Lawrence Berkeley National Laboratory
Recent Work

Title
A STUDY OF TRANSPORT PHENOMENA AND INTERFACE STABILITY DURING SOLIDIFICATION
OF BINARY SOLUTIONS USING FRONT TRACKING FINITE ELEMENTS

Permalink

https://escholarship.org/uc/item/7zr5p02m|

Author
Tsai, H.-L.

Publication Date
1984-05-01

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/7zr5p02m
https://escholarship.org
http://www.cdlib.org/

LBL-19680

F?Ef("‘ijivf‘rb
- . LAWRENCE

\ B'D"“'“'Arf‘f"-fnrey

JUL § 1985

LIBRARY AND
) DOCUMENTS SECTION

A STUDY OF

TRANSPORT PHENOMENA AND
INTERFACE STABILITY
DURING SOLIDIFICATION OF
BINARY SOLUTIONS USING
FRONT TRACKING

FINITE ELEMENTS

H.-L. Tsail
(Ph.D. Thesis)

May 1984

TWO-WEEK LOAN COPY-

This is a lerary C:rculatmg Copy
ch may be borrowed for two weeks.

Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

Prepared for the U.S. Department of Energy
under Contract DE-AC03-76SF00098

[ &l — 4680
o~

}

t ¢

&:w




DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not nccessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.



A STUDY OF TRANSPORT AND INTERFACE STABILITY
DURING SOLIDIFICATION OF BINARY SOLUTIONS
USING FRONT TRACKING FINITE ELEMENTS

Hai-Lung Tsai

Ph.D. Thesis

Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

- o

May 1985

NP
N

/', .
LBL-19680 *¥

L)

i



A STUDY OF TRANSPORT PHENOMENA AND INTERFACE STABILITY
DURING SOLIDIFICATION OF BINARY SOLUTIONS
- USING FRONT TRACKING FINITE ELEMENTS

by
HAI-LUNG TSAI

ABSTRACT

A new numerical method using "frént tracking” finite elements
was developed to solve the multi-dimensional transient heat and mass
transfer equations associated with the solidification of bindary solu-
tions. The energy balance equation at the interface was not treated
as a boundary condition, but rather as an independent equation whose
'sb1ution gave the new position of interféce.' A specia1~new method was
developed by which the interface was tracked in time by two steps:
first the magnitude of displacement and the normal direction were
independently obtained for each node on the interface, then they were
superimposed to determine the new interface position. The numerical
method can fncorporate realistic thermodynamic coﬁditions on the inter-
face (including the effects of interfacial tensioh) and can accommodate
the non-isothermal as well as the irregular but smooth interface. A
novel meshing system based on a systematic exponential gridding concept
was developed to yield accurate temperatures in the solid and liquid
phases and concentration distribution in the liquid.

This numerical method was then employed to study the transport

phenomena as well as the morphological stability of a planar interface



during a solidification process in a saline solution. The transient
temperature and concentration distributions in the solid and liquid
regions for both planar and curved interfaces were calculated.

To study the stability of a planar interface, several numerical
perturbations in space and/or time were performed on either the outer
boundary or the interface to simulate various physical effects. The
results indicate that for the analyzed conditions, a temperature per-
turbation on the outer surféce of the domain cannot generate the inéta;
bility of the moving interface, even jn a situation in which the solute
in front of the interface is constitutionally supercooled. Furthermore,
it appéars that an increased solute concentration on the interface has
a stabilizing effect. These results, obtained through rigorous analysis,
éontradict the existing interface morphology stability criteria based‘on'_
concepts of equilibrium thermodyﬁamics prevalent in the technical litera-
ture. The new results indicate the importance of the transient dynamic
effects in the study of solid-liquid interface stability criteria. These
effects have been neglected in previous work.

 The numerical study was also used to investigate the effects of con-
centratioﬁ perturbations on the solid-liquid interface on the stability
of the interface. It was shown that a continuous concentration pertur-
bation can lead to an unstable interface. These results demonstrate the
importance of the new numerical method in the study of solidification
processes and indicate the need for futhre studies to promote a funda-
mental understanding of the physical phenomena associated with the

berturbed growth of a solid-1iquid interface during solidification.

Chairman, The51 s Comm tteé




Dedicated, with love, to my parents.



TABLE OF CONTENTS

Acknowledgements . . . . . . . v v bt e e e e 0 et e e e

NOMENCTAtUTE & v v v v v o o o o e e e o e e e e e e ..

List of Figures . . . . & ¢ ¢ ¢ ¢ i v i o v e e e e e e e

List of Tables . . . . . . S e

1.1

Solidification of Solutions . . . . . . . . . . ..
1.1.1 Applications and Difficulties . . . . . . . .

1.1.2 Thermal and Solute Redistributions . . . . .

1.2

1.3
CHAPTER 2:
2.1
2.2
2.3

2.4
2.5
CHAPTER 3:
3.1
3.2

Solid-Liquid Interface Stability . . . . . . . . . .
1.2.1 Constitutional Supercooling . . . . . . . ..
1.2.2 Mullins-Sekerka Criterion . . . . . . . . ..

Purpose of Prgsent Study . . . . . . .o e e e e
MATHEMATICAL MODEL . . . . . . . . . ¢ ¢ ¢« o o . .
A General Solidification Problem . . . . . . . .
Governing Equations . . . . . . . . . . . e . o .

Initial and Boundary Conditions . . . . . . . e e
2.3.1 Initial Conditions . .. . .. .. e e ..
2.3.2 Boundary Conditions . . . . . . . . . . . ..

Nonlinearity on the Interface . . . . . .. . . ..
Previous Numerical Work . . . . . . . . ... ...
FRONT TRACKING FINITE ELEMENTS . . . . . . . . ..
Introduction . . . . . . . . ¢ . oo o000 0.

Space Discretization . . .. . . . . . ... .. ..

ii

Page

jv



3.3 Time Discretization . . . . . . . . . . .. .. ... 38
3.3.1 General Finite BDifference Method . . . ... 38

3.3.2 Finite Element Method in Time .. ... ... 39

3.4 Numerical Stability Analysis . . . ... .. .... Ly
3.5 Interface Moving Scheme . . . . . . . . . .. .. .. 45
3.6 Solution Algorithm . . . . . . . .. ... .. ... 52
3.7 Automatic Mesh Generation . . . . . . . .. .. ... 54

- 3.8 Computer Program . . . . ¢ ¢ ¢ 4 4 ¢ ¢ 4 e o e ... 62
CHAPTER 4: INTERFACE STABILITY ANALYSIS . . . . . . . . . ... 63
4.1 Problem Description . . . . . . .. ... ... ... 63
4.2 Numerical Perturbations . . . . .. .. ... .... 66

4.2.1 Temperature Perturbation on the Outer Boundary 67
4.2.2 Concentration Perturbationvon the Interface . 69

CHAPTER 5: RESULTS AND DISCUSSION . » .« » v v v o w v v v v n 7

5.1 Introduction . . . . & & v ¢ ¢ i e e e e e e e e e YA
5.2’ Planar Interface . . . . . e e e s e e e s e e e 74

5.3 Temperature Perturbation on the Outer Boundary . . . 87

5.4 Concentration Perturbation on the Interface . . . . . 101
CHAPTER 6: CONCLUSIONS . . . . . .. e e e e e e e e e e e - 1o
References . . . ¢ v ¢ ¢ o v v v o o o v o v e e e e e e e e 13
APPENDIX 1: Derivation of Mullins-Sekerka Criterion . . . . . . 120

APPENDIX 2: Listing of Computer Programs ........... 126



iv
ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to Professor Boris
Rubinsky for his guidance throughout this research. As one of his
first Ph.D. students, I have had the privilege of obtaining his advice
both in this study and in many non-academic matters. To him, I am
always in debt.

I would 1ike to thank Professor Eugene E. Haller for his encourage-
ment and support during this study. I also thank Professors Ralph Greif
and Donald R. Olander for carefully reviewing the manuscript and making
valuable comments.

Support for this research was given by the National Science Founda-
tion under Grant No. DEM-8105916 and by the Director, Office of Energy
Research, Office of Basic Energy Sciences, Materials Sciences Division
of the U.S. Department of Energy under Contract No. DE-ACO3-76SFO0098,
and is gratefully acknowledged. |

I wish to thank my wife,}Chiu-Liang, for her love, help and under-

standing during this study.



NOMENCLATURE
[Ai] constant matrices, i = 1,2, and 3; Eq. (3.60)
A amplitude of temperature perturbation, Eq. (4.1)
A’ amplitude of temperature perturb&tion. Eq. (4.2)
[B] temperature gradient interpolation matrix, Eq. (3.4)
B amplitude of concentration perturbation, Eq. (4.3)
[c] conductance matrix, Eq. (3.10)
c solute concentration

Csr & solute concentration of the solid phase
CL, C, solute concentration of the liquid phase

Ci’ C, initial solute concentration in the 1iquid phase

Co solute concentration on the interface
c thermal capacity

Cg thermal capacity of the so]id phase
<L thermal capacity of the liquid phase

D mass diffusivity of the liquid phase
f[...] Newton's divided difference, Eq. (3.62)

Flw): defined in Eq. (1.21)

{9} defined in Eq. (3.40)

G(w) defined in Eq. (1.20)

Gc concentration gradient of liquid phase at the interféce
GL temperature gradient of liquid phase at the interface
Gs temperature gradient of solid phase at the interface

h convection heat transfer coefficient



[1]

9]

9]

[x]

[k, ]

k= CS/CL
ks, ki

vi

'1dentity matrix

Jacobian transformation matrix

Jacobian of transformation

defined in Eq. (3.10)

i=c, h, and r; defined in Eq. (3.10)
partition coefficient

thermal conductivity of the solid phase
thermal conductivity of‘the 1iquid phase
latent heat of fusion

slope of liquidus line

displacement interpolation vector

displacement vector

normal direction of the ihterfaée
normal direction of the solid boundary
normal direction of the liquid bouhdary
defined as P = 1 -k

interpolation polynomial, Eq. (3.61)
heat flux, Eq. (3.8)

radiation heat flux, Eq. (3.8)

defined in Eq. (3.10)

i=¢t,q, h, r; defined in Eq. (3,10)
Cartesian coordinates

defined in Eq. (1.18)

moving phase interface

i=1,2, 3, and 4; part of the moving interface, Eq. (3.8)

- temperature matrix, defined in Eq. (1.18)



vii

TS’ T temperature of the solid phase

‘TL, T, temperature of the liquid phase

Ti’ T, initial temperature of the liquid phase
va melting point of pure liquid in plane interface

To temperature on the interface

t time

Atcr critical time step in numerical stabiiity analysis
[v] matrix of directional cosine of elements on the interface
{v} defined in Eq. (3.37)

v constant interfacial velocity

Vn interfacial normal velocity

wi, Nj Gauss weights

W(t) weighting function

Ax mesh size in the x direction

X=2 Cartesian coordinates

Qg a1 thermal diffusivity of the solid phase
Qp» a2 thermal diffusivity of the liquid phase
i=1, 2, 3; coefficients in the boundary condition, Eq. (2.8)

%

£-n natural or local coordinates
W wave frequency, Eq. (1.16)
we defined in Eq. (A.13)

w_ defined in Eq. (A.17)

wg -defined in Eq. (A.18)

(¢] interpolation matrix

& interpolation functions



viii

perturbed interface, Eq. (1.16)

defined in Eq. (3.36)

eigenvalues

amplitude of perturbation, Eq. (1.16)

averaging thermal conductivity of the solid phase, Eq. (A.31)
averaging thermal conductivity of the 1iquid phase, Eq. (A.31)
sum of the solid and liquid dom#ins

solid domain

liquid domain

total boundary of the solid domain.

total boundary of the liquid domain

b?u?dary of the solid domain, excluding the interfacial boundary
S(t -

b?u?dary of the liquid domain, excluding the interfacial boundary
S(t :

mean interfacial curvature
defined in Eq. (3.39)
Stefan-Bdltzmann constant
radiation emissivity
defined in Eq. (3.21)
density

density of the Solid phase
density of the liquid phase

radius of interfacial curvature .
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T CHAPTER 1:
INTRODUCTION

1.1 SOLIDIFICATION OF SOLUTIONS

1.1.1 Applications and Difficulties

Many'p}acticaI problems in applied science and eﬂgineering involve
the solidification of solutions, e.g., ice-making, food processing,
'medicine, crystallography, metallurgy, welding, and many others.
Becéuse the properties of the solid phase are not only inherited from
its liquid phase, but significantly influenced by the details of the
solidification process, a fundamental understanding of the physical
phenomena bccUrfing:during solidification processés is essential to
obtain the desired structure of the solid phase [1-4]. For example,
properties of alloys such as strength, toughness, corrosion resistance,
etc. are dependent in part on the degree of local segregation resulting
from the spacing of dendrite arms in the alloys. By properly céntro]-
ling the solidification procedures, properties of the alloy can be
improved. Of course, the alloy properties can be modified by subse-
quent heat treatment, but the existing defects cannot in general be
completely removed by these additional costly procedures. An important
application of current solidification technology may be found in the
crystal growth of electronic materials, which requires an understanding
of solidification processes [5,6].

From a theoretical point of view, the analysis of solidification

of solutions involves the simultaneous solution of transient heat and



mass transfer equations in both time-dependent solid and Tiquid domains.
The difficulties of studying solidification stem in part from the non-
linearities associated with the transient position of the interface
that separates the two phases with quite different properties. The
interface is neither fixed in space nor is its motion known a priori;
nevertheless, it is part of the solution. Furthermore, the governing
heat and mass transfer equations in both phases are nonlinearly céupled
at the unknown moving interface. |

The most difficult aspect in the study of so]idifiéation processes
is the establishment of a valid mathematical model that fully describes
..the real physical phenomena. An incomplete knowledge of, for example,
anisotropic interfacial free energy, interfacial structure and kinetics
(molecular attachhent), etc. and their roles in determining the inter-
face stability 1ead§ to difficulties in obtaining the correct governing
equations. " The phenomena on a molecular level occurring near the
interface are intimately related to the fundamental physics of the
materials. Although the basic principle of interface instabi1ityvis
partially answered by the supercooling effect, the dendritic shape,
dendritic arm spacing, and sidebranching can hardly be predicted.
Hence, a complete theoretical simulation of interface time evolution,
- from a plane tfansition'to instabi]ity, to a complete dendrite is still
beyond the scope of present technology.

Experimental studies on solidification of solutions are limited
to phenomena observations and the empirical correlations among such

parameters as the degree of supercooling, dendrite growing velocity,



dendrite arm spacing, etc. [7-17]. These results may have practical
importance and value, but do not make significant contributions to the
fundamental understanding of solidification processes. It is noted
that the comparison between experimental results and those predicted
by the over-simplified theories are not adequate. Direct measurements
of interfacial free energy and temperatures and solute distributions.
especia11y around the dendrite, are complicated by the moving? micro-

scopic size, and complicated geometry of dendrites.

1.1.2 Thermal and Solute Redistributions

A simple example will be given to illustrate the physical phenomena
occurring during §o]1dification in solutions, Extensioni to the more
general cases wil]vbe discus#ed thereafte?. The example is for the semi-
infinite domain shown in Fig. 1.1. The media is a Bindary'saline solu-
tion, at a uniform initial temperature T, and concentration Cy- Itis
assuméd that Ti is higher than the equilibrium temperature corresponding
to Ci' i.e., the solution is not supercooled. Adiabatic boundary condi-
tions are assumed on both upper and lower sides of the domain. At time
t = 0 the cooling process is initiated by suddenly imposing a constant
temperature T_, which is less than Ti’ on the left outer surface of the
domain. If T_ is below the freezing point of the solution, the solidi-
fication process will start from the left and the solid-liquid interface
will move to the right of the domain. This process is called "uni-
directional solidification." [t is noted that the solution freezing
temperature is determined by the amount of solute contained in the solu-

tion. In general, the liquid phase and its solidified phase possess
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quite different thermodynamic, chemical, and physical properties.
Problems involving solidification/or melting usually are referred to
as "phase change," "moving boundary," "free boundary," or "Stefan"
problems.

The temperature difference between the outer surface temperature

- and the interfacial temperature serves as the driving therha] force for
advancihg the‘interface. The sensible heat of the solid and the latent
heat released by the freezing process are transported through the frozen
solid layer by conduction. then rejected into the environment. The
sensible heat from the liquid solution will also be transported by con-
duction and/or convection to the interface and then conducted through
the solid region. Hence, the rate of solidification is governed in part
by the rate at which the latent heat of fusion generated at the inter-
face can be removed.

According to the phase diagram for solution, the liquid phase and
its solid phase will not contain the same amount of solute. Hence,
during the solidification of solutionﬁ. solute will be partially rejected
or incorporated by the solid according to the phase diagram. A partition
coefficient takes a value varying from zero (corresponding to the completé
rejection of solute by the solid phase) to one (corresponding to the com-
plete 1ncorporation of solute into the solid phase). Usually the solid

'thase will contain less solute than the liquid phase, as indicated by
the negative slopes of fhe solidus and liquidus lines in the phase dia-
gram (see Fig. 1.2). The accumulation of rejected solute in the change
of phase interface will lower the change of phase temperature. Thus

the rate of solidification for solution is determined by the heat transfer
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process as well as the mass transfer process [18-30]. Due to the low
mass diffusion coefficient in the liquid phase, the rejected solute will
form a thin solute-rich layer in front of the phase interface. This is
called the "concentration boundary layer." This phenomenon of solute
seqregation will cause the change of phase interface to become unstable
according to the various interface stability theories, discussed in
Section 1.2.

Many experiments have found that during the solidification of solu-
tions, the solid-1iquid interface is initially planar, but after some
time the planar interface will become unstable [31-33,38]. The time
evolution of the interface is also shown in Fig. 1.1. It is seen that
at the onset of the process a small sinusoidal protubérance appéafs,on
the interface. This perturbed interface will then grow outward and
bécome "finger-1ike" dendrites. This process is called cellular or
dendritic growth.. Although the name dendrite originates from fhe Greek

word for "tree," we will use it in a more general sense. The shape of
the dendrites depends greatly on the properties of the solution and the
freezing conditions. In fact, finger-like, tree-like, and mahy other
extremely complex geometries of dendrites have been observed. The den-
drite is a microstructure with sizes ranging from a few to approximate]y
100 um in diameter. The tips of dendrites are growing faster than the
body and eventually neighboring dendrites will merge. Mostvof the
rejected solute will be trapped between dendrites. The dendrite is

a more stable form.of intarface. It is noted that the phenomena of

interface instability and dendritic growth are only found when the

1iquid to be frozen contains solutes or is initially supercooled. For



pure liquids that are not supercooled, the interface is always stable
-and planar.

A general solidification process of multi-component solutions
involves the same basic phenomena as described above. Having many kinds
of solutes present with the solution will further complicate the solute
redistribution process and may result in the inter-reaction among these
so]Utes. Hence, analyzing a uni-directional solidification process in
binary solutions provides us with an 6ptimal opportunity for the study
of the fundamental characteristics of solidification proceﬁseé in solu-

tions and solid-1iquid interface morphology [28-30, 32-36].

1.2 SOLID-LIQUID INTERFACE STABILITY

1.2.1 Constitutional Supercooling

The interface stability theories will be reviewed in detail here
because later work will make extensive reference to this section.
Chapter 5 will include commentary on the assumptions from which thei
theories were derived.

Consider the uni-directional solidification of a binary alloy similar
to that in Fig. 1.1, having a partition coefficient k which is assumed
. constant and less than unity. The relevant bart of the phase diagram is
shown in Fig. 1.2. The melt is initially at uniform solute concentration
C_.- The temperature boundary conditions are varied in such a way that
the solid-liquid iﬁterface advances at a constant velocity V. Steady-
state temperature and concentration profiles are assumed in a frame of

reference moving with the interface. This signifies that the rate of



solute rejection by the solid during solidification will exactly equél
the diff;sion rate of solute awa} from the interface into the liquid.
The composition profiles remain constant relative to the interface and
are shown in Fig. 1.2. The solute distribution can be determined by
solving the diffusion equation in a moving coordinate frame of reference

attached to the interface:

32C - 3C :
o——zl'-+v-52£=o . 1.1)
32

where 2 is the distance from the interface, D is the solute diffusivity,
and V is the constant ve]ocity of the interface. The boundary conditions
are:

C =CJ/k=Co=C/k at z=0

L~ C at 2+

The solution can be obtained easily as:

¢, = C, [1 + (LX) e (-Vz/D‘)]. (1.2)

Since
coaca(n‘;") (1.3)
6 = () (-5) = (F)e-c . (1.4)

hence
c, = Co o+ 53-9 [1- e (vam], (1.5)

where Gc is the concentration gradient in the liquid at the interface,

Co is the solution concentration at the interface, and k is the partition
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coefficient,k = CS/CL.

In addition to the solute distribution derived in Eq. (1.2), it
also is necessary to know the thermal diffusion fields of both liquid
and solid. The governing equations are similar to that of Eq. (1.1)

for temperatures in the liquid and solid states.

32T oT ;
L L
a + V—=—— = 0 (1.6)
L 322 ¥4
%7 aT
S S
—_— —_ =
ag ot v 2 o, (1.7)

where o and ag are the thermal diffusivities of the liquid and solid,
-respectively. The boundary conditions are TS = TL = To at the inter-
face z = 0; the temperature gradients in the interface are given by GL
for liquid and GS for solid at z = 0. With these boundary conditions,

the solutions of Egs. (1.6) and (1.7) are:

T ] |
aSGS - .
TS = TO + v .] - exp ('VZ/as)- Py ' (].9)

where T, is the equilibrium temperature common to sb]id and liquid at
the interface. Noiice'thaf Eqé. (1.5), (1.8), and (].9) have exactly
the same form.

Close to the moving‘interface; the temperature distribution can be

expanded in a Maclaurin Series to yield
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T = To+ G2 | (1.10)

TS_: To + GSZ . (]f]l)

The energy balance on the interface is given by:

kSGs - kLGL = v , : (1.12)

wherg L is the latent heat of fusion per unit volume, and kS and kL
are the thermal conductivities of solid and liquid, respectively.

To study interface stability, the actual temperature distributions
and the equilibrium liquid.temperature corresponding to the actual con-
centration are plotted in Fig. 1.3. The equilibrium teiperature is
directly related to the solute distribtuion in Eq. (1.5) by means of
the phase diagram. From Fig. 1.3, it is seen.that there is a region |
in the Ifquid near the interface that is supercooled, i.e., the equili-
brium phase transformation temperature for the specific concentration
at a given location is above the actual temperature. [t is noted that
in the supercooled region near the interface, the degree of supercooling
increases in a direction away from the interface. Thus, if any part of
the interface is perturbed and the "tip" of the protuberance enters the
increasing supercooled region, it will grow faster and the interface
will become unstable. . |

The above phenomenon is known as “"constitutional supercooling"
instability. The word constitutional indicates that the supertoo1ing
arises from a change in composition. Constitutional supercooling as a
cause for interface instability was first proposed by Chalmers and co-

workers in 1953 [37], in conjunction with experiments in directional
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FIGURE 1.3. Constitutional supercooling near a steady-state interface.
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crystallization of dilute tin alloys. In order for constitutional
supercooling instability to occur, the gradient of the equivalent
liquidus temperature curve on the change of phase interface (see Fig.
1.3) must Ee larger than the actual temperature gradient in the liquid
on the interface. Thus, if the equilibrium temperature is given in

terms of the concentration by
Te = Tm + mcL s (1.13)
where Tm is the pure liquid melﬁing point and m is the liquidus slope

(assumed to be constant), then constitutional supercooling implies that

for an unstable interface.

& & K-
R M

or
EvL‘ < ‘;"('.".cbf';) , (1.15)

where Gc is the cohcept of concentration gradient at.the interface
given in Eq. (1.4).
In summary, the constitutional supercooling was derived under the
following assumptions: |
(1) The planar interface is moving at a constant velocity in the
z-direction.
| (2) The domain is one-dimensional and semi-infinite in the z
positive direction.
(3) The interface is sharp and infinitesimally thin.
(4) The interface is in thermodynamic equilibrium.
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(5) The interfacial kinetics are negligible.
(6) A moving coordinate is used and attached on the interface such
that z = 0 marks the plane of interface.
(7) The temperature and concentration distributions of both solid
and liquid are steady-state in the moving coordinate system.
(8) There is no convection in the liquid, and no change of density
in the liquid during freezing.
(9) The solute diffusion in the solid is negligible.
(10) A1l the material properties of solid and liquid are constant.
(11) The partition coefficient k = Cs/C, is constant over the

range of interest.

beSpite the initial assumptions made to develop the constitutional
supercooling criterion, Eq. (1.14), this criterion can also be obfained
in the absence of assumptioné (1), (2), (6), and (7). Thus, the concept
of constitutional supercooling as it was originally prdposed is appli-

cable to the multi-dimensional transient solidification processes.

1.2.2 Mullins-Sekerka Criterion

The constitutional supercooling criterion was based on a static
analysis that showed that constitutional supercooling could be a source
of interface instability. The same problem was considered in a dynamic
and more rigorous analysis by Mullins and Sekefka (M-S). The same
assumptions were made as those in the constitutional supercooling theory.
The M-S criterion also considered the diffusion of heat and solute around

the perturbed interface, and the interfacial free energy.
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The linear perturbation analysis was first employed to solve this
problem by Mullins and Sekerka in 1964; however, thereafter numerous
extensions have been added [38-47]. In the M-S analysis a steady-state
system was fnitially assumed, similar to that described in the previous
section. At time t = 0, a small perturbation was imposed on the system,
and all equations and boundary conditions were linearized with respect
to this perturbation. The time dependence of the amplitude of perturba-
tion was then investigated. In general, if the perturbation is growing
in time, the interface is unstable. On the other hand, if the perturba-
tion decays to zero, the interface is stable. It is noted that for any
kind of initial disturbances, the final stability criterion of the inter-
-face should be the same according to the general theory of stability.
The disturbance can be in the temperature, concentration, or interfacial
shape.

Because most functions can be represented by a Fourier series of
sinusoidal functions, sinusoidal perturbations of all possible wave-
lengths can be considered. Only if the rate of growth of the perturba-
tion is negative for all wavelengths is the interface considered stable.

A sinusoidal perturbation of very small amp1ifude Glto the planar

interface in the constant moving coordinate can be described by:

2z = o(x,t) = &(t) sinwx , (1.16)

where w = 27/) is the wave frequency. Notice that a two-dimensional
model is assumed.
Following the work of Mullins and Sekerka (the detailed procedures

are outlined in Appendix 1), the interface stability criterion is:
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V[-ZTmI'wz(wc - %P) - (5S+€L) (wc' _\é.p) + 2nGe (wc-%)]

(E_S-EL)(“’L --\-é- ) + 2umG.

