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Abstract 
Many engineering tasks involve the search for good solutions among many possibilities. In 

most cases tasks are too complex to be modeled completely and their solution spaces often 

contain local minima. Therefore, in general classical optimization techniques cannot be 

applied effectively. This paper studies two stochastic search methods, one well established 

(simulated annealing) and one recently developed (PGSL), applied to structural shape control. 

Search results are applied to control the quasi-static displacement of a tensegrity structure 

with multiple objectives and interdependent actuator effects. The best method depends on the 

accuracy related to requirements defined by the objective function and the maximum number 

of evaluations that are allowed. 

1. Introduction 
Typical civil engineering tasks are complex. Nevertheless, goals may be modeled using non-

monotonic objective functions to identify good solutions in very large and irregular solution 

spaces. In such situations, deterministic search methods, such as hill-climbing, are not 

reliable. The risks of terminating in a locally optimal solution are too great and differences 

between the local optima identified and better solutions can be too important. 

Since modeling is rarely complete in civil engineering, overall optimality cannot usually be 

claimed. However, optimally directed algorithms are useful for finding good solutions that 

can subsequently be tested in real situations. Therefore, in many practical engineering 

contexts, stochastic optimization methods are useful for search support. 
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Over the past twenty years, several stochastic search methods have been proposed to increase 

reliability when looking for good solutions in complex search spaces. Examples include 

global random search methods (Masri et. al. 1980), (Raphael and Smith 2000), genetic 

algorithms (Goldberg 1989) and simulated annealing (Kirkpatrick et. al. 1983). Examples of 

applications in engineering include shape and topology optimization (Shea and Smith 1999; 

Deb and Gulati 2001) and building design (Grierson and Khajepour 1999). Latest 

developments are systems which evolve iteratively using genetic algorithms for multi-

objective optimization tasks (Parmee et. al., 2000).  

Algorithms have been compared on the same task using the same goals, models and 

constraints (El-Beltagy and Keane 1999) in order to evaluate their relative performance. For 

example, Youssef (Youssef et. al. 2001) tested genetic algorithms, simulated annealing and 

tabu search on VLSI circuit design. The main conclusion was that good results can be 

obtained with each one of the studied techniques when they include domain-specific 

knowledge. Wolpert and Mcready (Wolpert and Mcready 1997) proposed “no free lunch 

theorems” for optimization algorithms that do not use problem-specific tuning. Algorithms 

that perform well for a class of tasks do not necessarily produce good results when applied to 

other classes. Generally, no algorithm that is tuned only once is best for all tasks. Therefore 

identification of good matches between task classes and algorithms is of practical interest for 

effective application in engineering. 

Applications of stochastic search in control involve sensor or actuator placement (Han and 

Lee, 1999), system identification (Kristinsson and Dumont, 1992) and state estimation of the 

controlled system (Gremling and Passino 2000). Genetic algorithms have been used in all 

cases. Chattopadyay and Seely (Chattopadyay and Seely 1994) addressed system 

identification in combination with actuator location by comparing simulated annealing with 

non-linear programming (NLP). Simulated annealing was more efficient with respect to CPU-



 -3- 

time than NLP in this case. In the field of structural engineering Khot (Khot 1998) added the 

minimization of controller movements to the same task. Salama et. al. (Salama et. al. 1993) 

used simulated annealing in combination with a linear finite element evaluation of control 

moves of a precision truss structure where the search was effective but observed non-linear 

behavior lead to inaccuracies.  

This paper studies the use of two stochastic search methods applied to a non-linear and highly 

coupled task in structural control. The methods are simulated annealing and a new algorithm 

called probabilistic global search Lausanne (PGSL). Application of two methods to the same 

engineering task aims to provide insights into matching algorithms with tasks. This paper 

examines the use of search in structural control from a different perspective to previous work. 

While almost all previous studies involve minimization of the acceleration feedback gain for a 

control command, this structure requires multiple and closely-coupled control moves. Control 

moves cannot be found by direct evaluation. Therefore, generate-and-test type algorithms are 

applied to find control commands that are evaluated by non-linear analysis. In contrast with 

other studies, multiple optimal solutions exist that often involve significantly different control 

commands.  

