AL, 0  -x3 -2AL, 0 -xi; —2AL; O

(74)
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In equation (70) K, is a matrix with constant terms (exact integration), and K, is a matrix
involving integrals of quadratic terms in & 7. If exact integration is used, convergence
towards the thick plate solution is obtained but the rate of convergence is low. Considering the
analysis of thin plates the concept of reduced integration can be employed“'“ by evaluating the
shear stiffness K, using only one numerical integration point (which is equivalent to assuming
that vy is constant over the element). This element has been tested and the numerical results
obtained in the analysis of some problems that are given in Section 4.3. These results show that
the element is not effective in the analysis of thin plates. In addition, the element also contains
spurious zero energy modes, which would have to be eliminated before the element could be
recommended for general practical analysis.

As established in recent studies,***® in certain cases the stiffness matrix associated with a
selective integration formulation is equivalent to the stiffness matrix obtained using a mixed
formulation of the Hellinger-Reissner type, where the dof associated with the stresses are
considered as internal (element) parameters. If this equivalence can be shown, it provides
further insight into the formulation of the element. For the present triangular element we show
this equivalence in Appendix C.

4. IMPLEMENTATION AND NUMERICAL RESULTS

The DKT, HSM and SRI plate bending elements have been implemented in the computer
program ADINA.* Several sample problems have been solved using these elements and the
results have been compared with those obtained using other elements.

4.1. Remarks on the implementation of the elements

The calculation of the DKT and SRI elements is similar to that of the two-dimensional
isoparametric plane-stress element (evaluation of B matrix and integration of B'D,B,
Reference 11). In the case of the HSM element, the matrices H ! and G are first evaluated. The
stiffness matrix is then obtained using equation (67).

Considering the loading on the elements, a uniform loading is represented by lumped
concentrated loads acting at the nodes, i.e. the element load vector corresponding to a uniform
pressure load g per unit middle surface is

ff=A/3[¢g 0 0 ¢ 0 0 ¢ 0 0] (75)

The bending moments are evaluated using equations (32) and (68) for the DKT and HSM
elements, respectively. In ADINA, the moments can be evaluated at a maximum of seven
points: the centroid, the three corner nodes and the three mid-side nodes of each element.

In dynamic analysis, a diagonal lumped mass matrix is employed. Neglecting the inertia effects
at the rotational dof, the vector of the diagonal elements of the mass matrix is given in equation
(75) with p instead of g, where p is the mass density per unit area. The techniques and strategies
used to evaluate the natural frequencies are those of the ADINA program.*®

A study of the formulations given in Section 3 shows that comparable storage and operations
are needed to form the stiffness matrix of the HSM element compared to that of the DKT
element. This is also true for the evaluation of the stresses in the elements.

4.2. Analysis of sample problems using the DKT and HSM elements

Several sample problems were analysed using both the DKT and HSM elements. The element
performances were evaluated and compared with those of other 9 dof elements.
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The analysis results of different static and free vibration problems are described in the
following sections. Some of the results presented have been reported already by other authors,
e.g. References 19, 33, 36 and 59 for the DKT element, and References 26, 27 and 28 for the
HSM element.

4.2.1. Square plate under concentrated and uniform loads with clamped and simply-supported
edges. In this analysis, a square plate of sides 2a with either simply-supported or clamped edges
is considered. Owing to symmetry in the problem, only one-quarter of the plate is modelled. The
plate and the two different mesh orientations (A and B) used in the analysis are illustrated in
Figure S. Four different sizes of meshes are considered: 2, 8, 32 and 128 triangular elements are

2 J

20
3]
o

A B A B
N=2

C o] c (o}

MESH ORIENTATION A MESH ORIENTATION B
ELEMENT |REFERENCE| SYMBOL MESH UNIFORM LOAD

DKT 33- 36 ° A, B lumped
HSM 25- 27 o) A, B lumped
BCIZi 17 L] A » lumped
B8ClZ2 17, 30 L] A lumped
HCT 16 A B lumped
A-9 21, 31 v A consistent
STRUDL 22 * A lumped

Figure 5. Square plate and mesh orientations
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used to form the meshes corresponding to N =1, 2, 4 and 8, respectively. For the case of the
concentrated load (P), the different sizes of meshes in both A and B orientations are employed
while only mesh orientation A is considered for the case of the uniform pressure loading (q). In
all cases, the simply-supported as well as the clamped boundary conditions are considered.