On|One

(1.17)

Upon examining the physical significance of this interface stability
cfiterioﬁ, the time evolution of a perturbation of wavelength (2m/w)
within the region of applicability of the model used becomes evident.
It is apparent that a positive value of 5/6 for any w means the fTat
interface is unstable, whereas a negative sign for all w indicates a
decaying perturbation and a stable interface. It is noted that the
sign of Eq. (1.17) depends only on the sign of the numerator, since
both terms in the denominator are always positive, The term (ES-EL)
is proportional to V as shown by Eq. (A.34), and is positive. Notice
that we > V/D > VP/D, which results from the definition of w; [Eq.
(A.13)] and from the fact that p = 1-k < 1. Therefore, the value
we = (V/D)P is positive. The second term of the denominator, ZmeC,
also is positive because both m and Gc have the same sign. Therefore,
we expect the instability or stability of a planar interface to depend
only on the sign of the numerator. Dividing the numerator through by

a positive value Z[wc-(V/D)P]V gives

wc - (V/D)P

(1.18)

S(w) = =T Tw? - u(Eg+E) +

The frequency dependence function S(w) must be negative for stability.
The first term in Eq. (1.18) arises from the capillarity, which is always

negative and has a stabilizing influence for all wavelengths. Furthermore,
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a shorter wave]edgth (large w) favors stability. This is exactly the
sort of stabilizing effect that would be expected of the surface tension.
The second term, representing the temperature gradients, also is stabi-
1izing for positive values. The third term represents the effect of
solute accumulation, favors instability, and always is positive.
Instability occurs when there is any frequency for which the magnitude
of the third term is larger than that of the sum of the first two terms.
It is possible to simplify the M-S criterion and recover the result
of the constitutional supercooling theory derived earlier by removing
the capillary effects and the dependence of the stability criterion on

the wavelength. Under the simplification mentioned above, the M-S cri-

- . terion for instabi]ify can be expressed by:

ch > &(ES + EL) . (1.19)

The above criterion is essentially the same as the constitutional
supercooling criterion, Eq. (1.14), except that a mean value of Gt and
GS’ weighted by the thermal conductivities of these two phases, is sub-
stituted for GL in Eq. (1.14). It is noted that the stability criterion
Eq. (1.17) has a greater region of stability than Eq. (1.14) or (1.19).

The M-S stability criterion can be written in a slightly different
form by separating out the wave1ength-dependent’and -independent'part

of S(w). Define

=T Tw?
Glw) = :GC + Flw) | (1.20)
where
wc-(V/D)
Flw) = —————— . (1.21)

we = (v/D)P
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Then the condition for stability becomes
5(Eg + £) > mGG(w) . (1.22)

G(w) is composed of two parts. The first one is proportidnal to w?.

The second, F(w), is proportional to w? for small w and tends to unity
for large w, since Eq. (1.22) must be valid for all w for fhe interface
to be stable. In other words, the general condition for stability must
satisfy
(1.23)

W(Ee + £) > mBcBlw),,

Notice the constitutional supercooling criterion corresponds to G(w)max
= 1. In fact, G(w)max has a maximum possible value of unit and will be
lower in general. Thus the constitutional supercooling is a necessary
but not sufficient Conditiqn for instability; the degree of constitu-

tional supercooling must exceed some specific value.

1.3 PURPOSE OF PRESENT STUDY

The major purpose of this work are listed below:

(1) A major dffficulty in analyzing so]idificétion processes in solu-
tions is the lack of analytical tools to study the process. The
major purpose of this work is to develop a new numerical method to
solve the multi-dimensional transient heat énd mass transfer equa-
tions in the solid and liquid phases during solidification of binary
solutions. The finite element computer program developed is capable
of handling solidification processes with a non-isothermal phase

interface and with geometrically irregular but smooth shapes of the



(2)

(3)
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interface. Currently, there are no other numerical or analytical
methods with these capabilities.

The numerical method was used in studying a transient solidification
process in a binary solution. Temperature and concentration distri-

butions in both the solid and liquid phases were obtained during

‘the arbitrary transient solidification process. The solute accumu-

lation ahead of a planar interface and around a curved interface
were observed. The results of this part of the study, although
anticipated, constituted the first rigorous proof of the phenomena.
The new computer code offers a unique method of studying interface

stability phenomena during solidification in solutions. A mathema-

tical model describing a typical solidification process in solutions

was established. Then the planar interface stability was studied
for several types of perturbation. Surprising and unique results
conflicting with previous stabflity criteria were_obtained for the
effects of various parameters on interface stabi1ity.‘ These results
illustrate the importance of the new numerical method and indicate
the need for new fundamenta1 studies on the phenomena associated
with the interface stability. A discussion of these results is

included herein.

Following the introduction in Chapter 1, the mathematical model for

typical solidification processes in solution is formulated in Chapter 2.

A new general numerical method using front-tracking finite elements

that was developed to solve the mathematical model is discussed in

Chapter 3. In Chapter 4 this numerical method is employed to study
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the planar interface stability problems in solutions. The resu]fs
are presented andvdiscussed in Chapter 5, followed by conclusions in

Chapter 6.
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CHAPTER 2:
MATHEMATICAL MODEL

2.1 A GENERAL SOLIDIFICATION PROBLEM

Consider a general solidification process in binary solutions at
some specific time t as shown in Fig. 2.1. There is a constant domain
Q that contains two time-dependent subdomains Q,(t) and Q,(t) such that
Q= Q(t) VQt). i (t) and Q,(t) represent the solid region and the
liquid region, respectively. The boundaries of the domains are 3N(t) =
ri(t) v s(t) of 2,(t) and 3Q2(t) = Ty (t)US(t) of Q,(t), where S(t) is
the moving phase interface common to Q,(t) and Q,(t). It is noted»that
‘all the domains and their boundaries are time dependent. The outward
unit vector normal to boundaries 32;(t) and 3Q,(t) are n; and na,
respectively. Any type of boundary conditions, including essential,
natural, mixed, and radiation can be applied on parts of the boundaries
aﬂl(t).and 3Q2(t). These boundary conditions are allowed to be time-
dependent. We are interested in determining the position of phase
interface S(t), the temperature distributions T,(t) and T.(t), and the

solute concentration distributions C,(t) and C.(t) at any instant in time.

2.2 GOVERNING EQUATIONS

A complete description of solidification processes involves the
kinetics of atomic rearrangement near the phase interface, the transport

of heat and mass in solid and 1iquid regions, the convection due to
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Moving Phase Inferface
7€)

FIGURE 2.1. A general solidification problem.
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differehce in density of solid and liquid, the natural convection arising

from density variation in the liquid, and so forth [48-63]. We will not

deal directly with atomic effects or theories of nucleation kinetics.

These theories are based on statistical mechanics and concern the funda-

mental processes of solidification on atomic scale. To make this problem

tractable, we propose the fq110wing approximations:

(1)
(2)
(3)
(4)
(5)

The solid-1iquid interface is a definite surface in space.
The effects of interface kinetics are negligible.

There is thermodynamic equilibrium. on the phase interface.
There is no convection inAthe liquid.

The mass diffusion in the solid region is negligible.

The governing equations describing solidffication‘processes under the

above assumptions are:

A.

Heat Transfer Equations:

Ve(ky 7 T;) = 0,Cy EQ%L in Q(t) ' (2.1)
Te(k2 ¥V T2) = p2C; %%? in Qa(t) (2-2)

Mass Transfer Equations:

3C

v(Dv C) = ot

in Q,(t) (2.3)

Interface Conditions:

(ky 9T, -k 9Ty)en = pL(Ven) on S(t) (2.4)

DvC-n = C(1-k)(V-R) on S(t) (2.5)

Tl 2T, = Tm-mC - TmFY on S(t) . (2.5)
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Here L is the latent heét of fusion per unit volume, k is the partition
coefficient, Tm is the melting point of the pure substance with a planar
interface, mis the slope of the liquidus 1ine, which may vary as a
function of solute concentration, I' is the Gibbs-Thompson coefficient,
Y is the méan interface curvature, V s the local solidification velo-
city, and n is the unit vettor normal to the interface and~coinciding
with 31 on the interface.

A1l the material properties in Eqs. (2.1)-(2.6) may vary. Cases
wifh non-isotropic and nonlinear (e.g., temperature and concentration
dependent) propefties are permitted; These governing equations are
written in general vectorial form and are independent of the coordinate
systems used. | |

It can be seen that all the governing equatiohs are coupled at the
interface through Eqs. (2.4)-(2.6). Equation (2.4) is obtained from the
energy balance at the interface. Equation (2.5) represents the mass
balance at the interface. Equation (2.6) indicates that under the thermo-
dynamic equilibrium assumption, the temperature on the interface is deter-
mined by the interfacia].concentration as well as the interfacial curva-
~ture. Hence the interface temperature is not only a function of time,
bur varies along the interface. It should also be noted that y, n, and
v all are funct%bﬁs of time and space. |

Before proceeding to the next section, it is worth pausing to compare - -
the assumptions and governing equations of this model with those of inter-
face stability theories discussed previously. The most distinct aspect
of this model is the incorporation of transient effects, which makes it

close to representing realistic situations. The temperature and concentration
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distributions in both solid and liquid are changing with time, but are
not fixed with respect to the interface. Every node on the interface
may advance at an arbitrary velocity, depending on the applied boundary
conditions. The present model pfovides us with the ability to study
more complex situations than the previous quasi-steady models found in

the literature [64,65].

2.3 INITIAL AND BOUNDARY CONDITIONS

2.3.1 Initial Conditions

Arbitrary initial conditions can be employed in the numerical
Aanalysis. However, in this specific stddy uniform conditions were
chosen: | }

T=1) dnq, |
T=T} dnQ, (2.7)
C=¢C" ingQ

2.3.2 Boundary Conditions

In addition to the interface conditions [Eqs. (2.4)-(2.6)], which
will serve as part of the boundary conditions for domains Q,(t) and Q,(t),
the following general boundary conditions may be imposed on any parts of

the boundaries:
oy VT, ‘-51 + 8T =11 on ' (t)
a2z VT2 ';z + B2T2 = v2 on T'z(t) (2.8)

a:VC'Fa*Bschz on Ta(t) .
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It should be noted that any type of boundary conditions, including
Dirichlet, Neumann, and mixed, can be obtained from the general boun-
dary conditions, Eqs. (2.8), by properly choosing the coefficients Qs
B;» and Yi; where i = 1, 2, and 3. In particular, essential boundary
conditions are derived from Eds. (2.8) by the so-called penalty method.
For example, if one chooses 8, and vy, to be some very.larﬁe values com-
pared to a;, then the first equation .in Eqs. (2.8) is a good approxima-
tion to T = v,/8; = TC’ an essential boundary condition. By adopting
Egs. (2.8), the implementation also is simplified. The reader is

reminded that these boundary conditions can be functions of time and

space.

2.4 NONLINEARITY ON THE INTERFACE

Equations (2.1) to (2.6) indicate that diffusion of heat and mass

- are coupled oh]y at thg interface and are considered independent in the
rest of the domain. The difficulties in obtaining the solutions stem
in part from the fact that Eq. (2.4) is nonlinear. To demonstrate this,
consider the simpler situation where T, = T, = Tc, a constant value and
one-dimensional problem. |

Take the total derivatives of T, and T, on the interface:

L15% 15 = (312 3Tz -
( ™ dx + Y dt ( " dx + 3t dt 0
: x=S(t) x=S(t)

(2.9)

aT, ds(t) 3Ty, _ 3T, ds(t) ., aT, . .
x4t t 3t T x at t 3t - 0 atx=s(t).
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Rearrange to obtaih
ds(t) . =3T3t | -aTy/at
at 3T,/ 3% aTQf%i ' (2.10)
Equation (2.4) becomes

AT, . 3T . 3Ty/ot 3T,/3t
ki 5% - k2 55 ks ¢ ok aTgax - (&)

The nonlinearity of £q. (2.4) is therefore evident.

2.5 PREVIOUS NUMERICAL WORK

To date, a large number of analytical and numerical methods have
been presented fn the technica1-1iterature_for the solution of prbblems
- of heat transfer with phase transformation in a pure substance. Many of
these methods are summarized in Refs. 66-69. Most of the analytical
methods are restricted to one-dimensional situations [70-72]. Multi- .
't dimensional situations usually are solved using numerical methods [73-77].
Several solutions using finite elements method also have been reported
(78-87]. |

The numerical techniques using finite elements can be separated
into two groups based on the formulation of the problem. In the first
group, enthalpy is the dependent variable (see Refs. 77,81-82,86-87).
The seﬁond group of methods deals with the energy equation writtén in
terms of temperature as the dependent variable (see Refs. 83-85). Solu-
tions using the finite element for the enthalpy formulation include the
work by Comini et al. [86], Ronel and Baliga [87], and Miller and Miller
(81,82].

Bonnerot and Jamet [78] were the first to develop a finite element
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that discretizes the domain by means of isoparametric elements corres-
ponding to a six-noded triangular prism in a spacé defined by the x-y
Cartesian coordinates and t, the time variable. The free boundary was
approximated by a pb]ygon whose vertices coincided with triangulation
nodes. In their method, the elements deformed continuous]y in time to
accommodate the displacement of change of phase interface. The method
discuséed above is restricted to the solidification processes in pure
substances. To study the physical phenomena that occur during solidifi-
cation processes in solutions and alloys, we have developed a new multi-
dimensional finite element method using "front tracking" finite elements.

The front tracking finite element method uses moving or deforming
elements to track continuously in time the position of the change of
phase interface. A general front tracking procedﬁre for the study of
solidification processes in a pure substance was first established and
vreported by thinsky et al. [83,85]. A differenﬁ front tracking method_
was also deve1oped by Rubinsky for the study of heat and mass transfer
during one-dimensional transient solidification processes in a solution
in the presence of forced convection [84].

In this study, a new general multi-dimensional numerical method of
solution using front tracking finite elements for the study of heat and
mass transfer problems during transient solidification processes in
binary solutions was developed. Specific to the front tracking finite
element method is the fact that the energy balance on the change of
phase interface is not treated as a boundary condition, but rather as
an independent equation whose solution gives the position of the inter-

face in time. Because the front tracking method tracks the change of
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phase interface continuously in time, the method can deal with irregular
interface morphologies and can consider the local thermodynamics on the

interface, including capillary effects and nucleation kinetics.
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CHAPTER 3:
FRONT TRACKING FINITE ELEMENTS

3.1 INTRODUCTION

There are no numerical methods that can be used to solve the mathe-
matical model of a typiéal transient solidification pfocess in binary
solutions described by Eds. (2.1) to (2.8). In this chapter, such a
new general numerical method will be developed. Because of the charac-
teristics of this problem, which is specified by an irregular transient
change of phase interface, the finite element method, which is able to
accommodate ifregu]ar geometries, was chosen as the most appropriate
method of solution. In géneral, the finite element method can handle
problems with complex geometries, anisotropic materials, and arbitrary
boundary conditions. Finite element methods aiso permit refinement of

the domain when necessary.

3.2 SPACE DISCRETIZATION

Since the governing equations (2.1) to (2.3) have the same form, we
will develop the finite element formulation only for Eq. (2.1). For con-
venience, Eq. (2.1) is rewritten here and the subscript disregarded:

Ve(k VT) = pc% . (3.1)

The finite element formulations will be derived in a general form,

so that a general purpose program can be developed (limited to two-



or three-dimensional axisymmetry problems). The governing equation is
the diffusion equation,'but the method_can easily be extended to incor-
porate convection terms if necessary. Following standard procedures
[88-96], the solution domain is first divided into M elements of arbi-
trary shape. In general, these elements can be rectangular, triangular,
or mixed, and the number of nodes of each element can be different from
each other. We approximate the unkhown exact témperature T and its

gradients of each element by
N
T(r,z,t) = iZ]d»i(r'.z) Ti(t)

N 3¢

A (rz,t) = b 5 (r2) Ty(t)
' - (3.2)
¢
% (r!z’t) = 12] T;_ (I",Z) Ti(t)

N dT
g—} (r,z,t) = 1gl‘t’i(r.Z) 'Etl (¢)

where N is a finite value representing the number of nodes. Ti(t) are
unknown nodal values to be found, ¢1(r,z) are the shape or interpolation
functions over element i.

In matrix form,

T(r,z,t) = [o(r,2)]{T(t)}

& (r.z,t) 1

T (rz,t) }

= [B(r,2)]{T(t)} (3.3)

T (rzat) = Lor2)] {ST (01}

(
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where [6(r,z)] = [91,02,...,4y] is the temperature interpolation matrix.

i} T . 4T dr diy T
{T(t)} = [T1,Tz,...,TN] , and dT/dt at ° —d—tz' R TS
39 39, 3% -
| ar ar " Tar
(8(r,2)] = 3 (3.4)
| 31 392 _N
32 3z " ¥ 4

[B] is the temperature gradient interpolation matrix.
By the method of weighted residues, Eq. (3.1) becomes

/[V~(kVT) - o g—I] o = 0, (3.5)

9

where Qi is the volume of element i and ¢i are weighting functions.
The exact eduation has been modified so that it will be satisfied only

in a weighted average sense as Eq. (3.5). Integration by parts, followed

by the use of Gauss' theorem, yields

L >
ﬁkvr-V¢i-pcﬁ¢i)dv - /:bikVT-n A = 0 , (3.6)

where ri is the boundary surface of element i. The integration by

parts formula and Gauss' theorem are, respectively,

Ve(vk T u) = kVu « v + ve(kVu)

(3.7)
fv-EdA = J3-nds
Q 19)

Any type of boundary condition can now be incorporated through the

- surface integral term in Eq. (3.6). The general boundary conditions

are allowed as follows:
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T=7T(r,z,t)  onS,

VT _‘-’; = 'Q(Y’,Z.t) on SZ

R | (3.8)

VTen = h(t-T) onS; '

n
YTen = ogeT - oq. on S,

where I‘,i 2 51 VU S2US3V S, These boundary conditions represent the
specific surface temperature, specified surface heat flux, convective
heat transfer, and radiation heat transfer, respectively.

For nonisotropic materials, in general

aT
ki1 K2 I
kvT = = [k][B(r,2)]{T(t)} (3.9)
ka1 ka2 T
9z

Substituting Eqs. (3.8) and (3.9) into Eq. (3.6), we obtain the general

form of the governing equation,

[C]{%}(t)} + [kIT(t)} = (R} - {3.10)
where

(€] = [ oglodlol d¥ . (R} = (Rp} + (R} + (R} + (R)

9

(K] = k] + 1+ (KD o (Rp) = fkvTio) aa
S

k= [Tl e (R} = fater ad
Qi‘ S2

(1= [ne}el av , R} = [hT (o} ca
Qe 53
1 .
1Ty = foeT oy A, (D = fag (e} aa
S S
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and where d¥ (= r dr dz) is the volume of an element. It should be
noted that the original governing equation, (3.1), has been reduced
to a set of ordinary differential equations, (3.10).

The idea and formulations outlined above are quite simple and
straightforward. However, it can be imagined that the ca];u]ations of
any matrix in Eq. (3.10) for a curvilinear element would present great
difficulty if pérformed directly in terms of the r-z coordinates.  Fur-
thermore, the character of such calculations (e.g., the Timit of inte-
gration) would change from e]ehent to element in the domain. Thus we
introduce an invertible transformation between the original arbitrary
element and a master element of simple shape. Figure 3.1 shows thié
' domain transformation, where r-z are the global coordinates and £-n

are the local or natural coordinates. They are related through

r(g,n) -1<g<]

r= :
(3.11)
z=2(g,n) -1<n<]
by the chain rule of differentiation,
2 ar 32 (3
13 .| 9§ 13 ar -
= . (3.12)
3l Jar 22{|a
an an an 3z

where the Jacobian transformation matrix [J] is defined by

ar 3z

13 12
(] =

ar

ar 8z
an L1
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The function |J| is called the Jacobian of transformation,

9] = S5 - -3 - (3.14)

In order to guarantee that the transformation is unique, that is,
no gaps or overlappings among elements, it is necessary to ensure that
{J] > 0 for all elements. Then the evaluations of Eq. (3.10) will be
performed on the master element.

The nodes in the &-n plane may be mapped into corresponding nodes

in the r-z plane by defining

r(g,n) = .z]¢i(g’n)ri
. i=
(3.15)

- N
z(g,n) .Z](#,-(E.n)zi ,
1=

where the ry and z, are nodal coordinates of an element. It is noted
that the so-called isoparametric element is employed by adopting the
same interpolation functions that were used previously to interpolate

the temperature, i.e.,
T(gn) = ,Z] o5 (€T, - (3.2)
'|=

where ¢i are no longer functions of r and z, but of £ and n. The formula
given by Eq. (3.15) is standard [88]. This transformation is also shown
Ain Fig. 3.1. The b; have the characteristic that, for example, at node
1, ¢1 =1 and all other ¢; are zero, such that Eq. (3.2) is satisfied auto-

matically.
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' Hence, each integration in Eq. (3.10) is evaluated by integrating
over the square master element. For example, [C] becomes
11 ' :
€] = [ [ octe(gan)} [o(5.m)] 13(Em)| P dEdn . (3.16)
- -1 -1
The integratiohs are norﬁa]ly carried out by the method of Gauss-

Legendre quadrature:

N NG
[e] = 3 3 oreppcloterng)} o(epn)] = Bepag)l vy g (317

where wy and Wy are Gauss weights, gi and Ej are the coordinates of
Gaussian points, and NG is the number of Gaussian points in each inte-
gratioh direction.

A1l other matrices in.Eq. (3.10) are evaluated in a similar way,
except fof the temperature gradient interpolation matrix [B]. This

- matrix is transformed from r-z coordinates to £-n coordinates such that

.3‘311 3¢i.
e NS

(81 = | g, | = D&M (- (3.18)
|5t | =

The matrix [Kc] becomes

1 1
k.1 = [ [ (8(e.mITIKIEB(E.M] [3(Eun)| * dE dn (3.19)
-1 -1

which is evaluated by Gauss-Legendre quadrature:

NG NG .
[KC] - Z] 1;“1“.‘][8(&1’”,1)] [K].[B(Ei'nj)] lJ(E.':nJ)I ?‘1 g (3.20)

i=s
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3.3 TIME DISCRETIZATION

The general formulation of the weak form of governing equation

(3.1) has been derived as
EC(T)]{g—I-(t)}+ KT, ) 1T(t)} = {R(T,t)} . (3.10)

This is a set of nonlinear ordinary differential equations with -time

t as the independent variable. This equation will be solved by numeri-
cal time integration. Two methods of solution are proposed. First,
a typical finite different method is used, and then the finite element

method in time is employed.

3.3.1 General Finite Difference Method

The general 6 method is introduced such that t9 = tn-+eAt » where

0 <8< 1 and

cmi{ o (t)}e+ K(T.)], (T(8)}, = R(LE)Y, .  (3.21)

The subscript 6 indicates the values are evaluated at time ty. We

introduce the fo]lowing approXimations of standard finite difference

method:
{Thg = (1-0){T}, + &{T} 4
{R}g = (1-0){R}, + 6{R} 14 (3.22)
{QI} _ M - {74,
dt 8 At

Similarly for [C(T)]e and [K(T,t)]e. Substitute these into Eq. (3.21)
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to obtain the following formulation:

(c] . [ .
[e[K] + 2 ] Tty = [-(1-9)[&] * Ate] {Th + Rl . (3.23)

This equation represents a general family of recurrence relations: for
8 = 0, the algorithm is a Euler forward method; for 6 = %, a Crank-
Nicolson method; for 6 = 2/3, a Galerkin method; and for 6 = 1, a back-

ward method.

3.3.2 Finite Element Method in Time

Equation (3.23) can also be obtained by finite elements in the time
domain. First, the time domain is divided into N elements, and for each
__e1ement_the weak form is obtained in the same way as for the spatial
domain:

tel
[ ) [ctm + [KITH - (R} @z = 0, (3.24)
tn :

where w(z) is an arbitrary weighting function. The approximation is

applied in one-dimensional two-node time elements such that

T= (1-8)T +&ET 4,

T -T
r = 9L . ¢l n
T % = (3.25)
n
t-to
E B ——
Atn

Substituting in Eq. (3.24) produces



t

t

by the mean value theorem,

tn+'l

f (1) dt =

t

where 0 < 6 < 1. Hence,

t
n+l (T}

n+l
{1t} ., - (T}
[ ot (1e1 —2t1g ")

- {T}n

[ st rey —mi

+ [K] [(]- S)Tn + éTn#]] - {R} f dt = 0

s [a-am s e ] - {R}$ dr

Since the weighting function w(t) is arbitrary,

[CJz "” f + [K1{(1-0)T +eT ;}-{R} = 0

is derived.

0

40

(3.26)

(3.27)

(3.28)

(3.29)

In general, [C], [K], and {R} are not constants but functions of 6.

[cl, ],
[GEK]e + 3t {T}n+ [ (1-8)[K] +

]{T} + {R}

(3.30)

Thus the same form is obtained in this way as was derived by the finite

difference method.



L

3.4 NUMERICAL STABILITY ANALYSIS

Consider the following set of linear differential equations:
[CI(T} + [KIT} = (R}, (3.10)

where the coefficients [C], [K], and {R} are constants. To study their
numerical stability, these differential equations are transformed into
the modal form, i.e., a set of independent scalar equations. Then the
solution of Eq. (3.10) is just the superposition of the so1utfon of
each scalar equation. The stability analysis is concentrated on each
scalar mode.‘ First, assume the case of free response with R = [0].
The general solution of Eq. (3.10) can be assumed as

-t ' '
(Th=f{Cte ', i=1,...:n

. -lit

(3.31)

where {C;} is a modal vector of unknown amplitude and A; s a modal decay
constant. Substituting into Eq. (3.10), we derive

-t
[-\le1+ k] iegre * = p0] (3.32)

where

A (€1 + (K] = [0]

is the characteristic polynomial for Ai. Obviously, this is a standard

eigenvalue problem; therefore, the following equality has to be satisfied:

[K1{e5) = A€o} (3.33)

where {¢i} are eigenvectors corresponding to eigenvalues Ay These

eigenvectors are subject to the orthogonality condition,
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T 1 fori=3j
{4’1} [C]{‘bi} = G'ij = s (3.34)
0 fori#
)
(o7 . T s
693 [KICo;} = A {053 [CToy} = 23845 (3.35)
Hence, the solutions are the eigenpairs (Ai,{¢i}).
We define
[0] = [{ea} ... (o 3] . ' (3.36)

Then the solution {T} may be expressed as a linear combination of all
eigenvectors:

{1} = [¢]{v}
(3.37)

{T} = [8]{v} ,
where {v} is a vector of generalized modal unknowns. Substituting

into Eq. (3.10), we get

[CI[61{v} + [KI[o1{v} = {R}

| (3.38)
(017CCI0o10V} + [01T[KILe1Ev) = [01TeR)
It ié'noted that
OUGIOERN
(0} [K1{e} = [A] _ (3.39)
A= [ eee AT,
aﬁd
{v} + [AJ{v} = {g} (3.40)

is obtained, where {g} = {Q}T{R}.
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Finally the decoupled differential equations are derived for each

node:
Vi ¥ A3y = g5 (3.41)
Discarding the subscript i and applying the 6 method gives
v = (I-e)vn+ 8V 41 » 0<8<1 (3.42)
. J-=(1-8)2¢t 1
Vn+1 T+ote 'n T T+oateon-
The amplification factor is
v 1-(1-8)xr4t
2 D¥ i
S TN (3.43)
n i
The requirement of stable solutions is
|P1| <1, (3.44)
which corresponds to the condition
AiAt(-l +208) > -2 . (3.45)

It is noted that for positive Ajot, if 8 > % the algorithm is
unconditionally stable. For 6 < %, a conditionally stable method is

used and the critical time step i{s determined by

At :_._2__]

cr ]-Zex—i' ’ 0<8<5§ . (3.46)

Hence, if At < Atcr, it produces a stable method, and if At > Atcr' it
results in an unstable method.