The size of the search space is approximately 5 × 1020 solutions (500 million trillion) and the 

objective function is known to be non monotonic. The time needed to compute all possible 

solutions on a modern PC is estimated to 4.8 × 1012 years (see section 2.1). In the next 

section, a description of the structural control application will be given. Section 3 then 

describes simulated annealing and PGSL implementations in general. In Section 4, search 

results are compared according to criteria such as the best overall result and progression of the 

search graphs from which conclusions can then be made. 
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2. Structural control application 
Research in the field of structural control may be classified into two categories, passive and 

active structural control. Tuned mass dampers (TMD) are an example of passive structural 

control. They are added as auxiliary mass to a building and adjusted so that energy is 

transferred to them and then dissipated away. They are mostly used to reduce vibration 

amplitudes in chimneys, towers and pedestrian bridges. Since the effect of passive systems 

mostly depends on the existence of well-defined undamped response, their application is 

limited. For the reduction of the vibration of high-rise buildings, practical difficulties arise 

when tuned mass dampers are considered alone. Active systems, where the auxiliary mass can 

be moved using a motor, are used to enhance performance (Nishimura et. al. 1992). The 

majority of control applications are intended to reduce vibrations.  

Research that is described in this paper focuses on another type of active structural control 

(Shea et. al. 2001). In addition to conventional structural control, this work aims to control the 

displacement response of a structure using interdependent actuator commands. Using the 

three tier control hierarchy of execution, coordination and management (Passino 1996), this 

task is the coordination control level. In this context, coordination means coupled control of 

several actuators. An important research activity involves using an actively controlled 

structure to improve its performance over time by integrating learning and planning methods 

into the control algorithm. Figure 1 shows the information flow related to the active control 

research that is described in this paper. Note that a structural analysis is performed for each 

iteration.  

FIG. 1. Finding control commands through stochastic search 

2.1. Control of tensegrity structures 
The expression “tensegrity” was initially employed by Buckminster Fuller (Fuller 1962). It is 

a contraction of tensile integrity and describes a structure where compression members are 
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held apart by a network of tension members. The equilibrium of this structure is obtained by 

its self-stress state (Motro 1992, Williamson and Skelton 1998). 

Such tensile structures are self-supporting and do not need heavy foundations or anchorages. 

They can be easily transported due to their modular construction and therefore can be used 

effectively for temporary events. Attaching fabric could create a tent-structure. The structural 

system is appealing because it combines criteria for efficient use of building materials with 

aesthetic goals in an original way. 

The Applied Computing and Mechanics Laboratory (IMAC) has constructed a novel 

tensegrity-structure consisting of three modules (see Figure 2). Each module is composed of 6 

bars and 24 cables. Bars and cables are linked by specially designed connections and the 

entire assembly is simply supported at only three positions (A, B and C, Figure 2). The center 

of each module consists of a central node where all bars of one module meet. A more detailed 

description of the structure is given in (Fest et. al. 2001). 

FIG. 2. Tensegrity structure built from three modules (A, B, and C are supports) 

When using this system as a temporary roof for an exhibition, large deflections can occur that 

are caused by actions such as snow, wind and rain induced ponding. IMAC’s tensegrity 

structure is equipped with actuators to adjust the length of the struts such that large 

deflections are reduced. The actuators consist of five telescopic bars per module each of 

which can be adjusted in steps of 0.25mm.  

For a given loading of the structure, a control movement for every telescopic bar needs to be 

determined to control the shape. Stochastic search is used to select good combinations. 

Results of Perelli (Perelli 2000) showed that structural behavior is non-linear even when 

control commands are on the order of one millimeter. Although the materials used (steel 

cables and reinforced polyester for the bars) can be assumed to behave linear-elastic (provided 

that no cable becomes slack), the system is geometrically non-linear. Also, each solution is 
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sensitive to the initial positions of the telescopic bars. These may vary when the structure is 

exposed to a whole cycle of different load cases. The search-space is expressed in terms of the 

number of possible solutions, num, and may be evaluated as follows: 

nPnum =  with 

n: number of telescopic bars (3 modules × 5 telescopic bars = 15) 

P: number of possible bar positions (3/0.25 × 2 = 24). (bars may move ±  3mm) 

Assuming that each calculation, including a non-linear analysis, takes 0.3 seconds, the time 

needed to evaluate all possible is 4.8 × 1012 years. 