As shown in Figure 5, both the DKT and HSM elements are evaluated with other established
elements, namely the BCIZ1, BCIZ2, HCT, A-9 and STRUDL elements. The central
deflections and moments of the DKT and HSM elements for all the above cases are given in
Reference 53. The comparisons of the predicted results with those of other elements are given in
Figures 6-15. Some remarks on the results are given in the following:

IN We

ERROR

-

{ 1 |
6 7 8

1
5

Figure 6. Simply-supported plate with concentrated load : error in deflection at centre
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(1) Considering first the case of the concentrated load application, Figures 6 and 7 show that the
DKT and HSM elements are very efficient. Note that mesh B is not effective in modelling the
clamped plate problem, since all dofs of the corner element vanish. The influence of mesh
orientation on the displacements is more severe for the DKT element than for the HSM
element. Convergence from above is obtained for the DKT element, whereas monotonic
convergence from below is observed for the HSM element.

(2) 'In the case of uniform loading, monotonic convergence was achieved with the DKT element
with both boundary conditions. However, convergence is less rapid in the case of the clamped
plate. The solution accuracy could probably be increased by employing a consistent load
representation with a cubic polynomial for w. Monotonic convergence is not achieved in the
analysis of the clamped plate using the HSM element.

IN W,

ERROR

%

] | | I
[ 2 3 4 5
N

L 1 ]
6 7 8

Figure 7. Clamped plate with concentrated load : error in deflection at centre
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IN W,

ERROR

%

] ] | 1 ]
4

L 1 |
1 2 3 5 6 7 8

N

Figure 8. Simply-supported plate with uniform loading: error in deflection at centre

(3) Ingeneral, the stresses obtained with the HSM element meshes are slightly better than those
with the DKT elements for the same problem (see Figures 10-15, and Tables 4-7 of Reference
53). Similarly, the boundary conditions in terms of stresses such as M, =0 along a simply-
supported side are slightly better satisfied with the HSM elements. However, the difference
between two distinct values of moments at a node connecting two elements is not smaller with
the HSM elements.

4.2.2. Twisting of a square plate. This study is intended to evaluate the twisting behaviour of
the DKT and HSM elements. Particular attention is given to the DKT element as the twisting
curvatures due to 8., and B8,, are not equal in general, equation (3). This problem can,
therefore, be used to evaluate the ability of the DKT element to represent stresses due to a
constant twist (a patch test problem). The same problem has been considered in References 16
and 21 using other finite elements.
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20

2128

o
l

% ERROR IN W¢

1
wn
I

(S,
b

] ] 1
3
Figure 9. Clamped plate with uniform loading:error in deflection at centre

The square plate is simply supported (i.e. w = 0) at the corners A, B and D as shown in Figure
16. A vertical load is applied at corner C. The exact thin plate solution with the data given in
Figure 16is M, = M, = 0 and M,, = 2.5 Ib-in/in everywhere in the plate with w. = 0.2496 in and
wo=0.0624 in.

Four different meshes are considered: meshes (a) and (b) are regular with 2 and 4 elements,
respectively; meshes (c) and (d) are irregular with 4 and 8 elements, respectively.

The results obtained using both the DKT and HSM elements are excellent. All four meshes
with either element give the exact solution for stresses and displacements (stresses are evaluated
at the centroid as well as at the corner nodes). These results are compared in Figure 16 with those
given in Reference 16. The ACM (a 12 dof incompatible rectangular element) and the HCT
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20—
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| | | | |
y 2 3 q 5 6 7 8
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Figure 10. Simply-supported plate with concentrated load: error in corner reaction

results were obtained with a regular fine mesh of 8 x 8 elements. Considering the results given in
Reference 21, the A-9 and the non-conforming BCIZ1 elements do reproduce the exact stresses
with mesh (a), and the BCIZ1 element cannot predict the exact solution even with very fine
meshes if the mesh subdivision is irregular. (A 30 per cent error in the stresses exists at the
centroid for mesh (d).)

o (o}

»

z

z

e -10

[=}

a

@

w

:° -20
-30

Figure 11. Clamped plate with concentrated load: error in bending moment at centre of side
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40—

% ERROR IN Mx.
N ol
o (o]

(o]

Figure 12. Simply-supported plate with uniform loading: error in bending moment at centre

4.2.3. Static analysis of a rhombic cantilever. This problem deals with the analysis of a
rhombic cantilevered plate subjected to a uniform load. The geometry and material propemes
are given in Figure 17. Experimental results of this problem are available for comparison.'