The numerical stability for various & are summarized in Fig. 3.2.
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FIGURE 3.2. Stability behavior of 6 method. 6 = 0,
Euler forward; 6 = %, Crank Nicolson,
6 = 2/3, Galerkin; 6 = 1, Euler backward.
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3.5 INTERFACE MOVING SCHEME

The most important aspect of this work is a new numerical procedure
for the solution of'the interface condition, Eq. (2.4). The condition
will be solved as an independent equation to obtain the new interface

positions in time. For convenience, this equation is rewritten here:
(Ky VT =K, 9T)en = pyL(Ven) “on S(t) . (2.4)

- Several methods have been proposed for the solution of this equation
(50,51,75,79,85]. Those methods, however, are only applicable to
situatidns in which the interface is fsothermal. The isothermal inter-
face occurs when the pure liquid is freezing and the effect of inter-
facial curvature is neglected. In a.general solidification problem
such as the one studied here, the temperature can vary along the inter-
face as a function of interfacial concentration and interfacial curva-
ture. This is shown in Eq. (2.6). Therefore, in the present studyva
new method is developed for the solution of Eq; (2.4).

The simplified example shown in Fig. 3.3 will be used to illustrate
this method. Equation (2.4) is integrated along the interface S(t) by
the finite element method. First the domain S(t) is divided into N
two-node elements. The corresponding four-node isoparametric elements
near the interface for both solid and 1iquid domains are also shown in
. the same figure. Each four-node element on both sides of the interface
has one side that coincides with the interface. The heat flux terms in
the left-hand side of Eq. (2.4), ki1(3T,/3n) and k2(3T2/3n), will be
evaluated on the corresponding four-node isoparametric elements of Q,

and Q2 , respectively.
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FIGURE 3.3, Illustration of interface moving scheme.
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The velocity of the interface that appears in the right-hand side
of Eq. (2.4) can be expressed as

dn
Vn s Ft- ’ (3.47)

<
vens

where n indicates the direction normal to the interface S and dn repre-
sents the magnitude of the displacement of the interface in that direc-
tion. |

The normal displacement dh can be expressed within each element

along the interface as:
’ N
dn = 1§1Ni dn; (3.48)

or in matrix form as dn = [N] {dn}, where [N] is the displacement
interpolation vector and {dn} is the vector of element nodal displace-

ment. Specifically in the simplified two-node element,

(N] = [s(1+8) 351 -¢€)]
in the local éoordinate system. The finite element Galerkin formulation
of Eq. (2.4) is
J (K971 -k 9Ta) R [Nlas = [ L (NI[N] an} as . (3.49)
5 3
To evaluate the integration, the global coordinate is changed to

the local coordinate by the Jacobian transformation:

1 _ : 1 '
f(xlvn-szn)-K[N]]JI dg = f Ed% {N}[N1{dn}|a| dc . (3.50)
-1 -1
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Since the arc length of interface ds can be expressed as

. {[a R ] [ ]*}"'dg a.50)
36 ag 4 ’. . .
L2k
= or(&,1) i 3z(¢&,] i
191 3 v |52 : (3.52)

The value of |J| is the two-node element is. given by

then

0 = Wllr-ra)? + (za-22)2TF (3.53)

the half-length of an element.

The integration is.evéluated by the Gauss-Legendre quadrature:

NG N N
,z]w,-(Kl,vn- K2VT2)-n[N(g;) 1191 = .E]w,- S (N(g;)HINGE,)D tdn} o] .
i= S

(3.54)
Next, the evaluation of the heat flux at each Gauss,poini will be dis-
cussea. The valué of K1V1\-K is calculated on the interface using
the corfesponding adjacent four-node isoparametric element in domain
Q1. The procedures are the same for computing KZVT}-K . It is noted
that the temperature distributions T, andsz are known at this stage.

By the chain rule of differentiation,

. 3
9 ar 4 ar
_5?‘L = [ng 5?] on S(t) , - — (3.55)
Ty
92
and from Eqs. (3.3) and (3.18),
L fad}
ar -1 9&
= [Bl(r9z)]{Tl(t)} = [J(E’n)] a¢ {Tl(t)} ]
L ha

32 an (3.56)
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where [B;] is the temperature gradient interpolation matrix. It is
noted that the values of intefpo]ation functions in the two-dimensioal
four-node isoparametric element, when evaluated on the interface, are
the same as those of the one-dimensional two-node element. For the
purpose of illustration, the [B,] matrix atva Gauss point on the inter-
face is given by
2 2 0 0
(B8] = w! . on g = &, n=1 (3.57)
T+E, 1-g, gi-l -£;-1

To simplify notation, the element's directional cosine matrix will

be denoted as [U] such that
Ty

o 3 S s :
gal;iL * ['g':' %,z,'] ' = [ulls:i(g, n=1)] {T:(t)} (3.58)

ay
3z

on S(t). The final form of the finite element formulation becomes

NG v ‘
Zwi[N(Ei)][U] Kl[ax(ii.n’”{ﬂ} - Kz[Bz(E.i ,n=1)1{T} |J]

i=1

NG
=3 842 IN(E)IINCE,)] (an) 9] - (3.59)

Or, in matrix form,

(A J(T.] - [A.J(T.] = [Aslldn] , (3.60)

where [A;], [A;], and [A;] are matrices obtained from matrix multipli-
cations. It is noted that the vector [U] has the same value for each
element when the interface is flat. However, in a general curved inter-

face the vector [U] may vary from element to element. In summary, we
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consider Eq. (3.60) as a one-dimensional problem; the left-hand side
[A;1[T:] and [A2][T.] are the source terms, while [dn] is unknown.
The solution of Eq. (3.60) will yield the magnitude of displacement
~of each node on the interface.

From fhermodynamic considerations it can be shown that each point
on the interface moves in a direction locally normal to the interface.
The direction in which the interface moves is a function of space along
the interface and of time. Assume that at any instant in time, there
is a node A, as shown in Fig. 3.3, common to elements 1 and 2, where
31 and n, are normal directions on the side along the interface of element
1 and element 2, respectively. It is seen that Fl and 32 ére different
in genéra1. However, we need a Unique normal direction of each node on
the jntérfacé. Newton's divided.difference formula has been uﬁed to con-

struct the interpolation polynomial:

]

Pa(x) = Flxo) + (x-x0)fxosxa] + o+ (xoxo) oo (e )elxene oy

(3.61)
where (xo,f(x0)), (xl,f(x;)), cees (xn,f(xn)) are the coordinates of
points to be interpolated. Newton's divided difference, f[xo,xl,...,xn],

is given by

Flxis.woxp] - flxose. 0%y q] (3.62)

f[Xo,.. . ,Xn] =

X =X
n- 0

It is well known that an interpolation polynomial of high degree,
say n > 8, on the evenly spaced points will result in a larger error

when the interpolation point is near both sidés of the domain [97-100].
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To minimize the interpolation error one has to choose an.interpo1ation
point as close as possible to the center of the domain. Hence an inter-
polation polynomial is not constructed through all the nodes on the
interface, but rather, five nodes for a fourth-degree po1ynomia1vare
constructed to find out the center node normal direction. There are

N fourth-degree polynomials. The same polynomial is also used to com-

pute the local radius of curvature on the interfaée by the formula

R s 1Py ' (3.63)
r2y322 :
(1+P:2)

where Pn(x) i§ the polynomial obtained before.

The magnitude of the displacement of each node calculated using
Eq. (3.60) and the direction normal to the'interface evaluated using
Eq. (3.62) are combined to determine the néw locations of the inter-
face. The magnitude of normal velocity of each node equals the dis-
placement of that node divided by the time step size, dn/dt. The velocity
is in the same direction as the displacement.

Interface condition, Eq. (2.5),

o an
D% . (-0 o s(y)

is one of the boundary conditions used for the solution of the mass
transfer equation. Since the nature boundary condition is imposed not
on a node but on the whole segment, the value dn/dt on an element is
approximated by averaging the value of dn/dt at those two nodes on the

interface for the four-node examp]e{
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3.6 SOLUTION ALGORITHM

The differential equations (2.1) to (2.3), together Qith interface
conditions (2.4) to (2.6) and boundary conditions (2.8) have to be
solved simultaneously for given initial conditions (2.7). The solution
obtained will include the transient temperature distribution in the
solid, the transient temperature and concenfration distributions in the
liquid, and the transient position of phase interface.

‘In general, the governing equations (2.1) to (2.3) have to be solved
in an iterative way such that the interface Eonditions (2.4) to (2.6)
are satisfied at any time. 'However, in the present study we employ the

V"front tracking" method, in which the solutions of governing equations

' (2.1) to (2.3) are sought individually, and Eq. (2.4) is Qsed to "move”
the interface. For each equation from (2.1) to (2.3), the 8 method of
the finite element formulation is used. The characteristic of this
numerical method, i.e., imp]icit; explicit, or mixed, depends on the
values of 6. The fully implicit method can be obtained by choosing 6 =
1.0. However, the interface condition (2.4) is solved explicitly. The
interface position is tracked continuously in time and will be used for
the automatic mesh generation of each domain. The moving scheme will be
elaborated in the next section. .

Through numerical testing, it has been found that the implicit-
explicit method for the solutions of the solidification problem gives
good results in terms of accuracy and numerical stability, while signi-
ficantly reducing the computational time. Hence the governing equa-

tions are solved in sequence without iteration and marching in time.



53

of course, for the problems with nonlinear properties, wfthin each solu-

tion of Egs. (2.1) to (2.3), an iteration scheme has to be used.

In summary, the governing equations will be solved as follows:

(1) Assume the initial interface location andlinitial distributions
of temperature T;, T2, and concentration C.

(2) Solve Eq. (2.4) to obtain the new interface locations, interface
moving velocities, and interface curvatures in the next time step.

(3) Calculate the new concentration distribution C from Ed. (2.3),
together with interface condition (2.5) and boundary condition
(2.8). The moving interface velocities are obtained from step
(2). The iteration is required for nonlinear properties of Eq.
(2.3). A |

(4) Calculate the new interface temperaturé distribution form Eq. (2.6),
using the thermodynamic relations between temperature and concen-
tration C on the interface, and the interface curvatures. The con-’
centration C and the curvature associated with each node on the

| interface are obtained from steps (3) and (2), respectively.

(5) Calculate the temperature distribution T, from Eq. (2.1) with inter-
face condition (2.6) obtained in step (4) and boundary conditions
(2.8). Iterations are required for nonlinear properfies of Eq. (2.1).

(6) Calculate the temperature distribution T, from Eq. (2.2) with
.interface condition (2.6) obtained in step (4) and boundary condi-
tion (2.8). Iterations are required for nonlinear material proper-
ties.

(7) Go to step (2) and march forward in time.
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3.7 AUTOMATIC MESH GENERATION

Since the phase interface is changing in time, the size and shape
of both the solid and liquid domains vary during the so]idffication pro-
cess. An automatic generation of nodes and elements in each domain
at every time step is necessary to«successfuliy solve this moving boun-
dary problem. The nodes on the interface are trackgd at all times, as
discussed in the preceding section. Based on these interfacial nodes,
an automatic mesh generation scheme is developed. It is noted that the
typical information to be obtained from meshing a domain includes the
total number of nodes and their global numbering, the total number of
elements and their global numberings, the number of nodes and local
numbering of each element, the coordinates of each node, etc.

The goVerning equations (2.1) to (2.3) indicate that the tempera-
tures and concentration distributions are determined only by the diffu-
sion mechanism. The existence of a concentration "boundary layer" -
near the so]id-liqﬁid interface during solidification in solution was
discussed in the introduction. The'boundary layer thickness is propor-
tional to the magnitude of the diffusion coefficient. The typical rela-
tive order of magnitude of the diffusion coefficienté in the analyzed
probleh are: thermal diffusivity of solid, a; = 0(1), thermal diffusi-
vity in liquid, a, = 0(10)"!, and mass diffusivity of liquid, D =
0(10)"3. For example, in the solidification of saline solutions, a,
of ice is 1.26x10"¢ m?/sec, a, is 1.33x10"7 m?/sec, and D is
1.29 x107° m?/sec. The wide range of values for diffusion coefficients

implies that the boundary layer thickness for the temperature distribution
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is significantly different from that for concentration. Numerous numeri-
“cal difficufties are associated with this faét. In fact, strong oscilla-
tions in numerical solutions were observed during the initial studies.
To overcome this difficulty, three different meshing systems were designed:
for the solid temperature, for the liquid temperature, and for the con-
centration in the liquid. The meshing strategy will be i]iustrated on
the geometrical configuration shown in Fig. 3.4, which will be later
used in the stability study.

The meshing strategy for temperature on domain i, as shown in
Fig. 3.4, will be illustrated. The nodes on z = 0 are generated by
either predetermining the number of nodes or by determining a reference
- length between the nodes for a given global dimension, R in'the r- ‘
direction. The grid size may be uniform, as used in this study, or
variable depending on the characteristics of the problems. The number
of interfacial nodes is the same as that on the outer boundary. The r
coordinate of each interfacial node has the same value as the correspond-
ing node on the outer boundary. Thus every line connecting two nodes,
one on the outer boundary and the other on the interface, is parallel
to the z-direction. It is noted that this parallel requirement is not
necessary, but substantial computer time was saved by using this con-
straint. This point will be elaborated later in this section.

At every time step the maximum distance of any interfacial node
from the outer surface was found. This maximum length was divided by
a predetermined reference length. The roundoff integer obtained is the

number of segments on each line parallel to the z-direction. Since the
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heat flux in Eq. (2.4) must be evaluated on the change of phase inter-
face, the grid size 1n.the Zz-direction in the vicinity of the interface
must be refined for better accuracy. The domains were re-meshed at
each time step. The advantage ofreemeshingis that smooth solutions
are obtained between each time step. The disadvantage is an increase
in computer time.

The mesh for temperature T, in the domain Q, in Fig. 3.4 is genér-
ated exactly the same way as the meshing procedure deséribed above.
The reference length for meshing is, however, smaller, since the thermal
diffusivity in the 1iquid is one order of magnitude smaller than that |
in solid. It is noted that the number of elements and nodes in Q, c¢on-
| tinuously increase in time, but in Q, they decrease. During the auto-
matic meshing procedures, care was taken to satisfy the compatibility
condition between elements in the solid and 1iquid domains.

The solute concentration boundary layer in the liquid phase is
very thin relative to the temperature boundary layer. It is necessary
to have good resolution within this layer in order to obtain wiggle-free
solutions. Thus from both theoretical and practical pbints of view,
it is inadequate to employ the same fixed mesh size used for the tempera-
ture solutions in the solution of mass diffusion equation. It was found
that a vafiable mesh size distribution is more suitable. Experimental
results show that the concentration decreases exponentially in a direc-
tion normal to the interface [8-21]. Hence a new systematic procedure
of using exponential functions to génerate the mésh was developed. The

resulting mesh size increases exponentially in a direction normal to the
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boundary. This new method will be illustrated by an example of meshing
using one-dimensional two-node elements. This is shown in Fig. 3.5.
Suppose that one desires to distribute N nodes within distance L so
that the mesh size Ax; increases exponentially. The grid size is

determined‘by the formulas

A(I) = exp [i(l(gl]

N-2
N-2

cC= > A(I)
i=0

ax(1) = £ A1)

- where I = 0,1,..},N-2, Ax(I) are the grid size as shown in Fig. 3.5.
Ke.is the meshing coefficient, which determines the mesh size Axi.
Small adjustments of Ke can significant]y affect the meshing. For
example, a meshing coefficient of 5.3 will make the distance between
the first two nodes smaller by a factor of about 200 than the distance
between the last two nodes, Bxy_o s that is, AxN_é = Axo(200), while

a meshing coefficient of 6.4 will result in a factor of about 600.

The special case of Ke = 0 eorresponds to the equal mesh size. The
range to be exponentially gridded can be chosen if desired to be only |
part ofvthe dohain. In situations where the boundafy layer thickness
4changes substantially in time, a time-dependent meshing coefficient
could be employed. This concept can‘be extended to two- and three-
dimensional domains.

As the interface advances the liquid domain decreases, and one
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may change the number of nodes along each z-directicn and re-mesh the
domain at every time step by a method similar to that used in the tem-
perature domains. The alternate method used in this study is simply
to squeeze the coordinate of each node on the line parallel to the
r-direction by a ratio proportional to the reduction of the corres-
ponding global length. Because the nodes on the interface move with
different velocities, except in the planar interface case, the ratio
of contraction for each line parallel to the z coordinate is différent.
The unique characteristic of a transient problem with increasing
domain will be illustrated by a simple example shown in Fig. 3.6. In
this figure, the "o0l1d" solid lines represent the meshing system at time
t = t1, and the "new" dashed lines show the meshing system at time t =
:t1+-At. If is noted that at time t = t, +At, the femperature, for
example, on all nodes in the old meshing system are known. However,
in a transient problem we have to know the old temperature on nodes of
the new meshing system. Hence the interpolation method has to be employed
to find out the old temperatures for these new hodes. As has been indi-
cated before, at every time step all the lines connecting points on the
outer bouﬁdary and the corresponding points on thévinterface are parallel
to the r-direction. Hence, the old temperature of a new node can be
obtained by searching and interpo]ating only along the line on which it
is located. Otherwise, for each node in the new meshing system, it is
necessary to identify the old element to which this node belongs, and
then use the finite element interpolation fqnctions to calculate its

temperature. It is obvious that significant computer time is saved
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using our method.

It is interesting to see that at node A, shown in ng.'3.6, the
previous old temperature is not available. The temperature of this
node at the previous time step simply did not exist. This situation
occurs when the time step is too large or the interface moving velocity
is too fast for the grid size adopted. This is an extra cbnstraint in
the moving boundary problém, in addition to the limitation of time step

imposed by possible numerical stability considerations.

3.8 COMPUTER PROGRAM

The program is written in a modular form, resulting in flexibility
and ease of modification. It is composed of about 65 subroutines. The
program was initially deve]opéd and tried on the Vax 11/750 UNIX system
of the Mechanical Engineering Department of the University of California
at Berkeley. The results presented in this thesis were obtained from
the CDC-7600 at Lawrence Berkeley Laboratory. The typical cdmputer CPU
time is 60 minutes per 1000 time steps without iterations. The program
can be used‘iq two- or three-dimensional aiisymmetric problems with
linear or nonlinear properties. The program wés designed to deal with
four, eight, and nine-node isoparametric é]ements. Special care was
taken to reduc; the memory and computétion time. Band stiffness matrix
was employed, and standard Gaussian LU decomposition, plus forward and
backward substitutions, were used to solve the matrix. A listing of

the program appears in Appendix 2.
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'CHAPTER 4:
INTERFACE STABILITY ANALYSIS

4.1 PROBLEM DESCRIPTION

Since, as indicated in the Introduction, we plan to study the mor-
phological stability of a planar interface, a typical dendritic domain
taken from Fig. 1.1 (designated by broken lines) is illustrated in Fig.
4.1. Both the upper and lower surfaces in this domain are adiabatic
from symmetry considerations.. Thé domain is considered in three-diﬁen-
sional axisymmetry, which is_a typicaI model of a dendrite. Anvinertia1
coordinate system rather'than}a moving coordinate system attached on
the phase interface is chosen and illustrated in Fig. 4.1, where R and
Z represent the dimension of domaiﬁ5in5the5r and. z coordinates, respéc-
tively; C; and T, are the initial concentration and temperature of the
solution. The so]idifying mediuﬁ in this study was chosen for illustra-
tidn purposes to be a saline solution. The thermophysical properties
of saline solutions and ice are listed in Table 4.1. - As mentioned pre-
viously, many analytic studies on so]id~1idu1d interface stability are
based on the assumption that the dimension coinciding with the direction
6f dendritic growth is semi-infinite. Thus the z-dimension of the
domain was taken large enough relative to the r-direction to satisfy this
assumption. |

To apply the general computer program developed in this study to this

specific interface stability problem, it is only necessary to specify some
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TABLE 4.1. Thermophysical Properties of Dilute
Saline Solution and Ice

Water Ice Units
P 999. 999 kg/m®
k | 5.55%10"% 2.25%x10"® Kkw/mK
C 1.83 4.22 kd/m*K
L 353 353 kJ/kg
D |1.18x10"? - m*/sec
m -1.86 -1.86 k/M
k Partition coefficient = 0
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parameters at the time of program input data. For example, in the
constant properties problem, a parameter is specified such that the
subroutine written to solve the nonlinear properties problem will not

be called. The boundary conditions are treated in the same way. Since
the domain is a three-dimensional axisymmetry, the volume integration

in the finite element formulation, dv = r dr dz, is chosen.such that

r is the average distance of each element froh the axis of symmetry.

For a two-dimensional domain, r simply equals unity.

4.2 NUMERICAL PERTURBATIONS

To study the stability of a planar interface, two types of numerica1v
perturbations have been used: temperature perturbations on the outer boun-
dary and concentration perturbations on the interface. Each kind of per-
turbation was imposed in the space and/or time domains. In general, in
this study the different tybes of perturbation have been imposed separately.
Howéver, if necessary the computer program can handle simultaneously any
combination of the various perturbations. In this study only spatial per-
turbations of these two types have been emphasized, since the main_pgrpoSe
here is to study the stability of a spatially perturbed planar interface.

In fact, some perturbations on the time domain were attempted in this study, -
but their physical significance needs further investigation. ”ance any .
arbitrary functions can be represented as the Fourier series of sinusoidal
functions, cosine function was used as the perturbation. The procedures
of numerical perturbations are illustrated in this section, but the dis-
cussion on the physical meanings of the perturbations and the results will

be given in Chapter 5.
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4.2.1 Temperature Perturbation on the Quter Boundary

The schematic illustration of spatial temperature perturbation on
the outer boundary is shown in Fig. 4.2; On the outer boundary a con-
stant temperature T beiow the freezing temperature of the solution is
initially imposed. The temperature difference between the outer boun-
dary T_ and the interfacial temperature is the driving forée for advanc-
ing the interface. It‘}s obvious that under this condition the inter-
face will move in such a way that a planar surface.is continuously main-
tained. Then at time t = t; a §1nusoida1 temperature pefturbation
described by

.

T=T°+Acos<—§l), t; <t (4.1)
| i§ suddenly imposed, where A'is thé smél1 amplitude of perturbation,
R is the global dimension of outer boundary in the r-direction, and r;
is the coordinate of node i on the outer boundary. The number of nodes
1 1s preselected. It was expected that a perturbed interface similar
to a sinusoidal shape would be gradually generated during the time when
the spatial temperature perturbation was applied. In some of the prob-
lems, the perturbation was removed at time t = t,, and the morphology
of the interface was continuouS]y examined. Notce that'w/R is equi-
valent to the frequency, and by changing R any kind of wavelength for
the perturbation can be obtained.:

A different kind of temperature perturbation in the time'domain
can be obtained through the boundary condition

T 3 To + A' COS(E%E) 'Y tl < t < tz Y (4‘2)
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where A’ is the small amplitude of perturbation, T = t,-t; is the

half period of a sinusoid31 function, and At = t-t1 . Here the example
only gives a half cycle of cosine wave with an appropriate period of T.
This perturbation could be extended in a straightforward manner to any
length of time during which arbitrary periods of sinusoidal perturba-
tion is applied. These two perturbations (4.1) and (4.2) can be com-

bined by simple multiplication of the perturbed terms.

4.2.2 Concentration Perturbation on the Interface

A perturbed solid-liquid interface can also be created through a
concentration perturbation on the interface. In this case the tempera-
ture at the outer boundary is kept at constant value. Similar proce-.
.dures to those described in the previous‘paragraph on temperature per-
turbations are used to initiafe a moving planar interface. Then an
artificial numerical perturbation of concentration

.

C(r) = CQ(?') + B cos (_R_L) , ;) €t (4.3)

is performed on the interface, where Cq(r) is the original concentra-
tion distribution along the interface S(t) and B is the small amplitude
of the perturbation. The distribution Co(r) is a constant at the
initial pertﬁrbation; thereafter, it will be a function of r and z,
i.e., it will vary along the interface S(t). The concentration per-
turbation in the time domain on the interface is similar to that in

Eq. (4.2).

In this study it is assumed that the amplitude of all kinds of
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perturbation is constant. This is not necessarily true, since it also
can be a function of time. The results obtained from this study on
the effect of various numerical perturbations, discussed in the next
chapter, will provide a much deeper understanding of the interface

stability phenomena.
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CHAPTER 5:
RESULTS AND DISCUSSION

The computer program developed in this work was used to study
the stability of a solid-liquid interface during transient solidifica-

tion processes.

5.1 INTRODUCTION

First the effects on the interface stability of transient tempera-
ture fluctuations on the outer surface of the domain were studied. The
study was performed for the rectangular geometry shown in Fig. 5.1.

The rectangular enclosure contained a liquid solution initially at a
constant temperature. The transient Solidification process was started
by suddenly changing the temperatuée on one of the narrow walls of the
rectangular enclosure to a constant value below the phase transforma-
tion temperature. Adiabatic boundary conditions were imposed on the
other walls, resulting in a time-dependent propagation of the planar,
solid-1iquid interface in a direction normal to the constant-temperature
wall.

To study the effects of temperature fiuctuations on the stability
of the moving interface, spatially sinusoidal temperature perturbations
were superimposed on the constant temperature boundary for various
periods of‘time and then removed. This was done at different times

following the onset of the solidification process. The position and
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velocity of the solid-liquid interface and the multi-dimensional tem-
perature and concentration distributions were continuously calculated
using the front tracking finite element method developed in this work.
The temperature f1uctuatfon superimposed on the constant temperature
boundary condition affected the shape of the planar interface, which
became perturbed as well. It was anticipated that on a morphologically
stable interface the spatial perturbation would disappear after the
removal of the temperature perturbation, while on an.unstab1efinter-
face the spatial perturbation wouid continue to grow. Numérous computer
runs were performed for a medium with the thermophysical properties of
a saline solution (Table 4.1). Numerical experiments with different
length scales and time scales were attempted. The. results of all numeri-
cal experiments indicate that a planar solid-liquid interface is stabie,
during the transient solidification process, to temperature perturba-
tions on the outer boundary, i.e., the spatial pertufbation‘of the
change of phase interface disappears after the removal of the tempera-
ture perturbation. The stabi]ity'of a planar interface to temperature
fluctuations was observed in all the computer runs, including situations
in which the 1liquid in front of the change of phase interface was thermo-
dynamically supercooled. In such a situation, the constitutional super-
cooling theory predicts an unstable interface.