TABLE 1. Moore’s law applied to the control problem 

Table 1 shows the application of Moore’s law, which states that processor speed doubles 

every 18 months, to our control problem. The size of the task increases through adding more 

modules. Processor speed increases cannot help here since the task is exponential in terms of 

computational complexity. This aspect is discussed in more detail in Section 3. 

2.2. Dynamic relaxation for cable structure simulation 
Approaching the shape control task using a generate-and-test search method requires an 

appropriate analysis method. Compared to other civil engineering structures, cable structures 

have special characteristics. They have geometrically non-linear behavior and as a result, the 

equation of the equilibrium cannot be formulated on the undeformed structure. Also, 

Maxwells rule cannot be applied without modification to test determinacy (Calladine 1978). 

The dynamic relaxation method is popular for analyzing cable structures because it includes 

geometric and material non-linearities efficiently and without matrix inversion. Using the 

dynamic equation of a damped system with externally applied load, 

KddCdMtp ++= )(  
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the residual force at each node of the structure is calculated. After each time step, residual 

forces are summed in order to check if the equilibrium state of the structure has been reached. 

This is indicated when the sum is lower than a threshold value that reflects the precision 

required. 

Although dynamic relaxation uses a dynamic description of the problem, it is used to solve 

static problems. The masses and damping coefficients used in this formulation are fictitious 

and chosen such that they lead to a rapid convergence. By the use of “kinetic damping” the 

algorithm implemented by Rossier (Rossier 1994), which is used in the optimization process 

to evaluate control solutions, avoids arbitrary selection of the viscous damping parameter. 

The method accommodates geometrically non-linear systems through formulating the 

equilibrium of residual forces on the deformed system. Material non-linear behavior can be 

introduced with each new time step, because no pre-assembled stiffness matrix is used. This is 

especially useful for cable structures. If a compressive force is detected in a cable during the 

iterative process, the inner force of the cable is set to ‘0’ for the next iteration. Since the 

algorithm also calculates displacements as well as the forces in the cables and bars, a 

supplementary form finding process is therefore not necessary. 

3. Stochastic search 

3.1. Stochastic search and engineering tasks 
Examples of applications of stochastic optimization in engineering include: 

• structural optimization (Ceranic et. al. 1999) 

• spatial layout (Cagan, Degentesh and Yin 1998) 

• multi-criteria optimization of building design with respect to capital cost, revenue 

income and life-cycle cost (Grierson and Khajepour 1999). 
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Optimization techniques such as linear and non-linear programming are often applicable. 

However, there is a certain class of problems where the application of deterministic 

techniques is not tractable. Intractability means that execution time increases exponentially 

with the number of optimization variables. One frequently used example of an intractable 

problem is the “traveling salesman problem”. The search for an optimal arrangement of cities 

to be visited by the salesman with respect to minimizing the tour length increases 

exponentially with the number of cities on the tour. One might argue that the application of 

Moore’s law will provide us with enough computer power to solve these complex problems. 

This is not true, as we have already demonstrated in Section 2.1. 

Search techniques have been developed to help provide good solutions for intractable 

problems. Gradient search techniques identify a region of good solutions and a downward 

path is followed by accepting only better solutions. In complex solution spaces this method is 

likely to identify only local minima. 

Stochastic search methods have been created to overcome these drawbacks. With reference to 

Reeves (Reeves and Beasly 1995) stochastic search may be defined as  

“A method that makes use of random numbers and is able to find good solutions 

within reasonable time without guaranteeing the optimum” 

Near optimal solutions are sufficient for most engineering tasks.  

3.2. Simulated annealing 

3.2.1 Simulated annealing implementation 
Simulated annealing (Kirkpatrick, 1983) stems from an analogy to the annealing of metals 

where temperature schedules are used to control the arrangement of atoms during their 

crystallization process.  It is a step-wise technique that allows moves to inferior solutions and 

therefore is able to overcome local minima, as shown in Figure 3. 
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FIG. 3. Schematic comparison of simulated annealing (SA) and a descent strategy (DS) 
(modified from Dowsland 1995). f(x) is the objective function. 