A 4 x4 mesh is used and the results obtained with both the DKT and HSM elements are given
in Figure 17. It is observed that even with this coarse mesh, the DKT element gives results in
good agreement with the experimental values.

o] ——
.
x
=
N
Z
o - 10—
o
«
@
w
b
-20 | | S |
| 2 3 4 ] 6 7 8

N
Figure 13. Simply-supported plate with uniform loading: error in corner reaction



1796 J.-L. BATOZ, K.-J. BATHE AND L.-W. HO
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[o d
W
*
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-200L 1 ] | | | | 1 1
| 2 3 4 5 6 7 8

Figure 14. Clamped plate with uniform loading: error in bending moment at centre

10—
DKT (A)
—0
<~ 0 /
= i)
z pom (A
x
O -{0p—
x
x
w
?
-20»—
-30—
| ] | | | |
| 2 3 4 ] 6 7 8
N

Figure 15. Clamped plate with uniform loading: error in bending moment at centre of side
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A 5t ¢

® A
E = 10000 psi
h=1lin 9¥:=03
‘o
(center)
0 8
—— 8" —
Cc
— 6.3

{a)

(c)

54
4
‘o4
Ble—s —o
(d)

A

{b)

(e)

ELEMENT TYPE

| DEFLECTION AT

MOMENTS IN THE PLATE

POINT O POINT C M, and My Mxy (1b-in/in)
MESH (a) - 0.24560 o* 2.50000
DKT MESH (b) 0.06240 0.24960 0 2.50000
MESH (c) - 0.24960 0 2.50000
MESH (d) 0.06240 0.24960 0 2.50000
MESH (a) - 0.24960 0 2.50000
HSM MESH (b} 0.06240 0.24960 0 2.50000
MESH (c) - 0.24960 0 2.50000
MESH (d) 0.06240 0.24960 0 2.50000
ACM [16] MESH (e) 0.06244 0.24972 - -
HCT [16] MESH (e) 0.06254 0.25002 - -
EXACT VALUE 0.06240 0. 24560 0 2.50000

* To at least eight significant figures

Figure 16. Twisting of a square plate with comparison of numerical resulits

1797
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q*.26066 psi
E:10-5x I0°psi
t20.1251n
v=0.3
60-__*__601_._{ 45.
w=8_=8,:0
* Y 4 x 4 MESH
TOTAL DEFLECTION AT LOCATION
ELEMENT | MESH | NO. OF
OGF ] 2 3 ] 5 6
DKT exs 75 0.304 |o0.18 |o0.113 6.1 0.655 | ©.52:
(2.8)* | (-2.9) | (-6.6) (-6.2) | (-0.7; | (2.3}
HSM ax4 75 0.264 |0.173 |0.100 6.095 | 0.04 0.c2
(-11.1) | (-15.2) | (-17.8) | {-25.¢)| (-22.5)] (-z.3)
ACM 8X6 189 0.296 |[0.153 |0.114 0.114 | 0.052 {0.025
(6] (-0.3) | (-2.9) |(-6.2) | (-11.6)| (-7.1) } fqg.g
HCT ax6 189 0.281 0.188 |c. 1M 0.1 0.04¢ | c.018
(163 (-5.3) |(-7.2) |(-8.4) (-13.8)] (12,2} (-17.2)
EXPEP‘I"E’{ES‘L VALUE 0.297 |6.208 0920 |o.azs |o0.06 |o.oen

® Percentage ceviaticn from erperimental velue

Figure 17. Rhombic cantilever plate with comparison between numerical and experimental results

4.2.4. Free vibration analysis of a square plate with clamped and simply-supported edges. The
natural frequencies and mode shapes of simply-supported and clamped square plates are
evaluated using the DKT and HSM elements and a lumped diagonal mass matrix. Two uniform
mesh orientations (mesh A and B, Figure 5) are used with N = 1, 2, 4, 8. Only doubly-symmetric
modes were calculated by considering one-quarter of the plate (ABCD in Figure 5).