To illustrate the numerical prﬁcedure and the observations described -
above, one set of typical results for certain geometrical and thermal
conditions will be initially presented. The length scales used in this

analysis are compatible with experimentally determined values for the
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dimensions of a perturbed planar interface at the onset of instabi]ity
(15 um) during the transient freezing of a saline solution. The length
of the narrow wall in the enclosure was, consequently, taken to be

15 um and the length of the longer wall 2 mm. A large enough ratio
between the Tonger and the narrow wall of the rectangular enclosure

was chosen to ensure that a semi-infinite domainrcould be effecti?e]y
simulated. The initial concentration of the saline solution in the
enclosure was 34.0 gmol/m?® and the initial temperature was -0.121°C.
This temperature corresponds to the phase transformation temperature

in a 34.0 gmoi/m3 saline solution. To start the transient solidifica-
tion process a constant temperature of -2.0°C was imposed on one of

the narrow walls of the enclosure. Adiabatic boundary conditions were

imposed on all the other walls.

5.2 PLANAR INTERFACE

First, the transient position of the one-dimensional interface and
the transient temperature_and.concentration profiles were calculated
using the front tracking finite element method. Figure 5.2 shows
typical temperature and concentration distributions in the solid and
liquid regions at various times. The results illustrate several well-
known physical phenomena, which will be discussed in &étail éince they
are of importance in understanding the morphological stability of
solid-liquid interfaces during transient solidification processes.

One of these phenomenais the narrow concentration boundary layer

adjacent to the change of phase interface in the liquid region.
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According to the constitutional phase diagram for saline solutions,
ice cannot contain any solute. Consequently, saline is rejected in
front of the change of phase interface during solidification. The
concentration distribution in front of the change of phase interface
is affected by two competitive mechanisms. One is the rejection of
solute in front of the moving interface, which is directly related to
the interfacial velocity and results in an increase in the solute con-
centration. In the second method, solute is transported away from the
"~ interface by the diffusion mechanism, which is proportional to the con-
centration gradient and the magnitude of the mass diffusibn coefficient.

Figures 5.2, 5.3, and 5.4 show a continuous increase in the solute
concehtration.on the.change of phase interface, implying that the solute
rejection rate exceeds the rate of solute being diffused away. The rela-
tive effect of these two competitive mechanisms is of fundamehta] impor-
tance in undertsanding the stability of a planar interface during a
transient solidification process. | |

The phase transformation temperature is inversely related to solute .
concentration according to the constitutional phase diagram. Conse-
quently, during the transient solidification process analyzed in this
work the temperature on the change of phase interface.will continuously
decrease in time. This can be observed in the temﬁeraturé distribution
curve in Fig. 5.2.

The velocity of the change of phase interface is proportional to
the heat conducted through the solid and removed at the outer boundary.
The heat removed is directly related to the temperature gradient in the

solid region. This temperature gradient is determined by the temperature
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difference between the outer boundary temperature and the interfacial
temperature divided by the solid layer thickness. DOuring the trahsient
solidification process thg temperature gradient is continuously atten-
uated in time due to two factors: the continuous increase in distance
between the moving interface and the outer boundary and the decrease

in change of phase temperature due to solute accumulation on the inter-
face. This phenomenon is illustrated by the results in Figs. 5.5 and
5.6. In Fig. 5.5 the position of the change of phase interface is
plotted»as a function of time for the freezing of the 34.0 gmol/m?
sal{ne solution and for the freezing of pure water. The pure water

was at an initial temperature of 0°C and was frozen by imposing a
constant temberature of -1.879°C on the outer sdrface, In Fig. 5.6

the velocity of the change of phase interface is shown as a function of
time. The figures show that the solidification process is faster in
pure water. As explained above, this is due to the decrease in the
thange of phase temperature due to solute accumulation on the inter-
face. The observation that solutevaccumu1ation on the change of phase
interface slows the velocity of the interface during transient solidi-
fication processes will be of importance in the forthcoming analysis

on the change of phase morphological stability.

Figures 5.7 to 5.10 show results 6btained for a solidification
process in a rectangular enclosure in which the length of the narrowed
wall was taken to be 10 um and the length of the longer wall was taken
to be 80 um. The initial concentration of saline solution was taken to

be 34.0 gmol/m? and the initial temperature was -0.121°C. A constant
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temperature of -0.3°C was imposed on one of the narrow walls of the
domain. Despite the much lower temperature gradient in the solid region,
essentially similar phenomena to those observed in the previous case
occurred. Figures 5.7 and 5.8, showing the concentration distribution
in the liquid region and the concentration on the interface, indicate

a continuous increase in the concentration on the interface. The rate
of concentration fncfease is slower, however, than in the previous
example. This can be explained by the lower velocity of the solidifi-
cation process caused by the lower temperature gradient. The lower
velocity can be observed by comparing Figs. 5.9 and 5,10 with Figs.

5.5 and 5.6. Despite this difference, the fundamental behavior remains
unchanged, i.e., the solute accumulation on the interface and the dis-
tance of the change bf phase interface from the outer surface cause a
continuous decrease in the change of phase interface velocity.

Figure 5.2 shows that in the 1iquid region the concentration gradient
is much steeper than the temperature gradient. This well-known pheno-
menon is directly related (according to the various stability criteria)
to the solid-liquid phase transformation interface instability.

The "constitutional supercooling" stability theory predicts that
an interface will become unstable if the solute in front of the change
of phase intefface is thermodynamica11y supercooled. This can be ex-

pressed by the relation

—_— > ] , (5.1)

with the concentration and temperature gradients evaluated on the
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interface in the liquid region in a direction normal to the change of
phase interface.
According to the M-S general stability criteria, a surface will

become unstable if

where the concentration and temperature gradients are evaluated on

the interface in a direction normal to the change of phase interface.
The M-S stability criterion presented here is for the special situa-
tion in which capillary effects are neglected. It should be emphasized
that the M-S‘criterioniwas brought up fbr completeness only. The cri-
terion is not applicable to the situation discussed here since several
of the major éssumptions are different in this model. The M-S cri-
terion pertains to a solidification process that is steady in a moving
vframe of reference and inifinite in domain, whereas the analyzed problém

is transient in a finite domain.

5.3 TEMPERATURE PERTURBATION ON THE QUTER BOUNDARY

}The second step in our analysis was to superimpose on the outer

boundS}y a spatially sinusoidal temperature perturbation. —Here we
will dfscuss the results obtained when such a perturbation, with a
magnitude of -0.02 cos (wr;/R) °C, was imposed on 0.5x 10" sec after
the onset of the first solidification process. A perturbation with a

magnitude of -0.01 cos (mr,/R) °C was imposed 0.24 x 10~ sec after
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the onset of the second case solidification process. At that instant
in time the ratio in Eq. (5.1) and (5.2) was on the order of 103, indi-
cating that the liquid adjacent to the change of phase interface was
supercooled and the interface unstable, according to considerations

of equilibrium thermodynamics. The results were obtained using the
front tracking'finite element method developed in this wofk. Since
the stability criteria do not include capillary effects, the stabiliz-
ing effect of capillarity in this example was not included. However,
the computer program utilized can incorporate this effect. The den-
drites of the liquid and the solid were also assumed to be the same

so as not to introduce convection effects.

Figures 5.11 and 5.12 show the Tocation of the solid-liquid intef—
face relative to thatvof the central node on the interface during the
freezing of a saline solution and of water in the first case. Figure
5.13 shows the:solid-1iquid interface in the second case. The loca-
tion of the interface is shown at different times after the pertUrba-
tion was imposed. Figs. 5.11 and 5.13 present results by continuously
imposing a temperature perturbation on the outer boundary.

The results in Fig. 5.12 were obtained by imposing the temperature
perturbation 0.5 x 10" sec after the onset of the solidification pro-
cess, followed by removal of temperature perturbation 0.5x 10" sec
later. Figures 5.11 and 5.13 indicate that the temperature perturba-
tion resulted in a spatial perturbation on the change of phase inter-
face in both the saline solution and the pure water. It is interesting
to notice that the amplitude of the perturbation is much larger in pure'

water.
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The most important results of this analysis is probably that shown
in Fig. 5.12. This figure indicates that after the temperature pertur-
bation was removed, the change of phase interface spatial perturbation
disappeared and the interface became planar again. The interface
became planar more quickly in the saline solution than in pure water.
This result indicates that the change of phase interface during a tran-
sient solidificatfon process in a saline solution is stable to tempera-
ture perturbations on the outer surface. Furthermore, the interface
is dynamically stable in situations in which the solution in front of
the change of phase interface is supercooled and should be unstable
from considerationé of equilibrium thermodynamics. Following is an
explanation of these results using Figs. 5.14-5.18.

Figures 5.14 and 5.15 show the concentration distribution on the
change of phase interface relative to the concentration on thé central
‘node on the interface during the sgolidification processes described in
Figs. 5.11-5.13. Figures 5.16-5.18 show the normal velocity of the
solid-1liquid interface relative tb that of the center node on the inter-
face during the two so]idification processes in Figs. 5.11-5.13, respec-
tively. The concentration distribution shown in Figs. 5.14 and 5.15
is of major imbortance in understanding the morphological stability of
the change of phase interface during the analyzed transient solidifica-
tion process.

According to concepts of static thermodynamic equilibrium, the
change of phase interface is supposed to be unstable when the solute in
front of the change of phase interface is thermodynamically supercooled.

From considerations of static thermodynamic equilibrium, if the change
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of phase interface is perturbed, the "tip" of the perturbed interface
will suddenly find itself in the supercooled region surrounded by a
lower solute concentration than the "groove." As a consequence, the
vtip will grow faster and the planar interface will break. OQur rigorous
transient numerical analysis shows that during a dynamic transient so]i-A
dification pfocess. such a phenomenon cannot occur. We would like to
emphasize again that this analysis deals with a specific transient soli-
dification process to which the M-S stability criterion cannot be applied.

Figures 5.14 and 5.15 show that the concentration profile on the
interface obtained through a rigorous and exact analysis of the dynamic
solidification process is different from that assumed in the static
thermodynamic ;quilibrfum stabi1ity critérion. The concentration of
solute is actually higher at the tib of the perturbed interface, i.e.,
the point furthest away from the outer surface on which the transient
temperature boundary condition was imposed. The concentration is
Towest in the groove, the point on the interface closer to the outer
surface. |

This result, although different from that assumed in the static
thermodynamic equilibrium stability criterion, is consistent with the
intuitively obvious results obtained previously for the planar solidi-
fication process and shown in Figs. 5.2-5.4 and 5.7. These figures
indicate that during the transient planar solidification process the
solute accumulation in front of the change of phase interface is affected
by the solute rejection mechanism due to the transient solidification

process and by the solute diffusion mechanism in the liquid. Since
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during the ana]yzed transient solidifitation process the solute rejec-
tion rate exceeds the rafe of solute being diffused away, i.e., the

time scale of the solidjfication process is much shorter than that of
the mass diffusion process, the solute will continuously accumulate on
the interface. Therefore, the further the planar change of phase inter-
face is from the outer surface, the higher the solute concentration on
the interface.

The temperature perturbation superimposed on the outer surface tem-
perature resulted in a gradually growing spatial perturbation on the
change of phase interface. This is similar to the planar solidification
case, since in this problem the time scale of the solidification process
and the consequent solute rejection rate ake much shorter than that of
the mass diffusion process. The solute concentration on the tip of the
perturbed interface, which at any instant in time is farther from the
outer surface, is higher than that in the groove, which is closer to the
outer surface. This results illustrates tﬁe importance of incorporating
the transient dynamic effects in a study of the morphologfcal stability
of the change of phase interfaces.

Figures 5.16-5.18 will be analyzed next in conjunétion with Figs.
5.14 and 5.15, and an explanation will be presented for the result in
Fig. 5.13. In the previous study on the planar solidification process
it was shown that the velocity of the change of phase interface is pro-
portional to the heat conducted through the solid and removed at the
outer boundary. The heat transported is determined by the temperature

difference between the outer surface and the interfacial temperature
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divided by the solid layer thickness. During a planar solidification
process, when a temperature perturbation is supefimposed on the outer
surface temperature, a higher temperature difference will appear between
certain points on the change of phase interface and the outer surface.
This will {ncrease the solidification rate at these points and conse-
quently will increase the distance between these points on the inter-
face and the outer surface. The increased distance will reduce the tem-
perature gradient and consequently continuously reduce the velocity of
the solidification process. The solute accumulation on the change of
phase interface discussed with respect to Figs. 5.14 and 5.15 will
decrease the change of phase temperature on the movfng interface.

This temperéture will be lower for points-on the interface farther
away from the outer surface (the tip of the perturbed interface). The
~increased solute concentration on the interface will also reduce the

| temperature gradient and consequently will reduce the velocity of the
interface.

When the temperature perturbation on the outer surface is removed
(i.e., a constant temperature is imposed on the outer surface), the
temperature gradient and the consequent heat flux will be lower at points
on the change of phase jnterface furthest away from the outer surface.
For the case of pure water, the.differénce in temperature gradient is
affected only by the perturbed interface and the difference in the thick-
ness of the solid layer. For saline solution, the difference is en-
hanced by the lower temperature on the change of phase interface at
points further from the outer surface. Consequently, after removing

the temperature perturbation, the velocity of the interface at points
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closer to the outer surface will increase relative to that at points
further from the outer surface until the perturbed interface returns
to a stable planar.

The perturbed interface becomes planar faster during the freezing
of a solution than during the freezing of pure water. These results
are evident in Figs. 5.17 and 5.12. This result indicates that during
the analyzed transient solidification Qrdcess the increased concentra-
tion of saline on the interface has a stabilizing effect. The results
of this work prove that in the analyzed transient solidification process,
a solid-liquid interface surrounded by a thermodynamically supercooled
liquid cannot become unstable by means of a transient temperature per-
turbation on the outer surface. It sﬁould be embhasized that this state-
ment is restricted to the transient solidification process analyzed in
this work. Since experimental evidence indicates that the solid-liquid
Ainterface became unstable during the solidification process, new studies
are required to promote the understanding of the physical phenomena
associated with the perturbed growth of a solid-liquid interface during

transient solidification.

5.4 CONCENTRATION PERTURBATION ON THE INTERFACE

In the previous section.it was shown that a temperature perturba-
tion on the outer surface of a solidifying domain cannot induce the
instability commonly observed on such an interface during transient
solidificatioh. It has been shown that the solute concentration on the

interface has a stabilizing effect. Consequently, a study was performed
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to determine the effects of perturbing the concentration on the inter-
face on the stability of that interface. The study was performed for
the same reqtangu]ar enclosure discussed in the previous section. The
length of the narrow wall was 10 um and that of the long wall 80 um.
The initial concentration of the saline solution was 34.0 gmol/m® and
the initial temperature -0.121°C. A constant temperature of -0.3°C
was imposed oh one of the narrow walls of the enclosure and fhe other
walls were adiabatic. fhe details of the unperturbed soli&ification
process in tﬁis system are shown in Figs. 5.7-5.10 and have been dis-
cussed in the previous section.

In this part.of the study, a concentration perturbation with a
magnitude of 2.0 cos (nri/R) gmol/m3 Was'imposéd on the change of phase
interface concentration at different instants in time and for various
periods of time. This concentration perturbation yielded a continuous
decrease in the concentration with a magnitude of 2.0 gmols on the left-
hand side of the enclosure relative to the central node in the enclosure,
a continuous increase with a magnitude of 2.0 gmols on the right-hand
side of the enclosure relative to the central node, and a sinusoidal
variation between these two extreme points. Specifically, the concen-

" tration on the interface is taken at all times as C = Co(r) +

2.0 cos (vri/R) gmol/m®, where Co(r) is the conceﬁtration on the inter-
face in the previous time step. Obviously, ;ince the temperature at
points with lower concentration is higher, accordingvto the discussion

in the previous section these points will experience a higher temperature

gradient and move faster. This is confirmed by the results shown in Fig.
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5.16. Figure 5.17 shows the location of the solid-liquid interface
relative to that of the central node on the interface during a solidi-
fication process in which the concentration perturbation is continu-
ously imposed.

The results clearly indicate that the continuous concentration
perturbation results in a continuous perturbation of the interface.

This behavior has been anticipated as discussed'above. It should be
emphasized that the results reporfed' in the previous section indicate
that a continuous temperature perturbation on the outer surface also
yields a continuous perturbation of theinterface(sée Fig. 5.13).

There is, however, a fundamental difference in the behavior of a system
perturbed bj a concentration perturbation‘relafive to that perturbed by

a temperature perturbation. This difference can be observed in Fig. 5.20
and can be explained by Fig. 5.21.

Figure 5.20 shows the velocity of the interface at various instants
in time during the perturbation. This figure fs'especia11y enlightening
when compared with the interface velocity during the temperature pertur-
bation shown in Fig. 5.17. It is seen that for the concentration per-
turbation the difference in velocity between the tip and the groove of
the interface increases in time, while for the concentration perturba-
tion it decreases in time. Thus, while for the temperature perturba-
tion the effects of the temperature perturbation on the interface mor-
phology perturbation will decrease in time, in the concentration pertur-
bation the morphological perturbation on the interface increases in
time, eventually leading to the unstable interface observed in experi-

ments.
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An explanation for this phenomenon can be obtained through a com-
parison of Figs. 5.11 and 5.15. These figures show the interface con-
centration in time in the case of a temperature perturbation and a con-
centration perturbation, respectively. It is seen in Fig. 5.15 that
following a temperature perturbation, the saline concentration on the
tip of .the perturbed interfate increases in time relative fo that in
the groove. As explained in the previous section, this has a stabilizing
effect since it decreases the temperature gradient on the tip relative
to that in the groove and reduces the velocity of the tip relative to
that in the groove. Figure 5.22 shows that in the case of a concentra-
tion perturbation, a completely different phenomenon occurs. The con-
‘centration on the tip of the perturbeeeinterface is lower than that in
the groove and consequently a higher temperature gradient is expected
on the tip than on the groove. This leads to a higher velocity of the
tip relative to the groove, which is essentielly what happens during an
unstable solidification process.

It should be emphasized, however, that the phenomenon in which the
tip velocity continuously increases relative to that in the groove was
observed only during a continuous concentration perturbation. In numeri-
cal experiments in which concentration perturbations were imposed only for
one Step and then removed, different behavior was observed. Here the
interface became perturbed after the single step concentration pertur-
bation. However, since no mechanism was available to remove the solute
from the fastest-growing regioh of the interface (the tip), the concentra-
tion on the tip eventually became larger than that in the groove. This

result, shown in Fig. 5.23, led to the disappearance of the morphological
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perturbation on the interface in a similar form to that occurring during
_ transient temperature perturbations. -

The results of this part of the study indicate that a continuous
concentration perturbation on the interface can lead to an unstable
interface during a transient solidification process. This is an
extremely important observatioﬁ since it might indicate the fundamen-
tal mechanism respoﬁsible for the experimentally observed unstable

interfaces during solidification in solution.
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CHAPTER 6:
CONCLUSIONS

A neﬁ numerical method using "front tracking" finite elements has
been developed to solve the multi-dimensional transient heat and mass
diffusion equations assdciated with the solidification processes in
binary solutions, AThe numerical method can incorporate realistic
thermodynamic conditions dn the interface (including surface tension
effects) and can accommodate non-isothermal interfaces and irregular
transient geometries of the interface. At present this is the only
method with these capabilities.

In the front traéking method, thé thermal and concentration field
equations are solved implicitly while the energy balance equation on the
interface is treated as an independent equation being solved explicitly
to obtain the new interface position in time, Hence the éoverning equa-
tions of solidification of binary solutions are solved in sequénce and
marching in time without iteration. The front tracking method developed
here is unconditionally stable. Essentially there is no constraint on
the size of the time step in terms of numerical stability. Specific to
this work is‘the §pecia1 procedure by which the'change of phase inter-
face is tracked in time.

The interface is tracked in time by two steps. First the magnitude
of disp]acement and normal direction are independently obtained for each

- node on the interface; then they are superimposed to determine the new
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interface position. This procedure, which is fundamentally different
from that in other front tracking methods, was necessary because of the
special conditions on the interface in this problem. A new systematic
exponential meshing technique was designed for the concentration field.
The novel meshing procedure is essential to obtain an accurate result
in this problem.

This method was used to study the physical phenomena occurring
during a transient solidification process in binary solutions. The
numerical analysis of a transient solidification process in a saline
solution has shown that a thin concentration boundary layer will develop
in front of the interface during the process. This is caused by the
rejectioh of solute from the solid, which occurs at a faster rate than
the diffusion of solute from the interface in the bulk of the solution.
It was shown using equilibrium thermodynamics that this phendomenon
causes the liquid in front of the interface to be "constitutionally
supercooled." According to existing stability criteria, the planar
interface must be morphologically unstable.

The new numerical method was employed in a study of the stability
of such an interface for different perturbations. The results of the
numerical analysis indicate that a transient temperature fluctuation
on the outer surface of the solidifyingdomain cannot generate the
instability of the moving interface even in situations in which the
solute in front of the interface is thermodynamica]1y supercooled.

Furthermore, it was shown that the solute concentration in front

of the interface has a stabilizing effect. These results contradict
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the theoretical predictions of commonly accepted stability criteria,
which are based on equilibrium thermodynamics, The discrepancy is
caused by the important effect of the transient heat and mass transfer
phenomena on the solidification process, a factor that must not be
neglected in the stability analysis. |

The numerical method was also employed to study the effect of a
concentration perturbation on the interface. It was shown that a con-
tinuous concentration perturbation can lead to an unstable interface,
and it is tentatively proposed that the instability of the interface
must be related with the solute convection process. The results of
this work demonstrate the importance of‘this new method, and show that
new fpndamental studies are needed to promote fhe understanding of the_'
physical phenomena associated with the perturbed growth of a soli&-]iqﬁid

interface during transient solidification.
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APPENDIX 1:

DERIVATION OF MULLINS-SEKERKA CRITERION,
EQUATION (1.17)

A sinusoidal pérturbation of very small amplitude § applying to
the planar interface in the constant moving coordinate canvbe described
by |

z = ¢(x,t) = 8§(t) sinwx , (A.1)
where w = 2n/X is the wave frequency. Notice that a two-dimensional
model is used.

The governing equations of solute diffusion in the liquid and
heat diffusion of both the solid and 1iquid ihva constant moving frame

of reference are:

2 2 '
D(E_C+M) +v_g£ = 0 (A.2)
322 ax? z
3T 3T oT
o Sy 3)+ v -9 ‘ (A.3)
S\ 522 3x2 9z
32T 32T oT :
a Ly Lls vt =0 . (A.4)
L 322 ax? 2

Equation (A.2) will be solved first.
The solution to (A.2) can be written as
C(z,x) = CL(Z) + Cy(z) sinwx (A.5)

where C is the solute perturbation of order & and CL(z) is the basic

solution of unperturbed situation derived in Eq. (1.5). For convenience,
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Eq. (1.5) is rewritten here:
DGC ‘ '
CL(Z) = Co + -~ [1 - exp (-vz/D)] . (1.5)
It is noted that z = ¢(x,t) is the coordinate of the perturbed
interface, and not z = 0. Substituting Eq. (A.5) into (A.2), C(z)

. should satisfy

2
o(iﬂ-wzcl) +v3 - g (A.6)
azz Z

At the perturbed interface the assumptions of linear perturbation

on temperature and concentration yield

T, = To + ao(x,t) = Ty + as(t) sin ux | (A.7)

Cy = Co * bo(x,t) = To + bS(t) sin wx , (A.8)

where T, and C, are the temperature and concentration at the unperturbéd
planar interface, respectively, the same as those obtained in Section
1.2.1. The second terms in Egs. (A{7) and (A.8) are thg first-order
corrections corresponding to the infinitesimal perturbation. Subscript
¢ of T, and C

¢ ¢
the perturbed interface. a and b are constants to be determined. The

is used to emphasize that these values are derived on

boundary conditions for Eq. (A.6) are

GDGc ’
C. =6b - T [1 - exp (-V¢/D)] at 2z =¢ (A.9)
. -0 as Z2>® | (A.10)

The solution of Eq. (A.6) under the above two boundary conditions is
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Ci = 8(b-G¢) exp (-wez) , (A.11)
where v
GC = -7 (CL-CS) (A.12)
2 ]
0 2+ [(21’5) + wz] : (A.13)

The complete solution of Eq. (A.2) is obtained by substituting Egs.
(1.5) and (A.9) into (A.5) to yield

| DG . |
C(z,x) = {Co + —VQ []-exp(l%L)]'}-+ G(bch) exp (-mcz) sjn WX .

(A.14)
- Following exactly the same steps above, the solutions of Eqs. (A.3) and
(A.4) are

G | -
TL(z,x) = %To + aLvL [(1 - exp (-Vz/aL)]g

+ [8(a-6) exp (-uz) sin ux] (A.15)
aSGS _
() = {Tor S0 - e (varag)1 ]
+ [G(a-GS) exp'(-wsz) sin wx] , (A.16)
where 5
_ v V )2 2 v
Ww = s + || +w (A.]?)
L ZaL _(ZGL 1B . , _
v IRk
o5 = g - b(@) +w2_ . (A.18)

It is seen that the first part of the solutions in (A.11) and (A.12)
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are the unperturbed solutions. If the capillarity is considered on

the perturbed interface, then

To=Tsg =T, =T, *+mC

¢

where T' = y/L , the surface free energy divided by the latent heat

per unit volume, T_ is the melting point of pure liquid at the planar

m
situétion, m is the slope of liquid line, and & = (1/r1)+(1/r;) is
the curvature of the interface.
Since the perturbed interface is a sinusoidal function, r =
in the y-direction and 7 is obtained only from the 1/r. by the follow-

ing formula: :
. -3/2

R o= - 2_23: [1+(%§)2] : (A.20)
X

. Since 3¢/3x ~ &, which is negligible compared with 1, and ¢ = § sin wx,

then R is obtained as

R = &uw? sin wx . (A.21)
Hence

| T, = ‘nn + mC

6 - Tmfdwz sin wx . (A.22)

¢

Substituting Eqs. (A.7) and (A.8) into (A.18), the relationship between

a and b is obtained by ‘
a=m - Trlw? . (A.23)

The energy and solute balance at the perturbed interface requires

aTS BTL
(ks 52 kL 3z , = Lv(x) ' (A.28)
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[D(_k_-]) %Cz]¢= Cov(x) | (A.25)

3T 3T
1 5 c) . 1 3
T(ks‘ﬁ' kL‘é‘z’)¢' c¢[°("'”

(@]

]¢ . (A.26)

Q
N

The gradients of concentration in the liquid and of temperatures in the

liquid and solid at the interfacé to the first order of § ére:
cwn | b= G [1- )| & sinwx+6 (A.27)
C C w0 C :

(%) c

(3, afe-al-2 4
—_—] = -y la -G (] - ———-)] 8§ sinwx + G
3z 6 L L W% ' L

= -w(a - GL)cS sin wx + GL (A.28)
o oT ) | 7 R
s\ [ ( v )] .
=) = Wwela-=-Gc |1 - § sin wx + G
< 3z o S|1© - 7S Welg S -
~ w(a - Gg)6 sinwx + Gg , (A.29)

where the approximations o W >> V and Qg >> V have been made. It
is noted that in a11‘cases of practical interest, V < 3.0x107° m/sec,
o > 10° m*/sec, w > V/a, ~3.0x107}/m, and A = 2n/w << o /V > 107"
cm (typical values for a metallic system).. Also, by Egs. (A.13) and
(A.14), wg ~ w ~ w can be obtained.