This process is driven by the function 

T
C

accept eP
∆

−
=  

The change in the objective function, or cost, between two moves is denoted by ∆C.  Paccept is 

compared to a randomly generated value between 0 and 1 and the inferior candidate solution 

is accepted when the random value is less than Paccept. In general, the temperature at the 

beginning of the process is fixed for each problem as a schedule parameter and is then 

reduced to zero during the optimization process according to an “annealing schedule”.  

During the last section of this schedule, the “freezing” stage, only better moves are accepted 

and simulated annealing behaves as a descent strategy. 

Simulated annealing algorithms are reasonably robust if the parameters controlling the 

cooling curve are assigned values that reflect the complexity of the solution space.  This 

implementation uses the modified Lam-Delosme annealing schedule to define schedule 

characteristics (Swartz and Sechen 1990). This schedule operates by assuming an optimal 

profile for the percentage of candidate solutions that should be accepted at each iteration of 

the search process and adjusting the temperature over a statistical interval to achieve this 

target accept rate (Figure 4). 

FIG. 4. Example of accept rate and temperature schedules     

Starting from an initial temperature, Tinitial, the temperature update is defined as: 

nettactualn T
K

rateacceptrateaccept
T ×

−−
=+ )__(1 arg1   

where K is a constant; a value of 10 has been found to be effective.  Other schedule 

parameters affecting the performance of this schedule include the number of candidate 

solutions considered in each iteration, the number of iterations in a complete search process, 

how often the temperature is updated and over what statistical interval.  
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From the initial state, candidate solutions are generated by selecting a single system variable 

at random and perturbing it within the allowable variable ranges.  This implementation makes 

use of the concept of Hustin move sets (Hustin 1988) where each “move” is assigned a sub-

range of the maximum allowed variable change. Since the move sub-range only defines the 

upper limit of a variable change, smaller moves are always possible.  Each move range, r, is 

then assigned a quality, Qr: 

rulesattemptedofnumber

rC
Q sacceptrule

r ___

)(∑ ∆
=  

according to the change in cost of past applications of the rule, ∆C(r).  Rule qualities are used 

to update the probability of selecting a move sub-range in subsequent perturbations of the 

solution.  Generally, larger moves are used in the beginning of the process whereas smaller 

moves are used towards the end as the solution converges. While newer annealing schedules 

may be available that are along similar lines to those described, these techniques have been 

proven successful in the domain of structural topology optimisation (Shea et. al. 1997). 

3.2.2 Schedule parameter setting 
The schedule parameters were set in order to converge to optimally directed solutions in the 

least amount of time.  For the structural control problem studied, the number of iterations was 

set to 150 where each iteration consisted of 100 candidate solutions. A guideline given in 

(Swartz and Sechen 1990) for the number of moves per iteration is  

3
4

var10 iablesn×  

with nvariables = number of variables. While this was used as a starting point for setting the 

number of moves it was found that good convergence was achieved in far less moves for this 

particular task. 

A further 40 “freeze” iterations were performed at the end of the process where only better 

solutions were accepted.  Additional parameters were then set to allow the process to stop if 
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absolute and relative convergence criteria were met.  In the results presented, all processes 

converged within the first two iterations of the “freeze” process.  The initial temperature was 

set to 20, based on the numeric range of the cost function, and updated every ten moves.  Six 

sub-ranges for variable changes were used to define the move set.  As simulated annealing 

works best for incremental small changes of solutions, the first four ranges cover 50% of the 

total range, 3 mm, while the remaining two are set at 70% and 100% of the maximum range.  

All search parameters were held constant across all load cases. 

3.3. Probabilistic Global Search Lausanne (PGSL) 

3.3.1 An introduction to PGSL 
PGSL has been developed at IMAC (Raphael and Smith 2000). It has already been applied to 

several tasks in the field of structural engineering, such as optimization problems in timber 

structures (Svanerudh et. al. 2001) and bridge diagnosis (Robert-Nicoud et. al. 2000). PGSL 

uses the assumption that better points are more likely to be found in the neighborhood of good 

points and therefore intensifies search in regions which contain good solutions. Gradient 

techniques are not employed. The algorithm itself consists of four nested loops (Algorithm 1, 

Figure 5). 