The first six eigenvalues (and associated modes) are given in Tables I and I1. The modes are
described by the number of half-waves m and n parallel to the x and y axes, respectively: (1, 1)
corresponds to the fundamental mode with no nodal line within the plate. The non-dimensional
eigenvalue is A = pw?[(2a)*)/ D, where p is the mass density per unit mid-surface and w the
angular frequency. For the simply-supported plate the exact successive eigenvalues are given by
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Table 1. Free vibration frequencies of simply-supported square plate (symmetric modes)

Mesh
orien- N Analytical
Element tation Mode 1 2 4 8 A=(m*+n?n*
DKT A (1,1) 24020+ 34454 37729 38646  A,= 38964
(1.3) 687242 912628 9571976 ., _ g,
(3.1) 724092 9.388-30 9.653-93 += 9,740.
(3. 3) 14.500-13 27.264-37 3042329  A,=31.560-55
(1,5) 57,129-63 64,282-79 _ .
(5.1 58.768-28 64.859.60  A10=065.848:55
B (1,1)  427.57 401-61  392.04 39014  A,= 389.64
(1.3) 710364 936495 9654:52 oo o
(3.1) 7.897-60 9.628-80 9731.92 =9
(3. 3) 16.607-51 28.311-58 30,727-04  A,=31,560-55
(1.5) 57.563-00 64.641-36 ~
(5.1) 59,912.48 65.264.62  A10=65.848:55
HSM A (1,1)  305-02 363.03 38231 38764  A,— 389.64
(1. 3) 9,068:5 963909 9,69860 _ g0
3.1) 13.410-28 10.365-19 9.863:15 =9
(3.3) 32,734-87 31.864-81 31.568:50 A, =31,560-55
(1,5) 72,426-86 67,113-19 _ _
(5.1) 77.85836 68.057-07  Aw=65848355
B a,1) 62833 43173 39934 39204 A= 389-64
(1,3) 9,415-73 992240 9,783-68 \ 074091
3. 1) 1371777 10.675-68 9.948-52 =9
3.3) 39.898:67 3327324 31.917-22 Ay =31,560.55
1. 5) 73.828-85 67.628-48 ~ ,
1) 78.406-69 68.494.33  Mo=065,848-55

1A = pw’[(2a)*)/D.

the expression A = (m?+n?%)?x*. For the clamped plate the reference solution is taken from
Reference 50.

A comparison of the results for the first eigenvalue using different models is given in Table II1.
The calculated values using the DKT and HSM models (meshes A and B and a lumped diagonal
mass matrix) are compared with those reported in Reference 19 using the DKT and the HCT
elements with the same meshes but using a consistent mass matrix. The convergence charac-
teristics of the DKT and HSM elements (with a lumped diagonal matrix) are compared in Figure
18 for both types of boundary conditions and meshes.

Considering the analysis results, we make the following observations.

(1) For the simply-supported plate, modes (1, 3) and (3, 1) (or (1, 5) and (5, 1)) (see Table I) are
theoretically associated with the same eigenvalue. The finite element results are different for
these modes, but the differences between the values decrease as the mesh is refined and in every
case both values converge to the reference value. (The nodal line of one of the first two modes is
circular and the other nodal line is along the diagonal of the plate.) Similar observations also
hold for the clamped plate and have been discussed previously using other finite element
formulations.**?
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Table II. Free vibration frequencies of clamped square plate

Mesh
orien- N
Element tation Mode 1 2 4 8 At
DKT A (1,1)  529-08% 996-29 1,203-25 1,270-82 A= 1,294.94
(1,3) 8,853-77 15,632:67 16,905-93 A, = 17,312:49
(3,1) 9,388:27 15,974.98 17,103-20 *717,477.05
(3,3) 16,437:16 38,973-41 45,885-33 A, =48,391-70
(1, 5) 75,470-81 92,043-40 Au = 95,252:60
(5,1) 77,394-62 93,009-73 79540710
B (1,1)  964.88 1,364-60 1,311-88 1,298-94 A, =1,294.94
1,3) 9,645-95 16,697-68 17,209-41 A, =17:312:49
3,1) 10,035-82 16,810-73 17,358-68 4717,477-05
(3,3) 17,892:05 41,253-31 46,633-57 A,=48,391.70
(1,5) 77,140-12 93,152-85 Ay =95,252:60
5,1) 81,768:01 94,624.76 95,407-10
HSM A (1,1)  1,151-86 1,211113  1,270-28 1,287-59 A= 1,294.94
(1,3) 16,984-70 18,269-91 17,621-45 A, = 17,312:49
3,1 20,762-39 19,055-18 17,641-53 *717,477-05
(3,3) 49,216-58 51,216-57 49,015-43 A,=48,391-70
(1, 5) 111,518:97 99,056-45 Ao = 95,252:60
(5,1) 123,653-50 100,681-87 1795 407-10
B (1,1) 3,455.06 1,772.97 1,391-51 1,317-90 A= 1,294.94
1,3) 18,516:59 19,176-02 17,728-86 A, = 17,312:49
3,1 21,955-02 20,329-77 18,079-46 471747705
(3,3) 57,521-09 55,178-41 49,875-53 A, =48,391-70
,5) 115,520-79 100,240-24 A, = 95,252:60
5,1) 127,138:90 102,157-34 795 407-10