Substituting these gradients into Eq. (A.22), and by Eq. (A.19),
the constant b to the first order of § is obtained by

26T Tw? + wGc(Eg* € ) + Gp (‘*’c - %) (Eg-€)

b = , (A.30)
2um + (£g - € Mwe - (V/D)P]

where
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k kS
13 =:—G ’ e = :G
LT sT TS
' (A.31)
T(-sli(ks"'kl_)’ P:(]-k)
Notice that
v(x) = v+ B gin o (A.32)
Substitute Eq. (A.23) into (A.Z]) to obtain
vix) = b (Eg=8) * wl2a - (5g*+ )8 sinwx] [ . (A.33)
Equating the coefficients of Eqs. (A.27) and (A.28) yields
veE (e -g) (A.38)
L *°s " 5L | '
5= = Bula-ugg+ gl . (A.35)

The value of a can be obtained by substituting b from (A.26) into

(A.29). Then (A.30) becomes the central result,
v v v
UV L‘ﬂmmz(“c "D P) § (ES+€L)(“’C D P) + ante (ug - E)J

v |
o) (- ) + 2ot T

Or|One
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APPENDIX 2:
LISTING OF COMPUTER PROGRAMS
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program aatsai(input,output,tape5=input,taped=output)
level 2, gk,gf,nz
c....Common block for general purpose
common/cntrlc/ time,tmax,delt,thet,nprint,niter,tolen,icount,nwrt
common/cntrll/ noptl,noptl,nopt3
common/cint/ xlngl(“) wint1(4),xint2(16,<), wlnt2(16) none,ntwo
common/cdoman/ xdim,ydim, prop(“ 4)
common/cmatrx/ gk(1200 25),8£(1200) ,nz
common/celem/ ne(1000).node(9,1000)
common/cwork/ xc¢(2,1200),no0dec(9,1000),uc(1200)
C....Common block for region 1 and 2, both are temp. field.
common/cnode/ x12(2,1200),u12(1200)
¢....Common block for region 1, Temp. of solid
common/cconi/ nnodel,neleml,npoti,nbecil,nbci _
common/cbel/ ndbc11(25) »VbCc11(25) ,neb12(20) ,nsde12(20),vbe12(2,20)
. ,npti(10), th1(10)
common/cscall/ rlent, rval1
¢....Common blocx for region 2, Temp. of liquid solution
common/ccond/ nnodel,nelemZ,npot2,nbec2t,nbecl2
common/cbed/ ndbeli(25),vbe21(25),neb22(20),nsde22(20),vbec22(2,20)
. ,npt2(10),vpt2(10)
common/cscale/ rlenl,rval2
C....Common biock for region 3, concentration of liquid solution
comaon/ccon3i/ nnode3,nelem3,npot3,nbec3l,nbeise -
common/cnode3/ x3(2,1:00),u3(1200)
common/ be3/ 1dbc31(30) vbc31(50) neb32(4G) ,nsde32(40),vbec32(2,40)
,npt3(10),vpt3(10)
C... Common block for interface, region U
' common/cinter/ xi3(2,50),nmax3,xi124(2,25),max124,nfirst(2)
. ,angl(2s),capaie,2%),tin(23), ratlo(SO)
common/cmatrli/ gku(25.3).sf“(ZS).VnOP(25)
common/celeml/ neld(2-5),nodesd(3,25)

call data
call comn
call init
icount=0
13C icount=icount+l
time=icount*delt
call move
call sov3
call gett
call sovi
call sove
if(vime.lt.tmax) go to 100
stop
end
subroutine adstd4(xim)

C....To adjust the interface nodal coordinates

.To compute the interface normal directions

..To compute the principal curvatures along the interface
C....To construct the finer interface mesh for computing concentration
C....To use S-node interpolation polynomial
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common/cinter/ xi3(2,50),nmax3,xi124(2,25),max124,nfirst(2)
,angl(2s), capa(Z 25),tin(25), Path(SO)

common/cdoman/ xdim,ydim,prop(4,4)

dimension xim(2, 25) xx(5) ,xy(5)

.Deal with tnhne end nodes
.Symmetry on both sides

‘const=1.57079632679439

angl(1)=dasin(1.d0)

angl (max124)=angl(1)
ratio(1)=(ydim-xim(z,1))/(ydim-xi3(2,1))
ratio(nmax3)=(ydim-xim(2,max124))/(ydim-xi3(2,nmax3))
xi3(2,1)=xim(z,1)

xit24(2,1)=xim(2,1)

xi3(2,nmax3)=xim(2,max124)

xil24(c,max124)=xim(2,max124)
capa(1,1)=0.0
capa(l,max124)=0.0
capa(2,1)=0.0
capa(2,max124)=0.0

.Use 3-node interpolation poly. at the side nodes

m=2

do 10 i=1,3
Xxx(i)=xim(1,1)
xy(i)=xim(2,1i)

continue

.Get divided differences

call aivdil(xx,35,xy)

.Get finer mesh for concentration

call intd4(xx,3,xy,xi3(1,2),p)
ratio(m)=(ydim-p)/{ydim-xi3(2,m))
Xxi3(e<,m)=p

.Get common node for temp. and concen.

call interd(xx,3,xy,xi124(1,2),p,thita,curv)
ms=<*m-1
ratio(ms)=(ydim-p)/(ydim-xi3(2,ms))
xi3(z,ms)=p

xi124(2,m)=p

angl(m)=thita

capa(l,m)=curv
if(xiteld(1,m).eq.0.0) then
- capaf(2,m)=capa(l,m)

else
if(thita.gt.const) then
capa(2,m)=J.0

else
capa(a2,m)s= cos(thlta)/xlizu(1 m)
end if
end if
do 50 m=3,max124-2
mi=m-2¢

do 40 i=1,5
xx(i)=xim(1,mi)
xy(i)=xim(2,mi)
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mi=mi+1
continue
call divdild(xx,5,xy)
mm=2%*(m-1)
call intd4(xx,5,xy,xi3(!,mm),p)
ratio(mm)=(ydim-p)/(ydim-xi3(2,mm))
xi3(2,mm)=p
call interl(xx,5,xy,xi124(1,m),p,thita,curv)
.ms=2%nm-1
ratio(ms)=(ydim-p)/(ydim-xi3(2,ms))
xi1zd(2,m)=p
x13(2,ms)=p
angl(m)=thita
capa(1l,a)scuryv
lf(thltd gt.const) then
capa(2,m)=J.0
~else )
capa(<,m)=cos(thita)/xi124(1,m)
endg if
continue
m=maxlch-2
do 60 i=1,3
xx(i)=xim(1,m)
xy(i)=xim(2,m)
m=m«+1
continue
mm=nmax3-3
call divdild(xx,3,xy)
do- 10 i=ma,mme2
call,intu(xx.s.xy.x13(1.i).p)
ratio(i)=(ydim-p)/(ydim-xi3(2,1))
x13(¢,i)=p
continue
np=max124-1
call interd(xx,3,xy,xiltz4(1,np),p,thita,curv)
xilcld(2,np)=p
angl(np)=tnita
capa(l,np)=curv
if(thita.gt.const) then
capa(<,np)=0.0
else
capa(e,np)=cos(thita)/xi124(1,np)
end if
return
end
subroutine aply!l
level 2, gk,gf,nz
common/cntrll/ nopt!,noptl,noptsl
common/cntrl2/ time,tmax,delt,thet,nprint,niter,tolen,icount,nwrt
common/ceconl/ nnode1 neleml, npot1 nbecll,nbel2
common/cint/ xint1(u) ulnt1(u) x1nt2(16 <), wlnt2(16) none,ntwo
common/cbel/ ndbc11(25) vbc11(2:) neb1a(20) nsde12(20) vbc12(2 20)
,apti1(10), th1(10)

common/celem/ ne(1000) node(9,1000)



30

50

00

70

40

130

common/cnode/ x12(2,1200),u12(1200)
common/cmatrx/ gk(1200,25),gf(1200),nz
dimension pe(9,9),game(9),xx(2,9),n0d(9),uu(9)

.Apply point loads

if(npotl.eq.0) go to 20

do 10 i=1,npotl
n=npt1(i)
gf(n)=gf(n)+vpri1(i)

.Apply essential boundary conditions

if(nbcll.2q.0) go to 4O
big=1.0e100

do 30 i=1,nbci
nn=ndbc11(1i)
gf(nn)= blg*voc1l(1)
gk{nn,1)=big

continue

.Apply natural boundary conditions

if(nbci12.eq.0) go to 70

do 60 itt=1,nbec12
nel=nebic(itt)
ns=nsdela(itce)
nee=ne(nel)

.Pick out nodal coordinates

~do 50 j=1,nee
nod(j)=node(j,nel)
nj=nod(j)
xx(1,j)=x12(1,nj)
xx(2,j)=x12(2,nj)
uu(jl=ul2(nj)
continue _
call bcint(vbela(1,itt),vber12(2,itt),xx,pe,game,nee,ns,uu).
call assmb(pe,game,nee,nod)
continue
return
end
subroutine aplyz<
level 2, gk,gf,nz
common/cntril/ noptil,noptl,nopt3
common/cntrl2/ time,tmax,delt,thet,nprint,niter,tolen,icount,nwrt
common/cconZ/ nnodel,nelem2,npotl,nbc2l,nbecee
common/cint/ xintl1(4),wint1(4),xint2(10,2),wint2¢16),none,ntwo

-

common/cbec2/ ndbc21(25).vbc21(25).neoZZ(ZO),nsde22(20),vbc22(2,20)

. ,npt2(10),vpt2(10)

common/celem/ ne(1000),node(9,1000)
common/cnode/ x12(2,1200),u12(1200)
common/cmatrx/ gk(1200,25),gf(1200),nz
common/cconl/ nnodel,nelem!,npotl,nbclii,nbecll
dimension pe(9,9),g8ame(9),xx(2,9),n0d(9),uu{9)

.Apply point loads

if(npot2.eq.0) go to <0
do 10 i=1,npot2
n=npt2(i)
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gf(n)=gf(n)+vpt2(i)

.Apply essential boundary conditions

if{nbc21.eq.U) g0 to 40

biz=1.0e100

a0 30 i=1,nbcal
nn=ndbc21 (i)
gf(nn)=big*vbc2i(i)
gk(nn,1)=big

continue

.Apply natural bdoundary conditions

if(nbc2i.eq.0) go to 70

~do 60 itt=1,nbcl2

nelzned2c(ittY+nelem!
ns=nsde2z(itt)
nee=nc(nel)

.Pick ocut nodal coordinates

do >0 j=1,nee
nod(j)=node(j,nel)
nj=noa(j)+nnodel
xx{1,j)=x12(1,nj)
Xxi<,jl=x12(e,nj)
uu(j)=ute(nj)
continue
~call becintivbe22(1,itt),vbece2(2,itt),xx,pe,game,nee,ns,uu)
call assmb(pe,game,nee,nod)
continue
rsturn
end
subroutine aplys
level 2, gk,gf,az
common/cntrll/ noptl,noptd,noptl
common/cntrld/ time,tmax,delt,thet,nprint,niter,tolen,icount,nwrt
common/ccon3/ nnode3,nelem3,npot3,nbc3t,nbe3e
common/aint/ xintl1(4),winti(4),xint2(16,2),wint2(16),none,ntwo
common/cdbe3/ ndbe31(50),vbe31(50),neb32(40),nsde3z(40),vbc32(2,40)
. »npt3(10),vpt3(10) .
common/celem/ ne(1000),node(Y,1000)
common/cnodel3/ x3(<2,1200),u3(1200)
common/cmatrx/ gk(1200,2%),gf(1200),nz
dimension pe(9,9),game(9),xx(2,9),n0d(9),uu(3)

.Apply point loads

if(npot3.¢q.0) go to 20

do 10 i=1,npot3
n=npt3(i)
gf(n)=gf(n)+vpr3(i)

.Apply essential boundary conditions

if(nbc3t.eq.0) go to 40

big=1.0e100

do 30 i=1,nbc3}
nn=ndbe31(i)
sf{nn)=big*vbe31(i)
gk(nn,1)=big

contianue
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.Apply natural boundary conditions

if(nbc32.eq.0) go to 70

do 60 itt=1,nbc32
nel=neb32(itt)
nsz=nsde32(itt)
nee=ne(nel)

.Pick out nodal coordinates

do 50 j=1,nee

nod(j)=node(j,nel)

nj=nod(j)

xx(1,3)=x3(1,n3)

xx(2,3)=x3(2,nj)

uul(jl=u3(nj) ' N
continue .
call ocint(vbec32(1,itt),vbec32(2,itt),xx,pe,game,nee,ns,uu)
¢call assmb(pe,game,nee,nod)
continue
recurn
end :
subroutine assmb(ek,ef,nee,nodd)

.To assembls the global matrix from every e€lement contribution
.Valic only symmetry matrix

level £, gk,gf,nc .
common/cmatrx/ gk(1200,25),gf(1200),nz
dimension ek(9,9),ef(9),nodd(9)
do 10 ii=1,nee
ig=nodd(ii)
gf lig)=gf(igr+ef(ii)
do 10 jj=1,nee
jg=noad(jj)-ig+1
if(jg.1l<.0) go to 10
gk(ig,jg)=gk(ig,jg)+ek(ii,jj)
continue
return
end
sudbroutine assmbid(ek,ef,nee,nodd,gk,gf)

..To assemble the global matrix from every element contribution
..Valid only symmetry matrix

dimension ek(3,3),ef(3),no0dd(9),g8k(25,3),8f(25) -
do 10 ii=1,nee
ig=nodd(ii)
gf(ig)=gf(ig)+ef(ii)
do 10 jj=1,neec
jg=nodd(jj)-ig+
if(jg.le.0) go to 1C
gk(ig,jg)=gk(ig,jg)+ek(ii,jj)
continue
return
end .
subroutine becint(p,v,X,pe,game,nee,ns,uu)
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common/cint/ xinti(4),winti(l4),xint2(16,2),wint2(16),none,ntwo
common/cntrli/ noptl,noptd,nopt3
common/cntrll/ time,tmax,delt,thet,nprint,niter, tolen,icount,nwrt
dimension game(9), pe(9 9).X(2 9) XY(Z) dxds(Z 2)
dimension psi(9), dp31(9 2)
dimension uu(9).aa(9.9),ab(9).save(9)
do 10 i=1,nee

game(i)=0.0

do 10 j=1,nee

pe(i,j)=0.0

continue
do 70 loop=1l,none

if(ns.eq.1) thnen

xy(2)=-1.¢

xy(1)=xint1(loop)

else if(ns.eq.<2) then

xy(1)=1.0

xy(2)=xint1(loop)

else if(ns.eq.3) then

xy(<)=1.0

xy(1)=xinti1(loop)

else if(ns.eq.h) tnen

xy(1)=-1.
xy(z)-xxnt1kloop)
c€lLSe

write(5,¢00)
format(Zx,#0ut of range in beint.f#,)
end if
call shape(xy nee,psi, apsi)
do 20 i=1,
do 20 j=1,2
dxds(i,3)=0.0
do 20 k=1,nee
axds(i,j)=dxds(i,j)+dpsi(k,j)*x(i,k)
continue
if(noptil.eq.1) then
rx=0.0
do 22 i=1,nee
rx=rx+x(1,1i)*psi(i)
else
rx=1.0
end if
if(ns.eq.l.or.ns.eq.3) then
valu=dxds(1,1)*#2+dxds(2,1)**2
else
valu=dxds(1,2)**2+dxds(2,2) **2
end if
vjaco=sgrt(valu)
fac=vjaco*wint1(loop) *rx
do 40 ia=1,nee
ab(ia)=v*psi(ia)
do 40 ib=1,nee
aa(ia, xb)-p'psi(xa)‘psx(lb)
do 45 ic=1,nee
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save(iec)=0.0
do 45 ida=1,nee
save(ic)=save(ic)+(thet=-1.0)*aa(ic,id)*uu(id)
do 46 im=1,nee’
game(im)=game(im)+(ab{(im)+save(im))*fac
do 46 in=1,nee
pe(im,in)=pe(im,in)+thet*aa(im,in)*fac
continue
continue
return
end
subroutine coan
common/cint/ xint1(4),winti1(4), x1nt4(16 2),wint2(16), none,ntwo
call oneint(none)
call twointintwo)
rewurn
end
subroutine data
common/cntrl2/ time,tmax,delt,thet,nprint,niter,tolen,icount,nwrt
common/cntrll/ nopt1 nopt2,nopt3
common/cdoman/ xdim,ydim,prop(4.“)
~common/cint/ xint1(4),wint1(4),xint2(16,2),wint2(16),none,ntwo

.noptl=1 is axisymmetry, otherwise plane 2-D

..noptaz is transient, otherwise steady state

.nopt3=1 is linear, otherwise nonlinear
.time time for transient calculations
.tmax max. time in calculation

..delt time step increment
..tnet theta method in time xntegratlon schieme

. tnet=1 - Euler Backward Method
oo thet=2/3 Galerkin Method
. thet=1/2 Midpoint or Crank-Nicolson Method
. thet=0 Euler Forward Method
.nprintg no of steps for print out
.niter no of iterations for nonlinear case
«...L0len allowed tolerance in iteration

O0DO0OOO0D0OO0OO00O00O0000O0

160

10

130

read(5,*) nopti,nopte,nopt3
if(nopti.eq.1) then
write(6,100)
format(ihl,/////2%x,#THIS IS A 3-D AXISYMMETRY PROBLEM#,/)
else '
write(o6,110)
format(/2x,#THIS IS A 2-D PLANE PROBLEM#,/)
end if
if(nopt2.eq.1) then
write(6,120)
format(/2x,#THIS IS A TRANSIENT PRCOBLEM#,/)
else
write(6,130)
format(/2x,#THIS IS A STEADY STATE PROBLEM#,/)
end if
if(nopt3.eq.1) then
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write(6,140)

140 format(/«x,#THIS IS A LINEAR PROBLEM#,/)
else
write(6,150)
150 format(/<Zx,#THIS IS A NONLINAR PROBLEM#,/)
end if

read(5,*) nprint,niter,nwrt
write(6,160) nprint
100 format(/2x,#THE NO. OF STEPS FOR PRINT OQUT RESULTS IS#,i5/)
write(6,170) niter
170 format(/2x,#THE NO. OF ITERATIONS 1IS#,15/)
read(s,*) delt,tmax,thet,tolen
' write(6,180) qelt,tmax,thet
180 format(/2x,#THE TIME INCREMENT IS#,e15.5,/2x,#THE MAX. TIME IS#,
.215.5,/¢x,#THE THETA 1S#,e15.5,/)
read(5,*) xdim,ydim
write(b,160) xdim,ydim
190 format(/2x,#THE GLOBAL X-DIMENSION IS#, el15.5,/2x, #THE GLOBAL#,
' .# Y-DIMENSION IS#,e15.5,/) )
read(3,*) none,ntwo
write(6,200) none,ntwo
2G0 format(/2x,#THE NQ. OF 1-D INTEGRATION PT. 1IS#,i5,
./2x, #THE NO OF 2-D INTEGRATION PT. IS#.iS./)
- do 10 i=1,
rc<aa(s,*) \prop(i.J).J- .“)
10 write(6,210) i,(propti,j),3=1,4)
210 format(/2x,#THE FOLLOWINGS ARE THE DEFAULT COEFFICIENTS IN#,
.# REGION#,i5,//2x,4e15.5,/)
return
end
subroutine divadid4(x,n,d)

C....To get divided differences for interpolation
c....d and x are vectors with entries f(x(i)) and x(i),
c. i=1,...,n respectively. On exit d(i) will contain
c. fLx(1),...,x(1)]
dimension x(5),d(3)
do ¢0 i=1,n-1
J=n
19 ?(J)1(d(J)-d(J-1))/(x(J)-x(J-i))
J-
if(Jj.ge. (i+1)) go to 10
20 continue
return
end

subroutine elem(x,n,ek,ef,matt,uu)

common/cntrll/ noptl,noptl,noptl

common/cntrl2/ time,tmax,delt,thet,nprint,niter,tolen,icount,nwrt
common/cint/ xint1(4),winti(4),xint2(16,2),wint2(16),none,ntwo
common/cdoman/ xdim,ydim,prop(¥4,4)

dimension ck(9,9),cc(5,9),xy(2),ek(9,9),ef(y)

dimension x(2,9),psi(9),apsi(9,2)

dimension dpsix(9),dpsiy(9),dxds(2,2),dsdx(2,2)

dimension ct(9,9),uu(9),save(9)
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do 1C i
ef (i)
do 10

ek (i
continue
call getmat(x,n,uu,aa,ab,ac,ad,matt)

do 70 loop=1,ntwo
xy(1)=xint2(loop,1)
xy(2)=xint2(loop,2)
calil shape(xy,n,psi,dpsi)
do 20 i=1,2

do 20 j=1,2
dxds(i,j)=0.0
do 20 k=1,n
dxds(i,j)=dxds(i,j)+dpsi(k,j)*x{i,k)
continue
if(noptl.eq.1) then
rx=0.0
do ¢5 ii=1,n
rxz=rx+x(1,ii)*psi(ii)
else
rx=1.0
end if .
detj= dxds(1 1) *dxds(2,2)-dxds(1,2) *dxds(2,1)
if(detj.le. O 0) go to 99 :
“dsdx(1,1)=dxds(2,2)/det]
dsdx(2,2)=dxds(1,1)/det}
dsdx(1,2)=-dxds(1,2)/det]
dsdx(2, 1)=-dxds(< 1)/det3
do 30 i=1,
dp51x(1) dp51(1 1) %dsdx(1,1)+dpsi(i,2)*dsdx(2,1)
dpsiy(i)=dpsi(i, 1)*dsdx(1,<)+dpsx(i 2)*dsdx(2 2)
continue
fac=detj*wint2(loop) *rx
do 40 i=1,n
do 40 j=1,n
ck(i,j)=aa*(dpsix(i)*dpsix(j)+dpsiy(i)*dpsiy(jJ)
cc(i,j)=ab/delt*psi(i)*psi(j)
ct(i,j)=(thet-1.0)*ck(i,j)+cc(i,]d)
continue
do 45 i=1,n
save(i)=0.0
do 45 «x=1,n
save(i)s= save(1)+ct(1 k) *uu(k)
do 50 i=1,
ef(i):ef(i)+fac*save(i)
do 50 j=1,n
ek(i,j)=ek(i, J)*(thet*ck(l jl+cc(i,j))*fac
continue

continue

return

write(6,100)

format(2x,#Bad Jacobian Matrxi#,/)

stop

1
0.
J
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end
subroutine elemid(xx,nee,ek,ef ,tmatt,nn,mm,nnodel)
common/cntrli/ noptl,noptdd,nopt3
common/cint/ xint1(4),wint1(4),xint2(16,2),wint2(16),none,ntwo
common/cntrlzZ/ time,tmax,delt,thet,nprint,niter,tolen,icount,nwrt
common/cdoman/ xdim,ydim,prop(4,4)
common/cnode/ x12(2,1200),u12(1200)
common/celem/ ne(1000),node(9Y,1000)
dimension xx(2,9),save(2),ek(3,3),ef(3),dtdx(2)
dimension xy(2),psi(9),dpsi(9,2),uu(9),xx12(2,9),n0d12(9)
- do 1 1i=1,nee
ef(ii)=0.0
do 1 jj=1,nee
1 ek(ii,jj)=0.0
if(nopti.eq.1) then
rx=0.50%(xx(1,1)+xx(1,2))
€else
rx=1.0
end if
a=(xx(1,1)-xx(1,2))%**2
D=(xx(2,1)-xx(2,2)) **Z
C....0nly valid for 4-node clement
detj=0.50*sqgrt(a+b)
c....To get two directional cosine ,
slop=(xx{(2,2)-xx(2,1))/(xx(1,2)-xx(1,1))
if(slop.le.1.0e-7) then
theta=asin(1.0)
else .
tnetazatan(-1.0/slop)
end if ' '
dxdn=cos(theta)
dydn=sin(tiheta)
fac=rx*detj
bx=tmatt/delt
do 40 in=1,none
xy(2)=1.0
xy(i)=xinti1(in)
call shape(xy,4,psi,dpsi)
neelzne(nn)
taatli=zprop(1,1)
do 5 ja=1l,neel
nodi2(jaj=node(ja,nn)
nj=nodlz(ja)
xx12{1,ja)=x12(1,nj)
xxiz(2,ja)=x12(2,n3)
uutjal)=uli(nj)
S continue
call fluxi(xx12,neel,tmatl,uu,dpsi,dtdx)
do 6 mc=1,2
6 save(mc)=dtdx(mc)
neelz=ne(am)
tmatlsprop(e, 1)
d0 10 ja=l,neel
nodle¢(ja)=node(ja,mm)
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nj=nodl<(ja)+nnodel
xx12(1,ja)=x12(1,nj)
xx12(2,ja)=x12(2,nj)
uu(ja)=ul2(nj)
10 continue
call flux¥(xx12,neel,tmatl,uu,dpsi,dtdx)
do 11 na=i,2
11 - save{na)=save(na)-dtdx(na)
coef=dxdn*save(1)+dydn*save(2)
do 20 ii=1,nee
¢....Node 3 and 4
J=iie2
ef(ii)=ef(ii)+coef*fac*psi(j)*wint1(in)
do 20 k=1,nee
¢....Node 3 and 4
m=k+2
ek(ii,k)=2 k(11 k)+bx*fac*psi(j)*psi(m)*wint1(in)
20 continue
40 continue
return
end
subroutine fluxu(xx nee,tmatt,uu,dpsi,dtdx)
common/cint/ x1nt1(u) wlntl(u),x1nt2(16 2),wint2(16),none,ntwo
dimension dpsix(9), dpsxy(9) xx(2,9),uu(9), otdx(d)
dimension dpsi(y, 4) dxds(2, 2) dsdx\2 2)
. ¢ do 1 if=1,2 v
1 ctax(lf)-o.o.
do 10 1ii=1,¢
do 10 im=1,2
dxds(ii,im)=0.0
do 10 if=1,nee
dxds(ii,im)=dxds(ii,im)+dpsi(if,im)*xx{¢ii,if)
10 continue
det=dxds(1,1)*dxds(2,2)-dxds(1,2)*dxds(2,1)
if(det.1e.0.0) go to 1000
dsdx(1,1)=dxds(z,2)/det
asdx(2,2)=dxds(1,1)/det
dsdx(1,2)=-dzxds(1,2)/det
dsdx(e,1)=-dxds(2,1)/det
do 20 io=1,nce
dpsix(io)=dpsi(io,1)*dsdx(1,1)+dpsi(io,z)*dsdx(2,1)
dpsiy(io)=dpsi(10,1)*dsdx(1,2)+dpsi(io,2)*dsdx(,2)
20 continue
do 30 jp=1,nee
dtdx(1)=dtdx(1)+dpsix(jp)*uu(jp) *tmatct
dtdx(2)=dtdx(2)+dpsiy(jp)*uu(jp)*tmatt
30 continue
return
1000 write(6,100)
100 format(/dx #BAD JACOBIAN MATRIX IN FLUXU F#,)
'stop
end
subroutine forml
level 2, gk,gf,nz