ALGORITHM 1.  The four nested loops of PGSL  

FIG. 5. Example for the development of the probability density function of one optimization 
variable  Xi during the four nested loops of PGSL 

A feature that PGSL shares with other random search methods such as adaptive random 

search and controlled random search is the use of a PDF (Probability Density Function). 

However, the following differences between PGSL and other random methods are: 

1. Other random methods that make use of an explicitly defined PDF, follow a "creep" 

procedure similar to simulated annealing. They aim for a point-to-point improvement by 

restricting search to a region around the current point. The PDF is used to search within a 



 -12- 

small neighborhood.  On the other hand, PGSL works by global sampling. There is no 

point-to-point movement. 

2. The four nested cycles in PGSL are not similar to any features of other algorithms. 

3. Representation of probabilities is different. Other methods make use of a mathematical 

function with a single peak (e.g. gaussian) for the PDF. PGSL uses a histogram - a 

discontinuous function with multiple peaks. This allows fine control over probabilities in 

small regions by subdividing intervals. 

4. Probabilities are updated differently. The primary mechanism for updating probabilities in 

other methods is by changing the standard deviation. In PGSL, the entire shape and form 

of the PDF can be changed by subdividing intervals as well as by directly increasing 

probabilities of intervals. 

The algorithm has been tested on non-linear benchmark problems and compared with results 

from genetic algorithms applied to the same problems (Raphael and Smith 2000). When no 

problem-specific knowledge is employed, PGSL performs as well as genetic algorithms. 

3.3.2 Adjusting the parameters of PGSL 
The parameters to be determined for PGSL are the number of iterations for each one of the 

four nested loops (see paragraph 3.3.1). For the detection of optimal parameters, the following 

procedure was employed. Drawing from experiences made with other optimization problems, 

the number of sampling cycles is set at two and the number of probability updating cycles at 

one. The number of iterations for the third loop should be fixed at P × number of variables, 

where P varies from 10 to 20. Values for the number of iterations in the subdomain cycle are 

determined by experiment. Different sets of parameters have been tested on the control 

problem. Table 2 presents the different parameters chosen to be tested on the control problem 

in combination with two representative load cases. Parameter set 1 did not use the empirical 

procedure described above. 
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TABLE 2. Test cases for parameter adjustment of PGSL. See Figure 7 for the description of 
load cases 

The results are plotted in a best-so-far curve, where the cost of the objective function has been 

plotted against the time the algorithm used in Figure 6a) and 6b): 

FIG. 6. Parameter study 

Parameter set 4 has been used with the tests. The parameter study reveals that the procedure 

followed for sets 2, 3 and 4 results in the best solutions. Therefore only the values of focusing 

cycles (NFC) and subdomain cycles (NSDC) need to be adjusted to fix the total number of 

evaluations of the objective function. This underlines the ease and simplicity of fixing PGSL 

parameters. 

4. Description of the tests 
Tests focused on the comparison of two stochastic search techniques applied to the same 

structural control problem. As described in section 2.1, a tensegrity structure should respond 

to loads such that a given objective is reached. For a comparative study we are concentrating 

on a relative height objective. This is related to our working objective to keep the top nodes of 

the structure at a constant slope. An application of such an objective is to control the slope of 

a roof. Roofing systems require slope control to avoid ponding during rainfall and melting of 

snow. The objective function governing this search can be formulated as follows: 

Find a set of possible bar strokes (Pi,bar stroke; i = number of moveable bars) such that  

cost )(
3

)()()( 2
,62,52

2
,62,6

2
,52,6 mm

NodeNodeNodeNodeNodeNode zzzzzz −+−+−
=  

is minimized according to a predefined threshold value. 

(Node6,z = z-displacement of controlled node number 6, see also Figure 7) 

 
The constraints used were: 
 

• Maximum bar stress ≤ 28.5 Mpa 
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• Maximum cable stress ≤ 901 Mpa (70% of the maximum cable stress allowed by the 

manufacturer) 

• Maximum buckling force ≤ 20 kN 

 
According to the technical specifications of the jacks used, the maximum move of the 

telescopic bars from their initial position is limited to ± 21mm. The precision range of each 

move is in steps of ± 0.25mm. Three series of tests have been carried out: 

 

• Series 1: Constrained scenario 

Two bars per module were assumed to be telescopic and could be moved by ± 3mm. 