t Average of the upper and lower bounds in Reference 50.
14 = pw((2a)*)/D.

(2) The convergence rate for the first eigenvalue is similar using the DKT and HSM elements.
Mesh B is more efficient for the DKT element, whereas mesh A yields better results using the
HSM element. A consistent mass representation as used in Reference 19 (Table III) gives a
better convergence rate than the lumped mass approach used here.

4.2.5. Free vibration analysis of a triangular cantilever. This protlem deals with the vibration
of a cantilevered triangular plate representing a fin used in missile stabilization. The problem is
chosen to compare the natural frequencies and mode shapes predicted by the DKT and HSM
elements with experimental results and with results obtained by employing other higher order
finite elements.

The data and the finite element meshes used in the analysis are given in Figure 19. The natural
frequencies obtained with the DKT and HSM elements with 10 and 21 mass dof are given in
Table IV. Included in the same table are experimental values and results using other finite
elements.”*® The nodal lines corresponding to the first six modes for the DKT element with 21
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Table 111. Lowest eigenvalue of square plate—influence of model and mesh orientation

Simply supported square plate

DKT+ HSM+ DKTi HCT¢$
Mesh Mesh Mesh Mesh Mesh Mesh Mesh Mesh
N A B A B A B A B
1 240-2 427-6 3050 628-3 3346 3807 497.0 4606
2 344-5 4016 3630 4317 3748 3741 412-1 406-1
4 377-3 392-0 382-3 399.3 385-4 3846 395-0 393.7
8 386-5 390-1 3876 392-0
Reference value: 389-6
Clamped square plate
DKT+ HSM+# DKTi HCT#
Mesh Mesh Mesh Mesh Mesh Mesh Mesh Mesh
N A B A B A B A B
1 529-1 964-9 1,151-9 3,455-1 979-8 14913 3,222-5 8,805-7
2 996-3 1,364:6 12111 1,773-0 1,141-3 1,259-4 1,528-9 1,663-7
4 1,203-3 1,311-9 1,270-3 1,391-5 1,245-1 1,277-0 1,348-2 1,377-2
8 1,270-8 1,298-9 1,287-6 1,3179
Reference value: 1,294-9
t Lumped mass.
1 Consistent mass.'®
Table IV. Natural frequencies of cantilevered triangular plate
High Experi-
Shell precision mental
DKT HSM element’  element’®  value®
N=4
36 mass
N=4 N=6 N=4 N=6 dof N=3
10 mass 21 mass 10 mass 21 mass (lumped 40 mass
Mode dof dof dof dof mass) dof
1 34.5+ 35.7 34-8 358 36-7 36-6 34-5
2 117-6 128:6 1213 130-7 133-5 139-3 136
3 1556 174-8 164-1 1791 177-8 194-1 190
4 271-1 299.6 2886 3082 3230 333-8 325
S 3312 395-6 365-2 4131 410-0 455-4 441
6 403-7 4876 4619 518-8 517-0 593-2 578
7 474.9 5717 556-4 615:0 621-1 671-3
8 5131 661-9 665-8 7172 7534 811-6
9 567-0 7449 703-6 814.9 997-6 969-6
10 667-8 868-9 935-0 991-8 1179-0 1126-6

+ Frequency in Hz.
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Figure 18. Error of the first eigenvalue of a square plate vs. mesh and model

mass dof are illustrated in Figure 20, together with experimental results. Considering the results
we make the following observations.