10

30

Lo

10

139

common/cntrll/ noptl,nopt2,nopt3

common/cntrld/ time,tmax,delt,thet,nprint,niter,tolen,icount,nwrt
common/cint/ xint1(4),wint1(4),xint2(10,&),wint2(16) ,none,ntwo
common/cdoman/ xdim,ydim,prop(4,4)

common/cconl/ nnodel,nelemi,npoti,nbcii,nbcle

common/celem/ ne(1000),node(9,1000)

common/cnode/ x12(2,1200),u12(1200)

common/czmatrx/ gk(1200,25),gf(1200),nz

dimension xx(2,9),uu(9),no0dd(9),ek(9,9),ef(9)

do 10 i=1,nnodetl
g§f{i)=0.0
a0 13 j=1,25
gik(i,j)=2.0
continue
do 40 ielm=1,neleml
neczne(ielm)
matts=nz
do 30 j=1,nee
noaa(j)=noce(], lelm)
nj=noda(j)
xx(1,j)=x12(1,nj)
xxi2,j)=x12(z,nj)
uu(j)l=ur2{nj)
continue :
call eleam(xx,nea,ek,ef, matt uu)
call assmb(ek,ef,nee, noda)
continue
return
end
suoroutine form2
leval 2, gk,sf,nz
commen/cntrll/ noptl,nopt2,nopt3
common/cntrld/ time,tmix,delt,thet,nprint,niter,tolen,icount,nwrt
common/cint/ x1nt1(u) wlnt1(4) xint2(19, z;,wlnt2(16) none,ntwo
common/cdoman/ xdim,ydim, prop(“ 4)
common/cconl/ nnodel,nelem!,npoti,nbcli,nbcl
common/ccon2/ nnode2.nelem2.npotz,nbc21.nbc22
common/celem/ ne{1000),node(9,1000)
common/cnode/ x12(2,1200),u12(1200)
common/cmatrx/ gk(1200,25),8f(1200),nz
dimension xx(&,9%),uu(9),no0dd(9),ek(3,5),ef(9)

do 10 i=1,nnodec
gr(i)=0.0
do 10 j=1,25
gkii,j)=0.0
continue

do 40 ielm=1,nelem?2
iielm=ielm+nelenl
nee=ne(iielm)
mattz=nz
do 30 j=1,nee
nodd(j)=node(j,iielm)
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nj=nodd(j)+nnodel
xx(1,3)=x12(1,nj)
xx(2,j)=x12(2,nj)
uu(jl=ui2(nj)
continue
call elem(xx,nee,ek,ef,matt,uu)
call assmb(ek,ef,nee,nodd)
continue
return
end
subroutine form3

-level 2, gk,gf,nz

common/cntrll/ noptl,nopte,nopt3

common/cntrlé/ time,tmax,delt,thet,nprint,niter,tolen,icount, nwrt
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common/cint/ x1nt1(u) w1nt1(k),x1nt2(1o 2), w1nt2(16) none,ntwo

common/cdoman/ xdim,ydim,prop(4,4)
common/cecon3/ nnode3 nelem3,npot3,nbe3l
common/celem/ ne(1000),node(9,1000)
common/cnode3/ x3(2,1200),u3(1200)
common/c¢matrx/ gk(1200,25),gf(1200),nz
dimension xx(2,9),uu(9),nodd(9),ek(9,9)

do 10 is=
gf(i1)=
do 10-

continue
do 40 ielm=1,nelem3
nee=ne(ielm)
mactt=nz
do 30 j=1,nee
nodd(j)=node(j,ielm)
nj=nodd(j).
XX\],J)=X3(1,nJ)
xx(ec,ji=x3(2,nj)
uu(ji=u3(nj)
continue .
call elem(xx,nee,ek,ef,matt,uu)
call assab(ek,ef,nee,nodd)
continue
return
end
subroutine formi

,nbe32

’Ef(g)

common/cinter/xi3(2,50),nmax3, x112u(2 25) ,max124,nfirst(2),
angl(¢5) capa(; 25),tin(2%), ratlo(SO)

common/celemid/ ne4(25).nodesu(3.25)

common/celem/ ne(1000),node(9,1000)
common/cnode/ x12(2,1200),u12(1200)

common/cmatri4/ gk4(25,3),gf4(25),vnor(25)

common/cntrll/ noptl,nopt2,nopts

common/cnirid/ time,tmax,delt,thet,nprint,niter,tolen,icount,nwrt
common/cint/ xint1(4),wint1(4),xint2(16,
,nbcie

common/cconl/ nnodei,neleml,npotl,nbcli
common/cdoman/ xdim,ydim,prop(4,i)

2),wint2(16),none,ntwo
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dimension nodd(9Y),xx(2,9),ek(3,3),ef(3)
do 10 i=1,max124
gru(i)=0.0
¢....Matrix band width is 2 here,one-D two-node symmetry
do 10 j=1,¢
gku4(i,jr=0.0
10 continue
C....Get first element No. along the interface in region 1 & 2
nn=nfirst(1) _
mm=nfirst(2)+neleml
¢c....D0 the assembly processes
do ¢0 ito=1,maxizi4-1
neezneld(ito)
tmattzprop(4,3)
do 40 j=1,nee
: nodc(j) nodesu(J ito)
nj=nodd(j)
xx(1,3)=xi124(1,nj)
xx{(2,j)=xi124(2,n3)
49 continue
call elemid(xx,nee,ek,ef,tmatt,nn,mm,nnodel)
call assmb4(ek,ef,nee,nodd,gkl,gfl)
nnz=nn+l
am=an+l
60. continue
return
end
subroutine getmat(x,n,u,aa,ab,ac,ad,matt)
c....To compute the coefficients in the differential equations
C.... at any specific point and time, in other words, coefficients
C.... Can be function of time, temperature(concentration),and
C.... space. Used in nonlinear differential equations
common/cntrll/ noptl,nopta,noptl
common/cntrld/ time,tmax,delt,thet,nprint,niter,tolen,icount,nwret
common/cint/ xinti(4),winti(4),xint2(16,2),wint2(16),none,ntwo
common/cdoman/ xdim,ydim,prop(4,4)
dimension x(<,9%9),u(y)
aa=prop(matt,1)
ab=propi{matt,2)
acs=prop(matt,3)
ad=prop(matt,¥d)
return
end
subroutine gett
common/cnode3/ x3(2,1200),u3(1200)
common/cinter/ xi3(2,50),nmax3,xi124(2,25),max124,nfirst(2)
. ,angl(25),capa(2,25),tin(25),ratio(50)
common/cntrlz/ time,tmax,delt,thet,nprint,niter,tolen,icount,nwrt
common/ccon3/ nnodes,nelem3,npot3,nbe3l,nbc32
dimension cc(<,95)
cc(1,1)=0.0
cel2,1)=0. 0
ce(1, 2):1

cc(2,2) 620



cc(1,3)=34.0
cec(e,3)=-0.1210
ce(1,4)=51.0
ce(2,4)=-0.1810
ce(1,9)=69.9
cec(2,5)=-0.240
cc(1,6)=86.0
CC(Z'6)=-0.2990
cc(1,7)=105.0
ce(2,7)=-0.3580
cc(1,86)=120.0
cc(2,8)=-0.4170

ce(Z,11)=-0.5930
ce(1,12)=1€9.0
cc(2,1<)=-0.6520
¢ec(1,13)=207.0
cc(2,13)=-0.7110
cc(1,1d)=¢ecld.Q
cela,14)==0.770
S ece(1,15)=241.0

¢c(2,15)=-0.8260

cc(1,16)=259.0
ce(2,16)=-0.26880
cc(1,17)=276.0
cce(2,17)=-0.9480
cc{1,18)=¢94.0
cc(z,18)=-1.0070
ce(1,19)=311.0
cci{2,19)=-1.0670
cc(1,20)=329.0
cc(2,20)=-1.1260
CC(1,21)=3“6.0
ccie,el)=-1,1360
cc(1,22)=364.0
ce(2,<¢e)==-1.2460
cc(1,23)=382.0
cc(2,23)=-1.3060
cc(1,24)=399.0
¢ce(2,24)=-1.3060
ce(1,¢5)=418.0
cc(z,25)=-1.4260
ce(1,26)=435.0
ce(2,26)=-1.4800
ce(1,27)=452.0
cc(2,27)=-1.5470
cc(1,28)=470.0
cc(ez,28)=-1.6070
ce(1,29)=48608.0
cc(2,29)=-1.6630
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cc(1,30)=505.0
cc(2,30)=-1.7290
cc(1,31)=523.0
cec(2,31)=-1.790
ce(1,32)=541.0
cc(2,32)=-1.8510
cc(1,33)=559.0
ce(2,33)=-1.9130
cc(1,34)=577.0
ce(2,3U8)=-T.9740
cc(1,35)=595.0
CQ(2.35)=-2.0360
cc(1,36)=613.0
cc(2,36)=-2.0980
ce(1,37)=631.0
cc(2,37)=-2.1000
cec(1,38)=649.0
" ¢Cve,38)=-2.2220
cc(1,39)=667.0

cc(2,39)=-2.26H40"

cc(1,40)=6385.u
cc(2,40)==-¢.3470
ce(1,41)=7G35.0
ce(2,U41)=-2.4090
ce(1,42)=721.0
ce(2,U42)==-2.U417<0
ce(1,43)=739.0
cc(Z,43)=-2.5350
cc(1,44)=757.0
ccL2,48)=-2.5930
cc(1,45)=775.0
cc(e,45)=-2.662C
ce(1,46)=T794.0
cc(2,46)=-2.7250

. ecc(1,47)=812.0

ce(2,47)=-2.7890
cc(1,48)=830.0
cel(e,48)=-2.58530
ce(1,49)=848.0
cc(e,49)=-2.9170
ce(1,50)=866.0
cc(2,50)=-2.9820
cc(1,51)=865.0
cc(2,51)==-3.0460
cc(1,52)=921.0
cc(2,52)=-3.1760
cc(1,93)=658.v
cec(2,53)=-3.30790
cc(1,54)=995.0
ce(e,o4)=-3.4300
cec(1,558)=1032.0
cc(2,55)=-3.5700
cc(1,56)=1069.0
cc(2,56)=-3.7030
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cc(1,57)=1106.0
cc(2,57)=-3.8370
cc(1,58)=1144.0
ce(2,58)=-3.9720
cec(1,59)=1181.0
cc{2,59)=-4.1070
cc(1,60)=1218.0
ce(2,60)=-4.2440
cc(1,01)=1256.0
ce(2,b61)==-4,3780
cc(1,62)=1294.0
ceie,62)=-4.5160
cc(1,63)=1331.0
cc(e,b3)=-4.0550
cc(1,64)=1369.0
ce(2,6U4)=-4,7950
cc(1,65)=1407.0
cc(2,65)=-4.9370
ce(1,66)=1445.0
cc(2,60)=-5.0790
cc(1,67)=1464.0
cc(e,67)=-5.2220
ce(1,068)=1522.0
cc(2,68)=-5.3670
ce(1,09)=1500.0
cc(<¢,09)=-5.5120

cc(1,70)=1599.0

cc(2,70)=-5.6590
cc(1,71)=1637.0Q
ce(2,71)=-5.8070
cc(1,72)=1676.0
cc(2,72)=-5.9560
ce(1,73)=1715.0
cc(z,73)=-56.1060
ce(1,74)=1754.0
cc(2,74)=-6.2580
cc(1,75)=1763.0
ce(z,75)=-6.4100
cc(1,76)=1832.0
cc(2,76)=-0.5640
ce(1,71)=1930.0
cc(z,77)=-6.9540

cc(1,78)=2025.0

cc(z,78)=-7.3530
cc(1,79)=2129.0
cc(2,79)=-7.760
cc(1,80)=2229.0
cec(2,80)=-8.1760
cc(1,81)=2330.0
cc(2,81)=-8.0v020
ce(1,82)=2432.0
cc(2,82)=-9.03&0
ce(1,83)=2534.0
cc(2,83)=-9.4840
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cc(1,84)=2637.0
cc(2,84)=-9.940
ce(1,85)=2741.0
cc(2,85)=-10.4080
cc(1,86)=2645.0
cc(2,86)=-10.83580
ce(1,87)=3056.0
cc(2,87)=-11.8850"
cec(1,88)=3270.0
ce(2,60)=-12.935
cc(1,89)=3486.0
ce(2,09)==-14,0440
cec(1,40)=3706.0
cec(2,90)=-15.21060
cc(1,91)=39¢<38.0
cc(2,91)=-16.4530
sc(1,92)=4153.0
cc(2,92)=-17.1776
ce(1,93)=4382.0
cc(2,93)=-19.1760
ceyl,94)=4013.0
ce(2,94)=2-20.6670
ce(1,95)=4800.0
30(2y95)=‘:1-50
is=nnode3-nmax3+1 .
factori=0.1el
factorce=Jd.1e3
iaa=190u0
1aaa=2000Q
ibb=2000
ibbb=20000
iperiod=100

plr=acos(-1.0)
if(icount.ge.iaa.and.icount.le.iaaa) then
k=1
do 5 i=is,nnode3
degree=xi3(1,k)*pi/xi3(1,nmax3)
u3(i)=u3(i)+factori*cos(degree)
Kzkel
continue
end it
if(icount.ge.ibb.and.icount.le.ibbdb) then
igap=(icount-iob)/iperiod
itest=igap/c*2
ivalue=igap*iperiod+ibb
if(itest.eq.igap) then
degree=(icount-ivalue)*pi/iperiod
do 7 ii=is,nnode3
u3(ii)=u3(ii)+factor2*cos(degree)
continue
else
degree=(icount-ivalue)®*pi/iperiod
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do 9 k=is,nnode3 .
u3(k)=u3(k)-factor2*cos(degree)
9 continue
end if
end if
J=1
do 50 i=is,nnode3,<
ni=1
ne=95
if(u3{i).lt.ce(1,1).0or.u3(i).gt.cc(1,95)) go to 1000
10 nhalf=(n1+n2,/2
.if(nhalf.eq.nl.or.nnalf.eq.nz) go to 20
if(u3(i).eq.cc(1,nhalf)) then
tin(j)=cc(2,nhalf)
j:j+] .
go to 50
else if(u3(i).gt.ce(1,nhalf)) then
nl=z=nhalf
go to 10
else if(u3(i).lt. cc(1 nhalf)) then
nZ=nhalf
g0 to 10
end if
20 rato=(cc(2,n1)-cc(2,n2))/(cc(1,n1)=-cc(1,n2))
tin(j)=cec(2, n1)+rato*(u3(1) cc(1 nl)) .
J=3+1
50 continue
return
1000 write(6,500)
500 format(2x,#0ut of range in gett.f#,/)
stop
end
- subroutine init .
common/cnode/ x12(2,1200),u12(1200)
common/celem/ ne(1000),no0de(%,1000)
common/cconl/ nnodel,neleml,npotl,nbecii,nbecl2
common/cbel/ ndbe11(25),vbe11(25),neb12(20) ,nsdet2(20),vbec12(2,20)
. ,npt1(10),vpt1(10)
common/¢cscall/ rlenl,rvall
common/ccon2/ nnode2,nelem,npot2,nbcll,nbce
common/cbe2/ ndbu21(45) voc21(25) neb24(20) nsdez2(20),vbc22(2,20)
. ,npt2(10), vpta(10)
common/¢scal2/ rlen2,rval2 - L
common/ccon3/ nnode3,nelem3,npot3, nbc31 nbec32
common/cnode3/ x3(2,1200),u3(1200)
common/cbe3/ ndbe31(50), vbc31(50) neb32(40),nsde32(40),vbec32(2, MO)
. ,npt3(10),vpt3(i0)
common/cinter/ x13(2,50).nmax3,xi1au(2,25).max124,nfirst(2)
. ,angl(25),capa(2,25),tin(25),ratio(50)
common/celem4/ neld(25),nodesl(3,25)
common/cmatrd/ gki(25,3),8f4(<25),vnor(25)
common/caoman/ xdim,ydim,prop(4,4)

(¢}

call initd
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call init?

call init2

call init3

recurn

end

subroutine initl

common/cinter/ xi3(2,50),nmax3,xi124(2,25),max124,nfirsc(2)
,angl{25),capa(2,25),tin(25),ratio(50)

common/cconl/ nnodel,nelemi,npotl,nbcll,nbectz

common/2scaltl/ rlent,rvall

common/cnode/ x12(2,1200),u12(1200)

common/celem/ ne(1000),node(9,1000)

common/coc1/ ndbcl1(25).vbc11(25) neb12(20),nsde12(20),vbc12(2,20)
,npt1(10),vpti1(10)

common/cdonan/ xdim,ydim, prop(4,4)

write(6,1000)
formac(//2x,#%*%*% THE FOLLOWING IS THE INITIAL INFORMATIONG®#,

.i# OF REGIQN 1 ##x#y /)

read(5,*) rlent,rvalil
write(6,130) rlent,rvall
format(/Zx,#THE REFERENCE LENGTH FOR MESHING REGION 1 IS#,e15.5,

./2%x,#THE REFERENCE VALUE FOR MESHING REGION 1 IS#,e15.5,)

read(:.‘) npotl,nbcl2

ndocllz=Z2*maxi2i :

reaa(5,*) <0,t1

do 16 i=1.max12u
ndbci1(ij=1
d4lz(i)=t0
vbel1(i)=t0
tin(i)=t1
J=iemaxich
ndbet11(ji=]
vbel1(j)=t1
ute(jl=ut

continue

do &0 i=1,maxi2¥
x12(1,1)=xi124(1,1)
x12(2,1)=0.0
j=i+maxi24
x12(1,3)=xi124(1,1)
x12(2,3)=xitzl(2,1)

continue:

nnodel=maxlcid*2

nel=max1i24-1

arowsz

nfirst(1)=1

nelemliznel¥*mrow

do 30 i=1,nelem!
ne(i)=4

icon=J

do 70 i=1,mrow
nl=i*maxicH
n2=nl-maxi24
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do 60 j=1,nel
icon=icon+l
node(1,icon)=nc+j
node(2,icon)=znl+j+1
node(3,icon)=nl+j+1
: node(l4,icon)=nt+j ‘
00 continue N
70 continue
write(6,200) nnodel,nelem!
write(6,300) npoti,nbcll,nbecl2
1f(npot1 eq.0) go to 110
write(6,350)
write(6,400) (i,npt1(i),vpti(i),i=1,npott)
110 1f(nbu11 eG.0) go to 120
write(6,450)
write(u,400) (i,ndbet1(i),vbel11(i),i=1, nbu11)
1¢0 if(nbcl2.eq.0) go to 130
write(6,550)
write(6,600) (i,neb12(i),nsde12(i),vbe12(1,1i),vbec12(2,1),
=1,nbc1e)
130 write(6,750) _
write(6,800) {(i,x12(1,i),x12(2,i),u12(i),i=1,nnodel)
200 format(/zx,#THE NG OF NODES 1S#,1i5,
/2% ,#THE NC OF ELEMENTS 15#,1i5,)
300 format(/2x,#THE NO OF POINT SOURCES IS#,1i5,
/2% ,#THE NO COF ESSENTIAL BOUNDARY COND. 1S#,1i5,
./2%x ,#THE NO OF NATURAL BOUNDARY COND. 1S#,1i5)
350 format(/5x,#NO#,5x,#NODE#,3x,#POINT 3OURCE VALUE#,)
400 format(2x,15,3x,1i5,e15.5)
450 format (/5x,#HO#,5x,#NODE#, 3x,#ESSEN BOUND VALUE#,)
550 format(/5x, #NO#, 5x, #ELEMENT# 5x,#S1DE#,5x, #P#,5x, #GAMA#, )
600 format(2x,3i6,2e15.5)
750 format(/ex,#NODE NO#, 8x,#x#,1ux,#Y#,12x,#TEMP#,)
800 format(Zx,i5.3e\5.5)
return
end
subroutine init2
common/ccenl/ nnodel,neleml,npotl,nbecll,nbeld
common/cnode/ x12(2,1200),u12(1200)
common/celem/ ne(1000),node(9,1000)
common/cinter/ xi3(2,50),nmax3,xi124(2,5),max124,nfirst(2)
. ,angl(25),capa(2,25),tin(25),ratio(50)
common/cconZ/ nnodel,nelem2,npot2,nbcel,nbce2 :
common/cdoman/ xdim,ydim,prop(4,4)
common/cscale/ rlend,rvall .
common/cbc?2/ ndbcz1(25) vbe21(25),neb22(20),nsdez2(20),vbc22(2, 20)
,npt2(10), vpt2(10)

G

write(6,1000)
1000 format(//2x,#*#*** THE FOLLOWING I3 THE INITIAL INFORMATION#,
.# OF REGION 2 #*®xxj /)
read(5,*) rleng,rval2
write(6,100) rlenZ,rvalz
100 format(/<x,#THE REFERENCE LENGTH FOR MESHING REGION 2 IS#,e15.5,
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30

49
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00
79

30

30

ylen=(ydim-xi124(2,1))/rlen2
num=int(ylen)
mp=num+2 .
nnodec=mp*max124
ydis=(ydim-xi124(2,1))/float(num)
ao 50 i=1,max124
do 40 j=1,mp
J1=j-1
nnm=j1*max124+1
nc=nmm+nnodel
if(j.eq.(mp-1)) go to 25
if(j.eq.mp) go to 30
x12(1,ne)=xi124¢1,1)
x12(2,nc)=ydim-float(j1) *ydis
go to 40
x12(1,nc)=xit24(1,1)
x12(2,nc)=ydim=-(float\j1)-rvalz) *ydis
go to 40
x12(1,ne)=xi124(1,1)
x12(¢,nc)=xi124(2,1)
continue
¢ontinue
nel=maxlicl-1
arows=nume+l
nfirst(2)=nel*num+1
nelem2=nel*mrow
icon=nelen!
do 70 i=1,mrow
nl=i*max124
n2z=nl-maxial
do 60 j=1,nel
icen=iconel
node(1l,icon)=n2+j+1
nodeid,icon)=nc+j
node(3,icon)=nl+j
node(4,icon)=nl+j+1
continue
continue
do0 80 i=1,nelceme
iizienelem?
ne(ii)=4
read(5,*) npote,nbc22
nbc2l =2*max1i2u
read(5,*) vi,tj
k=nnodel-max124+1
do 90 i=1,maxizl
ndbec21(i)=1i
vbc2l(i)=ti
J=max124+i
ndbel1(j)=k
vbeegl (j)=t]
K=K+
continue

149

./2x,#THE REFERENCE VALUE FOR MESHING REGION 2 IS#,e15.5,)
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np=nnode2-max124

do 95 i=1,np

j=1i+nnodel
95 ula2(jl=ti

i do 96 i=np+1,nnodes

j=i+nnode?