Optimization of seven different load cases. 

• Series 2: Search progression 

Five bars per module were assumed to be telescopic and could be moved by ± 3mm. 

Optimization of seven different load cases. 

• Series 3: Effect of the number of search runs 

Five bars per module  

Optimization of two different load cases. 

 
The load cases and the controlled nodes are presented in Figure 7.  
 

FIG. 7. Plan view of the tensegrity structure with load cases (LC) and controlled nodes used 
for the tests 

4.1 Test results 
A Pentium III 600 Mhz machine has been used for all tests. Results have been obtained by 

running each optimization method at least three times. 

4.1.1 Series 1 
Test results are presented in Table 3. 
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TABLE 3.  Test results for 2 moveable bars per module 
 
Although both algorithms required approximately 3 to 4 hours to complete search, the final 

solution was found after several minutes as noted in Table 3. The solutions obtained from 

simulated annealing and PGSL were identical regarding cost and proposed bar strokes. An 

optimal solution near a cost value of zero could not be obtained, since: 

• only two telescopic bars per module were allowed to move, 

• movement was limited to ± 3mm, and 

• possible bar positions were only in steps of 0.25mm. 

Upon examining the proposed bar strokes for the final solution it was observed that these tests 

identified solutions that are on the edge of the solution space since every bar was moved by 

its maximum stroke, either +3mm or –3mm. This signifies that the iteration might have been 

stopped after each bar was extended to its limit. Nevertheless, PGSL identified the best 

solution more rapidly than simulated annealing. 

4.1.2 Series 2 
Table 4 presents the number of iterations needed to attain the best state for each combination 

of load case and search technique. 

TABLE 4.  Test results for 5 moveable bars per module  
The development of the costs during an optimization has been plotted in best-so-far curves as 

introduced in Section 3.3. The curve of the simulated annealing process shows three peaks. 

As a point-to-point search technique, it is launched three times from the initial conditions in 

order to allow three different paths to converge to a near optimal solution. For PGSL, in 

contrast, this is less advantageous since it is inherently a parallel technique. The number of 

evaluation cycles has been increased proportionally for each PGSL run.  

Figure 8a to 8g provide results from seven different load cases that now can be compared with 

respect to minimum cost and speed of convergence. PGSL shows faster convergence in load 
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case 1 (Figure 8a) as simulated annealing. Nevertheless, both algorithms converge to the same 

best cost. This leads to the conclusion that this solution is most likely the global minima. 

Final results of load case 2 (Figure 8b) are close to each other. Although simulated annealing 

converges to the best result at the end, PGSL converges faster in the beginning of the iterative 

cycle. For load case 3 (Figure 8c) PGSL performs better than simulated annealing in terms of 

best cost and speed of convergence. Simulated annealing converges to the best solution in 

load case 4 (Figure 8d). Observations for load case 5 (Figure 8e) are similar to those made for 

load case 3. However, a zone between approximately 3000 and 21000 evaluations is present, 

where simulated annealing outperforms PGSL. Load cases 6 and 7 (Figures 8f and 8g) may be 

discussed together since these results are analogous. PGSL converges faster for the first 

approximately 2000 evaluations of the objective function. In the middle of the evaluation 

simulated annealing provided better solutions than PGSL. Although PGSL found the set of 

best bar movements, the differences in cost are negligible. 

FIG. 9. Best-so-far curves 

4.2 Effect of the number of runs 
Stochastic search techniques do not necessarily converge to the same solution when started 

multiple times for the same objective and initialstate. Therefore, multiple runs have been 

executed for two load cases (load case 2 and load case 6) to evaluate the effect of the number 

of runs. 

Figure 9a shows the results for 25 runs for load case 2. After two runs a solution in the region 

of the best solution has already been found. Both algorithms converge to the same solution 

after eleven runs.  