(1) The DKT and HSM elements predict the fundamental frequency accurately. However, the
higher frequencies are calculated less accurately.

(2) The 21 mass dof models predict the higher frequencies more accurately than the 10 mass dof
ones. However, considering the fundamental frequency, the larger dof models give values that
are further away from the experimental result. This numerical prediction can be explained by
the fact that the finite element solution converges to the Kirchhoff plate theory result, which
deviates from the experimental one due to assumptions and experimental errors.

(3) The first three mode shapes are represented accurately by the DKT element. Qualitative
representation is still retained in the higher modes.
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Figure 19. Triangular cantilevered plate with finite element meshes used in the analysis

4.3. Results of some sample static problems using the SRI element

The standard square isotropic plate (v = 0.3, k = 2) was analysed to test the behaviour of the
simple triangular element based on the reduced integration technique. The concentrated load
condition was considered and mesh A(N =1, 2, 4, 8, 12) was used (Figure 5) for the clamped
plate and the simply-supported plate. The solution results are given in Tables V and VI for
different values of side to thickness ratios (2a/h). These results show that considering a thick
plate the element converges to the thick plate solution (see, for example, Reference 60);
however, the element cannot be employed satisfactorily for the analysis of thin plates.

The selective or reduced integration technique when applied to two-node beam and four-
node quadrilateral elements gives good results in the analysis of some problems of thin beams
and plates for aspect ratios up to 10* (References 42 and 57). However, considering the present
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Figure 20. Nodal lines for the triangular cantilevered plate

triangular element, the behaviour of the SRI element was not found acceptable for the two
standard tests; hence, no other problems were considered using this element.

CONCLUSIONS

In this study, the discrete Kirchhoff theory (DKT) and hybrid stress model (HSM) elements have
been found to be the most effective 9 dof triangular elements available for bending analysis of
thin plates. Both elements can be formulated and implemented very efficiently. Their effective-
ness has been observed in a variety of static and dynamic analyses. Based on theoretical and
computational considerations and the numerical results, the DKT element is found to be
somewhat superior to the HSM element. Because of little storage requirements, these two
elements appear to be very promising for structural analysis on mini- and micro-computers. A
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Table V. Central deflection of a clamped plate subjected to a concentrated

centre-point load (SRI elements, mesh A)

2a/h
N~ 10 48 1,000 10,000
1 0-71t 0-03
2 3-34 0-31 0-0007
4 572 1-08 0-003
8 7-03 2:68 0-013 0-0001
12 7-43 3-75 0-029 0-0003
Reference value
(thin plate solution) 5-60
t wD/{P(2a)}x107° k=% v=03

Table VI. Central deflection of a simply-supported plate subjected to a
concentrated centre-point load (SRI elements, mesh A)

2\(1/}1
N 10 48 1,000 10,000
1 5-85¢t 517 0-5 5-15
2 6-99 1-23 0-06 0-64
4 10-76 2:55 0-001 0-0001
8 12:70 575 0-003 0-0004
12 13-24 7-81 0-008 0-0008
Reference value
(thin plate solution) 11-60

simple triangular element formulated using the theory of plates with transverse shear included
and using selective integration was found to be not as effective.
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APPENDIX A: EXPANSIONS FOR THE DKT ELEMENT

Shape function for DKT element

Ni=2(1-¢-n)G—&-n)

N=¢(2¢-1)
N3=n(2n-1)
Ny=4¢n

Ns=4n(1-¢-7)
Ng=4¢(1-¢-7)

£ and 7 are the area co-ordinates L, and L; (Reference 10) (Figure 21).
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Figure 21. Co-ordinates £ and

The derivatives of the H, and H, functions with respect to £ and n are obtained using

equation (27). Since. the functions N; are not entirely symmetric in terms of £ and 7, the
following arrangement is proposed:

Ps(1-2£)+(Ps—Pe)n -‘
q6(1—2&)—(qs+qe)m
—4+6(£+7m)+rs(1—-28)—n(rs+re)
—Ps(1-2€)+n(Ps+ Pg)
H.:=| 96(1-2£)—n(q6—q4)
—2+6£+r6(1-2&)+n(rsa—re)
—n(Ps+P4)

n(qa—qs)
L —n(rs—ra)