36 ule(jl=tj
write(6,200) nnode2,nelem2
writ=(6,300) npote,nbc2i,nbec22

if(npotd.eq.0) go to 110
write(6,350)
wricte(o,400) (i,npt2(i),vptz(i),i=1,npotd)

110 if(nbc21.eq.0) go to 120 .
write(o,450)"
write(6,400) (i,ndbc21(i),vbc21(i),i=1,nbc21)

120 if(nbc22.eq.0) go to 130
write(6,550)
write(6,600) (i,neb22(i),nsde22(i),vbe22(1,i),vbece2(2,1),

=1,nbec22)

130 ii=nnocdel+1
if=nnodel+nnodec
J=1
write(o,750)
édo 150 i=ii,if

ia=j/ 11
ic=11%id
if(j.2q.ic.or.j.eq.1) then
write(o,¢00) j,x12(1,1i),x12(2,1),u12(i)
end if

150 j:j-o-'l

200 foraat(/2x,#THE NO COF NCDES 1S#,i5,/2x,
.#THE NO OF ELEMENT 1IS#,i5)

303 format (/2x,#THE NO OF POINT SQURCES IS#,i5,
./¢x,#THE IO OF ESSENTIAL BOUNDARY CCND. IS#,15,
./Z2x,#THE NO OF NATURAL BOUNDARY COND. 1S#,i5)

350 format (/5x,#NU#,5x,#NODE#,5x,#POINT SOURCE VALUE# )

430 format(ax i9,3x,15,e15.5)

450 forma (/5x #NO#,5x,#NODE#, 3x,#ESSEN BOUND VALUE#,)

550 format(/Sx,#NO#,SX,#ELEMENT#,UX,#SIDE#,5x,#P#,5x,#GAMA#,)

600 format(2x,316,2e15.5)

759 format (/x,#NODE NO#,8x,#X#, 1U4x, #Y#,12x,#TEMP#,)

800 format(2x,15,3e15.5)

: return

end

subroutine init3

common/cinter/ xi3(2,50),nmax3,xi124(2,25),max124,nfirst(2),

. angl(2s), capa(Z 25),tinzgs), Path(DO)

uommon/cdoman/ xdim,ydim,prop(4,4)

common/ccon3/ nnode3,nelem3,npot3,nbc3l,nbc32

common/cnode3/ x3(2,1200),u3(1200)

common/cbe3/ ndbe31(50),vbe31(50),neb3«(40),nsde32(40),vbc32(2,40)

. ,npt3(10),vpt3(10)

common/cmatrid/ gk4(25,3),g8f4(25),vnorie5)

dimension a(55)
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read(5,*) ny
nnode3=ny*nmax3
npot3=0
nbc3lznmax3
nbc32=nmaxi-1
read(5,*) cexp
b=cexp/floatiny-2)
¢=0.0
do 10 i=1,ny-1"
m=i-1
a(i)=exp(-float(m)*p)
c=c+al(l)
continue
dal=(ydim-xi3(2,1)) /¢
do 30 j=1,nmax3
aa=92.0
kk=0 ,
do 20 k=j,nnode3,nmax3
X3(e,k)=ydin-d1*aa
x3(1,k)=xi3(1,3)
KK=kK+1 .
if(kk.it.ny) aa=aa+a(kk)
Ki=Kk
continue
x3(e,ki)=x13(2,3)
continue
nelznmax3-1
mrow=ny-1
nelem3=nel*mrow
read(5,*) ci

.do 70 i=1.nnode$

u3l(i)=ci
do ¢0 i=1,nbec3
négbe3i(i)=1
voc3l(i)=ci
nn=nel*(nrow-1)+1
do 100 i=1,nbe32
nebi3i2ii)=nn
nsde32(i)=3
voc3e(1,1)=0.0
vbe32(2,1i)=0.0
nn=nn+1
continue
write(d,1000)
format(//Zx,i#**** THE FOLLOWING 1S THE INITIAL INFORMATION#,

.# OF REGION 3 *®*»g4,/)

write(6,200) nnode3,nelem3

write(6,300) npot3,nbc3l,nbec32
ifinpot3.eq.0) go to 110

write(o,350)

write(o,400) (i,npt3(i),vpt3(i),i=1,npot3)
if(nbc31.eq.0) go to 120

write(6,450)
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write(6,400) (i,ndbc31(i),vbe31(i),i=1,nbe31)
if(nbc32.eq.0) go to 130
write(6,550)
write(6,600) (i,neb32(i),nsde32(i),vbc32(1,i),vbec32(2,1i),

=1,nbc32)
write(6,750)
do 150 i=1,nnode3

ia=i/en

ic=21%id

if(i.eq.ic.or.i.eq.1) then

write(6,600) i,x3(1,i),x3(2,1i),u3(i)

end if
continue
format(/2x,#THE NO OF KCDES 1IS#,1i5,

./2x,#THE NO OF ELEMENTS 1S#,15)

format(/<x,#THE NO OF POINT SOURCES IS#,1i5,

./2x,#THE NO OF ESSENTIAL BOUNDARY COND. 1I3#,i5,
./2x,#THE NO OF NATURAL BOUNDARY COND. IS#,1i5)

format(/5x,#NO#,5x,#NODE#,3x,#POINT SOURCE VALUE#,)
format(¢x,15,3x,15,e15.5)

format(/5>x,#NC#,5x%x,#NODE#, sx,#ESSEN BOUND VALUE#,)
format(/4x, #NO#,BX,#ELEMLNT# Ux,#SIDE#, 9x,#P#,11x,

.#GAMA, )

fornat(2x ik, Ux,ild4,5x,14,2e15.5)

format(/4x #hODL NO#,8x, #X# 14x, #Y#,12x,#CONCEN# )

formac(2x,15,3e15.9)

return

end

subroutine init¥

common/cinter/ xi3(2,50),nmax3,xi124(2,25),max124, nflrst(Z)
,angl(za2s), uapa(a 25), tln(ZS) ratio(50)

.common/cmatru/ gk4(25, 3) gru(2s), vnor(25)

common/celemid/ neu(ZS).nodesu(B.ZS)v
common/cdoman/ xdim,ydim,prop(4,4)

wrice(6,1000)
format(//2x,#**%%* THE FOLLOWING IS THE INITIAL INFORMATION#,

.# OF INTERFACE, REGION L4 ¥xx¥x ; /)

read(s,*) maxlz2i,nmax3
xunit=xdim/float(max124-1)
do 1 i=1,max124-1
xi124(1,1)=(i-1) *xunit
continue : : )
xi124(1,max124) =xdim . S

read(5,%*) si

do 10 i=1,max124
xitz2u4(2,1i)=si

do 20 i=1,nmax}3

. xi3(2,1)=si

xi3(1,1)=x1124(1,1)

do 30 i=z1,maxi24-1
a=xilzl(1,i)
b=xil24(1,i+1)
Jj=2%1
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xi3(1,j)=(a+b)/2.0
xi3(1,j+1)=D
30 continue
‘ pi=zasin(1.0)
do 40 i=1,max124
4o angl(i)=pi
' do 50 i=1,max124-1
neld(i)=z
nodesd(1,i)=i
nodesid(2,1i)=i+
50 continue
write(uv,200) maxlcl,max124-1
write(6,250) :
write(0,300) (i,xitz4(1,i),xi1z24(2,1i),i=1,max124)
write(6, 350)
write(6,400) (i,ned4(1),nodesd4(1,i),nodesl(2,i),i=1,max124-1)
200 format(/2x,#THE NO OF NODES ISt#,i5,
./e¢x,#THE NC OF ELEMENTS IS#,1i5,)
250 format (/ux,#NO#,10x,#X#,14x,#Y#,)
300 fermat(2x,16,2215.9)
350 format(/2x,#ELEM NO#,4x,#NO OF NODES#,6x,#NQODE 1#,
.6x,#NODE 2#,)
L4Qu formzt(2x,1i5,5x,1id4,5x,18,5%,18)
return
end :
subroutine intu(x,n d,t,p)

C....0n entrance, d and x_ are vectors containing f{x(1),...,x(i)1]
c....and x(i), i=1,...,n, respectively. On exit p will contain
C....tne value p(t) of the (n-1)-th degree polynomial interpolating
c. .to f on x

dimension x(5),d(5)

p=da(n)

i=n-1
10 p=d(i)+(t-x(1i))*p

izi-1 '

if(i.ge.1) go to 10

return

end

subroutine inter#4(x,n,d,t,p,angle,curv)
c....Given vectors d(i)=f(x(1),...,x(i)] and x(i), i=1,...,n
..Cbtain p(t), angle of normal direction and curvature at t
dimension x(5),d(5)
p=d(n) '
{=n-1
10 p=d(i)+(t-x(1))*
i=1i-1
if(i.ge.1) go to 10
c. .Compute the coefficients of the first and se;ond derivatives
C....of Newton Divided Difference Foraula
pder1=d(2)
do 50 {=3,n
¢e=0.0
do 40 im=1,i-1
c=1.0
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do 30 in=1,i-1
if(im.eq.in) go to 30
c=c*(t-x(in))

30 continue
CC=CcC+C
40 continue
pdert=pder1+d(i)*cc
50 continue

pder2=2.0%d(3)
if{n.eq.3) go to 1000

¢=0.0
do 00 i=1,3
60 c=c+(t-x(i))

pder2=pder2+d(4)*c*2.0
if(n.eq.d) go to 1000
c=0.0
do 70 i=1,4
K=i+1
65 if(k.gt.4) go to 70
oc=c+(t-x(i))*(t-x(k))
K=k+1 :
go to 65
70 continue
pder2=pderz+d(5) *c*2.0
if(n.eq.5) g0 to 10u0
write(b,zu0) ‘
200 formdt(/;x #N CUT OF RANGE IN LNTERU F#,)
stop
C....Get angle of normal direction
1000 if(pderi.le.0.1e-7) then
angle=asin(1.0)
else
slop=-1.0/pderi
anglezatan(slop).
end if
c. Compu»e curvature by formula P"/(1+P'¥%2) %%y
dumny=(1.0+pderi*¥%2)*%] 5
if(abs(pderc).le.0.1e-8) tnen
‘ curv=0.0
else
curv=abs(pder2)/dumny
end if
return
end ,
subroutine mesnl(nnodec,nelemc)
C....To remesh the temperature domain of region 1 in every
C.... time step
C....1. Given interface nodal coordinates xi124(2,25)
c... 2. Find Max. y-distance ymax of xi124(2,25)
c. .3. Obtain the nodal coordinates along each y-dir
.4, Finer mesh is constructed at both end-sides
c .
common/cwork/ xc(2,1200),nodec(9,1000),uc(1200)
common/cinter/ xi3(2,50),nmax3,xi124(2,25),max124,nfirst(2)
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,angl(25),capa(2,25),tin(25),ratio(30)
common/cscall/ rlenl,rvalil
common/cconl/ nnodel,neleml,npoti,nbcli,nbel2

..To find tne max. of y coordinate along the interface

ymax=xilzd(z,1)
do 10 i=2,max124

if(xitzd4(2,i).gt.ymax) ymax=xil24(2,1)
continue

.To find the no. of nodes along each y-dir

ylen=ymax/rlen1+0.5
num=int(ylen)
if(num.lt.1) stop
if(num.eq.1) then
mpsnum+c
else
mp=num+3
end if
nfirst(1)=s(maxizi-1)*(mp-2)+1
nnodec=max124*mp
.For each y-dir obtain the nodal coordinates
.Special consideration for end side nodes
do 50 i=1,maxi24
yaiss= x115u(e,1)/num
do 40 j=1,mp
Jl=j-1
nnm=3j1*max124+1
if(j.eq.1) go to 20
if(j.eq.2) go to 25
if(j.eq.(mp-1).and.j.ne.mp) go to 26
if (j.eq.mp) go to 30
xc(1,nmm)=xi124(1,41)
xel{2,nam) = (J1-1)*yaxs
go to U
xe(l,nmm)=xi124(1,1)
xc(2.nmm)=j1'ydis
go to U0
xc(1,nmm)=xi124(1,41)
xc(2,nam)=(j1-rvall) *ydis
g0 to U0
Xxc(l,nmm)=xi124¢1,1)
xc(c,nmm)=(jl-rvall-1) *ydis
g0 to 40
xc(1,nmm)=xit2i(1,41)
xc(e,nmm)=xit24(2,1i)
continue
continue

.ldetify the element data
.Only consider U4-node element here

nel=maxi2uU-i
mrow=num+<
nelemc=nel*mrow
icon=0

do /0 i=1,mrow
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nl=zi*maxizi

n2=z=nl-maxizi

do 60 j=1,nel
icon=icon+1
nodec(1,icon)=na+j
nodec(Z,icon)=n2+j+1
nodec(3,icon)=nt+j+1
nodec(4,icon)=nl+j

60 continue
10 continue
return
end

subroutine mesh2(nnodec,nelemc)
...To remesh the temperature domain of region 2 in every.
time step
Given interface nodal coordinates x112u(2 25)
Find min. y-distance ymin of xit24(2,25)
Obtain the nodal coordinates along each y-dir
. Finer mesh is constructed at interface

F— VS SR

0000000

common/cinter/ xi3(2,50),nmax3,xi124(2,25),max124,nfirst(2)
. ,angl(25),capa(2,25),tin(235),ratio(50)
common/¢scald/ rlen2,rval2 v
common/ccond/ nnode2,nelem2,npot2,nbc2l,nbec22
common/cdoman/ xdim,ydim,prop(4,4)

common/cwork/ xc(2,1200),nodec(9,1000),uc(1200)

C....rvall1=0.5 _ : :
c....To find the min. of y coordinates along the interface
ymin=xii2i(2,1)
do 10 i=2,max124
if(xi124(2,i).1v.ymin) ymin=xi124(2,1)
10 continue
c....To find the no. of nodes along each y-dir
ylen=(ydim-ymin)/rlen2+3.5
num=iat(ylen)
mp=num+c«
nnodec=max124*mp
c....For eacn y-dir obtain the nodal coordinates
do 50 i=1,max124
ydis= (ydlm-x112u\2,i))/num
do 40 j=1,mp
j1=3-1
‘nom=j1*maxt24+i
if(j.eq.(mp-1)) go to 25
if(j.eq.mp) go to 30
xc(1,nmm)=xi124(1,1i)
xc(2,nmm)=ydim-j1*ydis

g0 to 40

25 xc(1,nmm)=xi124(1,1)
xc(2,nmm)=ydim-(j1-rvalz) *ydis
go to 40

30 - oxc(l,nmm)=xited(1,1)
: xc(2,nmm)=xi124(c,1)
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continue
continue

.Identify yhe element data

Only consider U-node element here
nel=maxi2i-1
nfirst(2)=num*nel+l
mrow=num+1
nelemc=nel*mrow
icon=0
do 70 i=1,mrow

nlzi*maxizy
ne=nl-maxiad
do 60 j=1,nel
icon=icon+1
nodec(1,icon)=nz+j+1
nodec(2,icon)=n2+j
nodec(3,icon)=nl+j
nodec(4,icon)=nl+j+l
continue
continue
raturn
end
subroutine mesh3
.To remesh the concentration domain in every tlme step

.Givan interface nodal coordinates xi3(2,50)

.Keep the same meshing system except squeeze each y-dir

.. proportional ‘to ratio(i) respectively

common/cinter/ xi3(2,%0),nmax3,xi124(2,25),max124,nfirst(2),
. angl(25),capa(2,25),tin(25),ratio(50)
common/cdoman/ xdim,ydim,prop(4,4)

common/ccon3/ nnode3,nelem3,npot3,nbc3l,nbc32

common/cvnode3/ x3(2,1200),u3(1200)

common/cWork/ xci(2,1230) ,nodec(9,1000),uc(1200)

.For each y-direction obtain the nodal coordinates

do 10 1=1,nmax3
xc(1,1i)=xi3(1,1)
xc(2,i)=ydim
continue
do 30 i=1,nmax3
do 4C j=ienmax3,nnode3,nmax3
xe(1,3)=xi3(1,1)
xc(<,j)=ydim- (ydzm-x;(z J))'ratlo(x)
Ji=3]
continue
xc(2,3j)=x13(2,1)
continue
rewurn
end
subroutine moal(nnodec)
To modify the boundary conditions of the temperature region 1
common/cntrld/ time,tmax,delt,thet,nprint,niter,tolen,icount,nwrt
common/c¢becl/ ndbe11(25),vbe11(25),neb12(20),nsde12(20),vbec12(2,20)
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,npt1(10),vpt1(10)
common/01nter/ xi3(e, bO) nmax3,xi124(2,25),max124,nfirst(2)
,angl(25), capa(2 25), t;n(25) ratlo(SO)

nl=maxi24+1
n2=maxlzu*2
K=znnodec-maxiz2i+l
Kk =1
do 10 i=n1,n2
ndbec11(i)=K _
vbel1(i)=tin(kk)
K=k+1
KKz=kKk+1
continue

1aa 10000
iaaa=2u000
tvalue=-0.3
factori1=-0.01

if (icount.ge.iaa.ana. 1count le.iaaa) then
pi=acos(-1.0)
do 30 i=1,mzax124
degree=xi124(1,1i)*pi/xi124(1,max14)
vbel1(i)=tvalue+factori*cos(degree)
continue
else
do 40 i=1,max124
vbel11(i)=tvalue
continue '
end if
return
end
subroutine moda(nnodec)

..To mcdify tne boundary conditions of the temperature region &

common/cbee/ ndoc21(25),vbe21(25),neb22({20),nsde22(20),vbc22(2,20)
,npt2(10), vpt2(10)
common/ulnter/ xi3(2, 50) nmax3,xi124(2,¢5),max124,nfirst(2)
,angl(25), capa(2 25),tin(25%),ratio(50) .

nl=maxizi+

nz=maxl24*2

K=nnodec-maxlcl+]

kk=1

do 10 i=n1,n2
ndbc21(1i) =k
vbe21(i)=tin(kk)
K=K +1
KK=xKk+1

continue

return

end

subroutine mod3

common/cntrle/ time,tmax,delt,thet,nprint,niter,tolen,icount,nwrt
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commqn/cbe 3/ ndbe31(50),vbe31(50),neb32(40),nsde32(40),vbec32(2,40)

. ,npt3(10),vpt3(10)

common/cinter/ xi3(2,50),nmax3,xi124(2,25),nax124,nfirst(2),
angl(25),capa(2,25),tin(25),ratio(50)

20

39

4o

.common/cmatru/ gki4(25,3),8f4(25),vnor(25)

dimension tmp(50)

dec=0.0

const=1.0-dec

J=1

do 10 i=1,max124-1
as-vnor(i)

z-vnor(i+1l)

c=(a+b)/2.0
vbe32(1,j)=(a+c)/2.0*const
J=j+
vbc3e(1,j)=(b+c)/2.0%const
J=j+1

continue

factori=0.5e-5
factor2=-0.5e¢-4
i3a=cql
iaaa=10000
ibb=210Q00
ibbb=3000
iperioca=10

ooooooooooooooooooooooooooooooooo

pi=acos(-1.0) _
if(icount.ge.iaa.and.icount.le.iaaa) then
do «0 k=1,nmax3
tmp(k)=x1i3(1,k)*pi/xi3(1,nmax3)
continue :
do 30 k=1,nmax3-1
degrees= 5. S*(tmp(k)+tmp(k+1))
vbe32(1,k)=voe32(1, k)+ractor1*cos(degree)
continue
end if
iflicount.ge.ibb.and.icount.le.ibbb) then
igap=(icount-ibb)/iperiod
itest=igap/«*2
ivalue=iperiod*igap+ibb
if(itest.eq.igap) then
degree=(icount-ivalue)*pi/iperiod
do 40 k=1,nmax3-1
vbe32(1,k)=vbe32(1,k)+factor2*cos(degree)
continue
else
degree=(icount- lvalue)'pi/xperlod
do 50 k=1,nmax3-1
vbc32(1,k):vbc32(1.k)-ractorZ’cos(degree)
continue
end if
end if
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return

end

subroutine move

common/cinter/ xi3(2,50),nmax3,xi124(2,25), max1au nfirst(2)

. ,angl(2s), capa(a 25), tln(25) ratlo(SJ)
common/celem/ ne(1000),node(9.1000)

common/cnode/ x1¢(2,1200),u12(1200)

common/celemld/ neld(25),nodesk(3,25)

common/cmatrld/ gkl4(25,3),gf4(25),vnor(25)

common/cntrlil/ noptl,nopt2,nopt3

common/cntrl2/ time,tmax,delt,thet,nprint,niter, tolen icount,nwrt
common/cconl/ nnode1 nelemi,npott, nbc11 nbciz

common/cint/ xlntI(u) w1nt1(u),x1ntz(16 2),wint2(16) ,none,ntwo
common/cdoman/ xdim,ydim,prop(u,u)

dimension xim(2,25).

!
call procl
call valold(xim)
call adstd(xim)
call postd
return
end
subroutine newl(nnodec,nelemc)
c. .To obtain the nodal temp. in the mesh system of domain 1
C. .Update all node and element information : '
. ) .
common/cnode/ x12(2,1200),u12(1200)
common/cinter/ xi3(2,5%0),nmax3,xi124(2,25),max124,nfirst(2)
. ,angl(z5),capa(2,29),tin(25),ratio(50)
common/celem/ ne(1000), node(9 1000)
common/ccont/ nnodel, nelem1 ,npotl,nbecil, nbc12
common/cwork/ xc(2, 1200) nodec(9 1000) UL\1200)
c
nc=nnodec-(maxici*2) +1
nl=nnodel-maxizhi+1
do 10 i=1,maxizi
- if(xci2,nc).gr.x12(2,n1)) then
write(6,1000)
1000 format(2x,#Too large of time step ,out of range in newl.f#,)
stop
end if
nc=nc+1
nlz=nls+1
10 continue

nf=nnodec-maxi24
do 50 i=1,max124
do 40 j=i,nf,maxi22i
do 30 k=i,nnodel,max124
if(x12(2,k).1t.xc(<,j)) go to 30
if(x1<(2,k).eq.xc(2,j)) then
uce(jl=ul2(x)
go to 40
eand if
kk=zk-max124i
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slp=(u12(k)-ul2(kk))/(x12(2,k)-x12(2,kk))

uc(j)=ul2(k)+slp*i{xc(2,j)-x12(2,k))
go to 40
continue
continue
continue
do 55 i=1,max124
nfz=nf+1
uc(nf)=tin(i)
continue
nnodel=nnodec
do 70 i=!,nnogel
ulz(i)=uc(i)
do 60 j=1,2
x1e(j,i)=x2(j,1i)
continue
continue
neleml=zneleme
do 90 i=t1,nelem!
ne(i)s=4
do 80 j=1,4
node(j,i)=nodec(j,i)
centinue
continue
rewurn
end
subroutine newd(nnodec,nelemc)

c....To obtain tne nodal temp. in domain 2
C....Update all node and element information

]

30
40

common/cnode/ x12(2,1200),u12(1200)
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common/cinter/ xi3i2,50),nmax3,xi124(2,<5),max124,nfirst(2)

. ,angi(2%),capa(2,25),tin(25%),ratio(30)
common/celzm/ ne(1000),node(9,1000)
cammon/ccon2/ nnodel,neleml,npot2,nbcli,nbcl

ccmmon/ccont/ nnodel,neleml,npoti,nbcll,nbcla
common/cwork/ xc¢(«,12C0) ,nodec(9%,1000) ,uc(1200),

nsum=nnodel+nnodel
do 50 {=1,maxtcl
do 40 j=i,nnodec,max124
l=i+ennoge!
do 30 k=l,nsum,max124
if(x12(2,k).gt.xc(2,j)) go to 30
if(x12(2,k).eq.xc(2,j)) then
uc(j)=urzl(k)
g0 to 4G
end {f
kk=k-max124

slp=(ule(k)-ul2(kx))/(x12(2,k)=-x12(2,kk)).

uciJ)=ul2(k)+slpo*(xc(e,j)-x12(2,k))
g0 to 40
continue
continue
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continue

nnode2=nnodec

do 70 i=1,nnodez
K1=i+nnodeil
ul2(k1)=uc(i)
do 60 j=1,2

x12(j,x1)=xc(j,i)

continue

continue

nelemd=neleme

do 90 i=1,nelem2
Kl=i+neleml
ne(k1)=4
do 80 j=1,4 :

node(j, k1) nocec(J i)

continue

continue

return

end

subroutine new3

..To obtain the nodal concentration in the new mesh system
... DY using old mesh system and old nodal values
.Update all node and c<lement information

0O000

10

common/cncde3/ x3(2,1200) u3(1£00)
common/cinter/ x13(2 50), nmax;,x11£u(2 25) ,max124, nflrst(Z)
,angl(25),capa(2,25), tln(ZS) ratlo(:O)

common/celem/ ne(1000), node(9 1000)

common/ccon3/ nnode3s, nelem3 npot3,nbec31,nbec3e
common/cwork/ xc(2,1200),nodec(9,1000),uc(1200)

do 10 i=1,nelem3
ne(i)=4
nel=nmax3-1
mrow=nelem3/nel
icon=0
do 20 i=1,mrow
nl=i*nmaxs
n2=nl-nmaxs
do 15 j=1,nel
icon=icon+1
node(t, 1con)-ng+3+1
node(2,icon)=n2+j
node(3.icon)=nl+j
node(4,icon)=ni+j+1
continue
continue
do 50 i=1,nmax3
do 40 j=i,nnocde3,nmax3
do 30 k=i,nnode3,nmax3
if(x3(2,k).gt.xc(2,j)) go to 30
if(x3(2,k).eq.xc(2,j)) then
uc(jl=u3(k)
go to 40
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end if

kk=k-nmax3

slp=(u3ik)- u3(kk))/\x3(a k)-x3(2,kk))
uc{j)=u3(k)+slp*(xc(2,j)-x3(2,k))

go to U0
30 continue
40 continue
50 continue

do 70 i=1,nnode3
u3(i)=uc(i)
do 60 j=1,2
x3(j,i)=xec(j,i)

60 contianue
70 continue
recurn
end

subroutine oneint(n)
common/cint/ xinti1(4),wint1(l4),xint2(16,2), wlnt2(16) none,ntwo
ifi(n.eq.1) then
xint1(1)=0.0
winti1(1)=2.0
return
else if(n.eq.2) then
xint1(1)=-1.0/38qrt(3.0)
xint1(2)=-xint1(1)
wint1(1)=1.0
winti(2)=winti1(1)
return
else if(n.¢q.3) then - '
xint1(1)=-3qre(3.0/5.0)
xint1(2)=0.0
xint1(3)=-xint1(1)
wint1(1)=5.0/9.0
wint1(z2)=0.0/9.0
wint1(3)=winci(1)
return
else if(n.eq.4) then
xint1(1)=-0.8061136311594053
xint1(2)=-0.339931043584856
xint1(3)=-xint1(2)
xint1(4)=-xint1(1)
wint1(1)=0.347854045137454
wint1(2)=0.652145154862546
wint1(3)=wint1(2)
wintl1(4)=winvi(1)
return
else
write(6,100) :
100 format(Zx #Choose the improper value {n oneint f#)
stop
end if
end
subroutine posti(npass)
common/cconl/ nnogel,neleml,npotl,ndbcli,nbci2
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common/cnode/ x12(2,

common/cntrl2/ time,tmax,delt,thet,nprint,niter,tolen,icount,nwrt
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1200),u12(1200)

write(6,100) time,npass

format(//2x,#THE RESULTS OF REGION 1 IS PRINTED AS FOLLOWING #,
.#AT TIME#,e15.5,/2x,#THE 1TERATION NO IS#,i5,)

write(6,200)

format (/<x,#NODE#, 10x, #Xi#, 1U4x,#Y#,14x,#TEMP#,)

do 5 i=1,nnodel

if(abs(ule(i)).le.