Load case 6 (Figure 9b) is a more complex problem. The lowest cost curve for simulated 

annealing shows a more “staircase-like” behavior. Although after 6 runs no further changes in 

the lowest cost of simulated annealing can be observed, PGSL finds a better solution close to 
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the best state of simulated annealing after 15 runs. In all cases, acceptable costs were achieved 

after two to four runs, considering practical aspects of applying solutions to the structure. This 

is discussed further in the next section. 

FIG. 9. Best-so-far curves for multiple runs 

Bar movements proposed differed significantly for almost all runs. 

4.3 Discussion 
The first two test series showed the ability of both stochastic search methods to find good 

control solutions. As shown in section 4.1.2, there was little evidence that one method 

provides more accurate results than the other. No best algorithm for all test load cases can be 

identified. These results thus support the “no-free-lunch” theorem (Wolpert and Mcready 

1997). PGSL converges faster in the approximately first 1000 evaluations of the objective 

function. During that period, simulated annealing accepts still worse solutions to avoid local 

minima. This behavior leads to a better end result in some cases. Nevertheless, from a 

practical viewpoint, both algorithms provide good results. 

The success of this search does not necessarily require solutions that are near to 0. As it was 

observed in section 4.1.1, it may not be possible to counteract completely all deflections 

within the constraints of this task. Furthermore, the usual inaccuracies between behavioral 

models and real behavior often do not justify the computational cost of a theoretically better 

solution. Such tradeoffs help determine the most appropriate values required for accuracy. 

Evidence of the stochastic nature of both algorithms has been given with test series 3, 

presented in section 4.2. Although costs were similar, command characteristics were different 

for almost each run. The time necessary to evaluate multiple runs for determination of good 

control moves inhibits the practical use of search methods even for quasi-static control. 

Solutions with similar values of the objective function propose significantly different bar 
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movements. This has an impact on their applicability since current actuator positions might 

lead to different choices.  

PGSL has an advantage over simulated annealing in terms of the number of parameters to be 

fixed before each optimization process. Simple guidelines lead to rapid parameter adaptation 

for other applications. 

As a step-wise method, simulated annealing allows movements to control solutions that 

violate constraints, which are currently rejected. Soft constraints can be used in order to find 

an optimum by stepping through a region of invalid solutions. Since PGSL is a probabilistic 

method that focuses on good solutions in parallel, it does not iterate from invalid solutions. 

The approach used for finding good solutions thus differs between methods. This difference 

may determine which algorithm is better suited for a given application. 

Once good control commands have been used successfully, they may be stored in a case base 

for subsequent use. This would increase speed significantly. Furthermore, case adaptation 

techniques may prove to be useful when previous cases do not exactly match current control 

tasks. This is a focus of work in progress. 

5. Conclusions 
Stochastic search results show much potential for controlling deflections in highly coupled 

tensegrities. Simulated Annealing and PGSL provide rapid convergence to good solutions in 

this application. PGSL has the advantage that control parameters are fewer and more intuitive. 

The most rapid technique depends on the desired accuracy of the objective. PGSL usually 

provides good solutions for high and low required accuracies whereas simulated annealing 

offers better results for intermediate cases. 
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Evaluating multiple runs for one control task resulted in gradually more accurate results. 

However, the time that is necessary for solution diversity in order to perform multi-criteria 

optimization might limit this advantage.  

While no one tuning of an algorithm can be successful for all tasks, as stated by the “no-free-

lunch” theorem, simulated annealing and PGSL perform well for highly coupled 

computational shape control of structures. PGSL has the advantage of fewer search 

parameters that require setting prior to search. 
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Tables 
 
 

TABLE 1. Moore’s law applied to the control problem 

Number of 
modules 

time needed to evaluate all possible solutions 

Today In 5 years In 20 years 
  (10 times faster) (10000 times faster) 

  [years] [years] [years] 
3 4.80E+12 4.80E+11 4.80E+06 
7 1.93E+40 1.93E+39 1.93E+34 
15 3.12E+95 3.12E+94 3.12E+89 
20 9.99E+129 9.99E+128 9.99E+123 
25 3.20E+164 3.20E+163 3.20E+158 

 
 
 
 