[ 16(1—28) +n(ts—t6)
1+rs(1-2€)—n(rs+re)
—qe(1—2£) +n(qs+qe)
—te(1=2£) + n(ta+te)
H, . =| —1+r(1-28)+n(ra—rs)
—q6(1—-2£) —n(qs—qe)
-nlta+ts)

77("4—’5)

| —1(qa—qs) ]
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[ —Ps(1-2n)—§¢(Ps—Ps) ]
qs(1—27n)—£&(qs+qe)
—4+6(£+n)+rs(1-2n)—£(rs+7e)
£(P4 + Pg)

H,., =| £(g4—qe)

~&(re—ra)

Ps(1-2n)—&(Ps+ Ps)

qs(1 —2n)+£(q4—qs)

| —2+6m+rs(1-2n)+£(ra—rs)

[ —ts(1-2n)—£(te—ts) |
L+rs(1-2n)—&(rs+re)
—qs(1-2n)+£(qs+qs)
E(ta+16)

H,.,=| &(ra—re)

—&(qs—qe)
ts(1=2n) - £(ta+ 15)
~14+rs(1-2n)+&(ra—rs)

L —qs(1-27n)—£(qa—qs) |
where

P.= —6X,‘,'/l.?i=6al(; e = "6)’ij/lx?i=6dK
qu=3xyyul 15 =4bx;  n=3yill;
k=4,5,6 forij=23,31, 12, respectively.

Using the above expressions and equation (30) the B matrix needed to evaluate Kpgr,
equation (31), and M, equation (32), is readily obtained.

P.T.O.
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APPENDIX C: EQUIVALENCE BETWEEN THE REDUCED INTEGRATION
DISPLACEMENT METHOD AND A MIXED HELLINGER-REISSNER
PRINCIPLE FORMULATION

Using the Lagrange multiplier technique the total potential energy function governing plate
bending with the transverse shear effects included can be written as

Mur=Y J (" Dk —3* Dyi* + ¥ D,y* — Iy* " Dy*) dx dy — W' (76)
mdJA

where

we =J wp, dx dy +I (WV, +BM,, +B,M,.) ds
A

Co

K, v, D,,D; are given by equations (3), (4), (10) and (11), respectively, and

WT=[k¥ &} «X] and ¥*T=[v} v}] an

are independent strain components that are not related to the displacements w, 8, and 8,. Also
P, is a uniform normal load in the z direction, C, is the part of the boundary where V, (shear
force), and M,,, M,, (moments) are prescribed.

The independent quantities subject to variation in equation (76) are w*, ¥*, w, 8, and B8, with
the subsidiary conditions

w=w B.,=B, and B,=B, onC, (78)

Equation (76) can be considered as the Hellinger—Reissner functional in the theory of plates
with transverse shear included. If the curvature-displacement relations are satisfied, i.e.

k=x* (79)

a modified functional is obtained:
72 =X [ Gx"Dyk+y™D,y* —1v*™D,y%) dx dy - W (80)
mJiA

The independent quantities in equation (80) are w, 8,, 8, and ¥* with equation (78) as
subsidiary conditions.

Finite elements can be formulated based on equation (80), with w, 8, and 8, as nodal dof and
¥* being expressed in terms of unknown generalized parameters a; defined on the individual
elements.

If we consider a triangular element with w, 8, and B, as given by equation (69) and y* a vector
of two constant parameters:

v=["]-a 81

as

then using equations (80), (81) and (23), (69) we have:
) S —ZzUTK,,Uﬂ! G.U-3a"H,a-U"Q (82)
where K, is given by equation (71)

G.= n,[ B, dx dy (83)
A
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and
H.=AD,

The vector Q is the element equivalent nodal-point forces corresponding to W'™ equation (76).
The stationary conditions associated with (82) give the following relations for each element:

G,U-H,a=0
or
a=H"'G,U (84)
Using equation (84) in equation (82) gives

M =Y 3UTKERU-UTQ (85)
where

Knx =K, +K?
with

K¥=G™H.'G, (86)

Using equation (83) we have

*_l T
K;—A R:D.R;

with
R, =I B, dA
A

Thus the matrix K¥ corresponds to the matrix K defined in equation (73) using the reduced
integration (one-point) scheme. The above derivation shows the equivalence between the two
different formulations and gives the variational principle associated with the reduced integration
displacement formulation for the present triangular element.
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