continue

do 10 i=1,nnode!l
write(6,300) i,x12(1
format(ib6,3e15.5)
return

end

1.0e-15) u12(1)=0.0

yi),x12(2,1),u12(i)

subroutine post2(npass)

common/cconl/ nnodel,
common/cnode/ x12(2,

common/cntrl2/ time, tmax,delt thet,nprint, nlter tolen,icount,nwrt

neleml,npotl, nbc11,nbc12
1200) u12(1400)

common/ccona/ nnodel,nelem2,npot2,nbec2i ,nbecel

write(6,100) time,npass
formdt(//Zx #THE RESULTS CF REGICN 2 IS PRINTED AS FOLLOWING #,
LH#AT TIME#,e15.5, /2x,#TdE ITERATION NO IS#,i5,)

write(o, 200)

format(/<x, #NODE#, 10x, #X#, 1Mx,#Y# 14x, #TEMP# )

do 5 i=1,nnode?2
KK= 1+nnode1

if(abs(ul2(kk)).le.1.0e-15) u12(kk)-0 0

continue

do 10 i=1,nnode?
k=i+nnodel

write(6,300) i,x12(1

format(ib6,3e15.95)

return

end

k) ,x12(2,k),u12(K)

subroutine post3(npass)
common/ccon3/ nnode3,nelem3,npot3,nbec31,nbc32

common/cnode3/ x3(2,

common/cntrl2/ time,tmax,delt,thet,nprint,niter,tolen,icount,nwrt

1200),u3(1200)

write(6,100) time,npass

format(//2x,#THE RESULTS OF REGLION 3 IS PRINTED AS FOLLOWING #,

L#AT TIME#, e15 5,/2x,#THE ITERATION NO IS#,i5, )

write(6, 200)

format (/2x,#NODE#,10x, #X#,14x,#Y#,14x,#CONC#,)

do 5 i=1,nnode3
if(abs(u3(i)).le.n

continue

do 10 i=1,nnodeX

write(6,300) i,x3(1

format(ib,3e15.5)

return

.0e-15) u3(i)=0.0

»1),x3(2,1),u3(i) -

«
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end

subroutine postl
common/cntrl2/ time,tmax,delt,thet,nprint,niter,tolen,icount,nwrt

common/cinter/ xi3(2,50),nmax3,xi124(2,25),max124,nfirst(2)"
. ,angl(25),capa(2,25),tin(25),ratio(50)
if(icount/nprint*nprint.eq.icount) then-
write(o,10) time
format(/2x,#THE FOLLOHING IS PRINTED OUT AT TIME#,e15.5,)
write(6, 20)
format(//5x,#NO#,10x,#X#,14x,#Y#,13x,#ANGL#,10x,
#CAPA1#,1OX,#CAPA2#,)
do 30 i=1,max124
write(6,40) i,xit24(1,1i),xi124(2,1),angl(i),capa(1,1i),
capa(¢,i)
format(2x,i5,5e15.5)
write(d,50)
format(//2x,#NO(CON)#,Tx,#X#,14x,#Y#,12x,#RATIO#,)
do o0 i=1 nmax3
write(6, 70) i,x1301,1),xi3(2,1), ratio(x)
format(ié 3e15.5)
end if
raturn
.end
subrcoutine prep1
.To get the nodal coordinates, element information, nodal
values, and boundary conditions

common/cntrld/ time,tmax,delt,thet,nprint,niter,tolen,icount,nwrt
common/c¢conl/ nnodel,neleml,npotti,nbcti, nbeciz

common/cnodetl/ x12(2,1200),u12(1200) .

common/celem/ ne(1000) node(9 1000)

common/cbel/ ndbcl1(25) vbc11(25) ned12¢20), nsde1a(2u),

. vbe12(2,20) npt1(10).vpt1(10)

common/cinter/ x;g(Z 50) ,nmax3j,xi124(2,25),max124,nfirst(2),

. angl(295), capa(2 25),tin(295), ratxo(SO)
common/edork/ xc(e, 1400) nodec(9, 1000) uc(1200)

call mesnl(nnodec,nelemc)

call newl(nnodec,nelemc)

call moal(nnodec)

call set3(nnodel,nelem? npot1)
return

end

subroutine prepZ

..To get the nodal coordinates, element information, nodal

values, and boundary conditions

common/cconl/ nnodel,nelem2,npot2,nbecll,nbecl2

common/cnodel/ x12(2,1200),u12(1200)

common/celem/ ne(1000),node(9,1000)

common/cbe2/ ndbe21(25),vbe21(25),neb22(20) ,nsde22(20),

. vbecl22(2,20),npt2(10),vpta(10)

common/cinter/ xi3(2,50),nmax3,xi124(2,25),max124,nfirst(2),
angl(25),capa(2,2%),tin(25),ratio(50)
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common/cconl/ nnodel,nelemli,npoti,nbcli,nbeci2
common/c¢cscala/ rlen2,rval2

common/cdoman/ xdim,ydim,prop(4,4)
common/cwork/ xc(2,1200) ,no0dec(9,1000),uc(1200)
mm=nnodel+nnode?

nn=nelemi+nelem?

nm=npotl+npotd

call mesh2(nnodec,nelemc)

czll new2(nnodec,nelemc)

call mod2(nnodec)

call set3(mm,nn,nm)

return

end

subroutine prep3
C....To get the nodal coordinates, element lnformatlon, nodal
2.... values, and boundary conditions

common/cntrl2/ time,tmax,delt,thet,nprint,niter,tolen,icount,nwrg

common/ccon3/ nnode3,nelem3,npot3,nbc31,nbc32

common/cnode3/ x3(2,1200),u3(1200)

common/celem/ ne(1000),node(9,1000)

common/cbe3/ ndbe31(50),vbe31(50),neb32(40),nsde32(40),
vbe32(2,40) ,npt3(10), vpt3(10)

common/ulnter/ xi3(e, bO) nmaxg.x11cu(2 25) ,max124,nfirst(2),

angl(25), capa(2 25),tin(25), ratlo(SO)

ccmmon/cmatru/ gku(2s, 3) gru(2s), vnor(aS)

common/caoman/ xdim,ydim,prop(4, “)

common/ cdork/ xc(¢,1400) nodec(9,1000), uc(1200)

call mesn3

call new3

call mod3

call set3(nnode3,nelem3,npot3)

return

end

subroutine procl

level 2, gk,gf,nz

common/cntrll/ noptl,noptl,nopts3

common/cntirld/ time,tmax,delt,thet,nprint,niter,tolen, icount ,nwrt
common/cdoman/ xdim,ydim, prop(u 4)

common/cint/ xint1(u),wint1(u).xint2(16,2)3wint2(16),none,ntwo

common/cconl/ nnodel,neleml,npotl,nb¢cil,nbel2
common/celem/ ne(1000),node(9,1000)
common/cnode/ x12(2,1200),u12(1200)
common/cbec1/ ndbel11(25),vbe11(25),neb12(20) ,nsdei12(z0),vbec12(2,20)
. ,npt1(10),vpt1(10)
common/¢scall/ rleni,rvall
common/cmatrx/ gk(1200,25),gf(1200),nz
call foral

call aply!?

return

end
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subroutine proc?2

level 2, gk,gf,nz

common/cntrll/ nopti,noptl,nopts

common/¢cntrl2/ time,tmax,delit,thet,nprint,niter,tolen,icount,nwrt
common/cint/ xint1(4),wint1(4),xint2(16,2),wint2(16) ,none,ntwo
common/cdoman/ xdim,ydim,prop(4,4)

common/cconl/ nnodel,neleml!,npott,nbcti,nbecll

common/cconc/ nnode2,nelem2,npot2,nbcll,nbeel

common/celem/ ne(1000) ,ncde(59,1000)

common/cbc2/ ndbe21(25),vbe21(25),neb22(20) ,nsde22(20),vbecl2(2,20)
. ,nptz(10), vpt4(10)

common/cscalZ/ rlen2,rvale

common/cmatrx/ gK(1200 25),8f(1200),nz

common/cnode/ x1a(2,1200).u12(1200)

call form2

call aplyc

return

end

subroutine proc3

level 2, gk,gf,nz

common/cntrll/ noptl,noptl,nopt3

common/cntrld/ time,tmax,delt,thet,nprint,niter,tolen,icount,nwrt
common/cint/ x1nt1(u) w1nt1(u),x1nt2(1o 2), w1nt2(1b) none,ntwo
common/cdoman/- xdim,ydim,prop(&,4)

common/ccon3/ nnode3,nelem3,npot3,nbec3l,nbe32

common/cnode 3/ x3(2,1200),u3(1200)

- common/celem/ ne(1000),no0de(%,1000)

common/cbe 3/ ndbc;1(50) vbc31(50) ned3z2(40), nsde32(30).vbc32(2 4o)
. ,npt3(i0), vptj(]O)

common/cmatrx/ gk(1400 25),8£(1200),nz

call form3 _

call aply3s

return

end

subroutine procl

common/cinter/ xi3(2,50),nmax3,xit24(2,25),maxtz4,nfirse(2),

. - angl(25),capa(2,25),tin(<5),ratio(50)
common/celemld/ ned(25),nodesi(3,25)

common/celem/ ne(1000),node(9,1000)

common/cnode/ x12(2,1200),u12(1200)

common/cmatrl/ gki4(25,3),3f4(25) ,vnor(25)

common/cntrll/ noptl,noptl,nopts

common/cntrl2/ time,tmax,delt,thet,nprint,niter,tolen,icount,nwrt
common/cint/ xinti(4),wint1(4),xint2(16,2),wint2(16),none,ntwo
common/cconl/ nnodel,neleml,npoti,nbecll,nbcle

common/cdoman/ xdim, ydlm prop(“ “)

call formi :

call solvel

return

end

subroutine rnhsb(n,ib)

level 2, gk,gf,nz
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common/cmatrx/ gk(1200,25),g8f(1200) ,nz
common/cwork/ xc(2,1200),no0dec(9,1000),uc(1200)
npl=n+l
do 20 i=2,n
sum=0.0
kK1zminO(ib-1,i-1)
do 10 k=1,k1
sum=sum+gk(i-k,k+1)/gk(i-k,1) *gf(i-k)
gf(1)=gf(i)-sum ,
uc(n)=gf(n)/gk(n,1)
do U0 k=2,n
i=npi-k
jr=i+1
j2=min0O(n,i+ib-1)
sum=0.0
do 30 j=j1,j2
mm=j=-j1+2
sum=sum+uc(j)*gk(i,mm)
uc(i)=(gf(i)-sum)/gk(i,1)
return
end -
subroutine rhsbid4(gk,dn,gf,n,id)
dimension gk(25,3),8f(25),dn(25)
npi=n+i
do 20 i=Z,n
sum=v.0
k1=minG(ib-1,1i-1)
do 10 k=1,k!
sum=sun+gk(i-k,k+1)/gk(i-k,1)*gf{i-k)
gf(i)=gf(i)-sum ,
dn(n)=3f{n)/gk(n,1)
do 40 k=2,n
i=npl-k
ji=is
j2=minO(n,i+ib-1)
sum=0.0
do 30 j=j1,j2
mm=j-j1+2
sum=sum+dn{j)*gk(i,mm)
dn(i)=(gf(i)-sum)/gk(i,1)
return
ena '
subroutine set3(nn,ne,np)
if(nn.1t.2.0r.nn.gt.1200) go to 1000
if(ne.lt.l.or.ne.gt.1000) go to 1000
if(np.1t.0.or.np.gt.10) go to 1000
return
write(6,100)
format(/Zx,#0ut of dimensional range in set3.f#,)
stop
end
subroutine shape(x,n,psi,dpsi)

gcececeececcececcceecceccececececcececceececceceeceeececeecececeececceececcececceececcceccececee
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input parameters x,n .
output parameters psi

) o W .the number of

_ element
x(1),x(2)..

apsi....derivatives of

OO0O0O0O0D0OOOD0O0O000OO0

dimension x(2),psi(9y),
if(n.eq.4) then
p=0.250%*(1.0-x(2))
q 0 250*(1.0+x(2))
L0-x(1)
LO+x(1)
psi(1)=p*r
psi(2)=p*s
psi(3)=q*s
psi(u)=g*r
dpsi(1,1)=-p
dpsi(1,2)=-0.250%r
dpsi(2,1)=p
apsi(2,2)=-0.250%*s
apsi(3,1)=q
dpsi(3,2)=-dpsi(2,2
~dpsi(4,1)=-q
dpsi(4,2)=~dpsi(1,2
return '
else if(n.eg.8) then

b-, 8-, and 9-node quadrilateral

.coordinates of point
coordinate system
psi..... shape functions

Psi(1)=0.250#*(1.0-x(1))
Psi(z)=0.250%(1.0+x(1))*(1.0-x(2))*(=1.0+x(1)-x(2))
Psi(3)=0.250%(1.0+x(3))*(1.0+x(2))%(-1.0+x(1)+x(2))
Psi(4)=0.250%*(1.0-x(1))*#(1.0+x(2))*(=1.0-x(1)+x(2))
PSi(5)=0.50%*(1.0-x(1)**2)*(1,0-x(2))
PSi(6)=0.50%(1.0+x(1))*(1.0=-x(2)%**2)
PSi(7)=0.50%*(1.0-x(1)®#2)*(1,0+x(2))
PsSi(8)=0.50#(1.0-x(1))*(1.0-x(2)**2)
dpsi(1,1)=0.250*(1.0-x(2))*(2.0%*x(1)+x(2))
dpsi(1,2)=0.250%(1.0-x(1))*(x(1)+2.0%x(2))
dpsi(2,1)=0.250%(1.0-x(2))*(2.0#%x(1)-x(2))
dpsi(2,2)=0.250*(1.0+x(1))*(-x(1)+2.0%*x(2))
dpsi(3,1)=0.250#(1.0+x(2))*(2.0%*x(1)+x(2))
dpsi(3,2)=0.250*(1.0+x(1))*(x(1)+2.0%*x(2))
dpsi(4,1)=0.250%(1.0+x(2))*#(2.0%x(1)-x(2))
dpsSi(4,2)=0.250%(1.0-x(1))*(-x(1)+2.0%x(2))
apsi(9,1)==-x(1)*(1.0-x(2))

apsi(5,2)=-0. 50'(1 0-x(1)#%2)
dpsi(6,1)=0.50%(1.0-x(2)*#*2)

This subroutine is to calculate the values of the shape
functions and their qerivatives with respect to the
master element coordinate at the spcified point x

dpsi

shape functions

cceecececceeceecececececcecceceecececeecececeeceececeeceeececeeeceeceecece

dpsi(9, 2)

)
)

e¢lement are considered
nodes (and shape functions) in the

in the master element

#(1.0-x(2))*(-1.0-x(1)-x(2))
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dpsi(6,2)=-x(2)*(1.0+x(1)
dpsi(7,1)=-x(1)*(1.0+x(2)
dpsi(7,2)=-dpsi(5,2)
dpsi(d,1)=-dpsi(6,1)
dpsi(3,2)=-x(2)*(1.0-x(1))

)
)

return
else if(n.eq.9) then

facti=x{(1)**2-x(1)
fact2=x(2)**2-x(2)
fact3=x(1)**2+x(1)
factl=x(2)**2+x(2)
fact5=1.0-x(2)%#*2
factb=1.0-x(1)%*%2

psi(1)=0.250%fact1*fact?
psi(2)=0.250%*fact3*facte
psi(3)=0.250%fact3*facch
psi(4)=0.250*fact1*facti
psiio)=0.50%factb¥*facte
psi(6)=0.50*fact3*facth
psi(7)=0.50%*factb6*factH
psi(8)=0.50*fact1*facts
psi(9)=fact5*facté

dpsi(1,1)=0.250%(2.0%x(1)-1.0)*fact2
dpsx(1.2) =0.250*fact1%(2.0%x(2)-1.0)
dpsi(2,1)=0.250%(2.0%x(1)+1.0)*facty
dpsi(2,2)=0.250*fact3*%(2.0%x(2)+1.0)
dpsi(3,1)=dpsi(2,1)

dpsi(5,<2)=dpsi(2,2)

dpsi(4,1)=0.250%(2.0%x(1)-1.0)*factd
dpsi(4,2)=0.250%fact1*(2.0%x(2)+1.0)

S dpsi(3,1)=-x(1)*facte

dpsi(5,2)=0.50%*facto*(c.0%x(2)-1.0)

of shape functions #,/)

dpsi(6,1)=0.50%(2.0%x(1)+1.0)*fact5
dpsi(b,2)=-x(2)*fact3
dpsi(7,1)=-x(1)*facth ,
apsi(7,2)=0.50%factO*(2.0%*x(2)+1.0)
dpsi(6,1)=0.50*%(2.0%x(1)-1.0)*fact5
dp51(8,2)=-x(2)*fact1
dpsi(9,1)=-2.0%x(1)*facts
dp3i(9,2)=- 2 O*x(2)*factb

raturn

else

write(6,100)

format(2x,#Choose the wrong no.

stop '

end if

end

subroutine solve(nnode)

‘level 2,
- common/cmatrx/ gk(1200,25),gf(1200),nz

gk,gf,nz

common/cwork/ xc(e, 1200) nodec&9 1000) uc(1200)

if(nz.eq.

if(nz.eq.l.0or.nz.eq.2) ib=13
call trib(nnode,1Db)

3) ipb=23

170
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call rhsb(nnode,ib)

raturn

end

subroutine solvel

common/cmatrld/gki(<s, 5) gfi4(25),vnor(zs)

common/cinter/ xi3(2, )0) ,Amax3, x112u(2 25) ,max124, nflrst(Z)
,angl{2s), capa(z 25), tln(Zb) ratxo(SO)

call tribld(gk4,max124,ib)

call rhsbid(gkl,vnor,gfi4,max124,ib)

return

enag

subroutine sovli

level 2, gk,yf,nz

common/cntrle/ time,tmax,delt,thet,nprint,niter,tolen,icount,nvwrt

common/cntrll/ noptl,noptl,nopt3

common/cdoman/ xdim,ydim,prop(4,4)

common/cint/ xint1(4),wint1(4),xint2(16,2),wint2(16),none,ntwo

common/c¢coni/ nnodel,neleml,npoti,nbell,nbeci

common/celam/ ne(1000),node(9,1000)

common/cnode/ x12(¢, 1200) u12(1200)

common/cbel/ ndbel11(29), vbc11(£5) neb12(20) ,nsde12(20),vbec12(2, 20)
,npt1(10), vpt1k10)

common/bscal1/ rlent, rV411

common/cmatrx/ gk\1400.257,gf(1200);nz'_ '
common/cinter/ xi3(2,50),nmax3,xi124(2,25),max124,nfirst(2),
angl(25),capa(2,25),tin(25),ratio(50)

common/cwork/ xc(2, 1200) nodec(9, 1000) uc(1200)

nz=1

npass=0

error=0.0

call prepl

call proct

call solve(nnodetl)

if(nopr3.eg.1) go to 40O

npass=npass+!

do <0 i=1,nnodel
diff=abs(uc(i)-ut2(i))
if(ciff.gt.error) errors Qlff
ule(i)=uc(i)

continue _

it (error.le.tolen) go to 50

if(npass.lt. niter) go to 10

write(6,100)

format(2x,#Dont Converge in sovli.f#,)

stop

do 45 i=1,nnodel
ul2(i)=uc(i)

if(icount/nprint*nprint.eq.icount) call posti(npass)

return

end

subroutine sove

lavel 2, gk,gf,nz

common/cntrld/ time,tmax,delt,thet,nprint,niter,tolen,icount,nwrt
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common/cntrll/ noptl,nopte,nopt3
common/cdoman/ xdim,ydim,prop(4,4)
common/cint/ xint1(4),wint1(4),xint2(16,2),wint2(16),none,ntwo
common/ccon2/ nnodel,neleml,npot,nbc2l,nbec22
common/celem/ ne(1000),node(9,1000)
common/cnode/ x12(2,1200),u12(1200) A .
common/cconl/ nnodel,neleml,npotl,nbcti,nbecle A
common/cbc2/ ndbca1(45) vbc;1(45) neb22(20) nsde22(20),vbec22(2, 20)
. ,npte(10), vptd(10) .
common/gcscald/ rleng,rvall
common/cmatrx/ gk(1200,25),g8f(1200),nz
common/cinter/ xi3(Z,50), nmax3 x112M(2 25) ,max124, nfirst(2),
. angl(29), capa(2 25), tln(25) ratlo(SO)
common/cwork/ xc(2,1200).nodec(9,1000),uc(1200)
nzs=2
npass=0
error=0.0
call prep?2
10 call procé
call solve(nnode?2)
if(nopt3.eq.1) go to 40
npass=npass+)
do 20 i=1,nnode?
K= 1+nnode1
diff=abs{uc(i)- u12(k))
if(diff.gt.error) error=diff
ulz(k)=uc(i)
20 continue
if(error.le.tolen) go to 50
if(npass.lt. niter) go to 10
write(6,100)
100 format(2x,#Dont Converge in sov2.f#,)
stop
49 ao 4o i=1,nnode?
. k=i+nnodel
45 ul2(k)=uc(i)
50 if(icount/nprint*nprint.eq.icount) call post<(npass)
- return
end
subroutine sov3
level 2, gk,gf,nz .
common/cntrle/ time,tmax,delt,thet,nprint,niter,tolen,icount,nwrt,
common/contrll/ noptl,noptl,nopt3
common/cdoman/ xdim,ydim,prop(4,4) ' .
common/cint/ x1nt1(u) ,Wwint1(4),xint2(16,2),wint2(16),none,ntwo
common/ccon3/ nnode3,nelem3,npot3,nbc3t,nbc32
common/celem/ ne(1000),node(9,1009)
common/cnode3/ x3(z,1200),u3(1200)
common/cbec3/ ndbe31(50), vbc31(50) neb32(40) ,nsde32(40), vbc32(2 40)
. ,npt3(107, th5(10)
common/cmatrx/ bk(laOO ¢5),gf(1200),nz
common/cmatrk/ gku(25,3),gru(25),vnor(25)
common/cinter/ xi13(2,50) ,nmax3,xit24(2,25),max124,nfirst(2),
angl(25),capa(2,25),tin(25),ratio(50)
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cbmmon/cwork/ xci2,1200) ,no0dec(9%,1000) ,uc(1200)
nz=3
npass=0

~error=0.0
- call prep3

call proc3
call solve(nnode3)
if(nopt3.eq.1) go to 40
npass=npass+!
do 20 i=1,nnode3
diff:abs(uc(i)-u3(i))
if(diff.gt.error) error=diff
u3(ij=uc(1)
continue
if(error.le.tolen) go to 30
if(npass.lt. niter) go to 10
write{(6,100)
formati2x,#Dont Converge in sov3 £#,)
stop _
do 45 i=1,nnode3
u3i(i)=suc(i)
if(icount/nprint*nprint.eq.icount) call post3(npass)
return
end
subroutine trlb(n iv)
lavel ¢, gk,gf,nz
common/cmatrx/ gk(1200,2%),8f(1200),nz
ao <0 i=ze,n :
m1=m1n0(ib-1,n-i+1)
do 20 j=1,m!
sum=0.0
k1=min0(i-1,ib-j)
do 10 k=1,k!
sums= sum+gk(x -k k+1)'gk(1 K,j+k)/gk(i-k, 1)
gk(i,j)=gx(i,j)-sum
return
enc
subroutine tribd4(gk,n,ib)
dimension gk(25,3)
do 20 {=2,n
ml=2min0(idb=-1,n-1+1)
do 20 j=1,m1
sum=0.0
K1=min0(i-1,ib-j)
do 10 k=1,k1
: sums= sum+gk(x -K,k+1) *gk(i-k,j+k)/gk(i-k,1)
gx(i,j)=gk(i,j)-sum
return
end
subroutine twoint(m) -

CCCCCCCCCCCCCCCL..CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC&.CCCCCCCCCCCCCCCCC

c
c
(o]

c

This subroutine is to generate the integration points c
and weights for Gaussian Quadrature incegration with o]
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either four-point or nine-point or sixteen-point for ¢
the square element ’ c
m=4..... four-point c
m=9..... nine-point C
m=16....sixteen-point c

c

c

cCceccececeeeeecececeeeegeeeeceegeeceeeceeeceeeeeeceeceeececeececcececcecece

QO0OO0OO0OO0OO0OLO

common/cint/ xint1(4),wint1(4),xint2(16,2),wint2(16),none,ntwo

if(m.eq.4) then ‘
do 5 i=1,4

5 winte(i)=1.0

az-1.0/sqrt(3.0)
xint2(1,1)=a
xint2(1,2)=a
xint2(2,1)=-a
xint2(2,2)=a
xint2(3,1)=a
xint2(3,2)=-a
xint2(4,1)=-a
xintz(4,2)=-a
return

else if(m.eq.9) then
wint2(1)=25.0/81.0
wint2(2)=40.0/81.0
wint2(3)=winte(1)
wint2(4)=wint2(2)
wintz(5)=64.0/81.0 "
wint2(o0)=swint2(c)
wint2(7)=winta2(1)
wint2(€)=wint2(2)
wint2(9)=wint2(1)
aa=-5qrt(3.0/5.0)
do 10 i=1,7,3

20 xint2(i,

30 xint2(i,
do 40 i=1,3
LQ xint2(i,2)=aa
_ do 50 i=4,06
59 xint2(1,2)=0.0
do 60 i=7,9
60 Xxint2(i,2)=-aa
return
else if (m.eq.16) then
al1=0.347854545137454
a2=0.652145154862546d0
wint2(1)=a1*ai :
wint2(2)=al*ag
wint2(3)=wint2(2)
wint2(4)=wint2(1)
wintz(5)=wint2(2)

N

=
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wint2(0)=azc*al
wintz(7)=wintz(o)
wint2(8)=winte(2)
wint2(9)=wintz(2)
wint2(10)=wint2(6)
wint2(11)=wint2(o)
wint2(12)=wint2(2)
wint2(13)=wint2(1)
wint2(14)=wint2(2)
wintz(15)=wint2(2)
wint2(16)=wint2(1)

=-0. 66113631159u053

=-0.339981043584856
do ]10 i=1,13,4

110 xint2(i,1)=a
do 120 i=2,14,4
120 xint2(i,1)=b
do 130 i=3o150u
130 xinte(i,1)=-b
do 140 i=l4,16,4
140 xint<(i,1)=-a
ao 150 i=1,4
150 xintez(i,2)=a
. do 160 i=5,0
160 xint2(i,2) =0
. do 170 i=9,12
170 xint2(i,2)=-b
do 130 1=13,10
14C Xxinti(i,2)=-a
return
else
write(o,100)
109 format(2x,#Choose tne improper value in twoint.f#,)
stop '
end if
end

subroutine velod(xim)
C.... To obtain the normal nodal velocity along interface
c.... To obtain the nodal coordinates along interface
dimension xim(2,25)
common/cinter/ xi13(2,50),nmax3,xi124(2,25),max1z4,nfirst(2)
. ,angl(25),capa(2,25),tin(25),ratio(50)
common/cmatrid/ gk4(25,3),8f4(25),vnor(25)
common/cntrld/ time tmax,delt,thet,nprint,niter,tolen,icount,nwrt
xim(1,1)=xi124(1,1)
xim(2,1)=xi124(2,1)+vnor(1)
xim(1.max1¢u)=xi1zu(1.max12u)
xim(2,max124) =xi124(2,max124) +vnor(max124)
do 10 i=¢,maxtizi-1
thita=angl(i)
xim(1,1)=x1i124(1,i)+vnor(i)*cos(thita)
xim(2,1) x112u(2 i)+vnor(i)*sin(thica)
10 continue
do 20 i=1,max1cld
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vanor(i)=vnor(i)/delt
20 continue
ibefore=icount-1
if(ipefore/nurt*nwrt.eq.ibefore) then
tbeforezibefore¥*delt
write(6,300) tbefore

300 format(//2x,#THE INTERFACIAL NODE LOCATIONS, NORMAL VELOCITIESH#,-
#, MOVING DIRECTIONS, AND TEMPERATURES #, 4
/2x ,#AT TIME #,e15.5,# ARE#,) )
write(6,1000) i .,

1000 format(//3x,#NGC#,13x,#X#,18x,#Yi#,18x,
. #VN#,16x,#ANGL#,15x,#TEMP#,)
do 30 i=1,max124
write(o,100) i,xitvzu4(1,1i),xi124(2,i),vnor(i),angl(i),tin(i)

30 continue

100 format(/i5,5e19.5)
end if
return

end
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