 
TABLE 2. Test cases for parameter adjustment of PGSL. See Figure 7 for the description of 

load cases 
Parameter Set 

1 2 3 4 
Number of sampling cycles (NSC) 5 2 2 2 
Number of probability updating cycles (NPUC) 3 1 1 1 
Number of focusing cycles (NFC) 150 150 300 150 
Number of subdomain cycles (NSDC) 8 10 15 15 

 
 
 
TABLE 3.  Test results for 2 moveable bars per module 

Load 
Case 

Simulated annealing PGSL 
Cost 
[mm] 

Time 
[mm:ss] 

Cost 
[mm] 

Time 
[mm:ss] 

1 9,8096 25:14 9,8096 06:16 
2 3,3600 17:51 3,3600 04:44 
3 6,1594 15:57 6,1594 07:44 
4 1,1591 13:28 1,1591 05:32 
5 6,3735 08:12 6,3735 06:26 
6 1,4448 13:07 1,4448 07:37 
7 3,1963 13:06 3,1963 07:29 
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TABLE 4.  Test results for 5 moveable bars per module 

Load 
Case 

Simulated annealing PGSL 
Cost 
[mm] 

Iteration 
 

Cost 
[mm] 

Iteration 
 

1 1.4101 16.287 1,4101 1.700 
2 0.0073 23.781 0.0085 34.428 
3 0.0106 51.888 0.0054 30.000 
4 0.0024 11.779 0.0075 16.316 
5 0.0171 21.000 0.0050 21.628 
6 0.0071 1.670 0.0050 37.842 
7 0.0051 45.781 0.0029 37.811 
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Figures 
 
 

FIG. 1. Finding control commands through stochastic search 

 

 
 
FIG. 2.  Tensegrity structure built from three modules (A, B, and C are supports) 
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FIG. 3. Schematic comparison of simulated annealing (SA) and a descent strategy (DS) 

(modified from Dowsland 1995). f(x) is the objective function. 
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FIG. 4.  Examples of accept rate and temperature schedules     

 
 
FIG. 5. Example for the development of the probability density function of one optimization 

variable  Xi during the four nested loops of PGSL 
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Figure a): Parameter study PGSL, load case 2 (best-so-far)

0.001

0.01

0.1

1

10

100

1 10 100 1000 10000 100000
evaluations

co
st

1
2
3
4

Set of parameters:

 
 

Figure b) Parameter study PGSL, load case 4, best-so-far
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FIG. 6. Parameter study 
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FIG. 7. Plan view of the tensegrity structure with load cases (LC) and controlled nodes used 
for the tests 
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Figure a) Best-so-far load case 1
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Figure b) Best-so-far load case 2
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Figure c) Best-so-far load case 3
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Figure d) Best-so-far load case 4
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Figure e) Best-so-far load case 5
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Figure f) Best-so-far load case 6
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FIG. 8. Best-so-far curves 
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Figure a) Best-so-far load case 2 (multiple runs)
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Figure b) Best-so-far load case 6 (multiple runs)
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FIG. 9. Best-so-far curves for multiple runs 
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Algorithms 

ALGORITHM 1.  The four nested loops of PGSL  
 
 

Set the complete search space as the current subdomain 
Loop 1: Repeat for NSDC (Number of Sub-Domain Cycles) iterations 

assume a uniform probability density function (PDF) for all 
variables in the current subdomain. 

Loop 2: Repeat for NFC (Number of Focusing Cycles) iterations 

Loop 3: Repeat for NPUC (Number of Probability Updating Cycles) 
iterations 

Loop 4:  Repeat for NSC (Number of Sampling Cycles)iterations  

   Generate a solution using the current PDF 
End of Loop 4 

 Select the best solution in Loop 4.   
For each variable, locate the interval containing the best value. 

Increase the probability of this interval. 

 End of Loop 3: 
Select the best solution in Loop 3: Subdivide the interval containing 
the best solution. 

Assume a uniform probability within the best interval. 

Assume an exponentially decreasing distribution away from the best 
interval. 

End of Loop 2: 

Select a smaller subdomain centred around the best solution so far.   

 The width of this subdomain is chosen after performing certain checks to 
prevent premature convergence (details can be found in [Raphael and 
Smith, 2000]) 

End of Loop 1. 
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